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Abstract 

The demand for solar radiation forecasting has become a significant feature in the design 

of photovoltaic (PV) systems. Currently, the artificial neural network (ANN) is the most 

popular model that is used to estimate solar radiation. However, a new approach, called 

the extreme learning machine (ELM) algorithm, has been introduced by Huang et al. In 

this research, ELM and a multilayer feed-forward network with back propagation were 

used to predict daily global solar radiation. Metrological parameters such as air 

temperature, humidity and date code have been used as inputs for the ANN and ELM 

models. The accuracy and performance of these techniques were evaluated by comparing 

their outputs. ELM is faster than ANN, and results in a high generalization capability. 
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1 Chapter 1: Introduction 

Demand for electricity is reasonably high, and it predicted to increase rapidly into the 

future. Consequently, the usage of non-renewable energy such as fossil fuels will likely 

increase as well. While a boon to industries that produce energy, heavy use of traditional 

fuel sources has raised concerns about environmental pollution, prompting a search for 

clean, renewable energy sources by governments and researchers around the world. Such 

energy sources include wind, biomass, solar, marine energy and hydro. Our research here 

will focus on solar energy [1]. 

The photovoltaic (PV) solar energy generating system, whether grid-connected or stand-

alone, is most commonly used in suburban and rural areas. It is based on converting solar 

radiation (i.e., photons that are sent from the sun) to produce electricity. The PV system 

has a wide range of applications. For example, in developing countries, PV is used for 

basic life needs, such as heating and cooking, while in developed countries, the system is 

used to supply electricity for homes and the grid [2]. 

Solar power systems are affected by different parameters such as solar radiation which is 

the most essential, and solar radiation data is the most significant factor impacting the 

design and production of solar energy. In fact, the output voltage of a PV panel is 

strongly affected by the degree of solar radiation. The two most common ways to collect 

solar radiation data are through a meteorological station and through satellites [3]. 

Due in part to its importance in the solar energy field, global solar radiation data (GSR) 

forecasting has become more popular in order to facilitate solar system installation. Air 

temperature and humidity data are the most commonly used parameters to predict solar 

radiation and two techniques used in this research are artificial neural network (ANN) 

and extreme learning machine (ELM).  

An artificial neural network consists of intelligent neurons that work similar to a human 

brain. ANN maps the relationships between input(s) and output(s) (i.e., the target) and 

deals with linear or nonlinear mathematical operations between and among them. To find 

the input/output relationships, neural networks apply various methods such as multilayer 
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perceptron (MPL) and radial basis function (RBF). In this thesis a multilayer feed-

forward neural network with back propagation is used.  

On the other hand, an extreme learning machine (ELM) is based on single, hidden-layer 

feed-forward neural networks (SLFNs), as suggested by Huang et al. The weights and 

biases between the input layer and hidden layer are randomly assigned, and the output 

weights between the hidden layer and output layer are analytically calculated. In other 

words, an ELM learning algorithm is faster than back propagation and is also reported to 

yield high quality generalization performance [4].    

Both algorithms (ANN and ELM) are used to predict the global solar radiation of the city 

of Riyadh, the capital of Saudi Arabia. A comparison between the results of the two 

methods is then provided. ANN & ELM were created in a MATLAB (R2011a) 

environment, version 7.12, and Minitab software was utilized to find the correlation 

coefficient. 

1.1 Research Motivation 

Saudi Arabia has an abundance of natural solar radiation through long hours of sunshine. 

Accordingly, using solar energy system as a clean renewable energy source is considered 

a practical solution. The motivation for this research is to study global solar radiation 

using the new algorithm called extreme learning machine, and to compare its 

performance with that of a well-known algorithm, the artificial neural network.  

1.2 Research Objectives 

The main objective of this research is to predict solar radiation in Saudi Arabia by using 

two models and determining which one is more accurate. Although Saudi Arabia has high 

levels of solar radiation, the radiation is affected by various factors. By using these 

factors as input and solar radiation as output, an artificial neural network has been applied 

to estimate solar radiation in Saudi Arabia.  

1.3 Research Outlines 

Five chapters are presented in this thesis. Chapter 1 contains this introduction about 

renewable energy sources and the techniques used in this research. Chapter 2 consists of 
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four sections. The first section provides an introduction to solar radiation; the second 

section overviews the topic of renewable energy in Saudi Arabia; the third section 

presents a literature review of solar radiation forecasting; and the final section describes 

how the Photovoltaic (PV) system utilizes solar radiation. Chapter 3 provides a detailed 

description and analysis of the two models that are applied in this research: the artificial 

neural network model and the extreme learning machine model. Chapter 4 discusses the 

results obtained from using these models, and Chapter 5 presents the conclusions of this 

research and offers suggestions for future work. 
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2 Chapter 2: Solar Radiation and Photovoltaic 

2.1 Solar Radiation 

Solar radiation, which is the intensity of the sun spectrum at any given location, is the 

main parameter used in designing a solar power system. Solar radiation is measured in 

watts per square meter (W/m
2
) units and consists of photons that penetrate a photovoltaic 

(PV) array and cause electron excitation. Photon energy can be expressed as [2]: 

E= 
  

 
                 (2-1)  

E: is the photon energy. 

h: is the Planck’s constant. 

c: the velocity of light. 

  : is the wavelength. 

There are three types of solar radiation that penetrate the PV panel: direct, diffuse, and 

albedo. The direct (beam) radiation is the amount of radiation that comes from the sun in 

a straight line. It is considered the best measurement of radiation when there is no 

atmosphere condition influence, such as clouds. On the other hand, diffuse radiation is 

scattered by molecules and clouds. This radiation is more effective than direct in 

atmosphere generation. Albedo is the reflected sun beaming from the ground or objects. 

The total of direct, albedo and diffuse radiation is called global radiation, as shown in 

Figure 2.1 [5]. 

In solar radiation forecasting, two procedures are used to estimate solar radiation: 

conventional forecasting and neural networks. The former procedure depends on  

methods applied during the past decade, such as time-series Autoregressive moving 

Average (ARMA), while the latter uses artificial neural networks, such as feed-forward 

network and radial basis functions [6]. 
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Figure 2.1 Global Solar Radiation Components [7]  

2.2 Kingdom of Saudi Arabia 

As the Middle East’s largest and most populous nation, Saudi Arabia boasts a total area 

of 2,149,690 square kilometers and a population of nearly 27 million [8]. It is also one 

the world’s largest oil producers, claiming nearly one-fifth of all known global oil 

reserves [9]. However, due to its hot and sunny geographical location (between latitudes 

17 N and 32 N) [10], Saudi Arabia also has enormous potential to generate energy by 

capitalizing on renewable resources such as wind and solar energy [11]. 

2.1.1 Solar Radiation in Saudi Arabia  

Saudi Arabia receives enormous amounts of radiation of approximately 12,425 terra- 

watt-hour (TWh), or around 5500 W/   per year [12]. The country currently has 12 

locations for measuring solar radiation data, with each location providing hourly 

measurements of air temperature, relative humidity, global horizon radiation (GHI), 

direct normal radiation (DNI) and diffuse horizontal radiation (DHI). All data are 

collected and sent to the solar village in Riyadh. Figure 2.2 shows the locations where the 

solar data are measured [13]. 
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Figure 2.2 Solar Villages Locations in Saudi Arabia [14] 

2.3 Literature Review  

Wang et al. (2011) [15] used an artificial neural network and time series analysis for 

short-term solar irradiation forecasting. Diffused radiation, temperature, relative humidity 

and time were used as inputs in the neural network model, and double hidden layers were 

applied with two transfer functions, tang-sigmoid and log-sigmoid. The results showed 

accurate estimation of solar irradiation. Specifically, the coefficient determination of the 

model was 99.12% and the root mean square was 0.0331. 

Mubiru et al. (2007) [16] studied an artificial neural network to predict the monthly 

average daily global solar radiation in Uganda. Back propagation (BP) was used, with 15 

neurons and one hidden layer. The input parameters were sunshine hours, cloud cover, 

maximum temperature, longitude, latitude and altitude, with results showing a root mean 

square error of 38.5%. 

Dorovlo et al. (2002) [17] created two models based on Radial Basis Function (RBF) and 

Multilayer Perceptron (MLP) to predict solar radiation in Oman. The data were gathered 
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from eight locations to forecast the clearness index and solar radiation. The authors 

concluded that RBF was better than MLP, based on the factor of time savings. 

Mellti et al. (2010) [18] investigated Multilayer Perceptron (MLP) in artificial neural 

networks to predict 24-hour solar irradiance in Italy. The inputs were based on the mean 

daily irradiance and the mean daily air temperature. The article showed that the best 

model was obtained with one input and two hidden layers. The correlation coefficient for 

a sunny day was between 98% and 99%; but for a cloudy day, it was between 94% and 

95%. 

Mellit et al. (2005) [19] estimated the daily solar radiation by using Radial Basis 

Function network. The proposed model used air temperature and sunshine duration as 

inputs to predict daily solar radiation. The drawback was that the method was time-

consuming, as the model was created for limited data. The authors suggested using a fast 

algorithm, such as back propagation, to overcome this issue. 

Angela et al. (2011) [20] carried out forecasting for the monthly average of daily global 

solar radiation by using an artificial neural network for application to Kampala data. The 

tangent sigmoid transfer function was used with one hidden layer and 65 neurons.  The 

root mean square value of the error was 0.521 MJ/   and the correlation coefficient (R) 

was 0.965. The article concluded that the model was valid but accuracy was high because 

the input to the neural network involved sunshine hours only. 

Deng et al. (2010) [21] used a feed-forward neural network with back-propagation to 

predict the daily global solar radiation in China. The proposed model had three hidden 

layers and the Levenberg-Marquardt algorithm was employed. The input to the neural 

network was meteorological data and geographical parameters. The authors found that 

the sunshine duration, geo-parameters, and day of the year were the most significant 

inputs to this model. The best result obtained was 1.915 MJ/m
2
 root mean square error 

and 0.932 correlation of determination (  ). 

Rehman et al. (2007) [22] divided the data into two sections: training data from 1998 to 

2001 and testing data from 2001 to 2002. The inputs to the neural network were air 

temperature and relative humidity, and the output was global solar radiation. Based on 
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the number of inputs, three models were proposed in the work. The first model used the 

day of the year and the daily maximum air temperature as inputs to the neural network. 

The second model used day of the year and daily mean air temperature, and the last 

model used day of the year, daily mean air temperature, and relative humidity as inputs. 

The mean absolute percentage errors for the three models were 10.3%, 11.8% and 4.49, 

respectively. The article concluded that the third model had the best relative performance. 

Ghanbrazadeh et al. (2009) [23] used combinations of meteorological parameters as 

inputs to the neural network to predict solar radiation. The authors discovered that the 

best performance occurred when the sunshine hours, the average of daily temperature, 

and humidity were used as inputs to the neural network. The model obtained 0.00405433 

for the root mean square error and 8.84% for the absolute mean percentage of error. 

Rani et al. (2012) [24] found that the model was more accurate when the temperature, 

humidity, month and day were the inputs to the neural network. The data were divided 

onto two subsets: the training set and the testing set. The root mean square error (RMSE) 

and mean absolute percentage error (MAPE) for the model were 0.9429 and 9.1754%, 

respectively. The model was less accurate when the date and the month were used as 

inputs. 

2.4 Solar Powered Systems 

The idea of a PV module is to convert sunlight into electricity. In general, one cell in a 

PV array gives 0.5 voltages. There are two types of solar powered systems: grid-

connected PV and stand-alone PV [2]. 

2.4.1 Grid-Connected Photovoltaic (GPV) System 

Figure 2.3 illustrates the structure of a grid-connected PV system. The most essential part 

in this model is the inverter used to convert the PV’s direct current to alternating current. 

In this system, the grid and PV system work in parallel. In other words, the load demand 

is supplied from the solar system during the day, while the grid supplies the load demand 

at night [2]. 
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Figure 2.3 Grid-Connected Photovoltaic System [25] 

2.4.2 Stand-alone PV Model 

The stand-alone PV model is popular in rural areas, and consists of PV cells, batteries 

and inverters. The drawback of this system is that it is unable to supply load demand 

during night time. The solution is to develop a system that combines the desired features 

of the stand-alone and hybrid systems, such as diesel generation or wind. Figure 2.4 

shows the composition of the stand-alone model [2, 5]. 
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Figure 2.4 Stand-Alone Structure [26] 

2.4.3 PV Elements 

All PV models consist of components that are used to supply electricity to the load or the 

grid. 

2.4.3.1  Inverter 

The inverter converts the direct current (DC) that comes from PV array to an alternative 

current (AC). The power transmission (AC) between the PV model and the grid should 

have the same voltage, phase and frequency [2]. 

2.4.3.2  Charge Controller 

The main objective of the charge controller is to determine the current from the PV array 

to avoid overcharging between the PV models and battery, and discharging between the 

battery and the load [2]. 
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2.4.3.3  Battery 

A battery is used in a stand-alone system to store the voltage that is supplied from the PV 

array. It works during the day especially at night when the PV model is off [2]. 

2.4.3.4  Digital Meter 

The main idea of a digital meter is to show the amount of electricity that is transmitted to 

the load and grid. It also protects the load peak of the network by measuring the 

performance of the inverter [2].   
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3 Chapter 3: Solution Methods 

3.1 Artificial Neural Network (ANN) 

3.1.1 Introduction 

A neural network (NN) is a program that is designed to imitate the human brain. The 

brain consists of many neurons which are connected by axons, synapses and dendrites. 

The neurons are composed of neurons that are linked by weights and biases. The function 

of a neural network is to map the relationship between the input(s) and the output(s). In 

this study, the solar radiation in Saudi Arabia (Riyadh) has been predicted by using an 

artificial neural network (ANN) [27]. 

3.1.2 Neural Network Procedure 

Neural networks can be used for different functions, such as curve fitting, prediction and 

regression [27]. In this thesis, neural networks are used to design forecasting models 

using four steps that must be achieved: 

1. Collecting the data 

2. Initiating the network 

3. Training the data 

4. Simulating the data 

The design of any neural network model requires information about the system that will 

be used. In our case here, information on radiation, temperature, and humidity in Riyadh, 

Saudi Arabia, is gathered from the King Abdulaziz City of Science and Technology to be 

used in the forecasting model.  

After collecting the data, they are entered into the initiation stage where data are divided 

and processed. In the division stage, data are divided into three sets: training set, 

validation set, and testing set. The data are then normalized to be in a range between 1 

and -1, after which the data are ready for the training process and are simulated to obtain 

the prediction results [27]. 

The normalization of the data is executed using the following [27]:  
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 ̂ = 
       

         
                         (3-1) 

  ̂= the normalized data. 

   = the input data before normalized. 

     = the maximum value of the input/output vector. 

     = the minimum value of the input/output vector. 

3.1.3 Neural Network Structure 

The core unit of an artificial neural network (ANN) is neurons which use a transfer 

function to create output. Each input (p) is multiplied by a weight (w), which serves as a 

connection between an input and a neuron as well as between the various layers of 

neurons. In the next stage, the weight inputs are combined, after which a bias (b) is added 

to the sum of the weight inputs. The neuron applies a transfer function ( ) to this result, 

from which the output (a) is obtained. Figure 3.1 illustrates a basic ANN [28]. 

 

Figure 3.1 Simple Artificial Neural Network [27] 

The relation between the input and the output can be expressed [27]: 

                                      (3-2) 

Where:   is the net input. 

During the training stage the weight(s) and the bias(s) are updated with respect to the 

following equations [27]: 
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                                                          (3-3) 

                                  (3-4) 

W= the weight. 

b= the bias vector. 

  = the learning rate. 

e= the error vector. 

In other words, the evolution of the weights is driven by the error. Table 3.1 shows four 

types of transfer function that have been used in this work. The purlin transfer function is 

used at the output layer in the neural network, while the other three transfer functions, i.e 

tansig, logsig, and tribas are used in different models between the input and hidden 

layers [27].  

Table 3.1 Transfer Function [27] 

 

 

            
 

               
 

 

 

            
 

           
 

 

            

 {
                   

          
}  



15 

 

 

y = purelin(n) = n 

There are many types of artificial neural networks. Examples include feed-forward neural 

network, radial basis function (RBF) networks, recurrent networks, Hoplfield networks, 

Kohonen self-organizing networks, the Echo state networks, Boltzmann machine,  the 

long short term memory networks, associative neural network (ASNN) and neuro-fuzzy 

networks. In this study, the feed forward neural network is used with back propagation 

[29]. 

Figure 3.2 shows a single-layer network. R represents the number of elements in the input 

vector, S is the number of neuron in layer, and a is the output vector. 

 

Figure 3.2 Single- layer Artificial Neural Network [27] 

The output of each neuron can now be expressed as [27]: 
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a =  (∑     
 
   )                 (3-5) 

Where 

a = the output vector. 

   the transfer function. 

x = the input vector. 

w = the matrix containing the neuron weight. 

3.1.4 Multi-layers Feed Forward Neural Network (MFFNN) 

Feed forward neural networks have different layers. In this study, a three-layer feed-

forward neural network is applied, as shown in Figure 3.3. The input layer consists of n 

elements. The hidden layers, which are considered the second layer, contain a nonlinear 

transfer function such as tan-sigmoid, log-sigmoid, or tribas. The output layer has a linear 

transfer function. 

Back propagation (BP) is considered the most popular learning approach for training a 

multi-layer feed-forward neural network. A BP algorithm is used to reduce the error of 

the network by adjusting the weight and bias. This algorithm uses a gradient-descent 

method to minimize the error function between the desired output and the network 

output. The weights are moved in a negative direction of the gradient until only an 

acceptable small error is achieved [27]. 
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Figure 3.3 Three layer Feed forward Neural Network 

3.1.5 Training Techniques 

The neural networks use training techniques to find the relationship between the input 

and the output of any model. Once the data are introduced to the network, the neural 

networks generate weights and biases values for the first iteration (epoch). The weights 

are multiplied by the input and the biases are added to the neurons. After that, the data are 

trained to find the best linear fit. If the relationship between the input and output data 

cannot be achieved from the first iteration, the data will update the weights and biases 

and then train the data for the second iteration. This procedure is repeated until the 

iteration is gained or the model has a good fit [27]. 

3.1.5.1 Bayesian Framework Method (trainbr) 

This algorithm is used to automatically calculate the optimal regularization parameters. 

The best performance of this technique happens when the data are normalized. This 

command is found in MATLAB as a trainbr.  
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3.1.5.2 BFGS Quasi-Newton Method (trainbfg) 

The BFGS-Quasi-Newton algorithm applies Newton’s method to approximate the 

Hessian matrix. In MATLAB, the algorithm is listed as a trainbfg [27]. 

3.1.6 Over-Fitting Problem 

During data training, a smaller error between the input and the output is achieved. The 

error can be very large or very small when new data is entered into the network, causing 

high system error. This situation is called over-fitting. There are different methods to use 

to avoid over-fitting. These include using early stopping and automated regularization, 

and modifying the performance function (mean square error) . The first method divides 

the data into three sets: the training set, the validation set, and the test set. This method is 

based on observing the error between the training set and the validation set. At the start of 

the training process, the data, the error of training set and validation are declined. Then, 

when new data is introduced to the system, the error of the training set gradually 

increases and is higher than the validation set error. As a result, the network will be over-

fitted and the training will be stopped to prevent over-fitting. The purpose of using the 

test set is to compare different learning algorithms and thus it is not used in this process 

[27]. 

Another way to avoid over-fitting is by using automated regularization. The basic idea of 

the Bayesian framework procedure is first to create random values and then to add them 

to weights and biases. In this way, Bayesian regularization provides a variance that is 

distributed between random values. This approach is implemented in a MATLAB 

command called trainbr [27]. 

The mean square error can also be modified to avoid over-fitting issues. This approach 

relies on changing a certain factor to the mean square error that contains a sum square 

error of the weight and biases. The factor used, called msereg, improves the neural 

generalization by reducing the errors of the weights and the biases. This method can be 

expressed as [27]: 

                                      (3-6) 
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 ∑   

 
                  (3-7) 

Where 

   = the error between the target    and the network output   . 

  = the performance ratio. 

N = the number of data samples.   

3.1.7 Error Management 

Errors between the target and the neural network output can be decreased by utilizing a 

supervised learning. With the intention of validating the neural model, this work 

investigates the least mean square error (LME) method, which is based on reducing the 

mean square error and is used to adjust the weights and biases. The mean square error is a 

performance function used in data training. The MSE can be defined as [27]: 

     
 

 
 ∑          

    
 

 
 ∑              

                       (3-8) 

Where:    is the error between the target    and the neural network output   .  : is the 

number of the data samples. 

The root mean square error (RMSE) is implemented to gauge the prediction model 

performance. The purpose of the RMSE is to explicate the model’s fit and any 

mismatches (residuals) between the actual data and forecasted data. The RMSE can be 

exemplified as [16]: 

     √
 

 
∑          

                  (3-9) 

Where;  

      is the predicted value. 

   : is the actual value. 

N: is the number of observation.  
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Finally, the mean absolute percentage error (MAPE) is applied to calculate the average 

error between the actual measure and the prediction. The equation 3-10 of MAPE can be 

defined [24]: 

MAPE = [
 

 
∑

|      ̂   |

    

 
   ]  100                    (3-10) 

Where 

x(t) : is the actual value. 

 ̂(t) : is the predicted value. 

n : is the number of data samples. 

3.1.8 Performance of Neural Network Training 

Regression analysis is a statistical method used to measure errors between training and 

validation sets. Regression analysis studies whether the variables used are dependent or 

independent with regards to system response. In this study, the evaluation of 

generalization performance is calculated by the correlation coefficient (R-value), a value 

that indicates the relationship between the network output response and the 

corresponding target in a linear fit line. If the value is closer to one, the correlation 

between the target and the output is strong [27].  

3.2 Extreme Learning Machine 

The Extreme Learning Machine (ELM) is based on single hidden layer feed-forward 

network (SLFN), Figure 3.4. Huang et al was the first to introduce the extreme learning 

machine algorithm. It is a new approach for feed forward networks that has a remarkable 

speed for mapping the relationship between input(s) and output(s). ELM creates a hidden 

layer without needing iterative steps and also computes the output weights analytically. 

There are no iterations in ELM, which makes ELM faster than the back propagation 

technique. However, there are some drawbacks of the ELM. The first issue is the neurons 

in the hidden layer have to be computed by using a trial-and-error procedure. The hidden 

layer needs more neurons because ELM generates random values chosen for the 

weighting matrix [30, 31]. 
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Figure 3.4 ELM Structure 

3.2.1 The ELM Algorithm 

Suppose that we have training samples (xi, ti) where xi = [   , xi2…,         Rc and   = 

[   ,   ,….,        Rm. From these samples, an ELM model is trained with k hidden 

neurons and an activation function g(x). When ELM approximate training samples with 

zero error, we will obtain ∑ ‖     ‖
 
    = 0. In other words,               such that 

[32]: 

∑              
 
   =                     j=1, 2,…….,N       (3-11) 

The    is the input weight connected between input and hidden layers,    is the bias of 

the hidden layer, and    is the input sample. The equation (3-11) can be written as [32]: 

                       (3-12) 
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Where  

  [
                        

    
                        

]

   

       (3-13) 

  =[
  

 

  

]                        (3-14) 

  [
  
 

  

]                            (3-15) 

H: is the hidden layer output 

 : is the output weight 

T: is the target 

                  (3-16) 

   : is the Moore-Penrose generalized (pseudo-inverse) inverse. The orthogonal project 

method is used to calculate the Moore-Penrose generalized inverse of the matrix [32]. 

The ELM design involves four steps: 

1. Dividing the data onto three subsets (training set, testing set, predicting set). 

2. Generating the weight values randomly (w). 

3. Computing the hidden layer output matrix (H). 

4. Computing the output weight ( ).  

3.2.2 Error Function 

The error between the actual data and ELM output were measured to validate the 

proposed model. The root mean square error (RMSE-Equation 3-9) and the mean 

absolute percentage of error (MAPE-Equation 3-10) were used here to validate the ELM 

forecasting models.  
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3.2.3 ELM Overview 

ELM was developed by Huang et al to improve single-layer feed-forward networks 

(SLFNs). Generally, neural networks have three drawbacks: they are prone to human 

error, they encounter difficulties when changing calculations, and they are time-

consuming. The ELM learning algorithm makes the process faster than in back 

propagation. In addition, the general performance of ELM is more accurate than ANN 

[32]. 

In terms of ELM forecasting, there was little in the literature (in IEEE or Science Direct 

database) regarding solar radiation forecasting using extreme learning machine algorithm. 

However, some research has been carried out using ELM for electricity prices and sales 

in fashion retailing forecasting [33, 34]. 
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4 Chapter 4: Results 

This chapter shows the results obtained from artificial neural network (ANN) and the 

extreme learning machine (ELM). This section is divided into three parts. The first 

subsection concentrates on ANN results and models, the second part focuses on ELM 

results, and the final section presents comparisons between the results of the two 

forecasting methods.  

4.1 Artificial Neural Network (ANN) Results 

Artificial neural networks are numerical structure that attempt to simulate the human 

brain by using scintillating neurons. Neural networks consist of layers and intelligent 

neurons. The aim of the neurons is to attain the relationship between inputs and targets by 

using mathematical equations. If the relationships between inputs and outputs have 

disorderly characteristics, the neural network can ascertain whether the relation is linear 

or nonlinear [27]. 

In this thesis, an artificial neural network is used to predict the global solar radiation of 

Riyadh in Saudi Arabia by using temperature, humidity and date code as inputs.  

4.1.1 Back Propagation (BP) 

A multilayer feed-forward neural network with back propagation (MFFNNBP) is applied 

in this thesis to optimize the error derivative of nonlinear networks. The structure of the 

neural network that is used in BP consists of three layers: input layer, hidden layer, and 

output layer. Generally, the back propagation technique has two phases: forward pass and 

backward pass [35].  

4.1.1.1 BP Forward pass 

In the Forward Pass phase, the inputs, during the training procedure, are multiplied by 

weights and then propagated to the neuron located in the hidden layer. The weights in 

each neuron are then added together, creating a nonlinear mathematical function from the 

sum of all of the neurons’ inputs. Next, each neuron in the hidden layer is multiplied by 

weights and added together to propagate to the output layer. The output layer results in a 

nonlinear mathematical function that has been obtained from the weight sum [35]. 

User
Rectangle



25 

4.1.1.2 BP Backward pass 

The Backward Pass phase begins by calculating the error between the desired output and 

the network output. Working from this calculation, the error is then propagated 

backward, with the intent of revising the weights and biases between the input and hidden 

layer as well as between the output and hidden layer [35]. 

4.1.2 Neural Network Training Algorithm 

In a multilayer feed-forward neural network with back propagation, various algorithms 

are used to train the data and reduce the system error by modifying the weights and biases 

between the input and output. In terms of algorithms, some are fast convergence and train 

the data according to Newton’s method; however, this is somewhat complex due to the 

matrix calculation. Other techniques, such as steepest descent methods, are slow 

convergence but provide better generalization [27, 36].  

In this thesis, three faster techniques were applied: the Levenberg-Marquardt (LM) 

algorithm, the BFGS-Quasi-Newton (BFG), and the Bayesian regularization (BR). 

4.1.2.1 Levenberg Marquardt Algorithm (LM) 

This algorithm uses Newton’s method to calculate Jacobian matrices without computing 

the hessian matrices. Hence, this makes the LM algorithm have a faster convergence with 

minimal error. 

The Levenberg-Marquardt algorithm can be expressed as [36]: 

                          (4-1) 

I = the identity matrix 

  = the combination coefficient 

The weights are updated and can be defined: 

     =    –    
                          (4-2) 
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4.1.2.2 BFGS Quasi-Newton Algorithm 

The main objective of BFGS is to compute the inverse of the Hessian matrix. Although 

computing the Hessian matrix is considered to be complicated and costly, BFGS offers 

relatively fast convergence. The algorithm can be found in MATLAB, listed as the 

trainbfg command [37]. 

4.1.2.3 Bayesian Regularization Algorithm  

This method provides performance that is considered a high generalization, which means 

it avoids over-fitting by reducing squared errors and modifying the weights. This 

algorithm can be found in MATLAB as the trainbr command [27]. 

4.1.3 ANN Proposed Model 

Figure 4.1 shows the proposed neural network models. The model created consists of 

three layers: input layer, hidden layer, and output layer. The data introduced to the input 

layer were temperature, humidity and date code. The output data was the global solar 

radiation (GSR) of Riyadh in SA. The data used in the model were collected from 2009 

to 2011, while the solar radiation data were obtained from the King Abdulaziz City of 

Science & Technology (KACST). 
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Figure 4.1 Neural Network Proposed Model 

4.1.3.1 ANN Radiation 2011 Model 

The daily global solar radiation (GSR) of 2011 was predicted using the ANN network, a 

model of which is shown in Figure 4.2. The inputs to the neural network were: average 

daily temperature from 2009 to 2011, average daily humidity from 2009 to 2011, and 

daily date code from 2009 to 2011. The data were divided into three sets: the training set 

(438 observations), the validation set (146 observations), and the testing set (146 

observations). The triangle basis transfer function (tribas) was used between input layer 

and hidden layer and pure line transfer function (purelin) between hidden and output 

layer. The Bayesian regularization algorithm (trainbr) was used to train the data. The 

number of hidden neurons was chosen using trial-and-error procedure, and the best 

number was found to be 83. 

Table 4.1 shows the training time that the neural network required to train given the data. 

The root mean square between the predicted data and the actual data was 6%. This error 

is considered to be low because of the high volatility of the input data. Table 4.1 also 
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shows the mean absolute percentage error, error performance in the training set, and the 

correlation coefficient of the best line fit between the actual and predicted of GSR. 

Obviously, the proposed model has a low error and high correlation coefficient. These 

results validate the proposed model. Figures 4.3 & 4.4 show the error performance of the 

training model and the linear regression analysis, respectively. Finally the predicted data 

verses the actual data is shown in Figure 4.5. 

 

Figure 4.2 Net Radiation 2011 Model 

Table 4.1 ANN Radiation 2011 Results 

Training 

time (sec) 

RMSE of 

training 

RMSE of 

prediction 
MAPE R 

Error 

performance 

1628 0.066375 0.074740 2.5054 0.98624 6.4108 
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Figure 4.3 Error Performance Radiation 2011 

 

Figure 4.4 Best Linear Fit Between Actual and Predicted Radiation 2011 (ANN) 
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Figure 4.5 Radiation Actual Vs. Prediction (ANN) 

4.1.3.2 ANN Temperature 2012 Model 

The challenge in this model is to estimate the average daily temperature for the year 2012 

by using only the daily date code from 2009 to 2012. Figure 4.6 shows that eighty (80) 

neurons were used in the hidden layer. Additionally, the triangle basis transfer function 

(tribas) was applied between the input layer and the hidden layer, and the pure line 

transfer function (purelin) was applied between the hidden layer and the output layer. 

Since some factors that affect the temperature were ignored, the model results were less 

accurate, as shown in Table 4.2. Hence, there are some fluctuations between the real 

temperature and the prediction, as shown in Figure 4.9. The training performance is 

shown in Figure 4.7, and the correlation coefficient is shown in Figure 4.8.  

 

Figure 4.6 Net Temperature 2012 Model 
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Table 4.2 ANN Temperature 2012 Results 

Training 

time (sec) 

RMSE of 

training  

RMSE of 

Prediction  
MAPE R 

Error 

performance 

721 0.164368 0.1614569 6.5906 0.94612 26.6261 

 

 

Figure 4.7 Error Performance (Temperature 2012) 
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Figure 4.8 Best Linear Fit Between Actual and Predicted Temperature 2012 (ANN) 

 

Figure 4.9 Actual Temperature  Vs Prediction (ANN) 
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4.1.3.3 ANN Humidity 2012 Model 

The average daily humidity of Riyadh was also predicted using neural network. The daily 

date code was the input of the neural network model and the target was the humidity. As 

shown in Figure 4.10, the hidden layer used 60 neurons with a tan-sigmoid transfer 

function (tansig). Table 4.3 shows the training time as well as the errors in the training 

section and prediction that were measured by RMSE and MAPE. This model obtained a 

good fit (0.953), as shown in Figure 4.11. Figure 4.12 shows 0.029584 of the 

performance of the model, when the neural network was trained by trainbfg. Figure 4.13 

shows the actual humidity verses the prediction. 

 

Figure 4.10 Net Humidity 2012 Model 

Table 4.3 ANN Humidity 2012 Results  

Training 

time (sec) 

RMSE of 

training 

RMSE of 

prediction 
MAPE   

Error 

Performance  

24 0.154270 0.126534 9.5169 0.95502 0.029584 
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Figure 4.11 Best Linear Fit Between the Actual and Predicted Humidity (ANN) 

 

Figure 4.12 Error Performance Humidity 2012 
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Figure 4.13 Actual Humidity Vs. Prediction (ANN) 

4.1.3.4 ANN Radiation 2012 Model with Three Inputs 

After predicting the average daily temperature 2012 and the average daily humidity 2012, 

the neural network used them with the previous data from 2009, 2010 and 2011 and the 

daily date code to forecast global solar radiation for 2012. The data has 876 training sets, 

110 for validation sets and 109 for testing sets. The triangle basis transfer function was 

used in the hidden layer and the pure line in the output layer. The best number of neurons 

was found to be 80, as shown in Figure 4.14. Table 4.4 shows the results of the neural 

model. The Bayesian regularization algorithm (trainbr) was used to train the data. Figures 

4.15 and 4.16 show the training performance and the correlation coefficient, respectively. 

As shown in Figure 4.17, the actual data are similar to the predicted data. 

 

 

Figure 4.14  Net Radiation 2012 with Three Inputs 
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Table 4.4 ANN Radiation 2012 with Three Input Results  

Training 

time(sec) 

RMSE of 

training 

RMSE of 

prediction 
MAPE R 

Error 

Performance  

424 0.060740 0.077573 4.7735 0.96366 6.4026 

 

 

Figure 4.15 Error Performance Radiation 2012 with Three Input 
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Figure 4.16 Best Linear Fit between Actual and Predicted Radiation 2012 with Three 

Input (ANN)  

 

Figure 4.17 Actual Radiation (with Three Input) Vs. Prediction (ANN) 

4.1.3.5 ANN Radiation 2012 Model with One Input 

In order to show the effects of temperature and humidity in predicting solar radiation, a 

neural model using only the daily data code was used, as illustrated in Figure 4.18. The 

0

50

100

150

200

250

300

350

400

450

Ja
n

-0
9

Fe
b

M
ar

A
p

r
M

ay Ju
n

Ju
l

A
u

g
Se

p
O

ct
N

o
v

D
ec

Ja
n

-1
0

Fe
b

M
ar

A
p

r
M

ay Ju
n

Ju
l

A
u

g
Se

p
O

ct
N

o
v

D
ec

Ja
n

-1
1

Fe
b

M
ar

A
p

r
M

ay Ju
n

Ju
l

A
u

g
Se

p
O

ct
N

o
v

D
ec

Ja
n

-1
2

Fe
b

M
ar

A
p

r
M

ay Ju
n

Ju
l

A
u

g
Se

p
O

ct
N

o
v

D
ec

Radiation  

actual prediction



38 

model is valid, but the accuracy is less than in the model that used three inputs. Table 4.5 

shows the training time, the RMSE, and the MAPE of the model. The correlation 

coefficient and the performance error are illustrated as well. Figure 4.19 shows the 

performance error. Even though the value of the correlation coefficient is not high, the 

model provides a good estimate, as can be seen in Figure 4.20. The real radiation is not 

corresponding to predicted radiation, as shown in Figure 4.21. 

 

 

Figure 4.18 Net Radiation 2012 Model with One Input 

Table 4.5 ANN Radiation 2012 with One Input Results 

Training 

time 

(sec) 

RMSE of 

training 

RMSE of 

prediction 
MAPE R 

Error 

performance 

605 0.195458 0.22157 9.3565 0.802 36.2869 
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Figure 4.19 Error Performance Radiation 2012 with One Input 
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Figure 4.20 Best Linear Fit Between Actual and Predicted Radiation 2012 with One 

Input (ANN) 

 

Figure 4.21 Actual Radiation 2012 (with One Input) Vs. Prediction 
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4.2 Extreme Learning Machine 

An extreme learning machine (ELM) is a single hidden layer feed-forward network 

(SLFN).  The weights and biases between the input and hidden layers are randomly 

generated and the output weights are mathematically calculated. Hence, the ELM 

algorithm converges faster than ANN, as shown in the ELM prediction model below [4]. 

The ELM algorithm can be exemplified as [32]:  

H  = T                             (4-3)  

H is the hidden output layer matrix 

  = is the output weight 

T= is the target 

The   can be computed as:   

  =   T                          (4-4) 

   is the Moore-Penrose generalized inverse. 

The method that used to calculate    is the orthogonal projection which can be 

expressed as [32]: 

  =    
 

 
           T                        (4-5) 

 

 
 = is the positive value that is added to the output matrix to provide a better solution and 

performance [32]. 

4.2.1 ELM Proposed Model 

Figure 4.22 shows the proposed models, five of which are shown here. A single hidden 

feed-forward layer is applied, with different transfer functions and different numbers of 

neurons. 
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Figure 4.22  ELM Proposed model 

4.2.1.1 ELM Radiation 2011 Model  

Since we are using two different prediction models, the number of inputs was chosen to 

be the same to show the accuracy and the performance of each model. The inputs for the 

ELM program were the average daily temperature in 2009, 2010 and 2011, the average 

daily humidity in 2009, 2010 and 2011, and the daily date code of 2009, 2010 and 2011. 

The triangle basis (tribas) transfer function was chosen between the hidden and output 

layers. There were 610 observations for training the ELM model using the ELM_ train 

command, after which all of the data (1095) were used to predict the global solar 

radiation (GSR), and the trial-and-error method was used to determine the number of 

neurons. 

The ELM algorithm needs a large number of neurons for coverage. Thus, in order to 

obtain a low error rate, the number of neurons was determined at 5,000. Table 4.6 shows 

the training time of the model, the root mean square error (RMSE), and the mean 

absolute percentage error (MAPE). It also shows the correlation coefficient (R) of the 



43 

model. As shown in Figure 4.23, the value of correlation coefficient is 0.982, which is 

close to one. This indicates that there is a good fit between the predicted and actual data. 

Figure 4.24 shows the forecasting data versus the real data. As can be seen, the actual and 

predicted data are nearly identical. 

Table 4.6 ELM Radiation 2011 Results 

Training 

time (sec) 

RMSE of 

training 

RMSE of 

prediction 
MAPE R 

84.3809 0.032025 0.079127 1.8233 0.982 
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Figure 4.23 Best Linear Fit Between Actual and Predicted Radiation 2012 (ELM) 
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Figure 4.24 Actual Radiation Vs Prediciton (ELM) 

4.2.1.2  ELM Temperature 2012 Model  

The ELM model uses 1200 neurons to predict the average daily temperature 2012 by 

applying the daily date code from 2009 to 2012 as input. Logistic transfer function (log) 

is used between the input and hidden layers. Notice that the training time is very low 

compared to the training time for the ANN model. Table 4.7 shows the training time, 

RMSE, MAPE and R of the model, Figure 4.25 illustrates the linear regression between 

the variables, and Figure 4.26 shows the results between the actual and predicted data.  

Table 4.7 ELM Temperature 2012 Results 

Training  

time(sec) 

RMSE of 

training 

RMSE of 

prediction 
MAPE 

R 

3.2292 0.05928 0.16304 6.1829 0.975 
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Figure 4.25 Best Linear Fit Between the Actual and Predicted Temperature (ELM) 

 

Figure 4.26 Actual Temperature Vs Prediction (ELM) 

4.2.1.3 ELM Humidity 2012 Model  

An ELM model has been developed to predict the average daily humidity of Riyadh. The 

input was the daily date code from 2009 to 2012, and triangle basis transfer function 
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(tribas) was used to train the data. Table 4.8 shows the results obtained for the ELM 

model. Figure 4.27 illustrates the relation between the target and the neural network 

output. As shown in Figure 4.28, there are some differences between the actual and 

predicted data. This is due to the fast convergence of ELM, excluding the factors that 

affect humidity. Nevertheless, the model has a low error rate and hence is valid.  

Table 4.8 ELM Humidity 2012 Results 

Training  

time(sec) 

RMSE of 

training 

RMSE of 

prediction 
MAPE R 

3.0108 0.066735 0.12646 7.354 0.953 
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Figure 4.27 Best Linear Fit Between Actual and Predicted Humidity (ELM) 



47 

 

Figure 4.28 Actual Humidity Vs Prediction (ELM) 

4.2.1.4 ELM Radiation Model 2012 with Three Inputs 

This model is based on the average daily temperature and humidity of 2012 previously 

forecasted. Here, not only are the predicted humidity and temperature of 2012 used, but 

also the temperature and humidity from 2009 and 2010 along with the daily date codes 

from 2009, 2010, 2011 and 2012. The purpose of utilizing all of these inputs is to obtain 

more accurate results. Compared to ANN, ELM needed 4000 neurons with Log-sigmoid 

transfer function to achieve a small error rate. The model results are shown in Table 4.9. 

As can be seen in Figure 4.29, the model has a strong relationship between the output and 

the targets. Figure 4.30 shows that the predicted radiation is nearly the same as the actual 

radiation.   

Table 4.9 ELM Radiation2012 with Three Input Results 

Training 

time(sec) 

RMSE of 

training 

RMSE of 

prediction 
MAPE R 

15.1009 0.017201 0.054697 2.865 0.986 
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Figure 4.29 Best Linear Fit Between Actual and Predicted Radiation 2012 with Three 

Input (ELM) 

 

Figure 4.30 Actual Radiation Vs Prediction  With Three Input (ELM) 
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4.2.1.5 ELM Radiation Model 2012 with One Input 

This model has lower MAPE than the mode predicted by ANN. The root mean square 

error (RMSE) of training and the time of training of the ELM model are shown in Table 

4-10. Log-sigmoid is the transfer function applied between the input and hidden layers. 

As illustrated in Figure 4.17, the relation between the two parameters is not stronger than 

the model with three inputs. Figure 4.18 shows the actual radiation versus the predicted 

one.   

Table 4.10 ELM Radiation 2012 with One Input Results  

Training 

time (sec) 

RMSE of  

training  

RMSE of 

prediction 
MAPE R 

2.1216 0.12555 0.18530 8.1352 0.862 
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Figure 4.31 Best Linear Fit Between Actual and Predicted Radiation with One Input 

(ELM) 
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Figure 4.32 Actual Radiation (with One Input) Vs. Prediction (ELM) 

4.3 Discussion 

In this study, the goal was to find a method that accurately predicts global solar radiation. 

This section discusses the results obtained from the ANN and ELM models. It also 

compares the two methods, showing their drawbacks and the advantages. 

Solar radiation is an essential parameter for implementing solar energy system. Hence, 

meticulous calculation of the radiation, both real and predicted, should be available. 

Table 5.9 shows an overview of the important parameters of both the ANN and ELM 

methods. As can be seen, the number of neurons needed to map the relationship between 

the input and output of the neural network algorithm is less than that needed in the ELM 

algorithm. This is because the neural network is running under an iteration process while 

the ELM is based on a one-time process. Furthermore, the back propagation technique is 

based on forward and backward pass processes that update the weight and bias at each 

epoch. Conversely, the ELM generates random weight and obtains the output weight in a 

one-time matrix multiplication. Consequently, there are few neurons used for coverage in 

the ANN method. 

The second parameter of comparison between ANN and ELM is training time. As shown 

in Table 5.9, the ELM method has a shorter training time than ANN. Since the ANN 
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algorithm uses a complex back propagation technique, these techniques require time for 

coverage. Thus, back propagation needs a high number of iterations to find the 

relationship between the input and the target. Hence, regarding convergence speed, ELM 

is considered faster than ANN. 

The final and most important comparison is the rate of error between the actual and 

predicted data. Although the ELM method has a lower rate of error than ANN, the 

difference in the error is only slight, and both models have the same number of inputs. 

Despite local minima and over-fitting (which are drawbacks of back propagation), ELM 

provides more accurate results and higher performance than ANN [39]. As shown in 

Figure 4.3, the month of January 2009 was chosen to compare ANN and ELM. Here, it 

can be clearly seen that ELM outperforms ANN.   

Table 4.11 ANN and ELM Results 

Methods ANN ELM 

Model Neurons 

Training 

Time 

(sec) 

MAPE Neurons 

Training 

Time 

(sec) 

MAPE 

Radiation 

2011 
83 1628 2.5054 5000 84.38 1.8233 

Temperature 

2012 
80 721 6.5906 1200 3.22 6.1829 

Humidity 

2012 
60 24 9.5169 1000 3.01 7.354 

Radiation 

2012 (three 

input) 

81 424 4.7735 4000 15.10 2.8653 

Radiation 

2012 (one 

input) 

70 605 9.3565 1000 2.1216 8.1352 
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Figure 4.33 Comparison between the actual and forecasted radiation in one month (Jan 

2009)  
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5 Chapter 5: Conclusion 

Global solar radiation forecasting plays a significant role in the design of solar power 

systems. In this work, two methods were employed to predict daily average solar 

radiation. This section provides conclusions of the results obtained along with 

suggestions for future work.    

5.1 Research Conclusions 

The aim of this study was to predict the daily average of global solar radiation in Riyadh, 

Saudi Arabia. This research concluded the following:  

 The artificial neural network (ANN) and extreme learning machine (ELM) 

algorithms are useful in predicting global solar radiation.  

 In ANN and ELM, five models were proposed: radiation 2011, temperature 2012, 

humidity 2012, and radiation 2012 (three input and one input). 

 ANN was useful in predicting global solar radiation with low root mean square and 

mean per error.  

 The extreme learning algorithm provides a lower root mean square error and a 

lower mean absolute percentage error. As well, it converges fast, reduces the time it 

takes to do computations, and has a high performance level. 

 ELM algorithm proved its ability to predict in less time than ANN. Table 5.1 shows 

the training time for ANN and ELM. Clearly, the ELM training time is faster than 

ANN. 

Table 5.1 Training Time Results 

Methods ANN ELM 

Models Training time (sec) Training time (sec) 

Radiation 2011 1628 84.38 

Temperature 2012 721 3.22 

Humidity 2012 24 3.01 

Radiation 2012(three input) 424 15.10 

Radiation 2012 (one input) 605 2.1216 

User
Rectangle
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 Using temperature and humidity as inputs to the neural network model and the 

ELM model has a significant effect in predicting global solar radiation. Hence, 

utilizing meteorological data helps provide an accurate prediction for solar 

radiation. Table 5.2 shows the prediction result for GSR with and without utilizing 

meteorological parameters. 

Table 5.2 Prediction Results 

Methods ANN ELM 

Models MAPE MAPE 

Radiation 2012 (three inputs) 4.7735 2.8653 

Radiation 2012 (one input) 9.3565 8.1352 

 The correlation coefficients for all models are closer to one. That indicates a good 

fit between the network output and the targets. 

Table 5.3 Correlation Coefficient Results 

Methods ANN ELM 

Models R R 

Radiation 2012 0.986 0.982 

Temperature 2012 0.946 0.975 

Humidity 2012 0.955 0.953 

Radiation 2012 (three input) 0.964 0.986 

Radiation 2012 (one input) 0.802 0.862 

 The results show that the mean percentage absolute errors in ANN models were 

reasonable. However, the accuracy of temperature and humidity was somewhat 

high because some factors were ignored.  

To sum up, the comparisons between the two methods of ELM and ANN show that the 

extreme learning machine was faster than the artificial neural network. Also, ELM 

provided a better overall performance. The drawbacks that affect ANN (such as over-

fitting and local minima) cause decreased accuracy and lower overall performance.  
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5.2 Contributions 

The main contributions of this study are as follows: 

1. Using ANN to predict air temperature and humidity. 

2. Using ANN to predict global solar radiation with and without meteorological 

parameters. 

3. Using ELM to predict temperature and humidity. 

4. Using ELM to predict global solar radiation. 

5. Obtaining low error prediction using the ELM algorithm. 

 

5.3 Suggestions for Future Work 

Future work will include: 

1. Designing a hybrid model between ANN and ELM. 

2. Investigating the effects of other meteorological parameters such as wind, cloud 

cover and sunshine duration. 

3. Studying other techniques for global solar radiation forecasting such as wavelet 

neural networks and neural fuzzy network. 
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