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Abstract

Investigating the behavior of an atom in response to the applied electric field when the

latter frequency is in resonance with the natural frequency of the atom is an interesting

subject. Near resonance, some of the most interesting optical phenomena such as dis-

persion, and absorption are more pronounced. Moreover, considering resonant and near

resonant interaction of light with two-level atoms, uncovers fascinating physical phenom-

ena such as area theorem and self-induced transparency describing stable pulse propagation

regimes in which the pulses maintain their identity. Existence of these optical structures

in on-resonance optical media has not been investigated in detail. In this thesis, the on-

resonance interaction of optical field with atoms is considered and the formation of several

novel self-similar and kink waves in linear and nonlinear resonant media is discovered and

theoretically explored.

First, self-similar pulse formation in homogeneous broadened linear amplifiers in a

vicinity of an optical resonance is analyzed. It is demonstrated that the self-similar pulses

serve as universal asymptotics of any near resonance short pulses propagating in coherent

linear amplifiers. Second, ultrashort self-similar pulse propagation in coherent linear ab-

sorbers near optical resonance is investigated. Third, existence of self-similar optical waves

with kink structure in resonant optical systems is discovered. Fourth, it is found that self-

induced transparency quadratic solitons are realizable in the media with quadratic optical

nonlinearities, doped with resonant impurities. Finally, stable spatial similaritons supported

by homogeneous conservative optical media with quintic nonlinearities are explored.

To experimentally realize the presented results, physical models are presented for all

systems under consideration. The stability of the proposed near resonance optical systems

is demonstrated through a series of numerical case studies.

xii
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Chapter 1

Introduction

1.1 Preface

In writing this thesis our intention has been to concentrate on the physics of resonant light-

matter interactions. This chapter presents the main theme of the thesis. The historical

overview of the resonant and near-resonant interaction of light with matter is reviewed.

After that, thesis motivations and objectives are introduced. Finally, thesis outline is pre-

sented.

1.2 Historical Preamble and Theme of the Thesis

The first comprehensive classical theory of linear interaction of light with matter was de-

veloped by Lorentz. Based on this theory, optical phenomena can be described by the

interaction of elementary charges and dipoles with the electromagnetic field [1]. The clas-

sical Lorentzian theory describes most physical phenomena near resonance and requires

modifications only in some circumstances. The weakpoint of this theory is that it just deals

with the linear interactions when the field intensity is weak. However, for fields which

are so intense as to excite atomic nonlinearities there should be departures from Lorentz

theory. Some optical phenomena such as lasing, self-phase modulation, and self-induced

transparency appearing in high intensity field interactions with atoms and the corresponding

nonlinear regimes cannot be expressed by the predictions of the classical Lorentz theory.

Therefore, the detailed theory of the interaction of field and matter required the extension to

quantum optics. Although the discovery of quantum mechanics has changed the definition

of light nature, it has not contradicted the previous theories.

Later in 1958, a new subfield of optics arose when Schawlow, Townes, and Prokhorov

discovered that a laser could be operated at optical frequencies [2]. Since then, many

intensive investigations were done on diverse subjects in both semiclassical and quantum

optics. The experimental examination was carried out with the development of practical

1
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methods for producing both high intensity and shorter pulses. In 1960, Maiman constructed

the first laser called the ruby laser [3].

In the middle of the second decade of laser physics, dye laser, one of the most important

advances, was developed in 1966 offering high power and narrow bandwidth anywhere

in the optical spectrum [4]. After that, the need to investigate any optical resonance at

very narrow spectral range arose. However, many effects, especially those involved in the

propagation of intense pulses, need departure from the classical models. Fortunately, near

resonance behavior can be described by the semiclassical models or mix of both classical

and quantum models. For example, the quantum mechanical optical Bloch equations along

with the classical Maxwell wave equations for the electric field are entirely sufficient to

explore the response of near resonant atoms to an applied electric field.

On the other hand, absorption near resonance is very large implying that the atoms take

more energy from the field. Using short pulses reduces the time for the atoms to interact

with the field and take energy from it. In general, generation of ultrashort pulses is a key

to explore the dynamic behavior of matter interacting with the electric field on ultrashort

timescales. Developments in laser and need for large bandwidth pulses also require using

short pulses. Nowadays, ultrashort pulses in femtosecond and even attosecond ranges have

been generated. In 1974, Shank and Ippen generated subpicosecond pulses (0.5-1.0 psec)

by passive mode locking of a composite medium dye laser [5]. Later in 2001, by spectral

broadening from 600 to 1200 nm generating from a Kerr-lens mode-locked Ti:sapphire

laser 5-fs pulses were produced. These spectra were the broadest ever generated directly

from a laser oscillator [6]. In 2001, the attosecond (1as = 10−18s) pulses were generated

in order to find the attosecond response of the atomic system [7].

In this thesis, we have restricted our attention to the resonant and near resonant interac-

tion of light with atoms. By applying the on-resonance limit, the two-level model for atoms

can be adopted. In other words, light interaction involves only one transition in the atom

that means the atom has only two energy levels. Based on the Lorentz theory, one should

consider the motion of dipoles which are free to respond to the electromagnetic field of light

waves in order to study the interaction of light with matter. Bloch and Maxwell equations

faithfully describe the response of near resonant atoms to an applied electric field in a wide

range of absorption and amplification regimes. With the two-level system assumption, we

devote the following section to a review of general terms and definitions used in this thesis
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repeatedly.

1.3 General Terms Definition

1.3.1 Two-Level Atoms

Atoms in gases and some solid-state laser media have line spectra, and the spectral lines

are associated with transitions between adjacent energy eigenstates. In general, there is

an infinite number of energy eigenstates in an atomic, molecular or solid-state medium.

In a near resonant situation, it is sufficient to consider only two of the possible energy

eigenstates. This simple model is called a two-level atom. The interaction of the two-level

atom with the electric field is described by the Bloch equations.

In this thesis, for both analytical and numerical calculations, the medium will be consid-

ered as a two-level system. In Fig. 1.1 a schematic of two-level atoms is presented. Atom

has only two energy levels, excited and ground states and the difference between these two

levels is the resonance frequency ω0, while ω is the applied light frequency. The difference

between these two frequencies is called detuning Δ. In this thesis more attention is devoted

to the regimes where the detuning is zero, Δ = 0 (on-resonance), or where |Δ|<< ω0 (near

resonance). If a population inversion between the levels a and b is established, such a

medium can amplify light in a frequency band around the separation of the levels.

0

e

g
Figure 1.1: Schematic of a two-level atom system.

If the atom couples to an external heat bath, there are incoherent relaxation processes

other than the spontaneous decay [8]. To study the interaction of an open atom with light,
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the state of a two-level atom is represented by means of a 2×2 density matrix ρ

ρ(t)≡
(

ρgg ρge

ρeg ρee

)
=

(
cgc∗g cgc∗e
cec∗g cec∗e

)
. (1.1)

In a two-level system, each element of the density matrix corresponds to a physical

quantity. The off-diagonal elements are related to the atomic dipole moment, while the

diagonal elements give the population probabilities for the atom to be in a state e or g. To

describe the decay of the levels and the damping of the atomic dipole moment, a damping

constant is introduced, γe, with the assumption that in the two-level atoms system, the

ground state is a true ground state. In the absence of an electric field, the probability

amplitude for finding an atom in the excited state, ce, decays exponentially as

ce(t) = ce0e−
1
2 γet , (1.2)

so, ρee and ρge, have decay constants γe = γ‖ and γ⊥ such that γ⊥ = 1
2γe. γ⊥ represents the

decay constant for the dipole moment of the atom. 1/γ⊥ is related to the time of atomic

phase memory or coherence. The spectral linewidth γ⊥ is called homogeneous.

When there is an ensemble of atoms, an additional broadening is obtained. In solids

the atoms may have different resonance frequencies due to inhomogeneities in the crys-

tal environment. In gases various atomic velocities cause the same effect called Doppler

broadening. The average over resonance frequencies leads to a decay of the polarization or

an inhomogeneous broadening. In this thesis, the definitions γ⊥ = 1
T⊥ , γ‖ = γe =

1
T‖

are con-

sidered. T⊥ and T‖ are called the transverse or phase relaxation time, and the longitudinal

or energy relaxation time, respectively. Atoms in a medium do not only interact with the

field, they might collide with each other especially in gases. All these processes must be

taken into account when determining the energy and phase relaxation rates. Some of these

processes only affect the phase, but do not cause an energy loss in the system. As a result,

the processes reduce T⊥ but have no effect on T‖. In most real systems the phase relaxation

time is much shorter than twice the energy relaxation time.

The inversion w of the atom is defined as

w = |ce|2 −|cg|2, (1.3)
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where |ce|2 and |cg|2 are the probabilities for finding the atom in the excited state or ground

state. The inversion always has an equilibrium value, corresponding to the system in a

thermal equilibrium. The inversion goes back into equilibrium with a time constant, if it

deviates from its equilibrium value. For all temperature the inversion is negative, so all the

atoms rest in the ground state and the lower level is stronger populated than the upper level.

1.3.2 Framework for Analysis and Bloch Equations

The sequence to study the interaction between the matter and the electric field is that the

electric field �E(r, t) polarizes the atoms of the medium according to the Bloch equations.

The atomic dipole moments add up to a macroscopic polarization �P(r, t), which in turn

enters Maxwell equations as a source term and drives the electric field.

In order to define the behavior of the atom when applying an electric field, consider the

density matrix as [8]

ρ(t) =
1
2

(
1+w u− iv

u+ iv 1−w

)
. (1.4)

The components u, v, and w are atomic variables and are solutions to the reduced Bloch

equations [8]

u̇ =−Δv, (1.5)

v̇ = Δu+κE w, (1.6)

ẇ =−κE v. (1.7)

where u and v are the components of the atomic dipole moment envelope in-phase and

in-quadrature with the field, Δ = ω0 −ω is the detuning, κ =
2deg

h̄ , E is the electric field

amplitude, and w is the single atom population difference, which is called one-atom in-

version. Considering the total dynamics of the two-level system including the (possibly)

incoherent pumping and incoherent relaxation processes, the complete Bloch equations are

given by [8]

u̇ =−Δv− u
T⊥

, (1.8)
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v̇ = Δu− v
T⊥

+κE w, (1.9)

ẇ =−w−weq

T‖
−κE v, (1.10)

where weq is a value of the one-atom inversion in the absence of the field (equilibrium). w

is related to the internal energy of the atom, while v and u are absorptive and dispersive

components of the dipole moment, respectively. In these equations, the electric field am-

plitude E is unchirped and as a result it has a real value. If the electric field is chirped, its

amplitude is complex. Therefore, the complex Rabi frequency which is the electric field

amplitude E in frequency units is defined as Ω= 2degE /h̄= κE . By considering the dipole

moment envelope σ = u− iv, the Bloch equations are given by

σ̇ =−(γ⊥+ iΔ)σ − iΩw, (1.11)

ẇ =−γ‖(w−weq)− i
2(Ω

∗σ −Ωσ∗). (1.12)

The probability conservation implies that u2 + v2 +w2 = 1 if damping can be ignored.

It means the Bloch vector (u,v,w) trajectories lie on a unit sphere. This sphere which

is called the Bloch sphere corresponds to solutions to the Bloch equations. In Fig. 1.2 the

Bloch vector evolution on the Bloch sphere for different values of detuning is shown. Bloch

equations together with Maxwell’s equations are equations built the Maxwell-Bloch equa-

tions, a system of equations which describes the dynamics of interaction between atoms

and the electromagnetic field.

1.3.3 Area Theorem and Self-Induced Transparency

Area theorem expresses the fact that the change of area θ = κ
∫+∞
−∞ E (t ′,z)dt ′ depends

on initial θ alone and in not affected by the shape of the field envelope E . To interpret

the area theorem consider an arbitrary input pulse with an arbitrary area θ(0) at z = 0.

Over long propagation distances the area will have reached an integral multiple of π . The

area theorem for amplifiers is sketched in Fig. 1.3 [9]. It can be seen in the figure that in

amplifiers, pulses with odd multiple of π area are stable while pulses with even multiple of
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Figure 1.2: Bloch vector trajectories on the unit sphere (Bloch sphere) corresponding to the
solutions to the reduced Bloch equations for different values of detuning Δ. In every case
the atom is being driven by a 2π sech pulse, 2sech(t).

π area are unstable.

The area theorem for a medium with atoms initially in the ground state (an absorber)

is shown in Fig. 1.4 [9]. For an initial pulse area θ0 < π the total area decays to zero

on the basis of the area theorem. As it can be seen, for the initial area π < θ0 < 3π the

pulse evolves into a 2π pulse. Unlike amplifiers, in absorbers 2nπ pulses are more stable

than those that are odd multiples. McCall and Hahn observed that not only the area of the

pulse with area equal to an integer multiple of 2π is stable but also the shape is stable,

which means the pulse will not decay over long distances [10,11]. This pulse behaves as if

the medium is transparent, so this effect was called the self-induced transparency which is

illustrated in Fig. 1.5 [8]. The self-induced transparency causes soliton formation for long

propagation distances.

1.3.4 Lorentz Oscillator Model

The classic harmonic oscillator model is applicable in absorptive media when the optical

field is near resonance and its area is small such that θ << π . The atom in this model

is assumed to act like a damped harmonic oscillator with the natural frequency ω0 and a
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Figure 1.3: Branched solutions of the area theorem for an amplifier, dθ/dz=−γθ +α sinθ
[10, 11], with γ/α = 0.1. γ is the linear loss coefficient of a bulk medium, α is the Beer’s
gain/absorption length. The angle θ is plotted vs the dimensionless length αz.

damping constant γ in response to an applied electromagnetic field. If an electric field,

E(t), is applied to the atom, the displacement x of each damped harmonic oscillator in one

dimension obeys the differential equation

m
d2x
dt2 +2γm

dx
dt

+mω2
0 x =−eE(t). (1.13)

By using the ansatz x(t) = xωe−iωt , the driven solution to this equation is found, where

xω = −eE0
m(−ω2+ω2

0−2iγω)
. Near resonance, the expression for xω is estimated and by using

P(t) = −Nex(t) for N atoms, the polarization field is calculated. Therefore, the electric

susceptibility is obtained by using P(t) = ε0χ(1)E(t). The result is

χ(1) = χ ′+ iχ ′′, (1.14)
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Figure 1.4: Branched solutions of the area theorem for an absorber with γ = 0.

where

χ ′ =
−Ne2

2ε0mω0

[
ω −ω0

(ω −ω0)
2 + γ2

]
, (1.15)

and

χ ′′ =
Ne2

2ε0mω0

[
γ

(ω −ω0)
2 + γ2

]
. (1.16)

These equations are quite useful in approximating of the linear susceptibility near res-

onance with the applied field. Fig. 1.6 shows the frequency dependence of the real (dis-

persive) and imaginary (absorptive) parts of the susceptibility. The real part of the suscep-

tibility contributes to the refractive index n = 1+ χ ′/2. The imaginary part leads to the

damping of the wave if χ ′′ > 0. The width of the absorption line or the bandwidth of the

absorber is determined by the phase relaxation rate 1/T⊥ of the dipole moment. In off res-

onance regime, the imaginary part goes very quickly to zero, while the real part approaches

a constant value below resonance, and goes to zero for off resonance, but slower than the
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Figure 1.5: Self-induced transparency and soliton formation.

imaginary part. It means that in off resonance there is still a contribution to the index but

the loss is practically zero.

These expressions for the electric susceptibility are applied for a CW field. As illus-

trated in the figure, the dispersion is changing drastically and the absorption is so high near

the resonance. However far from the resonance, the absorption is near zero and the dis-

persion is changing slightly. As a result, the dispersion relation k(ω), when it is slowly

varying over the pulse spectrum, can be represented by its Taylor expansion

k(ω) = k′(ωc)(ω −ωc)+
k′′(ωc)

2
(ω −ωc)

2+
k(3)(ωc)

6
(ω −ωc)

3+O((ω −ωc)
4), (1.17)

when ωc, the carrier frequency of the pulse, is far from the resonance frequency ω0. The

derivative of the dispersion relation at the carrier frequency is the velocity of the wave

packet or group velocity. Keeping only the first linear term, the pulse shape is invariant

during propagation. If the intensity of an applied pulse is high or the spectrum of the

pulse is broad, the second order term plays its role. Monochromatic componenets of the

pulse with different frequencies propagate with different velocities and therefore the pulse

spreads. The spreading of a wave due to the second term in the dispersion relation is called

group velocity dispersion (GVD). In general the GVD broadens the pulse except when the
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Figure 1.6: Imaginary (top) and real (bottom) parts of the complex susceptibility as func-
tions of frequency.

pulse is initially chirped properly. In other word, a chirped pulse can be compressed during

the early stage of propagation whenever the GVD parameter and the chirp parameter have

opposite signs such that their multiplication is negative.

When a pulse propagates through a dispersive medium, it acquires a linear chirp, so its

phase becomes parabolic. The derivative of the phase in respect to time is the instantaneous

frequency. As shown in Fig. 1.7, for positive dispersion the low frequencies are in the front

of the pulse, while the high frequencies are in the back of the pulse due to the positive

dispersion k′′ > 0; that is wave packets with lower frequencies travel faster than wave

packets with higher frequencies.

The imaginary part of the refractive index is determined by using the complex sus-

ceptibility and relation between the refractive index and susceptibility. The loss can be

incorporated into the imaginary part of complex refractive index in a lossy medium. The

region where the refractive index is decreasing with wavelength is called normal disper-

sion regime, while the region when refractive index is increasing with wavelength is called
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Figure 1.7: Phase (a) and instantaneous frequency (b) of a Gaussian pulse in a medium.

anomalous dispersion regime.

1.3.5 Inhomogeneous Broadening

In the absence of a driving field, the dipole oscillations must decay and finally dye away.

Because of this finite natural radiative lifetime, each absorption or emission line of the

atom has a finite width, which is called homogeneous width. In reality the effective life-

time of dipoles is usually shorter than its purely lifetime, since there are some incoherent

interactions such as collisions which affect all atoms homogeneously. In addition, the total

relaxation/decay rate is increased due to the inhomogeneous broadening as well. The most

common origin of the inhomogeneous lifetime is the Doppler effect in gases or atomic va-

pors. In the reference frame moving with the velocity of the atom �v, the frequency of the

wave, ω , is shifted to ω ′
= ω −�k.�v. Since atoms in gases have different velocities, this fre-

quency shift is different for each atom. Hence, in a moving reference frame each atom sees

different frequencies of the wave according to its velocity. This causes random distribution
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of resonant frequencies which leads to changes in total transverse decay time, T⊥ as [8]

1
T⊥

=
1

T ′
⊥
+

1
T ∗
⊥
, (1.18)

where T
′
⊥ is the homogeneous lifetime, T ∗

⊥ is the inhomogeneous lifetime and T−1
⊥ is the

total relaxation rate. In Fig. 1.8 the inhomogeneous broadening of an atom is shown.

Figure 1.8: The homogeneous (top) and inhomogeneous (bottom) emissin lines spectrum.
γ is the homogeneous decay rate.

1.3.6 Optical Kerr Effect

In an isotropic and homogeneous medium with optical Kerr effect nonlinearity, the refrac-

tive index depends quadratically on the field, i.e. on the intensity

n = n(ω, |A|2)≈ n0(ω)+n2|A|2, (1.19)
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where, A is the field envelope, n0 is the linear refractive index, and n2 is the nonlinear

refractive index coefficient. For many transparent materials the intensity dependent refrac-

tive index is positive, i.e. the nonlinear refractive index of the medium increases with the

intensity.

If the field is a light beam propagating inside a nonlinear medium with refractive index

dependent on the beam intensity, the light rays near the center experience stronger refrac-

tion since the intensity in the beam center is the highest. Therefore, the rays bend toward

the center and the intensity increases toward the beam center on propagation in the medium.

This behavior is called self-focusing of light in a nonlinear medium with a positive refrac-

tive index. As a result of self-focusing, the beam narrows and its peak intensity is increased

on propagation in the medium. On the contrary, diffraction causes every beam to spread

which leads to decreasing light intensity at the center. If these two opposing trends balance

each other, the spatial solitons can form, an optical structure when the beam width as well

as its amplitude remain unchanged during propagation.

1.3.7 Self-Phase Modulation

The intensity-dependent refractive index imposes an additional self-phase shift on the pulse/beam

envelope during propagation, which is proportional to the instantaneous intensity of the

pulse/beam. In other words, the intensity-dependent nonlinear refractive index modulates

the optical phase of the pulse/beam. This phenomenon is called self-phase modulation

(SPM) leading only to a phase shift in the temporal/spatial domain. As a result, the inten-

sity profile of the pulse remains unchanged while the spectrum of the pulse/beam changes.

Moreover, as the intensity and phase dynamics of the field in nonlinear media depend on

each other, the change in the phase of the optical field due to nonlinear refractive index

induces modification of the field intensity profile. The effect of nonlinearity becomes im-

portant over distances where the phase accretion is of the order of one radian, i. e. non-

linear length. In the presence of SPM the pulse redistributes its energy, such that the low

frequency contributions are in the front of the pulse and the high frequencies are in the back

of the pulse, similar to the case of positive dispersion.
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1.3.8 Absorbers and Amplifiers

Assuming a CW wave, when the wave envelope E is constant over lifetimes T‖ and T⊥
which are much shorter than the inhomogeneous relaxation time, the equation governing

the attenuation or amplification of the propagating wave can be written as [8]

∂
∂ z

I = α(Δ)[
weq

1+L I(z)
]I(z), (1.20)

where I is the field intensity, L is the Lorentzian factor, L = 1
[1+(ΔT ′

⊥)2]
, α(Δ) is the small

signal gain/absorption coefficient. weq =−1 in an absorber, and so the intensity of the pulse

is attenuated with increasing the propagation distance z. However if the resonant atoms are

prepared in their excited states, weq > 0, I(z) grows with propagation distance; i.e. the light

field is amplified.

In reality, the medium that acts as host for the resonant atoms interacts with the field,

if the intensity is high enough. This interaction is usually weak and causes the linear

absorption which leads to saturation of amplification. As I(z) increases large enough to

interact with the host medium, the growth rate gradually decreases to zero and the amplifier

will be saturated. At large distances of the propagation, the pulse only transfers the energy

of the inversion in the resonant medium to the host medium through the linear absorption

[8].

1.4 Motivation

Near resonance regime can be considered as an intermediate between the regimes of clas-

sical theory and the quantum optical theory; Many semiclassical optical equations arising

directly form a quantum mechanical treatment are central to the analysis of resonant phe-

nomena. Many coherent resonant interactions do involve only two levels of an atom. In

addition, some of the nonclassical effects e.g. self-induced transparency can only occur

when the atoms and the field are close resonance, i.e. when the field frequency falls within

the inhomogeneous atomic absorption line of the atoms.

In the classical oscillator model, an oscillator can oscillate with an arbitrary amplitude.

On the contrary, the quantum mechanical two-level atoms can only have a finite dipole

moment because of the upper level population saturation. These limits on the ranges of
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energies and moments of the atom cause various coherent and incoherent physical effects.

Such coherent phenomena as Bloch vector behavior, area theorem and self-induced trans-

parency lead to many optical structures such as similaritons and solitons.

However there is a drawback in working very near to resonance. As discussed in the

previous sections, the absorption is high near resonance. When the electric field on reso-

nance with the transition frequency of the atom interacts with the atom, the dipole moments

of the atom take most of the energy of the electric field to oscillate, so the electric field de-

cays.

To overtake this obstacle it should be noticed that the pulse absorption depends on the

width of the pulse τp relative to T⊥. For pulses that satisfy the limit τp � T⊥, that is for

pulses shorter than the relaxation time, the absorption of energy occurs much more slowly.

In Fig. 1.9 this development in pulse energy is sketched for Gaussian pulse for different

pulse widths τp. The explanation for this improvement is that only pulses shorter than T⊥
have spectral widths that exceed the total width of the absorption spectrum, 1/T⊥. As a

result, the major portion of the pulse energy is located in regions of the spectrum where

there is no absorption. On the contrary, long pulses interactions with atoms are much

more; dipole moments have more time to take energy form pulse so the pulse looses more

energy [8].

Figure 1.9: Variation of pulse energy per square centimeter with propagation distance into
the absorber for different pulse lengths τ . The input pulse is Gaussian.
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Generation of short and ultrashort pulses opened a new area in the field of optical

physics. To date, their applications have extended to high precision measurements, non-

linear optics, optical signal processing, optical communications, etc. Attaining high power

which is essential in many nonlinear optics phenomena was always a problem. By us-

ing short pulses the high intensities at low average powers are possible. It leads to many

applications in nonlinear physics including frequency conversion, laser material process-

ing, surgery, and high intensity physics including x-ray generation. Short pulses also have

large bandwidths which is useful in optical communications, as there are many channels

available from one source and the bit-rate stream is high as well.

In addition to referred advantages of working in near resonance regime, another im-

portant benefit comes into mind when investigating optical absorbers and amplifiers. The

single atom absorption coefficient α(Δ) determines the rate of amplification in an ampli-

fier. It is proportional to the transverse relaxation time T⊥ and inversely proportional to the

detuning Δ. In fact α(Δ) 0 when Δ >> 1/T⊥, so the strong amplification is not feasible

when the pulse is highly detuned from resonance.

All in all, near resonance limit in the study of the electric field and atom interaction

reveals details buried in the near resonance effects which are inaccessible in off-resonance

regimes. Such a wealth of knowledge about the on-resonance behavior of the atom can be

utilized to extract structures that are very interesting in the field of optics. This indeed is

a great encouragement for researchers to study the potential applications of on-resonance

regime in many optical systems. This thesis is intended to address the above issues.

1.5 Objectives

This thesis explores the resonant interaction of short pulses with matter. To achieve such

main objective of the present study, large variety of optical systems near resonance have

been investigated and the innovative near resonance optical structures related to these sys-

tems have been discovered. Many near-resonance effects in the two-level systems are ana-

lyzed and finally optical structures such as similaritons, kinks and solitons associated with

the resonant light-matter interactions are explored. During each case studies, universal

asymptotic solutions of any near-resonant short pulses propagating in different regimes of

various optical systems are investigated. Applying these systems under proper conditions
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enables the user to construct practical systems and use these near resonance structures ex-

perimentally. The broad field of study includes different regimes such as quasi CW regime,

coherent transient regime and coherent regime.

In this thesis, the validity of both near resonance similariton and soliton structures in a

wide range of materials is analytically and numerically investigated and verified with the

study of stability. Amplifiers, absorbers and conservative systems are utilized as the optical

systems to explore the formation of similaritons and solitons initiated by propagating short

input pulse/beam with the carrier frequency near the transition frequency of the medium

atoms.

To bring about the primary goal, research on-resonance behavior of matter with apply-

ing an electric field, the short term goals, studying the optical systems and structures near

resonance, includes various analytical and numerical case studies:

1. Analytical and numerical investigation of similariton structure in linear amplifiers in

resonance regime;

2. Analytical and numerical investigation of similariton structure in linear absorbers in

resonance regime;

3. Analytical and numerical investigation of similariton with kink structure in resonant

nonlinear media;

4. Numerical investigation of kink structure in resonant nonlinear media with inhomo-

geneous broadening;

5. Numerical investigation of soliton structure in nonlinear media with quadratic non-

linearity;

6. Analytical and numerical investigation of similariton structure in nonlinear media

having quintic nonlinearities.

1.6 Thesis Organization

The layout of this thesis is in the ”publication” format which incorporates the published or

under-review papers generated as the outcome of the completed analytical and numerical

studies. This thesis is divided into 8 chapters.
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Chapter 2 presents an analytical and numerical study which is performed on the coher-

ent linear amplifiers. In this study, the analytical description of novel self-similar pulses

in homogeneous linear amplifier near resonance is presented. The distinct feature of these

self-similar pulses, the universality, is demonstrated with numerical simulations. The salient

features of new pulses such as energy gain factor and width of the pulse are presented to

confirm the universality of this self-similar structure.

Chapter 3 outlines the analytical investigation on ultrashort self-similar pulses propa-

gating in coherent linear absorbers near resonance. The required material parameters are

discussed for experimental realization of the system. Finally the required input pulse pro-

files and energies are determined and it is described that the proposed self-similar pulses

can be realized with picoseconds input pulses.

Chapter 4 presents the third analytical and numerical study completed for validation of

similariton structure in resonant nonlinear media. In this study, the formation of a class of

self-similar waves in resonant nonlinear media, optical kinks, is described in detail. Several

classes of systems in which the kinks can be realized are mentioned. The aim of this study

also is to investigate the regime based on the transverse and energy relaxation times and

effects of these two on the creation of such self-similar kinks.

Chapter 5 presents the final numerical study completed for finding kink waves in reso-

nant nonlinear media. In this study, the procedure is identical to the third study outlined in

chapter 4. However, the effect of inhomogeneous broadening is considered in the formation

of optical kinks in resonant nonlinear media.

Chapter 6 outlines the numerical study performed to explore temporal solitons in quadratic

nonlinear media. A generic model to realize the system is proposed. The system contains a

bulk nonlinear medium with quadratic nonlinearity doped with resonance impurities. The

resonant impurities act in a two-level system and form the solitons while the substrate

medium transfers the soliton structure to the second harmonic pulse. An extensive nu-

merical simulation is performed to study the effects of different parameters such as group

velocity mismatch and phase mismatch on the formation of solitons.

Chapter 7 outlines the analytical study performed for finding spatial similaritons in

quintic nonlinear media. A description of the analytical calculations, proposed experimen-

tal conditions, numerical procedure, and simulation data are presented in detail. The system
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contains two-level atoms ensemble in a nonlinear substrate with cubic-quintic nonlinear-

ity. The main objective of this study is to explore the formation of spatial similaritons in

nonlinear media with nonlinearities other than the Kerr nonlinearity.

Conclusions of the main findings from the research body as a whole as well as recom-

mendations for future work are summarized in chapter 8. In this chapter, some practical

applications of proposed systems are also discussed.
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2.1 Abstract

We discover and analytically describe self-similar pulses existing in homogeneously broad-

ened amplifying linear media in a vicinity of an optical resonance. We demonstrate numer-

ically that the discovered pulses serve as universal self-similar asymptotics of any near-

resonant short pulses with sharp leading edges, propagating in coherent linear amplifiers.

We show that broadening of any low-intensity seed pulse in the amplifier has a diffusive

nature: Asymptotically the pulse width growth is governed by the simple diffusion law.

We also compare the energy gain factors of short and long self-similar pulses supported by

such media.

2.2 Introduction

Only not too long ago did the optical community realize [12] that self-similarity is quite

a ubiquitous feature of optical systems. The phenomena as diverse as optical pulse evo-

lution in Hall gratings [13], stimulated Raman scattering [14], formation of self-written

waveguides [15], and fractal formation in nonlinear media [16] exhibit self-similarity in

one form or another. Recently, long-term self-similar evolution of pulses in nonlinear fiber

amplifiers [17–19], in passive fibers of lasers [20] has received much attention due to its

fundamental interest and potential applications. Lately, fiber lasers with self-similar evo-

lution in the amplifier and soliton evolution in the anomalous dispersion segments [21] as

well as all-normal-dispersion lasers working in a self-similar light propagation regime [22]

21



22

were proposed and experimentally realized. Self-similar dynamics of beams in nonlinear

waveguide amplifiers and in conservative nonlinear media have also been explored [23–27].

Self-similar evolution of pulses and beams in resonant media has also been explored.

In particular, universal quasi-self-similar asymptotics of ultrashort light propagation in

coherent nondegenerate and degenerate nonlinear amplifiers was examined in Refs. [28]

and [29], respectively. Also, self-similarity in superfluorescence in homogeneously broad-

ened resonant media was explored as well [30]. In addition to the early pioneering work [28–

30], however, some recent studies [26,31] show that a wealth of self-similar regimes exists

in such media. In particular, self-similar beams can be generated in cubic-quintic nonlinear

media doped with resonant impurities in the limit of a large detuning from the impurity

resonance [26]. By the same token, we have shown elsewhere [31] that in resonant non-

linear absorbers, self-similar optical kinks are formed as intermediate asymptotics of any

incident pulse with a long tail in the trailing edge. In this context, it is instructive to explore

the possibility of self-similar pulse formation in resonant linear media. At first glance, the

very proximity to optical resonance(s), coupled with the system linearity, appears to pre-

clude self-similarity of a sufficiently short pulse: Strong dispersion at resonance(s) would,

in general, seem to cause severe pulse reshaping. One would then also wonder whether

self-similar pulses in such media, if any, would be universal asymptotics of very weak seed

pulses. The affirmative answer to the last question would augur well for the experimental

realization of such similaritons.

In this paper, we demonstrate analytically that self-similar optical pulses, albeit of a

highly asymmetric shape, can indeed propagate in resonant linear amplifiers. Such an

asymmetric self-similar shape is a manifestation of dynamic balance between linear am-

plification and phase relaxation processes in resonant propagation of short pulses in the

absence of inhomogeneous broadening and host medium dispersion. We further show that

a low-intensity seed pulse of any profile with a sharp leading edge evolves into a self-similar

one upon propagation inside the amplifier. The short pulse broadening has a universal dif-

fusive character such that the rms width grows as a square root of the propagation distance.

Thus, we demonstrate, both analytically and with numerical simulations that the discovered

self-similar pulses are universal intermediate asymptotics in resonant coherent amplifiers.

The intermediate character of the asymptotics is imposed by the system linearity: As long

as the pulse area will have grown enough, our linear approximation surely breaks down;
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sufficiently small initial pulse areas and/or short enough amplifier lengths are required for

the linear approximation to hold over the entire amplifier length.

2.3 Physical Model and Mathematical Preliminaries

We model a resonant medium as a collection of two-level atoms with the resonance fre-

quency ω0, thereby limiting our consideration to the case of one internal resonance. We

assume hereafter that the pulse spectrum is mainly affected by homogeneous broadening,

implying that γ⊥ � δ , γ⊥ and δ being transverse (dipole moment) relaxation rate and a

characteristic spectral width of inhomogeneous broadening, respectively. Under these con-

ditions, the evolution of a pulse with the carrier frequency ω in the medium is governed by

a reduced wave equation,

∂ζ Ω = iκσ ; (2.1)

subject to the slowly-varying envelope approximation (SVEA):

∂ζ Ω 	 kΩ, ∂τΩ 	 ωΩ. (2.2)

Here Ω = 2degE /h̄ is the Rabi frequency associated with the pulse amplitude E , deg is

a dipole matrix element between the ground and excited states of any atom, labeled with

the indices g and e, respectively; κ = ωN|deg|2/cε0h̄ is a coupling constant, N is an atom

density, k = ω/c, and Eq. (2.1) is written in terms of the transformed coordinate and time,

ζ = z and τ = t − z/c. The dipole moment matrix element σ and one-atom inversion w

obey the Bloch equations [8]

∂τσ =−(γ⊥+ iΔ)σ − iΩw, (2.3)

and

∂τw =−γ‖(w−weq)− i
2(Ω

∗σ −Ωσ∗). (2.4)

In Eqs. (2.3) and (2.4) γ‖ is a longitudinal relaxation rates associated with one-atom in-

version damping, Δ = ω −ω0 is a detuning from the resonance and weq is a value of the

one-atom inversion in the absence of the pulse (equilibrium).

In the low-intensity limit, the atomic population is hardly affected by the pulse such
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Figure 2.1: Schematics of a pump-probe three-level system modeling coherent linear am-
plifier. The resonant transition takes place between levels e and g.

that the one-atom inversion is approximately given by its equilibrium value,

w 
 weq =±1, (2.5)

where the upper/lower sign corresponds to amplifier/absorber case: All atoms remain in the

upper/lower level. Physically, the linear amplification regime of a weak probe pulse can be

realized using a strong pump in a three-level configuration, standard of laser systems, see

e.g. [32]. The latter is illustrated schematically in Fig. 2.1 where the pump rate P and the

upper level relaxation rate must be large enough, P� γ⊥ and Γ� γ⊥, to achieve population

inversion between levels “e” and “g”.

Mathematically, the approximation (2.5) implies linearization of the dipole moment

evolution equation viz.,

∂τσ =−(γ⊥+ iΔ)σ ∓ iΩ. (2.6)

In the following, we distinguish two limiting cases: “long” pulses, tp � T⊥ and “short”

ones, tp ≤ T⊥–in the case tp 	 T⊥, the pulses may be called “ultrashort”–where T⊥ = γ−1
⊥

and tp is a characteristic pulse width.

Long pulses. In this case, the atomic variables can be adiabatically eliminated–using

Eq. (2.6) and equating σ to its quasi-steady-state value with respect to Ω–which will result

in the pulse evolution equation in the form

∂ζ Ω =±
(

α+iβ
2

)
Ω. (2.7)
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Here we introduced an inverse Beer’s gain/absorption length α and an overall phase accu-

mulation rate β by the expressions,

α =
2κγ⊥

γ2
⊥+Δ2 , β =

2κΔ
γ2
⊥+Δ2 . (2.8)

It follows at once from Eq. (2.7) that for sufficiently long pulses, any pulse grows/decays

exponentially in such a medium, maintaining its overall shape,

Ω(τ,ζ ) = Ω0(τ)e±(α+iβ )ζ/2, (2.9)

where Ω0(t) describes an initial pulse profile, and Eq. (2.9) is well-known Beer’s amplifi-

cation/absorption law.

Short pulses. For simplicity, we consider pulses exactly on resonance with the atomic

transition, Δ= 0; the pulse field and dipole moment evolution equations can then be written

as

∂ζ Ω =
i
2

γ⊥α0σ , (2.10)

and

∂τσ =−γ⊥σ ∓ iΩ. (2.11)

where α0 = 2κ/γ⊥. Our treatment to this point is equally applicable to amplifying and

absorbing media. Hereafter we focus on short pulse propagation in amplifiers.

2.4 Short Self-Similar Pulses

The inspection of Eqs. (2.10) and (2.11) reveals that the electric field of a self-similar pulse

and atomic dipole moment profiles ought to be sought in the form

Ω(ζ ,τ) = γ⊥θ(τ)Ω[γ⊥τF(ζ )]e−γ⊥τ , (2.12)

and

σ(ζ ,τ) = θ(τ)G(ζ )σ [γ⊥τF(ζ )]e−γ⊥τ . (2.13)

Here θ(τ) is a unit step function describing a sharp leading edge of the pulse, F(ζ ) and

G(ζ ) are arbitrary at the moment and Ω and σ are dimensionless functions. Substituting
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the Ansatz (2.12) and (2.13) into Eqs. (2.10) and (2.11), we can show that self-similarity is

sustained provided that

F(ζ ) = α0ζ +T⊥/tp; G(ζ ) = 1/F(ζ ). (2.14)

Further, the dimensionless pulse envelope Ω in the amplifying medium satisfies the equa-

tion,

ηΩ′′
+Ω′ −Ω/2 = 0, (2.15)

where we introduced a similarity variable η by

η = γ⊥τ(α0ζ +T⊥/tp). (2.16)

and the prime denotes a derivative with respect to η .

Analytically solving Eq. (2.15), we can obtain a self-similar pulse envelope in a linear

amplifier. The overall pulse profile can then be represented as

Ω(η ,τ) ∝ γ⊥θ(τ)1F1(1/2,1,−2
√

2η)exp(
√

2η − γ⊥τ), (2.17)

where 1F1(a,c,x) is a confluent hypergeometric function, and we dropped an arbitrary

(small) initial pulse amplitude. Eq. (2.17) can be expressed in a more compact form as

Ω(η ,τ) ∝ γ⊥θ(τ)I0(
√

2η)exp(−γ⊥τ), (2.18)

where I0(x) is a modified Bessel function of zero order. We note that for sufficiently long

propagation distances, α0ζ � T⊥/tp, the self-similar pulse profile no longer depends on tp,

yielding a universal self-similar profile

Ω(τ,ζ ) ∝ γ⊥θ(τ)I0(2
√

κζ τ)exp(−γ⊥τ). (2.19)

It can be inferred from the analysis of Eq. (2.18) that the pulse evolution is governed by

a synergy of three factors: pulse shape asymmetry, coherent gain and dipole phase relax-

ation. In the absence of nonlinearity, the self-similarity arises as a consequence of dynamic

balance between coherent gain and linear damping; the sharp leading edge of the pulse
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Figure 2.2: Normalized intensity of a short self-similar pulse as a function of dimensionless
time T = τ/T⊥ and propagation distance Z = α0ζ . The pulse intensity is normalized to its
peak value at Z = 0. The initial pulse width is chosen to be tp = T⊥.

profile ensures the balance in the absence of bulk medium dispersion and inhomogeneous

broadening. Thus, the asymmetry of a seed pulse shape appears to be the only requirement

for self-similarity in the studied linear system to emerge.

We stress here that in the linear limit, damping of the trailing edge of the pulse by the

linear relaxation processes allows for the finite energy self-similar pulse formation. The

situation here is drastically different from quasi-self-similarity emerging in the nonlinear

amplification of ultrashort pulses–the term should be understood in the sense defined in

Sec. 2–studied in [28]. In the latter case, linear damping is negligible and the nonlinearity

promotes the emergence of finite-energy pulses in the amplifying medium. We notice also

that the discovered self-similar pulses have no chirp–since dispersion plays no role here–

which sets them apart from more familiar parabolic pulses in nonlinear fiber amplifiers. The

latter require a linear chirp to prevent wave breaking [17,19]. We also note that owning to a

different physical nature, our similaritons are markedly different from recently discovered

quasi-parabolic pulses in nonlinear amplifiers [33]. While the former are chirp-free self-

similar pulses, the latter are phase-modulated steady-state pulses moving with the speed of

light.
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Figure 2.3: Normalized intensity of a short Gaussian (solid) and self-similar (dashed)
pulses as functions of dimensionless time T = τ/T⊥ and propagation distance Z = α0ζ .
The pulse intensities are normalized to their peak values at Z = 0. The initial pulse width is
chosen to be tp = T⊥/2 and tp = T⊥ for Gaussian and self-similar pulses, respectively. The
inset shows pulse dynamics for short propagation distances.

2.5 Numerical Results and Discussion

We now proceed to describing the properties of new self-similar pulses. In Fig. 2.2, we

display the self-similar pulse profile evolution as a function of the dimensionless time

T = τ/T⊥ for several values of the dimensionless propagation distance Z = α0ζ . The self-

similar character of the pulse dynamics is clearly discernable in the figure. To demonstrate

the universal nature of the discovered self-similar regime, we numerically simulate the evo-

lution of a generic asymmetric Gaussian pulse, Ω1(t,0)∝ θ(t)exp(−t2/t2
p), in the amplifier

and compare its profile with the self-similar asymptotics. The results are presented in Fig-

ure 2.3 To ensure the two pulses are sufficiently different in the source plane, we take the

Gaussian pulse to be half as long as the self-similar one at Z = 0: tp = T⊥/2. In the inset to

the figure, we compare short-distance pulse dynamics of the two pulses. We see in the fig-

ure that although the Gaussian pulse profile deviates from the self-similar asymptotics over

short distances–at least over first few Beer’s amplification lengths as is seen in the inset–it

quickly converges to the universal asymptotics over longer distances. It then is seen to co-

incide with the self-similar asymptotics profile to within numerical round-off errors [34].

We obtained qualitatively similar results for hyperbolic secant and exponential profiles with

cut off leading edges: Ω2(t,0) ∝ θ(t)sech(t/tp), and Ω3(t,0) ∝ θ(t)exp(−t/tp).

To reenforce the message, we examine the rms width– defined as ΔT =

√
〈T 2〉−〈T 〉2

and measured in the units of T⊥–of the universal self-similar asymptotics on pulse prop-

agation in the amplifier. The averaging is taken over the pulse intensity distribution, for
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Figure 2.4: Average widths of Gaussian, secant hyperbolic and exponential pulses as func-
tions of the dimensionless propagation distance Z =α0ζ . The self-similar asymptotic pulse
width dependence on the propagation distance is shown as the solid curve.

instance,

〈T 2(Z)〉 ≡
∫ ∞

0 dT T 2 |E (T,Z)|2∫ ∞
0 dT |E (T,Z)|2 . (2.20)

With the help of the asymptotic expansion of I0(x) [35], an analytical expression for the

rms width can be derived and presented in an exceptionally simple form

ΔT (Z)

√

3Z/2. (2.21)

In other words, the pulse rms width grows with the distance in a diffusive manner with

the effective diffusion coefficient equal to 3αT 2
⊥/8 (in original units). We then evaluate

and display the behavior of asymmetric Gaussian, hyperbolic secant, and exponential pulse

widths in Fig. 2.4 The self-similar asymptotic pulse width is drawn in a solid curve. In

the inset to the figure, we exhibit the pulse width dynamics over a short range of propaga-

tion distances. We can conclude from the figure that although the width of an arbitrarily

shaped seed pulse initially deviates from the self-similar pulse width, the former asymptot-

ically tends to the latter over a long enough propagation distance, thereby underscoring the

universal character of the discovered self-similar asymptotics.

Next, we observe that the applicability of SVEA is not, in general, guaranteed for pulses

with sharp fronts. Hence, the presence of a step function has to be physically justified as

follows. A practical realization of an ideal sawtooth-like pulse involves a finite switching
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Figure 2.5: Energy gain factor G(Z) for a short (solid) and long (dashed) self-similar pulse
as a function of the dimensionless propagation distance Z = α0ζ .

time tsw describing the fast rise of its leading edge. Thus for a short pulse, tp ∼ T⊥, the pulse

duration (rise time of the pulse front edge) has to be much shorter than the pulse width, yet

much longer than an optical cycle for the SVEA–see Eq. (2.2)–to hold:

ω−1 	 tsw 	 tp ∼ T⊥. (2.22)

The complimentary conditions (2.22) can be realized in a laboratory for picosecond pulses

in dilute atomic vapors, say, for which, typically T⊥ ∼ 1 ÷ 10 ps [8] by choosing, for

example, tsw ∼ 10÷ 100 fs. Mathematically, the leading front step function can then be

approximated, for instance, as

θ(τ)
 [1+ tanh(τ/tsw)]/2, (2.23)

with the excellent approximation attainable for tsw = 0.01T⊥.

Finally, we exhibit in Fig. 2.5 a short-pulse energy gain factor,

G(ζ ) =
∫

dτ|E (ζ ,τ)|2/
∫

dτ|E (0,τ)|2, (2.24)

for the novel self-similar pulses as a function of the propagation distance. The exponential
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gain factor for long pulses,

G0(ζ ) = exp(α0ζ ), (2.25)

is presented for comparison as well. On comparing the two, we conclude that for suffi-

ciently long distances, long pulses are amplified much more efficiently than are short ones.

This is because short pulses have very broad energy spectra with large fractions of their

energies stored in the pulse tails. The latter lie well outside of the medium gain spectrum

and are then not efficiently amplified. Narrow spectra of long pulses, on the other hand,

fall entirely within the medium gain spectrum, which results in strong amplification. These

qualitative conclusions are bourn out by the asymptotic analysis yielding the following

universal long-term gain behavior for asymmetric short pulses

G∞(ζ ) ∝
eα0ζ√

α0ζ
. (2.26)

Hence, comparing Eqs. (2.26) and (2.25), we see that the long-pulse gain dwarfs the short-

pulse one in the long-term limit.

2.6 Conclusion

In summary, we have discovered a self-similar regime of short pulse propagation in linear

amplifiers in the vicinity of an optical resonance. The novel self-similar pulses have sharp

leading front, resulting in a highly asymmetric sawtooth-like pulse profile. We have shown

that the new pulses serve as intermediate universal asymptotics for any asymmetrically

shaped pulse propagation in resonant amplifiers in the linear regime. We note that our

results hold true in the absence of inhomogeneous broadening. It will be instructive to

determine the influence of the latter on the emergence of universal self-similar asymptotics

in the system.
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3.1 Abstract

We theoretically describe ultrashort self-similar pulses propagating in coherent linear ab-

sorbers near optical resonance and propose a method for their experimental realization.

3.2 Introduction

Shape-invariant light beams enjoy a special place in optics due to their self-similar structure

on paraxial propagation in free space. Several classes of shape-invariant fully and partially

coherent beams, including notably Hermite-Gaussian ones, are known to date [32, 36].

Owning to the space-time duality between evolution of beams in free space and pulses in

optical fibers [37], similar shape-invariant pulses exist in weakly dispersive media far away

from internal resonances.

Close to an optical resonance, however, one may expect to see, in general, pronounced

pulse reshaping due to enhanced dispersion there [38]. Yet, we have shown elsewhere [39]

that shape-invariant pulses emerge as universal intermediate asymptotics on near-resonant

pulse propagation in coherent linear amplifiers as a result of dynamical balance between

amplification and dissipation processes. Since no such balance is feasible in linear ab-

sorbers, the prospects for self-similarity there are open to debate.

In this Letter, we show that a broad class of shape-invariant ultrashort pulses is nev-

ertheless supported by resonant linear absorbers. We stress that self-similarity arises here

thanks to a particular class of initial spectral profiles with long wings where much of the

32
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incident pulse energy is stored. We also discuss the potential for experimental realization of

the new pulses in homogeneously broadened coherent absorbers and estimate the necessary

pulse and optical media parameters.

We start by examining small-area pulse propagation in a homogeneously broadened

resonant absorber under exact resonance condition: the pulse carrier frequency coincides

with a resonant transition frequency of the medium atoms. An atomic vapor in the homo-

geneously broadening regime [32], filling the core of a hollow-core photonic crystal fiber

(HCPCF) [40] can serve as a physical realization of the medium. Using the HCPCF, we can

arrest spatial diffraction. Engineering the fiber to tune its zero group-velocity dispersion

frequency to the gas resonance frequency enables us to eliminate bulk medium dispersion

effects and focus on purely resonant properties of the system.

3.3 Analytical Study

In the slowly-varying envelope approximation (SVEA), the pulse field E (z, t) and atomic

dipole moment σ(z, t) can be shown to obey the classical Maxwell-Lorentz equations [8,

39]

∂ζ Ω = iκσ , (3.1)

and

∂τσ =−γ⊥σ + iΩ, (3.2)

which are written in the transformed variables: ζ = z and τ = t − z/c. Here we also

introduced the field envelope in frequency units, Ω = −eE /2mωx0, where x0 is an am-

plitude of the electron displacement from equilibrium, the inverse dipole relaxation rate

γ⊥ = 1/T⊥, where T⊥ is a characteristic dipole moment relaxation time, and a coupling

constant, κ = Ne2/4ε0mc. The coupled Maxwell-Lorentz equations, (3.1) - (3.2) can be

solved using a Fourier transform technique, yielding the field envelope at any propagation

distance in the form

E (τ,ζ ) =
∫ ∞

−∞
dν Ẽ0(ν)e−iντ exp

[
− αζ

2(1− iνT⊥)

]
. (3.3)



34

Here α = 2κ/γ⊥ is a small-signal absorption coefficient and we introduced the spectral

amplitude of the incident pulse by the expression

Ẽ0(ν) =
∫ ∞

−∞

dt
2π

E (t,0)eiνt . (3.4)

With an eye on shape-invariant pulse evolution, we consider the following family of

incident pulses:

Es(t,0) = E0sθ(t)(κζ0t)s/2Js(2
√

κζ0t)e−γ⊥t , (3.5)

where s is a nonnegative real mode index and θ(t) is a unit step function, mathematically

describing a physical zero-index pulse with a very short rise time tr. As was discussed in

detail in the amplifier context in Ref. [39], the inequality ω−1 	 tr 	 T⊥ must be respected

for the SVEA to work.

Using the integral representation [35]

∫ ∞

0
dxxs+1e−a2x2

Js(bx) = bs

(2a2)s+1 e−b2/4a2
, (3.6)

and changing the variable of integration, we can obtain the pulse spectral amplitude in the

source plane as

Ẽ0s(ν)=
Ẽms

(1− iνT⊥)s+1 exp
[
−αζ0

2

(
iνT⊥

1− iνT⊥

)]
. (3.7)

Here we introduced the peak spectral amplitude Ẽms as

Ẽms =
E0sT⊥

2π

(
αζ0

2

)s

e−αζ0/2, (3.8)

which is linking ζ0 to the other pulse parameters. Next, on comparing the Fourier decom-

position of the incident pulse,

Es(t,0) =
∫ ∞

−∞
dν Ẽs0(ν)e−iνt , (3.9)

with that at any ζ ≥ 0–see Eq. (3.3)–and using Eq. (3.7), we infer by inspection that the

examined pulse (3.5) indeed remains self-similar on propagation in the resonant medium
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Figure 3.1: Rms width of the zero-index pulse as a function of Z for three values of Z0.

with the pulse profile given by

Es(τ,ζ ) =
E0sθ(τ)

(1+ζ/ζ0)s ηs/2 Js(2
√

η)e−γ⊥τ . (3.10)

Here the similarity variable η is defined as η = κ(ζ + ζ0)τ . Hereafter, we will refer to

{Es} as a set of resonant linear absorber modes. Notice that the new mode index s need not

be an integer which sets the discovered modes apart from, for instance, familiar Hermite-

Gaussian (HG) ones encountered in the laser resonator theory [32].

Next, over sufficiently long propagation distances, ζ � ζ0, the pulse shape is indepen-

dent of its initial rms width, Es(τ,ζ ) ∝ θ(τ)(κτ/ζ )s/2Js(2
√

κζ τ)e−γ⊥τ . Hence, the rms

width of the pulse must be independent of ζ0 in the long-term limit as well, a feature that

further distinguishes novel modes from the HG ones. The rms pulse width of the zero-index

mode is exhibited in Fig. 3.1 as a function of the propagation distance for different initial

conditions in the dimensionless variables: T = τ/T⊥, Z = αζ and Z0 = αζ0.

It follows at once from Eqs. (3.3) and (3.7) that the spectrum of the shape-invariant

pulse of index s can be represented as

Ss(ω,Z) =
S0

(1+ω2)s+1 exp
(
−Z +Z0

1+ω2

)
. (3.11)

The spectral profile of the zero-index mode is shown in Fig. 3.2–the other mode spectra

look qualitatively similar–as a function of dimensionless frequency ω = νT⊥ for Z0 = 0.5

and Z0 = 7. As is seen in the figure, the spectrum evolution scenario is determined by the
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Figure 3.2: Pulse spectrum of the zero-index mode (in arbitrary units) as a function of
dimensionless frequency ω and propagation distance Z for (a) Z0 = 0.5 and (b) Z0 = 7.
Insets: Zero-index pulse intensity profile as a function of dimensionless time T ; Z = 70,
(dotted line) and Z = 100 (solid line).

interplay of resonant dispersion and absorption and it strongly depends on the magnitude

of Z0. For sufficiently small Z0–see Fig 3.2a–the initial spectrum has a central peak. A

hole is then burnt at the center of the pulse spectrum on propagation over a fraction of a

characteristic absorption length. This is followed by spectral hole broadening as the energy

is being steadily transferred toward the pulse wings and the pulse evolution becomes self-

similar. A source with a greater Z0 may already have a spectral hole–as is illustrated in

Fig. 3.2b–resulting in shape-invariant pulse propagation from the outset. To exhibit self-

similarity in the time domain we also display the zero-mode pulse evolution in the insets to

Fig. 3.2.

The required pulse profile to generate self-similarity can be synthesized by exploring

Eq. (3.7). It follows from Eq. (3.7) that the desired spectral shape consists of an atomic

absorption profile–the Lorentzian prefactor–and a complex modulation factor, H(ν) = (1+

ν2T 2
⊥)

−s exp[−αζ0/(1 − iνT⊥)]. The amplitude and phase of the latter are sketched in

Fig. 3.3 as functions of ω .

Next, to generate the overall spectrum, one may first invert an atomic ensemble in a

source gas cell with an ultrashort π-pulse, say. The excited atoms will then emit a homo-

geneously broadened pulse of Lorentzian spectral shape, which may in turn be spectrally

filtered with the filter function H(ν) using, for example, one of the techniques reviewed in

Ref. [41].

Further, we briefly discuss the required material parameters to realize the discussed

pulses. First, the collision-induced spectral width δνc–assuming dipole relaxation is mainly
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Figure 3.3: Left: the filter phase (solid) and the real part of the refractive index (dashed).
Right: the filter amplitude (solid) and the imaginary part of the refractive index (dashed).

due to collisions, T⊥ ∼ δν−1
c –must be much greater than the Doppler-induced inhomoge-

neous broadening width δνD. To attain the homogeneous broadening regime, δνc � δνD,

one can either collimate the gas beam or increase the gas pressure [32]. Taking the gas

density to be N ∼ 1015 cm−3–which is, at least, three orders of magnitude beyond the usual

dilute vapor range [8]–and assuming T⊥ ∼ 10−12 sec for such a dense vapor, we estimate

the linear absorption length LA = α−1 
 0.2 mm. Thus, the self-similar pulse propagation

regime can be observable in a few meter-long HCPCF.

Finally, let us estimate the required input pulse energy density, W =(ε0c/2)
∫ ∞
−∞ dt |E |2 =

πε0c
∫ ∞
−∞ dν |Ẽ |2. Using the peak spectral amplitude of the input pulse, the energy density

can be roughly estimated as Ẽ 2
msΔν , where the spectral width (FWHM) is Δν ∼ T−1

⊥ . The

peak spectral amplitude can in turn be estimated using the pulse area, A =(2d/h̄)
∫ ∞
−∞ dtE =

2πẼm. In the small-area regime, say, A ∼ 0.1, we arrive at W 
 10 nJ/cm2, where we used

d ∼ ea0 ∼ 10−29 Cm as a reasonably good estimate for the dipole moment magnitude in op-

tical transitions [8]. Thus the proposed self-similar pulses can be realized with picosecond

pulse sources of just 10 nJ/cm2 energy.
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4.1 Abstract

We show that self-similar optical waves with a kink structure exist in a wide class of reso-

nant nonlinear media, adequately treated in the two-level approximation. The self-similar

structure of the present kinks is reflected in the time evolution of the field profile, atomic

dipole moment and one-atom inversion. We develop an analytical theory of such kinks. We

show that the discovered kinks are accelerating nonlinear waves, asymptotically attaining

their shape and the speed of light. We also numerically explore the formation and eventual

disintegration of our kinks due to energy relaxation processes. Thus, the present kinks can

be viewed as intermediate asymptotics of the system.

4.2 Introduction

The quest for structurally stable nonlinear waves, which maintain their intensity – and

sometimes even phase – profiles in open physical, chemical, and biological systems, has

been in the forefront of contemporary nonlinear science. Self-similar waves or similari-

tons – whose intensity profiles remain scaled replicas of themselves on propagation – can

serve as a prominent example of structurally stable waves in open systems. Although self-

similarity has long become textbook material in fluid and gas [42, 43] and solid mechan-

ics [43] as well as in plasma physics [44], the concept has only relatively recently percolated

into nonlinear optics [12]. To date, self-similarity in Bragg gratings [13], stimulated Raman

scattering [14], self-written waveguides [15], and fractal formation in nonlinear media [16]
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have been studied among other topics. More recently, however, the focus has shifted to

two major classes of similaritons: asymptotic and soliton-like ones. The asymptotic tem-

poral [17,19] or spatio-temporal [45] similaritons, forming in fiber amplifiers in the normal

dispersion regime over long propagation distances, were theoretically predicted [17, 19]

and experimentally realized [19, 20]. At the same time, bright and dark soliton-like simi-

laritons have been theoretically investigated in fiber [46–50] and graded-index waveguide

amplifiers [23–25], and in trapped Bose-Einstein condensates [51, 52]. The vast majority

of research on optical similaritons has however been aimed at understanding their behavior

sufficiently far away from any internal resonance of the medium.

In this Rapid Communication, we show that an altogether different kind of optical sim-

ilaritons, kink-like similaritons, can be supported by resonant nonlinear media. The novel

self-similar kinks accelerate, asymptotically acquiring the speed of light. An initial stage of

their fast self-steepening is followed by asymptotically slow formation of quasi-steady-state

kinks. All these features make the new kinks markedly different from the previously exam-

ined steady-state ones, Raman induced in optical fibers away from any resonance [53, 54].

Interestingly, there is a direct analogy between the new optical kinks and the corresponding

shocks in gas dynamics. The transverse relaxation processes, which determine the temporal

width of the kink, are counterparts of gas viscosity. At the same time, the longitudinal re-

laxation processes, which lead to kink decay and eventual disintegration, are direct analogs

of thermal processes in gases which cause shock disappearance. There are, however, two

fundamental differences between optical kinks and shocks in gases or fluids. First, while

the former do not require any background intensity, the latter form against a finite veloc-

ity background, determining the sound velocity in a gas or fluid. Second, whereas the

gas shocks propagate with a constant supersonic speed, the present kinks are accelerating

self-similar waves.

In this work, we treat resonant media in the two-level approximation. The model is

sufficiently general to describe a broad range of resonant nonlinear media from atomic

vapors and solids, doped with resonant atoms [8], to bulk semiconductors, doped with

quantum dots [55]. Thus our analytical and numerical results may find applications to a

multitude of physical systems as diverse as dilute gases and solids.
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4.3 Theoretical Background

We begin by considering a light pulse with a carrier frequency ω near optical resonance

frequency ω0 of a two-level atom medium. To focus on the main aspects of the problem, we

make two assumptions. First, we assume that the pulse is not chirped, implying that Ω∗ =

Ω. Second, we assume that the transverse relaxation rate γ⊥–defined as the corresponding

inverse relaxation time–dwarfs the longitudinal one, γ‖, as well as the characteristic width

of inhomogeneous broadening δ ,

γ⊥ � δ , γ⊥ � γ‖. (4.1)

The first inequality implies that all impurity atoms are assumed to be effectively on res-

onance with the field such that inhomogeneous broadening can be ignored. The second

inequality means that the atomic dipole moments evolve much faster than the atomic pop-

ulation dynamics unfolds. The existence of a hierarchy of widely separated in time relax-

ation processes results in the emergence of two widely separated in space characteristic

propagation distances: a typical distance ζ∗ over which the new kinks are formed and a

characteristic energy relaxation distance ζ∗∗ beyond which the kinks gradually decay. The

novel kinks maintain their self-similar structure in the intermediate range, ζ∗ 	 ζ 	 ζ∗∗.

Within the framework of our model and subject to the slowly varying envelope ap-

proximation (SVEA), the pulse evolution is governed by the reduced wave equation in the

form

∂ζ Ω =
ωN|deg|2

cε0h̄
v, (4.2)

Here Ω = 2degE /h̄ is the Rabi frequency associated with the pulse amplitude E , N is a

density of impurity atoms, and deg is a dipole matrix element between the ground and

excited states of any atom; the two relevant atomic states are appropriately labeled with the

indices g and e. Further, Eq. (4.2) is written in terms of the transformed coordinate and

time, ζ = z and τ = t − z/c. The relevant atomic dipole moment v and one-atom inversion

w obey the Bloch equations [8] which, in our case, are simplified as

∂τv =−γ⊥v+Ωw, (4.3)
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and

∂τw =−Ωv. (4.4)

In deriving Eqs. (4.3) and (4.4), we neglected longitudinal relaxation processes, an assump-

tion to be examined later with the help of numerical simulations.

The inspection of Eqs. (4.2) – (4.4) reveals the existence of self-similar solutions for

the Rabi frequency

Ω(τ,ζ ) = γ⊥Ω(η), (4.5)

and for the atomic variables

v(τ,ζ ) = e−γ⊥τv(η), w(τ,ζ ) = e−γ⊥τw(η). (4.6)

Here the similarity variable is defined by the expression

η = αζ e−γ⊥τ ; α =
2kN|deg|2

γ⊥ε0h̄
, (4.7)

where we introduced a linear absorption coefficient α and k = ω/c.

The dimensionless Rabi frequency Ω and scaled atomic variables, v and w, obey the set

of ordinary differential equations (ODE)

2Ω′
= v, (4.8)

ηv′ =−Ωw, (4.9)

and

(ηw)′ = Ωv, (4.10)

where the prime denotes a derivative with respect to the similarity variable. Combining

Eqs. (4.8) – (4.10) and integrating once with the aid of the asymptotic condition Ω(0)=Ω∞,

we arrive at the ODE for a kink profile,

η2Ω′′
=−1

2Ω(Ω2 −Ω2
∞). (4.11)

The analysis of Eq. (4.11) indicates that at the trailing edge of the pulse, τ → +∞, the
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Figure 4.1: Kink profile as a function of time, measured in the units of the transverse
relaxation time, T⊥ = 1/γ⊥. The dimensionless Rabi frequency jump is taken to be Ω∞ =
1/2.

kink profile at any propagation distance asymptotically behaves as

Ω = Ω∞ −|C|ηs; s =
1+

√
1−4Ω2

∞
2 , (4.12)

where C is a constant. By the same token, at the leading edge, τ → −∞, the kink field

strength falls off as

Ω ∼ η−q, q =
−1+

√
1+2Ω2

∞
2 . (4.13)

The kink profile is exhibited in Fig. 4.1 as a function of time. It follows from (4.12)

and (4.13) that (i) the kink structure is determined entirely by the magnitude of the Rabi

frequency jump, Ω∞, and (ii) the kink has no chirp if the latter satisfies the inequality

Ω∞ ≤ γ⊥/2, (4.14)

otherwise our solution is not consistent. The condition (4.14) specifies the range of param-

eters for which kinks with monotonous profiles are realized in resonant media. It can be

physically interpreted as follows. The Rabi frequency jump must be smaller than a cer-

tain critical value determined by the transverse damping constant such that the system is in

an overdamped regime with no Rabi oscillations. The latter would lead to pulse chirping

which, in turn, would cause modulations of the kink profile.
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Further, we can infer from Eqs. (4.8) - (4.10) that the one-atom inversion can be ex-

pressed as

w(ζ ,τ) =
1

αζ

[
Ω2

(η)−Ω2
∞

]
. (4.15)

It follows at once from Eq. (4.15) and the definition of the inversion that at the leading edge

of the kink: w∞ = −Ω2
∞/ζ ≥ −1, implying that our self-similar solution is valid over the

distances such that

ζ ≥ ζ∗ =
Ω2

∞
αγ2

⊥
. (4.16)

Here ζ∗ is the lower bound of a characteristic distance over which the kink is formed. Thus

the present kink-like similaritons are intermediate asymptotics of the system in the spirit of

Ref. [43]. On the one hand, they form over distances of the order of ζ∗, after the transient

dynamics, induced by specific initial conditions, have died away. On the other hand, the

new kinks remain intact only over spatial scales much shorter than the characteristic energy

relaxation distance determined by the longitudinal relaxation constant γ‖.

We also note that at any (finite) propagation distance over which our kinks have already

formed, the atomic dipole moment v asymptotically tends to zero, albeit asymmetrically,

at both ends of the kink: v ∼ −eqγ⊥τ at the leading edge, and v ∼ −e−sγ⊥τ at the trailing

edge of the pulse, respectively. The time evolution of w and v is displayed in Fig. 4.2

for several propagation distances; a self-similar structure of the atomic state evolution is

unambiguously reflected in the figure. Physically the behavior of the inversion can be

explained by observing that at the leading edge of the kink, where the light intensity is very

small, there are much more atoms in their ground states than are excited atoms, resulting in

a negative value of w. At the trailing edge, however, a large pulse amplitude saturates the

medium, implying zero inversion.

Further, we reveal unusual dynamic properties of the discovered kinks. It follows from

Eq. (4.7) that the speed U of a kink wavefront depends on the propagation distance accord-

ing to

U(ζ ) =
γ⊥ζ c

c+ γ⊥ζ
. (4.17)

Thus the novel kinks accelerate on propagation, asymptotically attaining the speed of light.

In reality, however, a characteristic distance over which their speed becomes sufficiently

close to c, can be quite short, of the order of ζ∞ 
 c/γ⊥. For example, for solids or semi-

conductors doped with resonant atomic impurities or quantum dots, 1011 ≤ γ⊥ ≤ 1013, s−1,
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Figure 4.2: Atomic dipole moment (left) and one-atom inversion (right) as functions of di-
mensionless time, γ⊥τ , displayed at several propagation distances: Solid, αζ = 25; dotted,
αζ = 40, and dashed, αζ = 50. The propagation distances are measured in the units of
inverse Beer’s absorption length, α−1.
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Figure 4.3: Dimensionless Rabi frequency Ω of a forming kink as a function of dimen-
sionless time, γ⊥τ , and propagation distance αζ . The ratio of transverse to longitudinal
relaxation times is T⊥/T‖ = 10−4. The initial parameters are Ω0 = 0.5γ⊥ and τp = 100T⊥.
The inset shows the initial stage of fast self-steepening.

leading to the estimate, 0.03 ≤ ζ∞ ≤ 3 cm.

4.4 Numerical Considerations

We now discuss kink formation. A constant background intensity at the trailing edge of

the input wave is required to produce a kink. In laboratory, such pulses can be generated

by switching on cw lasers, for example. In our numerical simulations, we then consider an

adiabatically switched cw wave of the form

Ω(0, t) =
Ω0

1+ e−t/τp
, (4.18)
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where Ω0 is the amplitude – measured in frequency units – of the cw laser field and τp

is a characteristic time constant of the switching process. We emphasize that a particu-

lar functional form (4.18) is not important: we obtained qualitatively similar results for

wave self-steepening and kink formation with different input wave profiles having a finite

background intensity at the trailing edge.

The atoms are assumed to be initially in their ground states and the one-atom inversion

obeys the Bloch equation

∂τw =−γ‖(w+1)−Ωv, (4.19)

where the energy (longitudinal) relaxation processes are taken into account. Our numerical

simulations indicate that monotonous kinks form provided that

Ωc ≤ Ω0 ≤ γ⊥/2, (4.20)

where the magnitude of a critical amplitude Ωc depends on the value of γ‖. The presence

of a critical power threshold for kink formation is explained as follows. The incident wave

should have enough power to start self-steepening despite energy losses caused by longitu-

dinal relaxation processes. Clearly, the shorter the longitudinal relaxation time, the greater

the initial amplitude is required to generate a kink.

The results of numerical simulations of Eqs. (4.2), (4.3) and (4.19), with the initial con-

dition (4.18), are displayed in Figs. 4.3 and 4.4. In Fig. 4.3, we show self-similar kink for-

mation for sufficiently long energy relaxation times, T‖/T⊥ = 104. After a brief stage of fast

self-steepening, exhibited in the inset to the figure, the wave self-steepening slows down at

distances of the order of ζ∞, corresponding to the kink having attained the speed close to

the speed of light. The subsequent asymptotic self-steepening leads to quasi-steady-state

kink formation. The critical amplitude in this case is found to be Ωc = 0.2γ⊥. The numeri-

cally obtained kink profile coincides, to a good accuracy, with the analytically determined

one, which justifies neglecting the longitudinal relaxation processes in Eq. (4.4) [56]. In

Fig. 4.4, we exhibit the influence of the latter on kink formation. One can see in the fig-

ure that for relatively short energy relaxation times–in our instance for T‖/T⊥ = 102–the

emerging kinks survive only briefly: the energy dissipation eventually takes its toll over

longer distances.
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Figure 4.4: Dimensionless Rabi frequency Ω of a forming kink as a function of dimen-
sionless time, γ⊥τ , and propagation distance αζ . The ratio of transverse to longitudinal
relaxation times is T⊥/T‖ = 10−2. The initial parameters are Ω0 = 0.5γ⊥ and τp = 20T⊥.

4.5 Physical Model

Finally, we briefly mention the systems in which present kinks can be realized. The char-

acteristic transverse and longitudinal relaxation times for solids, doped with resonant atom

impurities, fall into the ranges 10−6 ≤ T‖ ≤ 10−3 and 10−13 ≤ T⊥ ≤ 10−11 s [57, 58], re-

spectively. Thus, 105 ≤ γ⊥/γ‖ ≤ 1010, which makes solids ideal for realization of the novel

kinks, provided inhomogeneous broadening can be reduced by preparing clean enough

samples. At the same time, relaxation times for bulk semiconductors, doped with quantum

dots, range as follows, 10−12 ≤ T‖ ≤ 10−4 and 10−13 ≤ T⊥ ≤ 10−12 s [57]. Consequently,

1 ≤ γ⊥/γ‖ ≤ 109, and hence our kinks can be realized in some semiconductor systems as

well.

4.6 Conclusion

In conclusion, we have discovered and analytically described a novel class of self-similar

waves in resonant nonlinear media, optical kinks. The present kinks can form in two-

level media under the assumption that the longitudinal relaxation time is much longer than

the transverse one. Thus a wide range of intermediate propagation distances exists over

which the kinks are formed as a result of the interplay of optical nonlinearity and the phase

(transverse) relaxation processes; yet the influence of the energy (longitudinal) relaxation
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processes is still negligible. We stress, however, that our results pertain to the case of

negligible inhomogeneous broadening, which requires rather clean samples, and for chirp-

free waves. We conjecture that the presence of a chirp may lead to oscillatory kink profiles.
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5.1 Abstract

We discover and numerically describe optical shock wave formation in inhomogeneously

broadened resonant nonlinear media. Our results extend our previous work to the case

of inhomogeneously broadened two-level media. We also describe in detail the atomic

variable behavior as the optical shocks form in the medium.

5.2 Introduction

Shock waves have been discovered in a variety of physical systems, including fluids and

gases [42, 43]. In general, shock waves are generated by sudden and violent changes in

pressure, density, and/or temperature. In most fluid systems, the energy of shocks dissipates

due to the viscous damping in the medium through which it travels. However, systems

such as cold plasmas [59–62], superfluids and Bose-Einstein condensates [63–66], where

the viscosity and damping effects are negligible, support dispersive shock waves.

Shock waves in optics have also been examined by invoking the analogy between su-

perfluid and nonlinear optical wave behaviors [67–69]. The analogy has been explored

in Ref. [70] to explain the observed behavior of dispersive optical shocks–which are the

optical equivalent of condensate shock waves–in the spatial domain. Dispersive optical

shocks have also been observed in the temporal domain using ultrashort pulses in optical

fibers [54, 71–78].

At the same time, much less attention has been devoted to optical shocks in resonant

nonlinear media. Nevertheless, we have shown elsewhere [31] that in homogeneously

48
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broadened resonant nonlinear absorbers, optical shocks are formed as intermediate self-

similar asymptotics of any incident pulse with a long tail in the trailing edge. In particular,

such shocks can be generated in solids, doped with resonant impurities, and bulk semicon-

ductors, doped with quantum dots. However, in the systems we discussed in Ref. [31], the

inhomogeneous broadening plays an important role in shaping the input pulse and hence it

cannot be really ignored.

In this paper, we explore the possibility of shock-like pulse formation in resonant non-

linear media in the presence of inhomogeneous broadening. We show that similar to our

previous work [31], the interplay between the optical nonlinearity and the transverse re-

laxation processes–which are responsible for the temporal width of the shocks–cause self-

steepening of the input pulse and shock formation. On the other hand, the longitudinal

relaxation processes lead to decay and eventual disappearance of the shocks. We stress

that the discovered optical shocks form in the pulse envelope, with their charectristic width

being determined by the dipole relaxation time. The latter is much longer than an optical

cycle, thereby justifying the use of the slowly varing envelope approximation.

5.3 Mathematical Preliminaries and Physical Model

We model the resonant medium as a two-level system with the resonance frequency ω0. We

assume that the transverse (dipole) relaxation time T⊥ is much shorter than the longitudinal

(energy) one, T‖, yet much longer than an optical cycle,

ω−1
0 	 T⊥ 	 T‖. (5.1)

The inequality (5.1) implies that the atomic dipole moments evolve much faster than the

atomic population dynamics unfolds. By this assumption, the shocks are formed by atomic

dipole evolution over a much shorter distance than that over which energy dissipation takes

its toll. We consider solids, doped with resonant atoms [8], or bulk semiconductors, doped

with quantum dots [55] as particular realizations of the system. The characteristic trans-

verse and longitudinal relaxation times for solids doped with resonant atom impurities, fall

into the ranges 10−6 ≤ T‖ ≤ 10−3 and 10−13 ≤ T⊥ ≤ 10−11 s [57], respectively, implying

105 ≤ T‖/T⊥ ≤ 1010. Also, relaxation times for bulk semiconductors doped with quan-

tum dots range as follows, 10−12 ≤ T‖ ≤ 10−4 and 10−13 ≤ T⊥ ≤ 10−12 s [57] such that
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1 ≤ T‖/T⊥ ≤ 109. Therefore our results are applicable to many physical systems, including

all solids and some semiconductor systems.

We consider a light pulse with a carrier frequency ω near the optical resonance fre-

quency ω0 of a two-level atom medium. We also assume that the pulse spectrum is mainly

affected by inhomogeneous broadening. Under these conditions, the slowly varying field

envelope of the pulse in terms of the transformed coordinate and time, ζ = z and τ = t−z/c,

obeys the reduced wave equation

∂Ω
∂ζ

=
ωN|deg|2

cε0h̄
< σ > . (5.2)

Here Ω = 2degE /h̄ is the Rabi frequency associated with the pulse amplitude E , N is a

density of impurity atoms, deg is a dipole matrix element between the ground and excited

states of any atom; the two relevant atomic states are appropriately labeled with the indices

g and e, and σ is a dipole envelope function of atomic dipole moment. The average over a

distribution of frequency detunings from atomic resonances, Δ = ω −ω0, is defined as

< σ >≡
∫

dΔg(Δ)σ(Δ). (5.3)

In this work, we assume the inhomogeneous broadening distribution to be a generic Gaus-

sian function in the form

g(Δ) =
1√
2πδ

exp
(
− Δ2

2δ 2

)
, (5.4)

where δ is a spectral width of inhomogeneous broadening. The quantum dipole moment

σ = u− iv and inversion w envelope functions obey the Bloch equations which can be

written as [8]

∂τσ =−(γ⊥+ iΔ)σ − iΩw, (5.5)

∂τw =−γ‖(w−weq)− i
2(Ω

∗σ −Ωσ∗). (5.6)

Here γ⊥ and γ‖ are defined as the corresponding inverse transverse relaxation time and

energy relaxation time, T⊥ and T‖, respectively. Since a constant background intensity at

the trailing edge of the input wave is required to produce a shock, we then consider as an

initial condition, a Q-switched laser input of the form

Ω(0, t) =
Ω0

1+ e−t/τp
, (5.7)
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Figure 5.1: Dimensionless Rabi frequency Ω of a forming shock as a function of dimen-
sionless time, T , and propagation distance Z. The ratio of transverse to longitudinal relax-
ation times is T⊥/T‖ = 10−7. The initial parameters are Ω0 = 1.5γ⊥, and τp = 100T⊥.

where Ω0 is the amplitude – measured in frequency units – of the cw laser field and τp is a

characteristic time constant of the switching process. Hereafter, it will prove convenient to

introduce dimensionless variables as T = γ⊥τ , Z = αζ ; α = kN|deg|2/
√

2πε0δ h̄, being a

linear absorption coefficient, Ω = Ω/γ⊥, Δ = Δ/γ⊥, and recast Eqs. (5.2) – (5.7).

5.4 Numerical Simulations

We then numerically solve Eq. (5.2), together with the Bloch equations (5.5) and (5.6),

subject to the initial condition (5.7). The simulations reveal the existence of a shock-like

solution for the Rabi frequency. In Fig. 5.1, we show shock formation for sufficiently long

energy relaxation times, T‖/T⊥ = 107, and the other parameters such that δ = 1012s−1, and

T⊥ = 10−13s. A fast self-steepening stage results in the steady-state shock formation. It can

be inferred from the figure that the shock structure, which is determined by the magnitude

of the Rabi frequency jump Ω0, becomes steep as it propagates in the medium.

Our numerical simulations show that to form a shock, Ω0 may not be less than a certain

critical value Ωc, which depends on the magnitude of γ‖. The presence of a critical power

threshold for shock formation is necessary because the incident wave should have enough

power to overcome energy losses due to longitudinal relaxation processes. In our case,

T‖/T⊥ = 107, the critical amplitude is found to be Ωc = 7× 106γ‖ 
 7× 1012 s−1. Trans-

lating this to real life units, we can estimate the critical intensity required to form a shock,

Ic = ε0nch̄2Ω2
c/8d2

eg. Estimating the dipole moment of a typical impurity atom in a solid
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Figure 5.2: Atomic dipole moment components (u, v) and one-atom inversion w as func-
tions of dimensionless time, T , displayed at several dimensionless frequency detuning, Δ,
and at the propagation distance, Z = 13: Solid, Δ = −12; dotted, Δ = −6; dashed, Δ = 0;
dash-dotted, Δ = 6; and long-dashed, Δ = 12.

to be deg 
 2× 10−29 C m [8] and the refractive index of a bulk solid material as n 
 2,

we arrive at a rough estimate Ic 
 10 MW/cm2, which is an order-of-magnitude below the
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Figure 5.3: One-atom inversion w as a function of dimensionless time, T , displayed at
several propagation distances, and Δ= 15. The ratio of transverse to longitudinal relaxation
times is T⊥/T‖ = 10−7. The initial parameters are Ω0 = 1.5γ⊥, and τp = 100T⊥.

optical breakdown intensity of a typical solid [79]. One would then have to use high power

Q-switched lasers to generate the proposed optical shocks.

To better understand shock formation and to elucidate the role of inhomogeneous broad-

ening, the time evolution of the atomic variables, u, v, and w is displayed in Fig. 5.2 for

several values of Δ . First, we observe that at a fixed Z, w evolution mimics that of the shock

amplitude. The reason being that at the leading edge of the shock–where its amplitude is

low–no atom inversion takes place and w remains close to its initial value, w0 =−1. On the

other hand, a large shock amplitude at the trailing edge saturates the medium implying that

w∞ = 0. By the same token, the absorptive component v of the atomic dipole moment peaks

only at the trailing edge of the w profile where there is a substantial probability–roughly a

half–to find an impurity atom in its excited state. Although the behavior of v is indepen-

dent of the sign of Δ, its peak amplitude strongly depends on the detuning: the magnitude

of the peak is reduced precipitously as the detuning from resonance increases. The disper-

sive component u does depend on the sign of Δ. And, unlike v, it is more pronounced for

the atoms that are farther detuned from resonance. The presence of finite u causes pulse

chirping which, in turn, results in smoothing out the transition between the shock edges.

Finally, to explain the behavior of the inversion, we display in Fig. 5.3, the time evolu-

tion of inversion for different propagation distances at a fixed frequency detuning. As we

can see in the figure, at the leading edge of the shock, where the light intensity is very small,

the atomic population is hardly affected by the pulse such that the one-atom inversion is

approximately given by its equilibrium value, weq = −1. At the trailing edge, however, a
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large pulse amplitude saturates the medium, implying zero inversion.

5.5 Conclusion

In summary, we have numerically shown that the results of our previous work [31] on the

novel class of optical shocks in resonant nonlinear media, can be qualitatively extended to

the case of inhomogeneously broadened media. The shocks are formed as a result of the

interaction between optical nonlinearity and the transverse relaxation processes in the limit

of negligible energy relaxation processes.
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6.1 Abstract

We discover and theoretically explore self-induced transparency quadratic solitons (SIT-

QS) supported by the media with quadratic optical nonlinearities, doped with resonant

impurities. The fundamental frequency of input pulses is assumed to be close to the impu-

rity resonance. We envision an ensemble of inhomogeneously broadened semiconductor

quantum dots (QD) in the strong confinement regime grown on a substrate with a quadratic

nonlinearity to be a promising candidate for the laboratory realization of SIT-QS. We also

examine the influence of inhomogeneous broadening as well as wave number and group-

velocity mismatches on the salient properties of the introduced solitons.

6.2 Introduction

The solitons have been at the heart of nonlinear physics for more than three decades.

The reason being they emerge as ultimate survivors of virtually any wave evolution sce-

nario in conservative nonlinear systems of unprecedented physical diversity, from hydro-

dynamic [42, 80] and plasma waves [80] to pulses in optical fibers [81] and matter waves

in Bose-Einstein condensates [81, 82]. In the optical context in particular, the interest

in the quadratic solitons (QS), which are coupled self-trapped entities in the media with

quadratic nonlinearities, has been recently reinvigorated thanks to the advances in fabrica-

tion of phase matching structures, see Ref. [83] for a review.
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Although the history behind QS can be traced back to 1967 when Ostrovskii discovered

self-induced phase changes in nonlinearly coupled fundamental wave (FW) and second har-

monic (SH) in a noncentrosymmetric crystal [84, 85], the QS were not experimentally ob-

served for a while. As soon as high-damage optical materials with long enough interaction

lengths became available, however, spatial QS were observed in the bulk χ(2) media [86]

and in planar χ(2) waveguides [87].

On the other hand, most common quadratic materials have very low group-velocity

dispersion (GVD) and fairly large group-velocity mismatch (GVM). Thus, extremely long

samples and/or short pulses are required to explore the quadratic soliton regime [83]. These

obstacles hampered temporal QS generation until the application of an ingenious technique

for tailoring GVD and GVM culminated in the experimental observation of their key sig-

natures [88]. Yet, in the pioneering experiment [88] the nonlinear crystal was too short and

pulses too long to unequivocally observe a dispersion-free propagation regime over several

dispersion lengths. Thus, the existence of alternative routes to temporal QS formation–not

relying on balancing χ(2) nonlinearities with the GVD–is a highly relevant question, which,

to our knowledge, has not yet been adequately addressed. We note, however, that in the

three-wave interaction situation in χ(2)-media, neutrally stable QS were discovered [89]

which do not rely on the GVD for their existence, but require three waves with different

carrier frequencies to mix.

In this paper, we present a new type of QS, self-induced transparency quadratic solitons

(SIT-QS), formed in resonant χ(2) media. The SIT-QS generation does not at all require

any bulk medium GVD, thereby circumventing the major obstacle for temporal χ(2) soli-

ton generation. The proposed SIT-QS have a hybrid nature: the mutual self-trapping of

FW and SH is achieved by the joint action of both resonant nonlinearity, induced by ex-

citing one-exciton transitions in QDs, and the quadratic nonlinearity of the bulk medium.

Specifically, we assume that an input FW pulse is nearly resonant with one-exciton transi-

tions in QDs, grown and randomly spread over a substrate exhibiting a quadratic nonlinear

optical response. As the FW pulse enters the medium, it coherently excites the QD ensem-

ble and– provided the pulse has a right area– it can open a “transparency window” in the

medium leading to the fundamental soliton formation via the SIT phenomenon [8]. At the

same time, the SH is generated via the χ(2) nonlinearity, provided a characteristic resonant
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absorption length is of the same order as a typical length associated with the bulk χ(2) non-

linearity. The SH pulse is “dragged” by the FW into the transparency window forming a

mutually self-trapped SIT-QS pair. We stress that our results reveal a hitherto unbeknown

extension of quantum optical SIT solitons to the realm of quadratic solitons in χ(2) media.

Next, we emphasize that the SIT-QS formation demands neither large GVD nor ex-

tremely high input pulse intensity–and hence ultrashort duration–which sets them apart

from the conventional temporal QS in quadratic media. Further, the discovered SIT-QS are

fundamentally different from the previously reported small-amplitude quasisolitons sup-

ported by resonant media with quadratic nonlinearities [90]. First, while the latter exist for

large wave number mismatch, the SIT-QS require rather accurate phase matching which

can be realized in quasi-phase-matched structures. More importantly, though, the QS of

Ref. [90] are supported by media with collective plasmonic resonances which, being far

from saturation, can be modeled by the classical anharmonic oscillator model. In contrast

in the SIT-QS case, the FW interaction with an ensemble of individual QD resonances in-

volves a swift time evolution of the QD level populations which can only be adequately

described quantum mechanically.

6.3 Quantitative Analysis and Physical Model

We now present our quantitative model. We begin by examining short pulse propagation

in a χ(2) medium, randomly doped with QDs. The dopants can be modeled as two-level

systems. The fundamental pulse carrier frequency ω is assumed to be very close to the

resonance frequency ω0 of a one-exciton transition in a QD; bi-exciton transitions in the

QD ensemble are forbidden by restricting ourselves to the case of circularly polarized FW

and SH pulses [91]. Thus, only is the FW resonantly coupled with the exciton transition,

while the SH is only coupled with the FW via the χ(2) nonlinearity. Provided the cubic

nonlinear effects are negligible [92], the slowly varying field envelopes E1 and E2 of the

fundamental and second harmonic pulses, respectively, obey the coupled wave equations

(
∂
∂ z

+
1

vg1

∂
∂ t

)
E1 =

iNdegω2

2k1ε0c2 <σ >− iω2χ(2)∗
e f f

2k1c2 E ∗
1 E2eiΔkz, (6.1)

(
∂
∂ z

+
1

vg2

∂
∂ t

)
E2 =− iω2χ(2)

e f f

k2c2 E 2
1 e−iΔkz. (6.2)
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Here vg1(vg2) is a group velocity of the fundamental (second harmonic) pulse, χ(2)
e f f is an

effective second-order susceptibility of the bulk medium, Δk = 2k1 − k2 is a wave number

mismatch factor, N is a density of dopants, deg is a dipole matrix element of the ground-

to-excited state QD transition – the states are appropriately labeled by the indices g and e

– and σ is a quantum dipole envelope function describing the temporal evolution of the QD

dipole moment. Further, the quantum dipole moment σ and inversion w envelope functions

obey the Bloch equations which can be written in the circular polarization basis as [8, 93]

∂τσ =−(γ⊥+ iΔ)σ − iΩ1w, (6.3)

∂τw =−γ‖(w−weq)− i
2(Ω

∗
1σ −Ω1σ∗). (6.4)

Here we introduced the Rabi frequencies, Ω1,2 = 2degE1,2/h̄ of the FW and SH as well as

the transverse (dipole) and longitudinal (energy) relaxation rates as γ⊥ and γ‖, respectively.

Hereafter, it will prove convenient to transform to the reference frame moving with the

fundamental pulse by changing variables viz., τ = t−z/vg1 and ζ = z. In the dimensionless

variables, Z = ζ/LA, T = τ/τp and Ω1,2 = Ω1,2τp, the coupled wave equations take the

form
∂Ω1

∂Z
= i <σ >− iLA

4LNL
Ω∗

1 Ω2ei(δZ+φ0), (6.5)

and (
∂

∂Z
+

s±LA

LW

∂
∂T

)
Ω2 =− ik1LA

2k2LNL
Ω2

1e−i(δZ+φ0). (6.6)

Here τp is a characteristic duration of the input FW pulse, δ = ΔkLA is the dimensionless

wave number mismatch, φ0 is a constant relative phase of the effective susceptibility and

the dipole matrix element, and s± =+1(−1) for ν > 0(< 0) specifies the sign of the group-

velocity mismatch (GVM), ν = v−1
g2 −v−1

g1 . Further, we introduced three key physical length

scales to this problem: the linear absorption length LA, the walk-off length LW associated

with the group velocity mismatch (GVM) of the fundamental and second-harmonic pulses,

and the characteristic nonlinear length LNL in the χ(2) medium defined as

LA =
1
α

; LW =
τp

|ν | ; LNL =
k1c2|deg|τp

h̄ω2|χe f f | , (6.7)

where α = N|deg|2ω2/
√

2π h̄bk1ε0c2 is a linear absorption coefficient, and b is a spectral
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width of inhomogeneous broadening.

Next, the average over a distribution of dimensionless frequency detunings from one-

exciton resonances in QDs, Δ = (ω −ω0)τp, is defined as

<σ >≡
∫

dΔg(Δ)σ(Δ). (6.8)

In this work, we assume the inhomogeneous broadening distribution to be a generic Gaus-

sian function in the form

g(Δ) =
1√

2πbτp
exp

(
− Δ2

2b2τ2
p

)
. (6.9)

In the coherent transient regime we explore, the pulses must be short enough: τp 	min(T⊥,T‖),

where T⊥ = γ−1
⊥ and T‖ = γ−1

‖ are the transverse and longitudinal relaxation times. Thus,

the Bloch Eqs. (6.3) and (6.4) reduce to

∂T σ =−iΔσ − iΩ1w, (6.10)

∂T w =− i
2(Ω

∗
1σ −Ω1σ∗). (6.11)

In our numerical simulations, we consider In(Ga)As QDs grown on a GaAs substrate

as a prototype for our system. GaAs is known to have a sizable second-order nonlinearity,

χ(2)
e f f 
 2× 10−10 m/V [94]. Moreover, high efficiency SHG was experimentally demon-

strated in the medium thanks to efficient quasi-phase matching in orientation-patterned

GaAs samples [95, 96]. We take N 
 1021 m−3, the dipole moment matrix element to be

deg 
 5×10−29 Cm, all magnitudes consistent with recent simulations [55, 97] and exper-

imental work [97, 98].

Further, we work with the input 2π-pulses in the picosecond range, say, τp 
 1 ps which

is also consistent with the previous experimental and numerical work on SIT on bound [97]

and free [99] exciton resonances. As the characteristic relaxation times for typical QDs are

T⊥ 
 2T‖ ∼ 100ps at room temperature– and are several times longer if the sample is cooled

down to cryogenic temperatures [100]– the pulses are well within the coherent transient

regime. The inhomogeneous broadening width depends on the ensemble preparation; a

typical estimate runs as b 
 107 MHz [55]. Using the above numerical values, we estimate



60

Figure 6.1: Top row: intensity profiles of the FW and SH soliton pair. The parameters are
b = 107MHz, δ = 0, and LW = ∞. Bottom row: same as the top row except there is no
inhomogeneous broadening.

Figure 6.2: Top row: intensity profiles of the FW and SH soliton pair. The parameters are
b = 107MHz, δ = 3, and LW = ∞. Bottom row: same as above except b = 0.

LA 
 1.5 mm and LNL 
 0.8 mm, implying that LA ∼ LNL which is favorable for the SIT-

QS pair formation. Taking into account that ν is typically in the range 0.1-1 ps/mm for

most χ(2) crystals [101], we estimate LW to fall in the range from 1 mm to 1 cm.
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Figure 6.3: Intensity profile of the SH wave for (a) δ = 2, (b) δ = 3, (c) δ = 5 and (d)
δ = 7. The other parameters are b = 107MHz and LW = ∞.

Figure 6.4: Intensity profiles of the FW and SH soliton components. The parameters are
b = 107MHz, δ = 1, and LW = 1mm.

6.4 Numerical Simulations

A qualitative analysis–borne out by subsequent numerical simulations–reveals that the SIT-

QS formation and stability crucially depend on the magnitudes of the four factors: inhomo-

geneous broadening width, wave number mismatch, temporal walk-off length, and the area

of the incident fundamental pulse. In our numerical simulations using Eqs. (6.5) and (6.6)

as well as Eqs. (6.8) – (6.11), we consider a 2π-Gaussian input FW pulse entering the

medium; we assume there is no power in the SH at Z = 0. To illustrate the SIT-QS forma-

tion in the presence of inhomogeneous broadening, we exhibit in Fig. 6.1 the evolution of

the FW and SH pulse intensities as functions of the propagation distance Z. For simplicity,

we assume perfect phase matching and no temporal walk-off. It is seen in the figure that
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Figure 6.5: Intensity profiles of the FW and SH soliton pair for secant hyperbolic (top
row) and Gaussian (bottom row) input 2π fundamental pulses. The other parameters are
b = 107MHz, δ = 0 and LW = ∞.

a stable SIT-QS pair emerges over two characteristic propagation distances for an inhomo-

geneously broadened sample with b = 107MHz (top row of Fig. 6.1). We stress that we

have numerically propagated the solitons over several dozens of characteristic absorption

lengths and found no trace of instability. For comparison, the SIT-QS pair formation is also

displayed for an ideal homogeneously broadened sample in the bottom row of Fig. 6.1. We

observe that as the resonant light-QD interaction efficiency decreases due to the inhomoge-

neous broadening–which is always present for realistic QD samples–the second-harmonic

soliton pulse develops a tail at the trailing edge.

Next, we examine the role of inhomogeneous broadening in the SIT-QS formation with

a finite phase mismatch. In Fig. 6.2 we compare the SIT-QS pair formation in the presence

of the wave number mismatch, δ = 3 in homogeneously and inhomogeneously broadened

samples. It is seen in the figure that in a perfectly clean sample even a moderate phase

mismatch causes breathing of the FW and splitting of the SH pulses, respectively. In con-

trast, the inhomogeneous broadening inhibits the instability and promotes stable SIT-QS

pair generation albeit with the SH component developing a tail at the trailing edge.

The tail, however, grows rather slowly (adiabatically) on propagation, implying that

the SH component can be interpreted as a quasi-stable soliton even in the moderate phase
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mismatch situation. As the phase mismatch increases, though, the inhomogeneous broad-

ening can no longer prevent the SH component break-up into two small-amplitude pulses.

This situation is clearly illustrated in Fig. 6.3 where the SH component intensity profile is

displayed for four values of the dimensionless wave number mismatch. Thus, we conclude

that while the inhomogeneous broadening plays a stabilizing role, the lack of the perfect

phase matching can result in the internal dynamics of the SIT-QS leading to their eventual

disintegration.

Further, we study the temporal walk-off influence on the SIT-QS dynamics. In Fig. 6.4

we plot the SIT-QS pair formation for the case of an inhomogeneously broadened sample

with a modest wave number mismatch, δ = 1 and with the walk-off length of 1 mm. As is

seen in the figure, a stable SIT-QS pair is generated, although the peak amplitude of the SH

component decreases on the soliton propagation as the overlap between the FW and SH is

reduced due to walk-off. Thus the SIT-QS formation is possible even in the presence of a

rather substantial temporal walk-off.

Next, we performed a number of numerical simulations with the input FWs of various

temporal profiles, including Gaussian and secant hyperbolic. The latter corresponds to

a fundamental SIT soliton in the FW component. Our simulations indicate that salient

features of the SIT-QS formation are largely insensitive to the initial temporal profile of

the fundamental pulse. To illustrate this point, we present in Fig. 6.5 a comparison of

the SIT-QS evolution for the 2π-secant hyperbolic (top row) and Gaussian (bottom row)

input pulses for the perfectly phase-matched situation with zero GVM, for simplicity. One

can see in the figure that although the efficiency of SHG with secant hyperbolic pulses

is reduced, the key qualitative features of the SIT-QS pair persist. In physical terms, the

different SHG efficiency is explained by the fact that powers of the input 2π Gaussian and

secant hyperbolic pulses are quite different, of course.

On the other hand, the SIT-QS evolution scenario strongly depends on the input FW

area, A ≡ ∫ ∞
−∞ Ω1dτ . In fact, we discovered that no SIT-QS formation is possible whenever

the magnitude of A is below π . For any input FW pulse with the area, π ≤A ≤ 2π , though,

the area magnitude goes through several oscillatory cycles, asymptotically attaining the

value of 2π; the same holds true for pulses with the area greater than 2π . The oscillatory

transient dynamics of the area distinguishes the SIT-QS case from the pure SIT case in

which the area monotonously approaches 2π [8].
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6.5 Conclusion

In conclusion, we have discovered and numerically explored a new type of solitons, self-

induced transparency quadratic solitons supported by noncentrosymmetric nonlinear me-

dia, doped with resonant impurities. We have shown that the SIT-QS evolution and stability

does not depend on the shape of the input FW, but are strongly influenced by the interplay

of inhomogeneous broadening and phase mismatch in the system. Whereas the former is a

stabilizing factor, the latter causes the instability that can result in the QS disintegration. To

experimentally realize the envisioned SIT-QS, we recommend that relatively long–a few

centimeter long, say–quasi-phase-matched samples be used. We have also demonstrated

that the GVM does not substantially affect the SIT-QS formation as long as the samples are

sufficiently short. To mitigate–to the point of eliminating–the GVM effects in long sam-

ples, one can use tilted input pulses, following the technique of Ref. [88]. Finally, we note

that although we considered only quadratic bulk nonlinearities in the manuscript [92], the

third-order nonlinearities can become important for femtosecond input pulses and/or suf-

ficiently large phase mismatch. The resulting competition between χ(2)- and χ(3)-effects,

similar to those discussed in Ref. [102], can lead to new interesting soliton regimes in the

system. We plan to address this issue in the new context of SIT-QSs in a forthcoming

publication.
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7.1 Abstract

We demonstrate analytically and numerically that stable spatial similaritons can be sup-

ported by homogeneous conservative optical media with quintic nonlinearities. Unlike

previously discussed spatial similaritons, the novel waves may exist in a broad parameter

regime. We also present a generic model for a quintic nonlinearity by considering a cen-

trosymmetric nonlinear medium doped with resonant impurities in the limit of a large light

carrier frequency detuning from impurity resonance.

7.2 Introduction

Similarity and self-similarity have been recurring themes in various branches of nonlin-

ear physics, including nuclear physics, gas dynamics, fracture and fluid mechanics, and

hydrodynamical turbulence, to mention but a few areas [43]. Lately, self-similarity has

gained prominence in nonlinear optics, triggered by recent theoretical discovery [17] and

experimental realization [19, 20] of stable self-similar pulses, optical similaritons, in non-

linear fiber amplifiers in the normal dispersion regime. These advances generated a flurry

of activity which is reviewed in Ref. [12]. Unlike solitons which are static (equilibrium)

structures, formed as a result of balance between diffraction/dispersion and nonlinearity,

the similaritons are quintessentially non-equilibrium waves – existing in either conserva-

tive or dissipative/gain media – that maintain their structural stability (intensity profiles).
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To date, research on self-similarity in optics has primarily focused on asymptotic tem-

poral similaritons that form over long propagation distances in optical fiber amplifiers [12],

although asymptotic spatial and spatio-temporal similaritons have also been studied [45,

103]. At the same time, soliton-like temporal [46–50,104] as well as spatial (1+1)D [23,25]

similaritons have been shown to exist in the media with Kerr-type nonlinearities – in the

fiber or planar waveguide geometries – with gain/loss and, in general, in presence of spatial

inhomogeneities. The similaritons of soliton-like nature can form at any propagation dis-

tances. Moreover, provided a certain compatibility condition among the parameters of the

media is satisfied, they are directly related to the well-known (1+1)D solitons of homoge-

neous cubic nonlinear media; in particular, such similaritons have the same spatial/temporal

profiles as the corresponding solitons. The integrability of the (1+1)D Kerr case guaran-

tees stability of soliton-like similaritons. To stress a connection between the soliton-like

similaritons of open inhomogeneous systems and the solitons of homogeneous integrable

systems with the same nonlinearity, the term non-autonomous solitons was coined [51].

The concept of soliton-like similaritons appears, however, to extend to non-integrable

nonlinear systems. Indeed, the important role self-similarity plays in Kerr-like systems of

higher dimensionality has been recently elucidated in Refs. [27, 105]. In particular, self-

focusing of (2+ 2)D beams in homogeneous Kerr media was numerically studied and a

self-similar character of the beam collapse established. It was shown that regardless of the

initial beam intensity profile, the central part of the beam collapses to a universal soliton-

like profile – termed the Townesian – which essentially corresponds to an unstable (2+2)D

soliton in a self-focusing Kerr medium [81,106]. All this prompts a fundamental question:

Can soliton-like similaritons be supported by other than Kerr (non-integrable) nonlinear

media? And if so, under what conditions, if any, such similaritons are structurally stable?

In this Rapid Communication, we show analytically and numerically that stable (1+

1)D spatial similaritons can propagate in media with self-focusing quintic nonlinearities.

Depending on the sign of a phase chirp, novel similaritons are either self-focusing or

spreading for the same – assumed to be positive hereafter – sign of the quintic medium

nonlinearity. We demonstrate that soliton-like similaritons can be realized in a wide range

of parameters of quintic nonlinear media. We estimate an input power required for the ex-

perimental realization of such similaritons. Similariton stability is established with the aid

of numerical simulations. We also present a generic model for the quintic nonlinearity by
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considering a centrosymmetric medium, doped with resonant impurities whose resonant

frequencies lie sufficiently far away from the beam carrier frequency. We show how the

detuning from impurity resonance can serve as a useful control parameter to engineer the

desired nonlinearity of the medium.

7.3 Generic Model of the Quintic Nonlinearity

We begin by considering a planar waveguide, filled with a centrosymmetric nonlinear

medium, which is, in turn, doped with resonant impurities. The latter could be rare-earth

element atoms or quantum dots (QD); eurbium- or QD-doped glasses, or semiconductors

doped with quantum dots, for instance, can serve as possible realizations of the system.

We treat the impurities in the two-level approximation. Within this framework, the slowly

varying envelope E of a quasi-monochromatic light beam obeys the Maxwell equation in

the form
∂E

∂ z
− i

2k
∂ 2E

∂x2 =
iNdegω2

2ε0kc2 σ∞ +
iω
c
(n2|E |2 +n4|E |4)E . (7.1)

Here the first term on the r. h. s. of Eq. (7.1) describes the nonlinear polarization due to

the resonant impurities while the remaining terms characterize the nonlinear interaction of

light with the bulk medium. In Eq. (7.1), N is the dopant density, deg is a dipole matrix

element between the excited and ground states – appropriately labeled – of an individual

impurity atom; σ∞ is a steady-state value of the atomic dipole moment, and n2 as well as

n4 are cubic and quintic nonlinear coefficients of the bulk medium response.

The impurity dipole moment and inversion obey the standard Bloch equations [8]

∂tσ =−γ⊥σ − iΔσ − i
2Ωw, (7.2)

and

∂tw =−γ‖(w+1)+ i(Ωσ∗ −σΩ∗), (7.3)

where γ⊥ (γ‖) is a transverse (longitudinal) decay rate of the atomic dipole moment (inver-

sion); Ω = 2dgeE /h̄ is the Rabi frequency, Δ is a detuning of the incident light from atomic

impurity resonance, and it is assumed that in equilibrium all atoms are in a (nondegenerate)

ground state. It can be shown that in the cw limit and assuming the light carrier frequency

lies sufficiently far off resonance with the impurities – the detuning is much larger than the
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transverse relaxation rate, Δ � γ⊥ – we can use Eqs. (7.2) and (7.3) to adiabatically elimi-

nate the atomic variables. The resulting steady-state dipole moment may then be developed

into a series in inverse Δ as

σ∞
 2dgeE

h̄Δ

(
1− 4|dge|2|E |2γ⊥

h̄2Δ2γ‖
+

16|dge|4|E |4γ2
⊥

h̄4Δ4γ2
‖

)
. (7.4)

We can easily infer from Eqs. (7.1) and (7.4) that sufficiently far away from impurity reso-

nances, the dopant response is approximately purely dispersive, leading to the renormaliza-

tion of the nonlinearity coefficients of the bulk medium. In particular, while the first term

in (7.4), rescaling the global phase of the field envelope, may well be omitted, the second

and third ones govern the off-resonance impurity contributions to the third- and fifth-order

nonlinearities, respectively. Accordingly, the analysis indicates that for a judicious choice

of the frequency detuning,

Δ∗ =

(
4γ⊥|dge|4N
γ‖n0ε0h̄3n2

)1/3

, (7.5)

the impurity-generated and the bulk third-order nonlinearities cancel each other, resulting

in an effective renormalized quintic nonlinearity with the coefficient

n4e f f = n4 +n2

(
4γ⊥n2

2n2
0ε2

0
γ‖N2|dge|2

)1/3

, (7.6)

where n0 is a linear refractive index of the bulk medium, and we have used Eqs. (7.1),

(7.4), and (7.5) to obtain Eq. (7.6).

Prior to introducing scaled dimensionless variables, let us estimate the order-of-magnitude

of the necessary detuning and the effective quintic nonlinearity coefficient. To this end, we

consider a realistic example of a silica-glass matrix doped with CdS QDs. In general, the

transverse (phase) relaxation rate is a few times greater than the longitudinal (population)

one, so we assume, for simplicity, γ⊥ = 2.5γ‖; we also consider a typical value of the dipole

matrix element to be |dge| 
 10−28 Cm at a transition wavelength in the middle of the visi-

ble spectrum λ 
 500 nm [107]. Further, we have for silica glass, n0 
 1.45 and n2 
 10−22

m2/V2. With these numerical values, we can show that Δ∗ and n4e f f scale with the dopant
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density N as

Δ∗ 
 108 ×N1/3, s−1; n4e f f 
 10−25 ×N−2/3, m4/V4. (7.7)

We note in passing that in deriving Eq. (7.7), we have neglected the bulk quintic nonlinear-

ity which is “the worst case scenario” as far the the critical power for similariton formation

is concerned. Indeed, if the bulk contribution is comparable with, or greater than the im-

purity contribution, the critical power for similariton formation in such a material will be

lower than that evaluated toward the end of this work.

It follows from Eqs. (7.7) that the effective nonlinearity can be boosted by reducing N

at the expense of decreasing the detuning. The acceptable trade-off can in fact be accom-

plished for sufficiently dilute QD samples: For instance for N 
 1012 m−3, n4e f f 
 10−33

m4/V4, while Δ∗ 
 1012 s−1. Note that a typical exciton lifetime of roughly 100 ps [55,107]

translates into γ⊥ 
 1010 s−1 such that the system is well within the confines of a purely

dispersive large-detuning regime, Δ∗ � γ⊥.

The nonlinear wave equation for the field envelope in the medium with the renormalized

nonlinearity then simplifies as

i
∂E

∂ z
+

1
2k

∂ 2E

∂x2 +
kn4e f f

n0
|E |4E = 0. (7.8)

In the following, it will prove convenient to introduce dimensionless variables as X = x/w0,

Z = z/LD; LD = kw2
0, being a characteristic diffraction length, U = (kn4e f f LD/n0)

1/4E and

recast Eq. (7.8) as

i
∂U
∂Z

+
1
2

∂ 2U
∂X2 + |U |4U = 0. (7.9)

7.4 Similariton Solutions and Their Properties

We surmise by inspection of Eq. (7.9) that a family of spatial similaritons is supported by

the media with quintic nonlinearity; the similariton field is sought in the form

U(X ,Z) =
1√

W (Z)
R
[

X −Xg(Z)
W (Z)

]
eiΦ(X ,Z), (7.10)
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where W is a similariton width and Xg is a guiding center coordinate. The self-similar pro-

file (7.10) conserves the beam power P (per unit length in the other transverse dimension),

P =
∫

dX |U |2 =
∫

dη |U(η)|2 = const, (7.11)

where we have introduced the similarity variable η viz.,

η =
X −Xg(Z)

W (Z)
. (7.12)

Substituting the profile (7.10) back into Eq. (7.9), we obtain an ordinary differential

equation for the similariton envelope whose bound solution is

R(η) =

√√
3
8

sechη . (7.13)

We note in passing that a fundamental (1+ 1)D bright soliton, supported by the quintic

nonlinearity, has the same intensity profile, but it is known to be unstable [108]. The

explicit dynamics of the field profile depends on the particulars of the phase evolution

which is found to be given by

Φ(X ,Z) =−1
2C(Z)(X −Xc0)

2 +Θ(Z). (7.14)

Here the phase chirp C obeys the equation

C(Z) =
C0

1−C0Z
, (7.15)

where Xc0 is the coordinate of the center of curvature, and the offset phase is given by

Θ(Z) =
1

8C0(1−C0Z)
. (7.16)

As a result of amplitude-phase coupling, the similariton width and guiding center dynamics

are governed by the equations

W (Z) = 1−C0Z, (7.17)
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Figure 7.1: Intensity profile of a self-focusing similariton with as a function of the prop-
agation distance in dimensionless variables. Xg0 = 1, Xc0 = 100, and C0 = 0.01. Inset:
straight line represents the theoretical peak intensity as a function of the propagation dis-
tance; crosses show numerical values of the peak intensity at chosen propagation distances.

and

Xg(Z) = Xg0 −C0(Xg0 −Xc0)Z. (7.18)

It follows from Eq. (7.17) that depending on the chirp sign, the similaritons in quintic

media can be either self-focusing – with rapidly increasing amplitude and shrinking width

– or spreading at a faster rate than do freely propagating beams. As can be inferred from

Eq. (7.18), the guiding center moves with a constant velocity V = C0(Xg0 − Xc0). The

direction of motion depends on the sign of the chirp and relative initial positions of the

guiding center and the center of curvature. Further, observe that as follows from Eqs. (7.10)

and (7.17), the peak intensity of each similariton scales as

Imax(Z) ∝
1

1−C0Z
. (7.19)

7.5 Simulations and Results

First, consider the self-focusing case, C0 > 0. In Fig. 7.1 we display numerical evolution

of a self-focusing similariton profile on propagation in the medium. We observe that the

similariton maintains its structural integrity over, at least, 80 diffraction lengths. In the

inset to Fig. 7.1, we exhibit the evolution of the peak similariton intensity. The solid curve

represents our analytical result, Eq. (7.19), and the crosses indicate numerically evaluated
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Figure 7.2: Intensity profile of a self-defocusing similariton with as a function of the prop-
agation distance in dimensionless variables. Xg0 = 1, Xc0 = 100, and C0 = −0.01. Inset:
straight line represents the theoretical peak intensity as a function of the propagation dis-
tance; crosses show numerical values of the peak intensity at chosen propagation distances.

peak intensities at chosen propagation distances. After having initially increased almost

linearly over small propagation distances, the peak intensity is seen to start increasing faster

with the distance in accord with our theory. The crosses all lie on the theoretical curve,

within tiny round off numerical errors.

We can infer from Eqs. (7.17) and (7.19) that the width decreases and peak intensity

increases without limit over a finite propagation distance, Z∞ = 1/C0, although the total

power still remains finite. Our solution becomes invalid long before the collapse takes

place, though, as the paraxial approximation breaks down for small enough beam widths.

We then stress that present self-focusing similaritons, just as the Townes profile for (2+1)

D Kerr case [105], describe a self-similar stage of beam self-focusing, leading eventually

to the collapse. Thus, our similaritons can be viewed as intermediate asymptotics in the

spirit of Ref. [43].

Next, we consider the self-defocusing case, C0 < 0. The corresponding numerical evo-

lution of the similariton profile is shown in Fig. 7.2. The similariton width is seen to

increase with the propagation distance. Unlike the self-focusing case, there is no constraint

on the range of propagation distances over which the self-defocusing solution is theoret-

ically valid. In the inset, we again compare the theoretical behavior of the similariton

peak intensity (solid line) with the numerically evaluated one (crosses). We note excellent

agreement between the analytical and numerical results.
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Figure 7.3: Numerical evolution of the similariton with added 5% asymmetric noise. The
initial parameters are Xg0 = 1, Xc0 = 10 and C0 = 0.01.

To further ascertain structural stability of the novel self-similar solutions, we add 5%

asymmetric noise to the initial similariton profile and numerically propagate the combined

beam. The result is displayed in Fig. 7.3, and it clearly attests to the similariton stability.

Finally, we estimate the critical power needed to generate the novel similaritons. As

they all have the same power by the scaling properties of Eq. (7.10), the latter can serve as

the critical power which can be expressed as

Pcr =

√
3n0

8n4e f f

(
n0ε0cλ l⊥

4

)
, (7.20)

where l⊥ is a waveguide width in the trapped direction. Using the above estimated effective

nonlinearity coefficient, we obtain

Pcr 
 103 × l⊥N1/3, W. (7.21)

It is seen from Eq. (7.21) that for N 
 1012 m−3 and l⊥ 
 5 μm, we can arrive at the

estimate, Pcr 
 50 W. Such input powers are easily achievable with quasi-cw – millisecond

long, say – laser pulses for which our cw theory is perfectly appropriate.
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7.6 Conclusion

In summary, we have demonstrated that stable spatial similaritons can be supported by

quintic nonlinear media. Depending on the sign of the chirp, the similaritons can be self-

focusing and self-defocusing. We also show how quintic nonlinearities can be engineered in

centrosymmetric media doped with low-density impurities of resonant atoms or quantum

dots. In the limit of large detuning of light from the impurity resonance frequency, the

detuning serves as a convenient control parameter to design the right kind of nonlinearity,

much like the phase mismatch parameter does in the case of cascaded second harmonic

generation process studied elsewhere [109].



Chapter 8

Conclusion Remarks and Recommendations

8.1 Conclusion Remarks

This thesis explored the asymptotic response of atoms to an applied electric field when the

frequency of field ω is close to the resonance frequency of atoms. The exploration was

carried out through a project comprised of a set of analytical and numerical studies aimed

at investigating near resonance behavior in optical systems and novel optical structures.

Physical realizations of these systems were proposed and different media parameters were

considered to have a practical view of systems under consideration. The procedure is based

on many calculations to find the near resonance behavior of light and matter, exploring

different regimes, studying the stability and finally suggestions for the experimental real-

ization. Consequently, an asymptotic universal response of optical systems near resonance

and the conditions for different parameters have been studied.

In summary, to accomplish the main objective of the project, three objectives considered

to fulfill. The first goal was to analytically find a asymptotic solution of electromagnetic

field coupled to atoms when the carrier frequency detuning is near zero. The second goal

was to verify the universality, stability and other characteristics of this response by various

numerical simulations. Identifying a practical system and system conditions like initial

condition was the last objective.

To accomplish these three objectives, a set of analytical and numerical studies was

performed on various optical systems, hosting different types of on-resonance media. A

summary of each study and its main findings is given in following.

1st study: Exploring self-similar pulses in coherent resonant linear amplifiers.

In this study, self-similar pulses in homogeneously broadened linear amplifying media

in a vicinity of an optical resonance were investigated. Physical model and mathematical

analyses were presented in detail. The analytical results are presented for both short and

long pulses. For long pulses, any pulse grows exponentially in the medium while main-

taining its shape. Evolution of short pulses exactly on resonance with the atomic transition
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was comprehensively described and self-similar asymptotic solutions were found.

To demonstrate the universal nature of the self-similar solution, the evolution of Gaus-

sian, hyperbolic secant, and exponential profiles were simulated numerically and com-

pared with the self-similar asymptotic. The results showed the universal character of the

self-similar asymptotic. To reinforce this, the rms widths of the self-similar asymptotic

and different initial profiles were compared. The widths of arbitrary shaped initial pulses

asymptotically tend to the asymptotic self-similar pulse width over a long enough propaga-

tion distance.

Finally, a physical model for pulses with the fast rise of their leading edge, which is

essential to form the self-similar asymptotic, was presented for picosecond pulses in dilute

atomic vapors. The energy gain factors of short and long self-similar pulses supported by

such media was compared and found that the short pulse gain dwarfs the long pulse one

over long propagation distances.

2nd study: Investigating shape-invariant pulses in resonant linear absorbers.

In this study, ultrashort self-similar pulse propagating in linear absorber near optical

resonance was described. It was observed that self-similar pulses arise when the initial

spectral profile has long wings where much of the incident pulse energy is stored. The

coupled Maxwell-Bloch equations were solved using a Fourier transform technique and it

was inferred that the found solution remains self-similar on propagation in the resonant

medium. It was shown that over long propagation distances, the pulse shape is indepen-

dent of its initial rms width. The spectra of the shape-invariant pulses were presented and

sketched. The spectrum evolution scenario is determined by the interplay of resonant dis-

persion and absorption and it depends on the initial profile parameters. The required pulse

profile to generate self-similarity was presented and the method to generate the novel pulses

was discussed.

The experimental realization of the novel pulses was also described. A dilute atomic

vapor which is cooled down in order to neglect the inhomogeneous broadening, filling the

core of a hollow-core photonic crystal fiber (HCPCF) can serve as a physical realization of

the medium. Bulk medium dispersion effects can be eliminated and spatial diffraction can

be arrested by using HCPCF.

3rd study: Analytical and numerical investigations of self-similar optical kinks in res-

onant nonlinear media.
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In this study, it was shown that self-similar optical waves with a kink structure form

in a resonant nonlinear media. It was also found that this self-similar structure is reflected

in the time evolution of atomic dipole moment and inversion as well. Two assumptions

were considered for the analytical analysis. First, the pulse is not chirped. Second, the

inhomogeneous broadening can be ignored, and the atomic dipole moments evolve much

faster than the atomic population dynamics unfolds. The new kinks form between two

typical distances.The energy relaxation process was ignored in all calculations and its effect

was evaluated by the aid of numerical simulations.

A constant background intensity at the trailing edge of the input wave is required to

form a kink. Therefore, an experimental model of such pulses was proposed. Considering

a switched CW wave as an initial condition, the numerical simulations were presented. The

formation and eventual decay of the kinks due to energy relaxation processes were explored

numerically. It was shown that for short energy relaxation times, the emerging kinks decay

and they survive only for short propagation distances. The critical amplitude to form the

kinks was also found. Finally the systems in which the kinks can be realized were briefly

discussed.

4th study: Exploring self-similarity and optical kinks in inhomogeneous resonant me-

dia.

In this study, self-similar optical waves with a kink structure in resonant nonlinear me-

dia in the presence of inhomogeneous broadening were described. Similar to previous

study on kink formation in homogeneously broadened resonant nonlinear media, it was

also observed that to form kinks, the energy relaxation time should be much longer than

the transverse one. It was concluded that these kinks are formed due to an interplay of

optical nonlinearity and transverse relaxation processes.

To consider the inhomogeneous broadening, a generic Gaussian function was assumed

as the inhomogeneous broadening distribution. A numerical study conducted to examine

the effect of inhomogeneous broadening on kink formation. It revealed the existence of

self-similar solutions for the pulse amplitude and for the atomic dipole moment components

and inversion. The importance of critical power in kink formation and its dependence on

the dipole and energy relaxation times, T⊥ and T‖, was discussed. The presence of the

critical power is necessary to start self-steepening and kink formation. Systems where the

proposed self-similar kinks can be realized were also discussed.
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5th study: Studying self-induced transparency quadratic solitons near resonance.

In this study, self-induced transparency quadratic solitons (QS) were explored. The

frequency of the fundamental input pulse was assumed to be close to resonance frequency

of impurities which are embedded into a medium with quadratic optical nonlinearities.

What makes this new type of quadratic solitons special is that they do not require any bulk

medium GVD at all.It was shown that the proposed QS form due to the mutual self-trapping

of FW and SH by the joint action of both resonant nonlinearity and the quadratic nonlin-

earity of the bulk medium. It was assumed that an input FW pulse is nearly resonant with

resonance frequency of impurities. The quantitative model was presented with demon-

strating different parameters such as group velocity mismatch, inhomogeneous broadening

effect and phase mismatch in coupled Maxwell-Bloch equations.

For numerical simulations, In(Ga)As QDs grown on a GaAs substrate were considered

as a prototype of the system. Taking into account all parameters the linear absorption

length, the nonlinear length and the walk-off length were calculated. The linear absorption

length and the nonlinear length was of the same order of magnitude which is essential for

the QS formation.

Results form both qualitative analysis and numerical simulations showed that the QS

formation and stability depend on the magnitude of inhomogeneous broadening width,

wave number mismatch, temporal walk-off length, and the area of the incident fundamen-

tal pulse. The influence of these four factors was elucidated with the aid of numerical

simulations. Comparison of the results form the ideal case with zero phase mismatch and

inhomogeneous broadening revealed that although phase mismatch causes splitting of the

SH soliton pulses, the inhomogeneous broadening inhibits the instability. The effect of

temporal walk-off was also studied and it was observed that a stable QS pair is generated.

However the peak amplitude of the SH component decreases due to walk-off during prop-

agation.

Finally, a number of numerical simulations were performed to show that the QS forma-

tion is insensitive to the initial profile of the fundamental pulse. The QS evolution strongly

depends on the input FW area; no QS formation is possible for area below π , while for any

input FW pulse with the area between π and 2π , the solitons form and the area asymptoti-

cally attains the value of 2π .
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6th Study: An analytical and numerical investigation of spatial similaritons in conser-

vative systems.

In this study, analytical analysis indicated that for a choice of the frequency detuning,

stable spatial similaritons can propagate in homogeneous conservative optical media with

quintic nonlinearities. The sign of the phase chirp determines whether the new similaritons

are self-focusing or self-defocusing.

In addition, a generic model for a quintic nonlinearity was presented. These spatial

similaritons can be realized in a broad parameter regime of quintic nonlinear media. A cen-

trosymmetric nonlinear medium, doped with resonant impurities, considered as a generic

model of quintic nonlinearity.

The result of the analytical study indicated that depending on the chirp sign, the sim-

ilaritons in quintic media can be self-focusing when the amplitude is increasing and the

width is decreasing during propagation, or spreading when the amplitude keeps decreasing

while the width is increasing. The direction of the motion also depends on the chirp sign

and relative initial positions of the guiding center and the center of curvature.

Similariton stability was studied with the help of numerical simulations. To further

verify the structural stability of the self-similar solutions, 5% asymmetric noise was added

to the initial similariton profile and it was found that the similaritons remain stable on

propagation.

An important estimation was also made regarding the critical power needed to generated

the novel similaritons. It was shown that an input power required for the formation of such

similariotns depends on both linear and quintic nonlinearities along with the waveguide

width.

Overall, the response of atoms to an applied electric field near resonance investigated

in this thesis can be regarded as a relatively broad study which includes various optical

systems and regimes. The studies accomplished in this study are interpreted as an encour-

aging step towards establishing a practical study for investigating the optical on-resonance

structures including kinks, self-similarities, and solitons. Having in mind the advantages of

working near resonance, the next section is devoted to some applications of studied systems

and structures.
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8.2 Applications of Similaritons

One of the most significant features of the interest in self-similarity is that it has reminded

of an extensive array of mathematical tools that can be used to find analytic solutions to

complex problems. In many areas of nonlinear optics sophisticated numerical simulation

and modeling are required. The underlying physics is then difficult to readily visualize. The

existance of representing self-similar solutions makes everything understandable. For ex-

ample, in mode-locked lasers the search for universal patterns will remain a very profitable

direction of research [12].

Self-similar pulses lead to interesting practical applications in the field of pulse shaping,

pulse compression [47, 48, 110–113], pulse amplification and generally in the generation

of high-power pulses. Particularly, they can be used in the design of high-power ampli-

fiers [114, 115], efficient temporal compressors [19, 114, 115] and similariton lasers [20].

New experimental studies have also used similaritons in optical pulse synthesis [116,117],

10-GHz telecom multi-wavelength sources [118] and optical regeneration of telecom sig-

nals [119]. Nonlinear fiber amplifiers with self-similar evolution dynamics are also mature

alternatives to other pulse generation and shaping techniques [12].

Another practical motivation behind the interest in self-similar pulse propagation is

that the energy of ultrashort optical pulses is generally limited by wave breaking, which

is a consequence of excessive nonlinearity. For example, short-pulse fiber devices pro-

duce high intensities and then large nonlinear phase shifts. Similaritons can tolerate strong

nonlinearity without wave breaking [17].

One of the areas where parabolic shape wave-breaking-free pulses were used is fiber-

grating compression. The grating is a linear dispersive delay line having anomalous dis-

persion. Calculation shows enhancement in the compression factor. The latter is enhanced

because the degrading effect of wave breaking is eliminated. In conventional compressors,

the wave breaking is so severe that the compression starts to deteriorate [17].

8.3 Applications of Optical Shocks

It seems probable that the kinks could be used as an alternative to the usual solitons in

optical logic units when the stable soliton pulses cannot form due to an energy input and

system losses [54].
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The study of shock waves in optics has also been found interesting and practical in

understanding the behavior of the shocks in superfluid systems. Since dispersive shock

waves are difficult to study experimentally, and analytical solutions to the equations that

govern them have only been found in one dimension, by examining the correspondence

between the behavior of superfluids and nonlinear optical materials, the dynamics of dis-

persive shock waves can be studied. From an experimental viewpoint, the mapping to

nonlinear optics allows the isolation of a coherent wave in order to study the basic proper-

ties of shocks in a dispersive fluid in detail. Observations, control of the input conditions

and direct imaging of the output are significantly easier in the optical case [70].

8.4 Applications of Solitons

Soliton refers to any optical pulse of a specific shape and energy propagating through a

nonlinear medium while remaining unchanged in spite of large absorption losses. This

property makes the solitons a smart choice for using in designing optic communication

systems. Among various kinds of solitons, quadratic solitons might be used not only for

all-optical signal processes but also for using as a stable and coherent light source. An

important issue for practical applications of solitons is to reduce the power level at which

solitons are formed. To minimize the formation threshold, media with large χ(2) nonlinear

coefficient should be chosen. Nowadays the highest element of χ(2) nonlinear tensor can

be employed thanks to the quasi-phase-matching (QPM) technique [83].

8.5 Recommendations for Future Work

Despite the successful exploring of on-resonance systems in both analytical and numeri-

cal framework, the practical issues involved when considering the applications field have

not yet been sufficiently investigated. It is believed that following recommendations will

further establish the effectiveness of the proposed systems.

The first recommendation is to validate the proposed systems in applications. In the

present research, all of the investigations were carried out by analytical calculations and

numerical simulations and under controlled conditions and assumptions. However, validity

of the proposed on-resonance systems should be examined in applications. From practi-

cal viewpoint, preparing clean enough samples in order to eliminate the inhomogeneous
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broadening is not simple. The environmental conditions can produce inhomogeneities in

system, and may also induce significant changes on the structures. Moreover, the effect of

inhomogeneous broadening should be further investigated to assure the validity of systems

in both ideal and real conditions. Inhomogeneous broadening can be caused by random

local strain fields in solids caused by environmental conditions, or for example, by Doppler

effect in gases and dilute vapors.

Inspecting universality of the spatial similaritons in quintic media is another recom-

mendation for future work on the proposed system.

The last recommendation is to investigate the influence of Kerr nonlinearity in the self-

induced transparency quadratic solitons. The Kerr nonlinearity effect is significant for short

and high intensity pulses and it should be taken into account in the study of the system. In

the proposed system in this thesis

P(3)

P(2)
∼ χ(3)Em

χ(2)
, (8.1)

when P(3) and P(2) are the contributions of cubic and quadratic nonlinearities to the

polarization, respectively. Em is the peak field amplitude of the fundamental input pulse.

The peak field amplitude Em of a picosecond 2π input pulse is estimated using the area

concept as

Emτp × 2dge

h̄
= 2π, (8.2)

Em 
 π h̄
dgeτp

, (8.3)

Em 
 h
2dgeτp

, (8.4)

P(3)

P(2)

 hχ(3)

2dgeτpχ(2)
. (8.5)

Using χ(3) 
 10−18m2/V 2 for GaAs and substituting the order-of-magnitude values for

relevant parameters of the system under consideration, P(3)

P(2) 
 3.5× 10−2 << 1, i.e. the

maximum of P(3) is 3.5% of the maximum of P(2), so quadratic nonlinearities dominate

when τp 
 1ps. However, for a few-hundred femtosecond or shorter pulses, the cubic
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nonlinearities are large enough to consider in the analysis of the system.
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Appendix A: Numerical Codes for Solving Maxwell-Bloch Equations

%main

clc;

clear;

T=400; % time window (period)

nt=2^12; % number of points

dt=T/nt; % timestep (dt)

t=((0:nt)’)*dt; % time vector

z=10; % total distance

nz=300; % total number of steps

nplot=10; % number of plots to make

n1=round(nz/nplot); % number of steps per plot

nz=n1*nplot; % total number of steps (revised)

dz=z/nz; % step-size

zv=(z/nplot)*(0:nplot); % space vector

z=zv’;

omega=zeros(length(t),length(zv));

sigma=zeros(length(t),length(zv));

output1=zeros(length(t),length(zv)); %#ok<NASGU>

PW=zeros(length(t),length(zv));

Energy=zeros(1,length(zv));

RMS=zeros(1,length(zv));

PW1=zeros(length(t),length(zv));

RMS1=zeros(1,length(zv));

Gain=zeros(1,length(zv));

out=zeros(length(t),length(zv)); %#ok<NASGU>

omega(:,1)=InitCond(1,t); %define initial pulse profile

%find Bloch vector at z=0
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sigma(1,:)=0; %initial Bloch vector

%for nonlinear case, w(1,:)=-1 should be added.

y1=bloch(omega(:,1),sigma(:,1),nt,dt);

%y1=bloch(omega(:,1),sigma(:,1),w(:,1),nt,dt); for %nonlinear case.

sigma(:,1)=y1;

%sigma(:,1)=y1(:,1); %for nonlinear case.

%w(:,1)=y1(:,2); %for nonlinear case.

%find Bloch vector and optical field for different z

for i=1:nplot

y1=maxwell(omega(:,i),sigma(:,i),dz,n1,dt,nt);

%y1=maxwell(omega(:,i),sigma(:,i),w(:,i),dz,n1,dt,nt);

%for nonlinear case.

omega(:,i+1)=y1(:,1);

sigma(:,i+1)=y1(:,2);

% w(:,i+1)=y1(:,3); %for nonlinear case.

end

output1=abs(omega).^2;

%normalizing intensity

output=0;

for ii=1:(length(t)-1)

output=output+((output1(ii+1,1)+output1(ii,1)).*dt)/2;

end

out=output1/output;

for l=1:(length(t)-1)

Energy=Energy+((output1(l+1,:)+output1(l,:)).*dt)/2;

end
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%display results

graph(out,zv,t);

%find RMS width

for k=1:(length(t))

PW1(k,:)=t(k)*output1(k,:);

end

for iii=1:(length(t)-1)

RMS1=RMS1+((PW1(iii+1,:)+PW1(iii,:)).*dt)/2;

end

Width1=RMS1./Energy;

Width1=Width1-0.25; %fix the error function

E=t.^2;

for k=1:(length(t))

PW(k,:)=E(k)*output1(k,:);

end

for iii=1:(length(t)-1)

RMS=RMS+((PW(iii+1,:)+PW(iii,:)).*dt)/2;

end

Width2=RMS./Energy;

Width=sqrt(Width2-(Width1.^2));

% plot(z,Width);

%find gain factor

for iii=1:(length(t)-1)

Gain=Gain+((output1(iii+1,:)+output1(iii,:)).*dt)/2;

end

asymptotic=z/2;

f=0:0.01:100;

asymwidth=0.5*sqrt(3*z);

% plot(z,asymwidth);

%*************************************************************************
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%This function defines the initial pulse profile.

function y=InitCond(type,t)

if type==1 %Exponential Iniatil Condition

y=theta(t).*exp(-2*t);

elseif type==2 %Guassian Intial Conditon

y=theta(t).*exp(-4*(t.^2));

elseif type==3

y=theta(t).*(((t.^2)+1).\1); %Lorentzian Intial Conditon

else

y=theta(t).*sech(2*t); %Hyperbolic Intial Conditon

end

%*************************************************************************

%This function estimates step function

function theta = theta(x)

N=10;%100

theta=(1+tanh(N*x))/2;

%*************************************************************************

%This function finds Bloch vector for each step of z

function sigma=bloch(omega,sigma,nt,dt)

for i=1:nt-1

k1=derivatives(omega(i),sigma(i));

sigma1=sigma(i)+dt*k1/2;

k2=derivatives(omega(i),sigma1);

sigma1=sigma(i)+dt*k2/2;

k3=derivatives(omega(i),sigma1);

sigma1=sigma(i)+dt*k3;

k4=derivatives(omega(i),sigma1);

nextstep=(dt*(k1+2*k2+2*k3+k4))/6;

sigma(i+1)=sigma(i)+nextstep;
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end

%*************************************************************************

%This function defines the Bloch equations. Based on the corresponding regime

%and considering inhomogeneous broadening, and linear and nonlinear cases,

%this function has different forms.

function dy=derivatives(omega,sigma,w,DELTA)

%In the case of inhomogeneous broadening,

% Delta should be defined in bloch function.

%Otherwise, it is zero.

%General form of Bloch equation.

dy(1)=-(1+1i*DELTA)*sigma-1i*omega*w;

dy(2)=-gamapaperp*(w+1)+real(omega)*imag(sigma)-imag(omega)*(real(sigma));

%w(eq)=-1;

%1) This function when neglecting damping and considering inhomogeneous

%broadening in nonlinear case (for example in quadratic solitons) has the form:

%function dy=derivatives(omega,sigma,w,DELTA)

%dy(1)=-1i*DELTA*sigma-1i*omega*w;

%dy(2)=real(omega)*imag(sigma)-imag(omega)*(real(sigma));

%2) This function when considering damping and no inhomogeneous

%broadening in nonlinear case (for example in self-similar kinks) has the form:

%function dy=derivatives(omega,v,w)

%gamapaperp=0.0001;

%dy(1)=-v+omega*w;

%dy(2)=-omega*v-gamapaperp*(w+1);
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%3) This function when considering damping and no inhomogeneous

%broadening in linear case (for example in self-similar pulses in

%linear amplifiers) has the form:

%function dy=derivatives(omega,sigma)

%dy=-sigma-1i*omega; %dy=-sigma+1i*omega for linear absorbers

%*************************************************************************

%This function defines the Maxwell equation and finds the electric

%field for each step of z

function y=maxwell(omega,sigma,dz,nz,dt,nt)

r1=dz*1i/2;

for iz=1:nz

y1=omega+r1*sigma;

omega=y1;

y1=bloch(omega,sigma,nt,dt);

sigma=y1;

end

y(:,1)=omega;

y(:,2)=sigma;

%*************************************************************************

%This function displays the results

function graph(output,zv,t)

hold on

h = mesh(zv,t,output,...

’MeshStyle’, ’col’, ’EdgeColor’, ’black’);

set(gca,’YDir’,’reverse’);
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hidden off;

xlim([0 max(zv)]);

ylim([0 max(t)]);

xlabel (’Z’);

ylabel (’X’);

zlabel (’|u(z,x)|^2’);



Appendix B: Numerical Codes for Split-Step Fourier Method

%main

clc

clear

%define initial parameters

xg0=1;

xc0=100;

X = 200; % X window (period)

nx = 2*(2^12); % number of points

dx = X/nx; % xstep (dt)

x = ((1:nx)’-(nx+1)/2)*dx; % x vector

x1=[(0:nx/2-1),(-nx/2:-1)]’;

f=[(0:nx/2-1),(-nx/2:-1)]’/(dx*nx); %frequency vector

x2 = ((1:nx)’-(nx+1)/2)*dx; % x vector

z = 50;%100; % total distance

nz = 25000;%50000; % total number of steps

nplot = 5;%10; % number of plots to make

n1 = round(nz/nplot); % number of steps per plot

nz = n1*nplot; % total number of steps (revised)

dz = z/nz; % step-size

%define iniatial condition

u0 = Initial(x,xg0,xc0,0.01);

zv = (z/nplot)*(0:nplot);

u = zeros(length(x),length(zv));

100
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u(:,1) = u0;

%for each z find output

for ii = 1:nplot,

ii

u(:,ii+1) = Splitstep(u(:,ii),dx,dz,n1,200);

end

%sketch the output

output=abs(u).^2;

mesh(zv,x,output, ...

’MeshStyle’, ’col’, ’EdgeColor’, ’black’);

set(gca,’YDir’,’reverse’);

hidden off;

xlim([0 max(zv)]);

ylim([-max(x) max(x)]);

xlabel (’Z’);

ylabel (’X’);

zlabel (’|u(Z,X)|^2’);

%*************************************************************************

%This function defines the initial beam profile.

function u = Initial(x,xg0,xc0,C)

if (nargin<4)

C = 0;

end
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if (nargin<3)

xc0 = 0;

end

if (nargin<2)

xg0 = 0;

end

Amp_Signal=sqrt((sqrt(3/8))*(sech(x-xg0)));

Phase_Signal=-(C)*((x-xc0).^2)/(2);

u=(Amp_Signal).*exp(1i*(Phase_Signal));

%*************************************************************************

%This function finds the solution of final equation by split-step method.

function u1 = Splitstep(u0,dx,dz,nz,maxiter,tol)

if (nargin<6)

tol = 1e-5;

end

if (nargin<5)

maxiter = 4;

end

nx = length(u0);

w = 2*pi*[(0:nx/2-1),(-nx/2:-1)]’/(dx*nx);

halfstep = 0;

halfstep = halfstep - 1i*(w).^2/factorial(2);

halfstep = exp(halfstep*dz/2);

u1 = u0;

% ufft = fft(u0);

for iz = 1:nz,

ufft = fft(u0);
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uhalf = ifft(halfstep.*ufft);

for ii = 1:maxiter,

uv = uhalf .* exp(+1i*(abs(u1).^4 + abs(u0).^4)*dz/2);

uv = fft(uv);

ufft = halfstep.*uv;

uv = ifft(ufft);

if (norm(uv-u1,2)/norm(u1,2) < tol)

u1 = uv;

break;

else

u1=uv;

end

end

if (ii == maxiter)

warning(sprintf(’Failed to converge to %f in %d iterations’,...

tol,maxiter));

end

u0 = u1;

end

%*************************************************************************



Appendix C: Analytical Analysis for Self-Similar Pulses in Coherent

Linear Amplifiers

Self-similar pulse width

RMS width: ΔT =
√

< T 2 >−< T >2

< T 2 >=

∫ ∞

0
dT T 2|Ω(Z,T )|2∫ ∞

0
dT |Ω(Z,T )|2

Z >> 1: Ω(T,Z)
 e
√

2T Z√
2π

√
2T Z

e−T

|Ω|2 
 e2
√

2T Z

2π
√

2T Z
e−2T

< T 2 >=

∫ ∞

0
dT T 2 e2

√
2T Z√
T

e−2T∫ ∞

0
dT e2

√
2T Z√
T

e−2T

< T 2 >=
d2

dα2

∫ ∞

0
dT√

T
e2

√
2T Ze−αT |α=2∫ ∞

0
dT√

T
e2

√
2T Ze−2T

J(α) =

∫ ∞

0
dT√

T
e2

√
2T Ze−αT

⇒< T 2 >= 1
J(2)

d2

dα2 J(α)|α=2

< T >=− d
dα lnJ(α)|α=2

J(α) =

∫ ∞

0
dT√

T
e2

√
2T Ze−αT |X =

√
T |

J(α) = 2

∫ ∞

0
dXe2

√
2ZX e−αX2

J(α) = 2

∫ ∞

0
dXexp[−α(X2 −2

√
2Z
α X)]

s =
√

α(X −
√

2Z
α )
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J(α) = 2√
α e2Z/α

∫
∞

−√
2Z/

√
α

dse−s2 
 2√
α e2Z/α

∫ ∞

−∞

dse−s2

︸ ︷︷ ︸√
π

J(α) = 2
√

π
α e2Z/α

1) < T >=− d
dα lnJ(α)|α=2

lnJ(α) =−1
2 lnα + 2Z

α + const

< T >= 1
2α + 2Z

α2 |α=2 
 Z/2, Z >> 1

2) < T 2 >= 1
J(2)

d2

dα2 J(α)

Z >> 1: d2J
dα2 
 2

√
π√

α
d2

dα2 e2Z/α +4 d
dα (

√
π
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d
dα (e
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√
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√
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α
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 [2
√

π
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4Z
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2Z
α2

2Z
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√
π
α

2Z
α3 ]e2Z/α

J′′(α) = 2
√

π
α e2Z/α [ 4Z

α3 +
4Z2

α4 + 2Z
α3 ]

⇒ J′′(α) = 2
√

π
α e2Z/α [ 6Z

α3 +
4Z2

α4 ]

α = 2: J′′(2) = 2
√

π
2 eZZ(6

8 +
4Z
16 ) = 2

√
π
2 ZeZ × 1

4(3+Z)

⇒< T 2 >= 1
J(2)J

′′(2) = Z
4 (3+Z) = 3Z

4 + Z2

4

ΔT 2 =< T 2 >−< T >2 = 3Z
4 + Z2

4 − Z2

4 = 3Z
4

⇒ ΔT =
√

3Z/2



Appendix D: Analytical Analysis for Self-Similarity and Optical Kinks

in Resonant Nonlinear Media

Coherent limit, 1
TP

≥ γ⊥ � γ‖.

a) Perfect resonance, γ⊥ � δ : neglect inhomogeneous broadening. The Maxwell-Bloch

equations (MBE) have the general form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ζ Ω =
kN|dge|2

ε0h̄ v

∂τv =−γ⊥v+Ωw

∂τw =−Ωv.

The Rabi frequency is unchirped, Ω∗ = Ω.

Define: α
2 =

kN|dge|2
γ⊥ε0h̄ , the MBE has the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ζ Ω = γ⊥α
2 v

∂τv =−γ⊥v+Ωw

∂τw =−Ωv.

(D-1)

Looking for self-similar solution, and define the similarity variable as η = αζ e−γ⊥τ , the

self-similar solutions for Rabi frequency is revealed as

Ω = γ⊥Ω(αζ e−γ⊥τ), (D-2)

and for the atomic variables as

v = e−γ⊥τv(αζ e−γ⊥τ), (D-3)

w = e−γ⊥τw(αζ e−γ⊥τ). (D-4)

Finding derivatives with respect to η

∂ζ = αe−γ⊥τdη , (D-5)
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∂τ =−γ⊥ηdη . (D-6)

Taking derivatives of (D-2) with respect to ζ , and (D-3) and (D-4) with respect to τ by

using (D-5) and (D-6) to obtain derivatives with respect to η

∂ζ Ω = αγ⊥e−γ⊥τΩ′
, (D-7)

∂τv =−γ⊥e−γ⊥τv− γ⊥e−γ⊥τηv′, (D-8)

∂τw =−γ⊥e−γ⊥τw− γ⊥e−γ⊥τηw′. (D-9)

Substituting (D-7)-(D-9) into (D-1)

=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αγ⊥e−γ⊥τΩ′
= γ⊥α

2 e−γ⊥τv

−γ⊥e−γ⊥τ(v+ηv′) =−γ⊥e−γ⊥τv+ γ⊥e−γ⊥τΩw

−γ⊥e−γ⊥τ(w+ηw′) =−γ⊥e−γ⊥τΩv.

Find the set of ODE

=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω′
= 1

2v

ηv′ =−Ωw

(ηw)′ = Ωv.

Combining these equations

=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v = 2Ω′

ηv′ =−Ωw

(ηw)′ = 2ΩΩ′
=⇒ ηw = Ω2

+ const.

Integrating with the aid of the asymptotic condition: η 0, Ω Ω∞, the one-atom inver-

sion can be expressed as

=⇒ w =
1
η
(Ω2 −Ω2

∞).

v = 2Ω′
,
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2ηΩ′′
=−Ω

η
(Ω2 −Ω2

∞).

ODE for a kink profile =⇒ η2Ω′′
=−Ω

2 (Ω
2 −Ω2

∞).

Asymptotic analysis reveals that

a) η 0, ⇐⇒ τ +∞ (leading edge of the pulse): Ω = Ω∞ +δΩ, δΩ 	 Ω∞ as η 0

η2δΩ′′
=−Ω∞

2
(Ω−Ω∞)︸ ︷︷ ︸

δΩ

(Ω∞ −Ω∞)︸ ︷︷ ︸
2Ω∞

,

η2δΩ′′
=−Ω2

∞δΩ,

look for δΩ ∼ ηs, s > 0

⇒ s(s−1) =−Ω2
∞,

s2 − s+Ω2
∞ = 0,

⇒ s =
1±

√
1−4Ω2

∞

2
,

choose ”+” because as Ω∞ 0, s 1, Ω 0 works

s =
1+

√
1−4Ω2

∞

2
,

Note: Ω∞ ≤ 1/2 ⇐⇒ Ω∞ ≤ γ⊥/2,

the system must be in an ”overdamped” regime (no Rabi flopping): η 0: Ω = Ω∞−|C|ηs

s =
1+

√
1−4Ω2

∞

2
,

b) η ∞, Ω 0, consider η ∞ ⇐⇒ τ =⇒−∞ (leading edge)

Ω ∼ η−q,q ≥ 0

η2Ω′′
= ΩΩ2

∞
2 as η ∞
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−q(−q−1) =
Ω∞
2

,

q2 +q−Ω∞/2 = 0,

q =
−1+

√
1+2Ω2

∞

2
,q ≥ 0,

η ∞: Ω ∼ η−q,

⇒ q =
−1+

√
1+2Ω2

∞

2
.



Appendix E: Analytical Analysis for Spatial Optical Similaritons in

Conservative Nonintegrable Systems

Ordinary differential equation for the similariton envelope has the form

1
2

R′′
ηη +(σR4 ± β 2

8
)R = 0. (E-1)

We look for a self-similar solution in the form

R =
√

βR(βη), (E-2)

with the similarity variable

X = βη . (E-3)

Substituting (E-2) and (E-3) into (E-1), we obtain

β 2

2
R′′

XX +β 2(sR4 ± 1
8
)R = 0,

or

R′′
XX +2(sR4 ± 1

8
)R = 0. (E-4)

Integrating once (E-4)
1
2

R′
X

2
+

sR6

3
± R2

8
=

1
2

C,

R′
X =

√
C− 2R6

3
s± R2

4
. (E-5)

Integrating (E-5), we obtain

X =

∫
dR√

C− 2s
3 R6 ± 1

4R2
,
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X =−

∫
d(1/R2

)

2
√

C
R6 ± 1

4R4 − 2s
3

.

Introducing the variable change

P = 1/R2
,

we arrive at

X =−

∫
dP

2
√

CP3 ± P2

4 − 2s
3

.

Bright case, s =+1, choose ”+”.

R 0, R′
X 0, as X ±∞ ⇒C = 0.

X =−

∫
dP√
P2 − 8

3

,

P =

√
8
3

coshs,

X =−

∫ √
8
3 sinhsds√

8
3 sinhs

=−s,

P =

√
8
3

coshX ,

R =

√√
3
8

sechX .
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