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Abstract

London or dispersion interactions are weak van der Waals (vdW) interactions. They
are important in determining the structure and properties of many chemical and
biochemical systems. In this thesis, an optimizer using the nonempirical generalized
gradient approximation (GGA) functional PW86+PBE+XDM, to capture van der
Waals interactions, is presented. The work in this thesis covers the assessment of a
variety of basis sets for their ability to reproduce accurate GGA repulsive and binding
energies. Selected basis sets were then used to compute binding energies of 65 vdW
complexes at equilibrium. This functional was also tested for binding energies of two
sets of vdW complexes at distorted geometries. The last part deals with forces to
investigate their accuracy using PW86+PBE+XDM in order to build an optimizer
for vdW complexes using a nonempirical DFT method. Eventually, after confirming
a high reproducibility of the optimizer on the geometries and binding energies, it
was used in two biologically relevant applications. This optimizer is a unique tool to
compute deformation energies with a nonempirical DFT method.

The second part of this thesis covers a biologically relevant application where a con-
ventional DFT is used. This application is related to the carrier of the genetic codes
in living cells, DNA. DNA undergoes harmful mutations under external perturba-
tions such as applied external electric fields. In this study, DNA base pairs were first
mimicked by a simpler model, namely, the formic acid dimer. The effect of applied
external electric fields on the geometries of the formic acid dimer is studied. The ef-
fect of these applied fields on the potential energy surface, the barrier height and the
frequency of the double proton transfer in the formic acid dimer are also investigated.
The study was then repeated on DNA base pairs to study the effect of an external
applied electric field on the tunneling corrected rate constants of the double proton
transfer reactions in AT and GC.
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Chapter 1

Introduction

The purpose of this chapter is to introduce the electronic structure theories used in

the research presented in this thesis. The main focus is on density functional theory

(DFT). A brief overview of Møller-Plesset Perturbation Theory (MPn) is provided at

the beginning of this chapter as MP2 was used for method-comparison purposes in

the second part of this thesis.

Conventional wavefunction methods such as Hartree-Fock (HF), nth order Møller-

Plesset Perturbation Theory (MPn), Configuration Interaction (CI), Coupled Cluster

(CC), etc. are quantum theories used to predict chemical structures and their prop-

erties.

HF theory is the basis of the wavefunction electronic structure methods. It takes into

account correlations between parallel-spin electrons only, i.e., it gives the exchange

energy. MPn, CI and CC are “correlated” wavefunction methods. These sophisticated

methods use HF theory as a starting point. They then evaluate an energy-correction

term known as the correlation energy. Correlation energy can be obtained by taking

into account correlation between opposite-spin electrons. The sum of exchange and

correlation energies gives the total “exchange-correlation” energy.
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1.1 Møller-Plesset Perturbation Theory

Møller-Plesset perturbation theory is a correlated wavefunction method proposed by

C. Møller and M. S. Plesset in 1934. MPn is a perturbation treatment of atoms and

molecules. It perturbs (excites) electrons from occupied to “virtual” (unoccupied)

orbitals. In MPn, perturbations are applied to a reference single Slater determinant

which is an antisymmetric product of HF spin-orbitals [1, 2]. The reference wavefunc-

tion, i.e., the ground-state HF function, is an unperturbed zero order wavefunction.

The Hamiltonian used to obtain the reference HF wavefunction is H0. H0 is a sum

over one electron Fock operators fi given by

f(i) = −1

2
�2

i −
M∑

A=1

ZA

�riA
+ vHF (i), (1.1.1)

where ZA is the atomic number of nucleus A and �riA is the distance between the

ith electron and Ath nucleus. In (1.1.1), the first term is the kinetic energy, the

second term is the classical electron-nuclei Coulomb interaction energy, and the third

term vHF (i) is the average potential experienced by the ith electron due to the other

electrons in the system [1]. MP2 corrects for the HF energy by adding a second order

energy correction term,

E
(2)
0 =

∑
s �=0

| 〈ψ(0)
s | H ′ | Φ0

〉 |2
E

(0)
0 − E

(0)
s

, (1.1.2)

where Φ0 is the zeroth order HF reference function, ψ
(0)
s are excited-state Slater

determinants of H0, and H ′ is the difference between the Hamiltonian of the reference

wavefunction H0 and the Hamiltonian of the true wavefunction. “s” denotes how

many excitations are introduced and from which occupied orbitals (i, j, k, etc.) to

which virtual orbitals (a, b, c, etc.). For example, the doubly excited determinant Φab
ij

is built from the ground state reference determinant by replacing the two occupied

spin orbitals ui and uj with the two virtual spin orbitals ua and ub. Szabo and Ostlund
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explain in details that, for single excitations, the expectation value
〈
Φa

i | H ′ | Φ0

〉
in (1.1.2) vanishes. This is known as Brillouin’s theorem. Similarly, this expectation

value is zero in case of triple or higher excitations (see [1] for more details).

In general, the correlated wavefunction methods result in reliable energies. However,

they are too expensive to be practical for large chemical and biochemical systems.

Density functional theory, born in 1964, is a quantum mechanical approach used to

solve electronic structure problems. DFT is gaining popularity over “conventional”

wavefunction methods because of its good performance at an economical computa-

tional cost.

1.2 Density Functional Theory

The approach used in DFT to solve the Schrödinger equation is less computationally

intense than the approach undertaken by the conventional wavefunction methods.

DFT uses the electron density ρ(�r) which depends only on three variables. Conven-

tional methods use the wavefunction Ψ which depends on 3N variables, where N is

the number of electrons in the system.

The one-electron density is the probability of finding any of the N electrons of a

system (regardless of spin) in a volume element d�r1 while the other N-1 electrons are

elsewhere. The two-electron density, or pair density, is invaluable for the description

of electron correlation because it is the probability of finding a pair of electrons (spin

up or down) simultaneously in the volume elements d�r1 d�r2 while the other N-2

electrons are elsewhere.
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1.3 The First Density Functional Models

Well before 1964 (when DFT was rigorously established), in 1927, Thomas [3] and

Fermi proposed independently the first model that attempts to obtain information

about an atom or a molecule from the electron density ρ(�r), instead of the wave-

function Ψ [4]. The Thomas-Fermi model was the first density functional for the

energy. It is based on a uniform electron gas. This functional treats only the kinetic

energy quantum mechanically. Nuclear-electron and electron-electron interactions

are treated using classical electrostatics. Exchange and correlation energies are ne-

glected. The Thomas-Fermi model is a poor approximation as it fails to reproduce

atomic shell structure. In 1928, Dirac introduced an expression for the exchange en-

ergy based on the uniform electron gas [5, 6]. Adding this exchange energy expression

to the Thomas-Fermi model gave rise to Thomas-Fermi-Dirac model. In 1951, Slater

developed the exchange functional “Xα” [7] which originally aimed to simplify the

exchange energy in HF theory. The major breakthrough in DFT was in 1964 when

Hohenberg and Kohn published their theorems [8].

1.4 The Hohenberg-Kohn Theorems

The first Hohenberg-Kohn theorem is a proof of existence. It states that for each

different external potential Vext, there exists one and only one corresponding non-

degenerate ground state electron density ρ0. Vice versa, any ground state electron

density is uniquely mapped to a single external potential and uniquely determines

the number of electrons N. Therefore ρ0 uniquely defines all other properties as well:

ρ0 =⇒ Vext =⇒ Ĥ =⇒ Ψ0 =⇒ everything, (1.4.1)

where Ĥ is the N-electron Hamiltonian operator with external potential Vext.
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The second Hohenberg-Kohn theorem is a variational principle. It states that the

minimal energy of a chemical system is always necessarily the energy E resulting

from the ground state electron density ρ0. Any other electron density ρ′ gives a

higher energy E0,

E(ρ′) ≥ E0(ρ0). (1.4.2)

1.5 Kohn-Sham Formalism

One year later, in 1965, Kohn and Sham developed a new approach [9] to solve the the

Schrödinger N-electron equation using the “Kohn-Sham” (KS) Orbitals. The sum of

the squares of these orbitals, by definition, is equal to the exact ground state density

ρ:

ρ = 2

N/2∑
i=1

ψ2
i (1.5.1)

and each KS orbital satisfies

−1

2
�2 ψi + vKSψi = εiψi, (1.5.2)

where vKS is the potential that delivers, by assumption, the exact ground state ρ

through (1.5.1). The energies (eigenvalues) of the KS orbitals do not have the same

physical meaning as the energies of HF orbitals. Unless the eigenvalue is that of the

highest occupied orbital, the energies of KS orbitals do not correspond to ionization

potentials as in Koopmans theorem for HF orbitals [10, 11].

In Kohn-Sham theory, the total energy is written in the form,

Etot[ρ] = TKS[ρ] +

∫
vnucρ+ J [ρ] + EXC [ρ] (1.5.3)

where:
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1. TKS[ρ] is the kinetic energy of the Kohn-Sham orbitals1:

TKS[ρ] = −1

2

N/2∑
i

2

∫
ψi �2 ψid�ri. (1.5.4)

2.
∫
vnucρ is the nuclear-electron potential energy, where

vnuc = −
M∑

A=1

ZA

| �ri − �RA | , (1.5.5)

where ZA is the atomic number of nucleus A, �ri is position vector of electron i,

and �RA is the position vector of nucleus A.

3. J [ρ] is the classical Coulomb electron-electron repulsion energy:

J [ρ] =
1

2

∫ ∫
ρ(�r1)ρ(�r2)

r12
d�r1d�r2. (1.5.6)

4. EXC [ρ] is the “exchange-correlation” energy. EXC is relatively much smaller

than the other three terms. This term includes everything else that has not been

accounted for in the first three terms. In other words, in addition to “exchange”

and “correlation” effects, the exchange-correlation functional accounts for the

difference between the “real” and the KS kinetic energies. This complicated

functional has no explicit form. It has to be approximated, as will be discussed

shortly.

Variation of the total energy (1.5.3) with respect to the KS orbitals, subject to or-

thonormality constraints and (1.5.1), gives (1.5.2) with

vKS = vnuc + velec + vXC , (1.5.7)

where

1Note that this is not the kinetic energy of the “real” system.
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1. vnuc is the nuclear potential given by (1.5.5).

2. velec is the Coulomb potential arising from the electrons. velec is given by

∫
ρ(�r2)

r12
d�r2. (1.5.8)

3. the exchange correlation potential vXC is given by

vXC =
δEXC

δρ
, (1.5.9)

where δ
δρ

denotes the “functional” derivative of EXC with respect to the density

ρ [4].

The Kohn-Sham formalism solves the Schrödinger equation iteratively in a self-

consistent field (SCF) fashion. SCF is needed because the Coulomb potential (1.5.8)

and the exchange-correlation potential (1.5.9) are functionals of the density which

itself depends on the unknown orbitals.

In (1.5.3), the KS kinetic energy, the nuclear-electron potential energy and the Coulomb

repulsion can be computed exactly because the KS orbitals define the exact ground

state density2. The only term that cannot be computed exactly is EXC . It has to be

approximated. In theory, if the exchange-correlation energy and its functional deriva-

tive were known exactly, the Schrödinger equation would be solved exactly. Therefore,

in DFT, the electronic structure theory problem reduces to finding approximate but

accurate expressions for the EXC term in (1.5.3). EXC can be written in terms of an

exchange-correlation “hole” hXC as follows [12]:

EXC =
1

2

∫ ∫
ρ(�r1)

r12
hXC(�r1, �r2)d�r1d�r2. (1.5.10)

2In HF the nuclear-electron potential energy and the classical Coulomb electron-electron repulsion
energy cannot be computed exactly because the HF orbitals give the ground state density of HF
and not the real ground state density.
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The exchange-correlation hole is a fundamental quantity in DFT. It is a measure of

the depletion in density around a reference electron �r1 due to exchange and correlation

effects. The exchange-correlation hole is thus a combination of two separate holes:

the exchange hole hX and the correlation hole hC . Accurate modeling of holes results

in accurate models of EXC . The exchange and correlation holes will be discussed

along with their properties before summarizing the approaches used to approximate

EXC .

1.6 Exchange and Correlation Holes

1.6.1 The Fermi Hole

The Fermi or exchange hole is more important than the Coulomb hole. The exchange

hole for electrons of spin σ is given by

hXσ(�r1, �r2) = − 1

ρσ(�r1)

∑
ij

ψiσ(�r1)ψjσ(�r1)ψiσ(�r2)ψjσ(�r2). (1.6.1)

The exchange hole is also be given by a more interpretive format as follows:

hXσ(�r1, �r2) = −| ρσ(�r1, �r2) |2
ρσ(�r1)

, (1.6.2)

where

ρσ(�r1, �r2) =
∑
i

ψiσ(�r1)ψiσ(�r2). (1.6.3)

It is clear from (1.6.2) that the exchange hole is negative everywhere. This exchange

hole has two important properties:

∫
hXσ(�r1, �r2)d�r2 = −1, (1.6.4)
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and at �r2 = �r1 (1.6.2) becomes

hXσ(�r1, �r1) = −ρσ(�r1) (1.6.5)

Property (1.6.4) states that the exchange hole always integrates to -1, which means

that the hole contains exactly minus one electron of spin σ at any reference point,

�r1. Consequently, each electron in the system interacts with N − 1 other electrons.

Therefore, the probability of an electron interacting with itself is null. In HF theory,

the exchange hole exactly “cancels” the self-interaction energy J in one-electron sys-

tems that arises from a fictitious interaction of the electron with itself. This is not

possible in DFT, even for atoms, because of the approximated exchange correlation

energy term. In DFT, imposing that the sum of the classical Coulomb and exchange-

correlation energies vanishes in one-electron systems requires a different potential for

each orbital, which is challenging [13].

Property (1.6.5) states that the depth of the exchange hole at the position of the

reference electron, �r1, is −ρσ(�r) (see Figure 1.1)
3. This means that none of the other

electrons of spin σ can overlap with the reference electron. This is the “Pauli exclusion

participle”, which excludes the probability of finding two electrons of the same spin

overlapping in space.

Recall the relationship between EXC and hXC given by (1.5.10). A similar relationship

connects EX and hXσ:

EXσ =
1

2

∫ ∫
ρσ(�r1)

r12
hXσ(�r1, �r2)d�r1d�r2. (1.6.6)

3This figure was obtained from the PhD thesis of Erin Johnson [14], with her permission.
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Figure 1.1: A plot of the exchange hole (hX) for parallel-spin electrons, and the
correlation hole (hC) for opposite-spin electrons.

1.6.2 The Correlation Hole

Unlike the exchange hole hXσ, the correlation hole hC integrates to zero:

∫
hC(�r1, �r2)d�r2 = 0 (1.6.7)

This means that each spin-up electron interacts with all N spin-down electrons. As

depicted in Figure 1.1, the correlation hole hC is negative at small range, but is

positive at long range. This means opposite-spin electrons repel each other until a

certain separation r, after which the hole becomes positive so that hC integrates to

zero. Unlike the exchange hole, the correlation hole does not have a simply-determined

depth at the reference electron. The hole has a cusp at r12 = 0 (see Figure 1.1). The

depth of correlation hole at the reference electron, however, is related to its slope by

the “interelectronic cusp condition” [15].
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The rest of this chapter is a summary of approaches used to approximate exchange

and correlation functionals to obtain EXC in (1.5.3).

1.7 The Local Density Approximation

The simplest approximation for exchange-correlation energy is the local density ap-

proximation (LDA). In the LDA, EXC is a functional of only the local density. EXC is

estimated by placing a uniform electron gas exchange-correlation hole at the reference

point �r:

ELDA
XC [ρ] =

∫
ρ(�r)

(
− 3

4

(
3ρ(�r)

π

)1/3

+ εC [ρ(�r)]

)
d�r. (1.7.1)

The term −3
4

(
3ρ(�r)
π

)1/3
in (1.7.1) is the exchange energy per particle of a uniform gas

[7, 16]. εC [ρ(�r)] is the correlation energy per particle. The exchange and correlation

energies are weighted by the probability ρ of finding an electron at �r. εC [ρ(�r)] can be

approximated several ways. For example, there are the PZ81 [13], the VWN [17] and

the PW92 [18] LDA correlation functionals.

A similar equation applies to systems where the spin-α and the spin-β densities are

not equal. The only difference is the use of ρα and ρβ instead of ρ in (1.7.1). This spin

dependent LDA is called the local spin-density approximation (LSDA). The LSDA is

conceptually similar to unrestricted HF (UHF).

1.8 The Generalized Gradient Approximation

The major failure in LDA is the incapability of describing non-homogeneous electron

densities. One way to improve this approximation is consider not only the electron

density but also its gradient. In the generalized gradient approximation (GGA), den-

sity gradient corrections are added to the LDA. GGA exchange-correlation energy is
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the sum of GGA exchange energy and GGA correlation energy:

EGGA
XC = EGGA

X + EGGA
C . (1.8.1)

The GGA exchange energy in the above equation is the LDA exchange energy [7, 16]

[see (1.7.1)] with an additional correction term equal to:

−
∑
σ

∫
F

( | � ρσ(�r)|
ρ
4/3
σ (�r)

)
ρ4/3σ (�r)d�r, (1.8.2)

where F

(
|�ρσ(�r)|
ρ
4/3
σ (�r)

)
is an “exchange enhancement factor” and |�ρσ(�r)|

ρ
4/3
σ (�r)

is a dimensionless

or “reduced” density gradient, symbolized by χσ. In LDA functionals, χσ vanishes

to zero. In GGA functionals, χσ � 0 in the bonding regions where the gradient is

minimal; and χσ gets more significant in low-density regions, e.g in exponential tails.

GGA atomization energies on the G2 set of molecules [19] are 10 times better than

LSDA atomization energies on the same set of molecules. The range of error (com-

pared to accurate reference energies in the G2 set) for GGA energies is 4 - 6 kcal

mol−1 [20].

As will be shown in the following subsections, there are several GGA functionals

reported in the literature to estimate EGGA
X and EGGA

C in (1.8.1).

1.8.1 GGA Exchange Functionals

The exchange enhancement factor in (1.8.2) is what has to be determined in a GGA

exchange functional. In 1988, Becke developed the most widely used GGA exchange

functional (B or B88), which has only one parameter, β = 0.0042 determined by

least squares fit to exchange energies of rare-gas atoms. This functional gives the

exact behavior of exchange energy density at the asymptotic limit. The form of this
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functional is as follows:

FB =
βχ2

σ

1 + 6βχσsinh−1χσ

, (1.8.3)

where χσ is the reduced density gradient introduced in (1.8.2). Examples of other

exchange GGA functionals are those of Perdew (1991) [21], Handy et al. (1993) CAM

[22], Filatov and Thiel (1997) FT97 [23]. More exchange GGA functionals include

B86 by Becke [24, 25], PW86 by Perdew and Wang [26], LG by Lacks and Gordon

[27], PBE by Perdew, Burke and Ernzerhof [28], and revPBE by Zhang, Pan and

Yang [29]. The exchange functional PW86 is particularly more attractive than the

other functionals because it is a parameter-free functional and yet delivers accurate

exchange energies [27, 29, 30, 31]. The PW86 exchange functional has the following

form:

EX =

∫
eLDA
X [ρ(�r)]gX(s)d�r, (1.8.4)

where eLDA
X is given by

eLDA
X [ρ(�r)] = −3

4

(
3

π

)1/3

ρ4/3(�r) (1.8.5)

and gX(s) is

gPW86
X (s) = (1 + 1.296s2 + 14s4 + 0.2s6)1/15, (1.8.6)

where s in this case is defined by

s =
| �ρ(�r) |

2(3π2)1/3ρ4/3(�r)
(1.8.7)

1.8.2 GGA Correlation Functionals

Two years prior to the development of B88, Perdew determined a GGA correlation

functional (P86) [32], which was further improved, in 1991 by Wang, to a param-

eter free functional (PW91) [33]. Lee, Yang and Parr formulated a one parameter
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GGA correlation functional (LYP) [34] that is based on the helium atom correlated

wavefunction of Colle and Salvetti [35]. The GGA correlation functionals account

for “dynamical” correlation within an atom, but not “non-dynamical” correlation be-

tween atoms. PBE [33, 28] is an attractive GGA correlation functional as it is (apart

from the parameters of the LDA term) a parameter-free functional.

It is possible to combine any of the GGA exchange functionals with any of the GGA

correlation functionals to form an exchange-correlation functional. As shown in this

section, LDA functionals were improved by including the density gradient corrections

in the GGA functionals. However, GGAs still have some disadvantages: they overbind

multiple bonds by ∼20 kcal mol−1 [20], they underestimate the barrier heights of

reactions involving radicals. The question to be answered in the following section is

“Can the GGA family be further improved?”.

1.9 Meta-GGA Functionals

GGA functionals can be further improved by including second order density gradients

(or the Laplacian of the density) and the kinetic energy density. These two corrections

were first suggested by Becke and Roussel in 1989 [36]. This family of functionals

is known as “meta-GGA” functionals. Meta-GGAs describe the inhomogeneous dis-

tribution of electron density more accurately. It was not until 1994 that another

meta-GGA was published by Proynov, Vela and Salahub [37]. More meta-GGA func-

tionals have been developed since then [38, 39, 40, 41, 42, 43, 44, 45]. Meta-GGAs

are only slightly better than GGAs in thermochemical tests [39].
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1.10 Hybrid Functionals

“Hybrid” functionals (or adiabatic connection method, ACM, functionals) have a

mixture of some exact exchange from HF with the DFT exchange from LDA/GGA

functionals. In 1993, Becke proposed the first hybrid functional [46] by mixing some

exact HF exchange with GGA exchange as follows:

EB3
XC = ELSD

XC + a(EHF
X − ELSD

X ) + bΔEB88
X + cΔEPW91

C (1.10.1)

The three parameters, a, b and c, were fitted to the atomization energies, ionization

potentials and proton affinities of the G2 set. The first term in (1.10.1) is the local

spin density exchange-correlation functional. This first term was corrected with two

density gradient functionals for exchange and for correlation (the last two terms),

each of which has a contribution weighed by a linear parametrized coefficient. The

term in brackets [second term of (1.10.1)] is a measure of the importance of exact

exchange. Its contribution to the B3 functional is determined by the parameter a.

In other words, the parameter a is a measure of the HF:GGA ratio in the exchange

energy.

In his paper [46], Becke proposed using the PW91 correlation functional in (1.10.1).

One year later, in 1994, Stephens et al. [47] suggested using the LYP correlation

functional (by Lee, Yang and Parr) instead of PW91, i.e., “B3LYP” hybrid functional

rather than “B3PW91”. The “3” in ’B3LYP’ or ’B3PW91’ refers to the 3 parameters

of the functional as shown in (1.10.1). B3LYP is a widely used hybrid functional, the

number of citations of [46] has exceeded 26 700. Hybrid functionals reduce the error

in bond energies for the molecules in the G2 set from 4 - 6 kcal mol−1 with GGAs to

2 - 3 kcal mol−1 [12].

Despite its remarkable performance for many types of chemical systems, DFT cannot

capture interactions weaker than hydrogen-bonding such as dispersion. This problem
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is, however, solved as will be described in the following chapter.
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Chapter 2

Dispersion Energy in DFT

Dispersion interactions are weak attractive van der Waals interactions. This type

of interactions was first introduced by Fritz London in 1926 [48]1, hence the name

“London dispersion interactions”. These interactions are responsible for attraction

between closed shell non-polar atoms or molecules such as rare-gas diatomics. Dis-

persion is ubiquitous in biological systems (DNA, RNA and protein folding, cell

membranes, etc.), polymers, and atmospheric reactions. This non-classical type of

interaction is due to long range dynamical correlation effects. It arises from the in-

stantaneous fluctuation in the charge distribution. These spontaneous fluctuations

create instantaneous dipole moments even though the permanent dipole moment of

the atom/molecule is zero. For example, in a He2 molecule, the instantaneous dipole

moment in one He atom induces an instantaneous dipole moment in the second He

atom. This dipole-induced-dipole interaction defines dispersion. The general form of

dispersion is given by:

Edisp = −C6

R6
, (2.0.1)

where R is the internuclear distance and C6 is a dispersion coefficient that depends

on the polarizability of the atom/molecule. If higher-order multipole moments are

1His work was then translated into English in 1937 [49].
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considered, higher order terms are included to the dispersion energy in (2.0.1) as

follows:

Edisp = −C6

R6
− C8

R8
− C10

R10
. . . (2.0.2)

Dispersion interactions can be captured with correlated wavefunction methods such

as Møller-Plesset Perturbation Theory (MPn) and Coupled Cluster theory (CC). The

CC methods at complete basis set limits are considered as the gold standard method

for obtaining reference binding energies. However, CC methods scale as N7 with

system size, i.e., they are much more computationally demanding. MP2 tends to

overbind weakly-bound complexes [50]. To reduce basis-set dependence and basis-

set superposition error (BSSE) in correlated wavefunction methods, “range separated

hybrid” (RSH) methods can be used. These methods consist of a combination of

MPn or CC theories with short-range DFT [51, 52, 53, 54].

Even though conventional wavefunction methods accurately describe weakly-bound

systems, they are too expensive to be practical. Traditional DFT functionals (LDA,

GGA, meta-GGA, hybrids) are incapable of modeling dispersion interactions [55]

because of their nonlocal character. However, dispersion corrected DFT functionals

are good practical alternatives to conventional wavefunction methods. In the past

decade, there have been several attempts reported in the literature to develop DFT-

based functionals that capture dispersion interactions. Some functionals are derived

from first principles and therefore quite complicated and time consuming [56, 57, 58,

59, 60, 61, 62, 63, 64, 65, 66]. Others are based on fitting of empirical parameters

[67, 68, 69, 70, 71, 72, 73].

An overview of DFT-based methods will be presented in this chapter along with their

pros and cons. Several good reviews are available in the literature [50, 51, 62, 74, 75,

76, 77].
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2.1 DFT-Based Dispersion Models

Some methods handle dispersion interactions purely empirically by including many

parameters in DFT functionals, as in X3LYP, M05, M05-2X and M06-2X [78, 79,

80]. These empirically adjusted functionals may give poor results for weakly-bound

complexes which are not in their training sets [81].

The empirical dispersion-corrected atom-centered potentials (DCACP) of Röthlis-

berger et al. [72, 82, 83] (used in plane wave codes) and the empirical dispersion

correcting potentials (DCP) of Dilabio et al. [73, 84] are other approaches developed

for dispersion interactions. In the DCP model, functionals can be parametrized to

give good results with small basis sets, thus this is a convenient method for large

systems. These functionals are compatible with electronic structure codes that in-

clude effective core potentials. Large grids are needed to get smooth potential energy

surfaces [50]. The major drawback of DCP methods is the need for a new pseudo

potential optimization for each DFT/basis-set combination, and for each element.

Another approach, DFT-dispersion (DFT-D), is based on adding an explicit disper-

sion term to DFT functionals. In other words, an explicit pairwise correction for

dispersion interactions of the London form, −C6,ij

R6
ij

is added. An example of a DFT-D

functional is the empirical GGA-based functional, B97-D, developed by Grimme in

2006 [85]. In B97-D, an empirical dispersion term is added to the GGA functional of

Becke (B97) [86]. Many examples of DFT-D functionals are available in the literature

[68, 69, 71, 85, 87, 88, 89, 90]. The major drawback of the empirical addition of the

dispersion correction term is that dispersion coefficients and van der Waals radii have

to be empirically chosen for each element. In addition, the dispersion coefficients

do not sense different molecular environments, they are assumed to be constants.

The latter problem was recently partially solved by Grimme et al. [91]. Dispersion

coefficients in their revised DFT-D3 method are sensitive to the hybridization state

of atoms in molecules. Their goal was achieved by employing a new concept called
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“fractional coordination number”. Despite their drawbacks, empirical DFT-D meth-

ods have been implemented in many computational packages because they are easy

to implement and the forces required for geometry optimizations are easily computed.

The computational cost for dispersion energy corrections is minor compared to the

cost for SCF iterations.

The “ALL” functional of Andersson-Langreth-Lundqvist is derived from first prin-

ciples [57]. Dobsin and Dinte have also derived this functional independently [92].

These functionals are applicable only to long-range interactions between non- over-

lapping systems, thus the system needs to be fragmented into non-overlapping groups

[58, 61]. This problem was eliminated in more recent versions of ALL, thus it can

capture intra-molecular interactions [93, 94, 95, 96]. A damping function for the

ALL functional was derived by Kamiya et al. and by Sato et al. [58, 61]. Damping

functions are necessary to avoid divergence of dispersion energies to minus infinity

as internuclear distances approach zero. ALL was simplified by Silvestrelli et al.

[77, 97, 98, 99] by using maximally localized Wannier functions.

The “vdW-DF” is also a nonempirical nonlocal van der Waals functional [93, 100,

101]. This “seamless” functional can capture dispersion interactions self-consistently

[102]. This functional is seamless because dispersion energy is not distinguished from

dynamical correlation energy, therefore dispersion is captured at the long-range limit

and damping functions are not required at the short-range limit. Forces can also

be evaluated efficiently for geometry optimization purposes. However, even though

coarse grids are sufficient, double numerical integrations over space are needed [102].

Despite the difficulty in implementing this functional in electronic structure programs,

it has been implemented in plane wave codes [100] and in Gaussian basis-set codes

[102]. This method is more computationally expensive than DFT-D but less expensive

than correlated ab initio methods (MPn and CC).

Sato and Nakai have developed another nonempirical method to calculate disper-
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sion interactions [62]. Their local response dispersion (LRD) a DFT-D approach

with dispersion coefficients derived from first principles. In other words, the LRD

approach consists of adding an explicit nonempirical dispersion term to a DFT func-

tional. In the LRD method, explicit frequency integrals of the Casimir-Polder type

are used to evaluate dispersion coefficients from multipole polarizabilities of atoms

within molecules. The multipole polarizabilities are obtained from the the local re-

sponse approximation of Dobson and Dinte [92] where the dielectric model is modified

according to Vydrov and van Voorhis [103]. A local response model for computing the

C6 terms has already been used in the ALL method [57]. With the LRD approach,

however, there is no need to fragment the system into non-overlapping groups. In

addition, with LRD, the frequency integrals are not as cumbersome as the numerical

double integrations in the ALL and the vdW-DF methods. Other advantages are that

the dispersion coefficients are system dependent and the method is computationally

efficient (same cost as a KS calculation) without sacrificing accuracy. A limitation of

the LRD method is the overestimation of higher-order dispersion coefficients, so only

C6 terms are included. Also, damping functions are required. The LRD adds the dis-

persion contribution non-self-consistently, which might be problematic for evaluating

the necessary forces in a geometry optimization. This LRD functional shares many

ideas in common with another preceding model, namely the exchange-hole dipole

moment (XDM) model of Becke and Johnson [64, 65, 66].

Another parameter-free method has been developed by Tkatchenko and Scheffler [63].

Their method is similar to the LRD method. Both obtain C6 dispersion coefficients

derived, in part, from the ground state electron density. Integrals of Casimir-Polder

type are used to obtain the C6 coefficients, combined with reference C6 and polariz-

ability data for free atoms.

A nonempirical model developed prior to the nonempirical methods discussed above

is the exchange-hole dipole moment (XDM) model of Becke and Johnson [64, 65,
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66]. This model senses the environment of atoms in molecules, and it performs well

for inter - and intra-molecular interactions [104] which are ubiquitous in biological

systems. The computational cost of XDM is negligible even though not only C6

terms are computed, but also higher-order C8 and C10 terms. XDM is based on the

position-dependent dipole moment of the exchange hole. It would be ideal to use the

dipole moment of the exchange-correlation hole (discussed in Chapter 1). However,

to avoid complexities, Becke and Johnson assume that the dipole of the correlation

part is minor and can be ignored, and they consider only the exchange part. Hence

the model is called exchange-hole dipole moment (XDM).

2.2 XDM Model

The exchange hole (or Fermi hole, section 1.6.1) is expressed as follows:

hXσ(�r1, �r2) = − 1

ρσ(�r1)

∑
ij

ψiσ(�r1)ψjσ(�r1)ψiσ(�r2)ψjσ(�r2), (2.2.1)

where ρσ is the σ-spin density and ψiσ are occupied Hartree-Fock or Kohn-Sham

orbitals. They are assumed above to be real. This hole is a measure of depletion

of probability (with respect to the total σ-spin electron density, ρσ) of finding an

electron of spin σ at a point �r2 next to a reference electron of same spin σ at point

�r1. The probability of finding two coincident electrons of the same spin (i.e., �r1 = �r2)

is absolutely extinguished as imposed by the Pauli exclusion principle, i.e.,

hXσ(�r2 = �r1) = −ρσ(�r1). (2.2.2)

The exchange hole is always negative and always contains one electron. The shape of

this hole is a function of �r2 and also depends on the position of the reference electron

�r1, i.e., it “follows” the reference electron. This hole is not spherically symmetric
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around �r1 unless �r1 is at the center of a system with spherically symmetric total

density. Thus the electron plus its hole have a position-dependent dipole moment

even though the electron-hole combination is neutral overall. The �r1-dependent dipole

moment is obtained by integrating the exchange-hole expression over �r2:

dXσ =

[
1

ρσ(�r1)

∑
ij

�rijσψiσ(�r1)ψjσ(�r1)

]
− (�r1) (2.2.3)

�rijσ =

∫
�r2ψiσ(�r2)ψjσ(�r2)d

3�r2. (2.2.4)

Figure 2.1 is an illustration of an electron (e−) in a spherical atom, the mean position

of its hole (h+) and the instantaneous dipole moment of the electron and its exchange

hole (dXσ) pointing towards the nucleus of the atom. The electron is at a distance

r from the nucleus and at a solid angle Ω. The mean position of the hole is at a

distance r− dXσ from the nucleus and at the same solid angle Ω. This is a simplified

illustration because the hole is represented as a point located at the mean position of

the hole.

This two-point (electron and hole) picture also generates higher order multipole mo-

ments Mlσ, with respect to the nucleus as origin:

Mlσ = −[rl − (r − dXσ)
l]. (2.2.5)

Higher multipole moments are also at a solid angle Ω. It is possible to define higher

order multipole moments from the two-point picture (Figure 2.1) because the only

variable required to calculate these multipole moments (2.2.5) is the magnitude of

the exchange-hole dipole moment dXσ. This ease in deriving higher order multipoles

provides the XDM model with a great advantage over all other competing methods.

With XDM, the van der Waals theory has two variants, orbital based, i.e., (2.2.3) and

(2.2.4), and density functional based. In the density-functional variant, dXσ can be
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Figure 2.1: A representation of an electron (e−) in a spherical atom, the mean position
of its hole (h+), and the dipole moment of the electron and its exchange hole (dXσ)
pointing towards the nucleus of the atom.

approximated using local densities and the Becke-Roussel (BR) exchange-hole model

[36]. The BR exchange-hole model is based on a hydrogenic atom reference system

instead of a uniform electron gas reference system. As represented in Figure 2.2, the

BR model places a normalized exponential function of the form − a3

8π
e−ar at a distance

b from an electron of spin σ.

Figure 2.2: A representation of an electron at position X and an exponential function
(hydrogenic hole) centered at a distance b from the reference electron.
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This model shown in Figure 2.2 is exact for a hydrogen atom, but is an approximation

for other systems. In the BR model the distance b (see Figure 2.2) is equal to dXσ

(see Figure 2.1).

2.3 Becke-Roussel Exchange-Hole Model

The expression for the distance b (see Figure 2.2) is derived from the BR model as

follows: in the BR model, an exponential function of the form −Ae−ar is placed at a

distance b from a reference point (X in Figure 2.2). A is determined by normalizing

the model hole to a unit charge. A is thus given by

A =
a3

8π
(2.3.1)

The unknowns a and b are determined by equating Taylor expansions of the model

hole and the exact hole. The Taylor expansion of the spherically averaged hydrogenic

BR model hole around the reference point �r is:

hBR
Xσ(�r, s) = −Ae−x − Aa2

6

(
1− 2

x

)
e−xs2 + . . . , (2.3.2)

where x = ab. The Taylor expansion of the exact exchange hole is:

hexact
Xσ

(�r, s) = −ρσ − 1

6

(
�2 ρσ − 2τσ +

1

2

(�ρσ)
2

ρσ

)
s2 + . . . , (2.3.3)

where τσ is twice the positive definite kinetic energy density:

τσ =
∑
i

(�ψiσ)
2. (2.3.4)
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Comparing the first terms of (2.3.2) and (2.3.3), and using (2.3.1), gives the following

relationship:

ρσ = Ae−x =
a3

8π
e−x (2.3.5)

Comparing the second terms of (2.3.2) and (2.3.3) and using (2.3.5) gives the following

relationship:

Qσ =
ρσ
6b

(a2b− 2a) (2.3.6)

where

Qσ =
1

6

(
�2 ρσ − 2τσ +

1

2

(�ρσ)
2

ρσ

)
(2.3.7)

Solution for (2.3.5) and (2.3.6) is obtained by solving the following nonlinear equation

(using the Newton-Raphson method):

xe−2x/3

x− 2
=

2

3
π2/3ρ

5/3
σ

Qσ

, (2.3.8)

and then

b3 =
x3e−x

8πρσ
(2.3.9)

is the equation used to determine b.

2.4 Dispersion Interactions between Free Atoms

As mentioned in section 2.2, the approximate model of the electron and its hole is

important for generating dipole and higher order moments.

Figure 2.3 shows a spherically symmetric atom A placed at a large distance R from

another spherically symmetric atom B. An electron at position �rA in atom A will

generate multipole moments with respect to the nucleus A. These multipole moments

are directed along �rA towards the nucleus, and they are evaluated according to (2.2.5).

Similarly, an electron B at position �rB in atom B will generate multipole moments with
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Figure 2.3: Interaction between two spherically symmetric atoms through multipole
moments of an electron and its exchange hole in each of the atoms.

respect to the nucleus B directed along �rB. The multipole moments of the electron

and its hole at position �rA interact with the multipole moments of the electron and

its hole at position �rB, and create a multipole-multipole interaction between atoms

A and B. This interaction, denoted as VAB(�rA, �rB) in Figure 2.3, is given by

VAB(�rA, �rB) =VdipoleA−dipoleB + VdipoleA−quadrupoleB + VquadrupoleA−dipoleB

+ VdipoleA−octopoleB + VoctopoleA−dipoleB + VquadrupoleA−quadrupoleB + . . . .

(2.4.1)

The dispersion energy is derived using second-order ground-state perturbation theory

in the “closure” or Unsöld approximation [2]. If the first-order ground-state energy

correction is zero:

E(1) =< Vpert >= 0, (2.4.2)

then the second-order energy correction is approximately equal to:

E(2) = −< V 2
pert >

ΔEav

, (2.4.3)

where < V 2
pert > is the expectation value in the ground state, and ΔEav is an average

excitation energy. The expectation value < V 2
pert > can be evaluated by squaring

27



the multipole-multipole interaction VAB(�rA, �rB) (see (2.4.1) and Figure 2.3), then by

integrating over all points �rA in atom A and all points �rB in atom B and weighted

by the atomic spin densities. This is a “semiclassical” calculation of the expectation

value because the dispersion energy is evaluated classically with multipole-multipole

interactions, but the dipole moment of the exchange hole is a quantum effect.

The dispersion coefficients in

Edisp = −C6

R6
− C8

R8
− C10

R10
− . . . , (2.4.4)

are obtained when evaluating the expectation value < V 2
pert >. These coefficients are

given by

C6 =
2

3

< M2
1 >A< M2

1 >B

ΔEav

, (2.4.5)

C8 =
< M2

1 >A< M2
2 >B + < M2

2 >A< M2
1 >B

ΔEav

, (2.4.6)

and

C10 =
4

3

< M2
1 >A< M2

3 >B + < M2
3 >A< M2

1 >B

ΔEav

+
14

5

< M2
2 >A< M2

2 >B

ΔEav

. (2.4.7)

The atomic moment integrals, < M2
l >, are given by

< M2
l >=

∑
σ

∫
ρσ(�r)[r

l − (r − dXσ)
l]2d3�r. (2.4.8)

The average excitation energy, ΔEav, is assumed to be the sum of average excitation

energies of the atoms in the system. In this case

ΔEav = ΔEA +ΔEB, (2.4.9)
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where ΔE of each atom is given by

ΔE =
2

3

< M2
1 >

α
, (2.4.10)

where α is the atomic dipole polarizability. Equation (2.4.10) is derived from second-

order perturbation theory applied on individual atoms [66].

XDM is a nonempirical model for dispersion interactions depending only on atomic

polarizabilities obtained from [105] and moment integrations. The dispersion coeffi-

cients evaluated using equations (2.4.5), (2.4.6) and (2.4.7) are in good agreement with

ab initio reference data [106, 107, 108]. The mean absolute percent errors (MAPEs)

for 21 pairs of the atoms H, He, Ne, Ar, Kr, Xe are 3.4%, 21.5% and 21.5% for C6,

C8 and C10, respectively [66].

2.5 Dispersion Interactions between Atoms in

Molecules

The same concepts used for dispersion interactions between free atoms also apply

to dispersion interactions between atoms in molecules. The Hirshfeld partitioning

scheme [109] is used to partition the space of a molecular system into atomic compo-

nents. Hirshfeld weight functions are defined by

wi(�r) =
ρati (�r)∑
n ρ

at
n (�r)

, (2.5.1)

where ρati is the spherical free atomic density of each atom i and the n summation is

over all atoms in the molecular system. The sum of the weight functions at any point
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�r over all atoms adds up to one:

∑
i

wi(�r) = 1, (2.5.2)

The weight function wi(�r) approaches one at points near nucleus i and approaches

zero everywhere else. The moment integration < M2
l >i is partitioned as follows:

< M2
l >i=

∑
σ

∫
wi(�r)ρσ(�r)[r

l − (r − dXσ)
l]2d3�r. (2.5.3)

The effective atom-in-molecule polarizability αi needed in (2.4.10) is given by

αi =
< r3 >i

< r3 >i,free

αi,free, (2.5.4)

where < r3 >i is an effective volume integration for an atom in a molecule given by

< r3 >i=

∫
r3wi(�r)ρ(�r)d

3�r, (2.5.5)

and < r3 >i,free is an effective volume integration for a free atom given by

< r3 >i,free=

∫
r3ρi,free(�r)d

3�r. (2.5.6)

It is possible to express polarizabilities in terms of volumes due to the well-established

qualitative relationship between these two quantities [110, 111, 112]. Thus, for each

atom in a molecule, the effective “atomic” excitation energy is given by

ΔEi =
2

3

< M2
l >i

αi

(2.5.7)

Assuming that each of the three intermolecular dispersion coefficients (Cm, m= 6, 8,
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10) is a sum of interatomic dispersion coefficients, Cm is thus given by

Cm =
A∑
i

B∑
j

Cm,ij, (2.5.8)

Where i denotes an atom in molecule A and j denotes an atom in molecule B. There-

fore, using (2.5.7) and substituting A with i and B with j, equations (2.4.5), (2.4.6)

and (2.4.7) can now be rewritten as:

C6,ij =
αiαj < M2

1 >i< M2
1 >j

< M2
1 >i αj+ < M2

1 >j αi

, (2.5.9)

C8,ij =
3

2

αiαj

(
< M2

1 >i< M2
2 >j + < M2

2 >i< M2
1 >j

)
< M2

1 >i αj+ < M2
1 >j αi

, (2.5.10)

C10,ij =2
αiαj

(
< M2

1 >i< M2
3 >j + < M2

3 >i< M2
1 >j

)
< M2

1 >i αj+ < M2
1 >j αi

+
21

5

αiαj < M2
2 >i< M2

2 >j

< M2
1 >i αj+ < M2

1 >j αi

. (2.5.11)

MAPEs of C6, C8 and C10 in atom-molecule and molecule-molecule pairs are 12.7%,

16.5% and 21.2%, respectively [113]. Test sets are detailed in [113] and reference data

was obtained from [106, 108, 114].

2.6 Dispersion Energy Formula

The asymptotic inter and intra-molecular dispersion energy has the following general

form:

Edisp = −
∑
i>j

(
C6,ij

R6
ij

+
C8,ij

R8
ij

+
C10,ij

R10
ij

)
, (2.6.1)

where Rij is the distance between nuclei i and j. Equation (2.6.1) captures the proper

physics at long range (as shown in Fig 2.4), but it diverges as Rij � 0. Therefore, the
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terms of this asymptotic series need to be cut off at small Rij by a damping function

[56, 68, 115, 116]. The damped dispersion energy formula in XDM is given by

Edisp = −
∑
i>j

(
C6,ij

R6
vdW,ij +R6

ij

+
C8,ij

R8
vdW,ij +R8

ij

+
C10,ij

R10
vdW,ij +R10

ij

)
, (2.6.2)

where RvdW,ij is an effective van der Waals separation that linearly depends on a

critical radius Rc,ij:

RvdW,ij = a1Rc,ij + a2, (2.6.3)

where a1 and a2 are two universal fit parameters, and the critical radius Rc,ij is the

separation at which the Cm

Rm (m= 6, 8, 10) terms have roughly the same value:

C6,ij

R6
c,ij

≈ C8,ij

R8
c,ij

≈ C10,ij

R10
c,ij

. (2.6.4)

Figure 2.4: Dispersion energy from C6, C8 and C10 terms as a function of internuclear
distance in the neon dimer

Figure 2.4 illustrates the equal contribution of the C6, C8 and C10 terms to the

dispersion energy of the neon dimer at a specific internuclear distance (∼2.1 Å in this
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case) called the critical radius.

Solving for Rc,ij, three solutions are available. Rc,ij is chosen as the average of the

three solutions:

Rc,ij =

(
C8,ij

C6,ij

)1/2

+

(
C10,ij

C6,ij

)1/4

+

(
C10,ij

C8,ij

)1/2

3
. (2.6.5)

The optimal values of the universal parameters, a1 and a2 in (7.2.3), were determined

in [65] to be 0.83 and 1.55 Å, respectively [65]. These values were determined by

minimizing the root mean square percent error of binding energies for 45 complexes.

The MAPE of the energies calculated using the post-HF scheme, Etotal = EHF
X +

EBR
C + EXDM

disp , is 14.1%. In this scheme EHF
X is the HF exchange energy, EBR

C is the

dynamical correlation functional of Becke and Roussel [117] and EXDM
disp is the XDM

dispersion energy. The binding energies obtained from this functional were twice as

good as those obtained from MP2 theory [14, 65].

The average contribution of each term to the total dispersion energy of the 45 com-

plexes at their equilibrium geometry is roughly 60 %, 30 % and 10 % for C6, C8 and

C10, respectively. This indicates that higher order terms should not be neglected as

their contribution to total dispersion energies is significant.
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Chapter 3

Benchmark Study of Basis Sets

Used for Computing Binding and

Repulsive Energies of

Weakly-Bound Systems

3.1 Abstract

In the previous chapter, the XDM model, which captures dispersion interactions in

the DFT framework, was introduced. The next chapter presents how XDM was used

in the development of a nonempirical GGA functional that accurately captures van

der Waals interactions. The exchange-correlation part of this functional is computed

self consistently with the basis-set-dependent program, G09 [118]. The purpose of

the study presented in this chapter is to assess the ability of a variety of basis sets to

reproduce accurate exchange-correlation energies in rare-gas diatomics. This chapter

covers a detailed introduction about basis sets and their characteristics. The intro-

duction is followed by a quantitative assessment of basis sets on the repulsive energies
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of weakly-bound rare-gas diatomcs. In this study, the counterpoise correction and the

grid size on the binding energies of ten rare-gas diatomic systems are also tested.

3.2 Introduction

A basis set is a set of functions used to describe molecular orbitals. Molecular orbitals

φ are built from a linear combination of the atomic orbitals χ (LCAO) as follows:

φ =
n∑
i

ciχi, (3.2.1)

where ci is a coefficient that determines the weight of the contribution of χ to the

molecular orbital φ.

The LCAO formulation was proposed by Roothaan in 1951 to solve the SCF procedure

for each one electron equation [119]. The advantage of the LCAO approach is that

it converts the 3D, multicenter, differential Schrödinger equation to a generalized

eigenvalue problem, namely the secular equation.

Slater-type orbitals (STO) are good representations of atomic orbitals. STO are given

by

Nrn−1e−ζrYlm(θ, φ). (3.2.2)

where N is the normalization constant, n is the principle quantum number of the or-

bital, ζ is the orbital exponent which is related to the effective charge of the nucleus,

r is the distance from the electron to the atomic nucleus and Ylm(θ, φ) is the angular

part of the nucleus.

STOs have a cusp at the nucleus as depicted in Figure 3.1. This cusp is problem-

atic in evaluating integrals within the Coulomb and exchange-correlation potentials

mentioned in section 1.5. Pople and coworkers solved this problem in 1969 by replac-

ing STOs with Gaussian type orbitals (GTOs) [120, 121, 122]. GTOs are Gaussian
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continuous functions with no cusps as they are exponential functions given by

χGTO = Nxiyjzke−αr
2

, (3.2.3)

where N is a normalization factor; α is the exponent of the function, and the sum l

of i, j and k determines the angular momentum. α determines how diffuse the GTO

is (when α is small) or how compact the GTO is is (at large values of α). Figure 3.1

depicts one STO and three GTOs with different values of α.

Figure 3.1: A plot of the Slater type orbital with the cusp, and three Gaussian type
orbitals with different values of α.

The linear combination of multiple Gaussian functions (or primitives, gp) forms one

basis function χi, or equivalently, a contracted Gaussian type orbital (CGTO) given

by

CGTO =
∑
p

dpgp = χi (3.2.4)

The contribution of each primitive gp to the basis function χi is determined by the

contraction coefficient dp. A minimal basis set is built from a minimal number of basis

functions necessary to define each electron in a system. For example, STO-3G is a
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minimal basis set where 3 primitives are contracted to form each STO basis function.

When an atom forms a chemical bond it undergoes deformations to adapt itself to

the molecular environment. Therefore, an “extended basis set” is needed to allow

radial and angular flexibilities [2].

The radial flexibility allows contraction or expansion of the atomic orbital. Expanded

atomic orbitals are mandatory for systems with a diffuse electron density as in anions

and hydrogen-bonded complexes. The radial flexibility can be introduced by replacing

each basis function of a minimal basis set by two (double zeta (DZ) basis set [123]),

three (triple zeta (TZ) basis set) or n basis functions (n zeta basis set). Thus, the

minimal basis set becomes a split valence basis set.

The angular flexibility is needed to account for the shape-distortion (polarization)

of the atom. Angular flexibility is introduced by adding one or more polarization

functions. A polarization function is a basis function that has an angular momentum

l one order higher than the highest angular momentum in a minimal basis set. For

example, p is the highest angular momentum in the minimal basis set of a carbon

atom. Adding a polarization function on the carbon atom is equivalent to adding a

set of d -orbitals.

3.3 Pople Basis Sets

Pople basis sets are denoted by A-XYZG. For example 6-311G means that the core

and the valence electrons are considered separately. The number before the dash

represents the number of the contracted primitives (six in this case) for each core

electron. If there are three numbers after the dash, the basis set is triple zeta split-

valence basis set. If there are two numbers after the dash, the basis set is a double

zeta basis set [123]. The value of each number after the dash represents the number

of primitives contracted to form each basis function.
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Polarization functions can be added to Pople basis sets. They are denoted by a an

asterisk *. In the double asterisks ** notation, the first asterisk is for heavy atoms and

the second asterisk is for hydrogen atoms. Polarization functions can also be written

explicitly. For example, 6-311G(d,p) is equivalent to 6-311G**. In this particular

basis set, a set of d functions is added on the heavy atoms and a set of p functions

is added on H atoms. It is possible to add more than one polarization function per

atom to describe its distortion in the molecular bond more precisely. For example,

the largest Pople basis set available is 6-311G++(3df,3pd), where three sets of d

functions with one set of f functions are added on the heavy atoms, and three sets of

p functions with one set of d functions are added on H atoms.

Diffuse functions can also be added to Pople basis sets. The are denoted by “++”.

The first + is for the heavy atoms and the second + is for the hydrogen atoms.

3.4 Dunning Basis Sets

In 1989, Dunning built basis sets that capture correlation effects (in MPn, CI, CC)

in a consistent fashion [124]. “Dunning” basis sets give more reliable results than

Pople basis sets because they have ∼six times more contracted Gaussian functions

[125, 126, 127, 128]. In Dunning basis sets, basis functions that contribute the same

amount of correlation energy are grouped together. Dunning basis sets are denoted

by cc-pVXZ (correlation consistent, polarized valence X zeta), X can be double (D),

triple (T), quadruple (Q), quintuple (5) and even sextuple (6) [129]. In aug-cc-pVXZ,

“aug” stands for augmented, i.e., diffuse functions. The cc-pVDZ has 3s2p1d basis

functions for first row elements of the periodic table. The cc-pVTZ has 4s3p2d1f

orbitals for first row elements.
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3.5 Polarization Consistent Basis Sets

“Polarization consistent” (pc) basis sets were proposed by Jensen in 2001 [130]. In

analogy to Dunning basis sets, pc basis sets are built so that the basis functions,

which contribute the same amount of energy, are grouped together. The pc basis sets

were designed based on the importance of the polarization functions to the energy.

Calculations using pc basis sets are faster than calculations using cc Dunning basis

sets [130]. Polarization consistent basis sets are denoted by pc-x where x can be 0,

1, 2, 3 or 4. A pc-2 basis set is equivalent to a triple zeta (not DZ) Dunning basis

set. The basis sets pc-0, pc-1, pc-2, pc-3 and pc-4 have 3s, 4s1p, 6s2p1d, 9s4p2d1f

and 11s6p4d2f1g basis functions, respectively. Diffuse functions are also denoted by

“aug”, e.g., aug-pc2.

3.6 Basis Set Superposition Error and

Counterpoise Correction

To calculate the binding energy of a reaction A+ B � AB, energies of reactants EA

and EB should be computed using the same basis set used to compute the energy of

the product EAB. The binding energy is then calculated as follows:

EBinding = EAB − EA − EB. (3.6.1)

EA and EB in (3.6.1) are understabilized compared to EAB. This is because the

reactant A has basis functions only for one atom A. Similarly, the reactant B has

basis functions only for one atom B. However, the product AB has basis functions for

two atoms A and B. This means the electrons in AB have more flexibility than the

electrons in A or in B. This is known as the “basis set superposition error” (BSSE).

To avoid this problem, a dummy atom X can be placed next to A to form an AX
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molecule. Similarly, a dummy atom is placed next to B to form a BX molecule.

Dummy atoms are added to allow the addition of basis functions. This way, the

electrons in AX and the electrons in BX have the same flexibility as the electrons in

AB. This correction is known as the “counterpoise” (CP) correction [131].

3.7 Grids in DFT

The integrals in the exchange-correlation potential in DFT functionals (GGA, and

meta-GGA) are too complicated to be solved analytically. Therefore, the integrals

of the exchange-correlation potential have to be evaluated numerically [132]. The

orientation of the angular grids has to be defined so that the energy is independent

of the molecule rotation. Fine grids are needed to get reliable results and smooth

potential energy curves [50]. Ultrafine grids are sometimes necessary because a minor

deviation in the gradient of energy is sufficient to get wrong frequencies as the error

is amplified by taking second derivatives.

Grids are denoted by xxx*yyy, where xxx is the number of radial shells surrounding

each nucleus and yyy is the number of angular points distributed evenly on each shell.

To compromise between computational cost and efficiency, the size of the mesh of

grids can be modified based on which region of the atom is covered. This technique

is called “grid pruning”. A smaller mesh is good only near the nucleus where the

electron density is more spherical; and at very large distances from the nucleus where

the electron density is irrelevant. Larger grids are necessary for regions in between

where the density is not spherical or irrelevant.
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3.8 Testing Basis Sets For Repulsive Energies of

vdW Complexes

The effect of basis sets on the repulsive energies of rare-gas diatomics is presented in

this section. The repulsive energies are calculated by computing single point energies

of each monomer separately. The energy of the complex is also calculated at the

experimental internuclear separations determined by Tang-Toennies [133]. In this

study, the correlation consistent Dunning basis sets [aug-cc-pVXZ (X=D, T and Q)]

and the polarization consistent basis sets by Jensen [aug-pc-n (n=0, 1, 2, 3)] were

tested. The calculations were performed using Gaussian 03 [134]; with and without

a counterpoise correction using several grids (default or 075302 pruned, ultrafine,

i.e., 99590, pruned and unpruned, 056302 unpruned, 100302 unpruned and 099590

unpruned).

Dunning basis sets employed in this study are implemented in Gaussian 03. However,

Jensen basis sets are not. They were obtained from the “Basis Set Exchange” website1

[135, 136]. Other basis sets, such as DGDZVP-G03, DZVP DFT orbital, Def2-QZVP,

Def2-SV-P and Def2TZVP, were also obtained from the same website.

3.8.1 Results and Discussion

The basis sets DGDZVP-G03, DZVP DFT orbital, Def2-QZVP, Def2-SV-P and

Def2TZVP were ignored for the rest of this study because they did not produce

good repulsive energies. Among the series of Dunning and Jensen basis sets tested,

only aug-cc-pVDZ, aug-cc-pVTZ, pc-1, pc-2 and pc-3 were chosen because, based on

our results, smaller basis sets were not reliable, and larger basis sets were very time

consuming.

The results of the tests are summarized by reporting the mean percent errors (MPEs),

1https://bse.pnl.gov/bse/portal
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the mean absolute percent errors (MAPEs) and the maximum absolute percent error

(MaxAPE) of the binding energies of the ten rare-gas dimers He2, He-Ne, He-Ar,

He-Kr, Ne2, Ne-Ar, Ne-Kr, Ar2, Ar-Kr, Kr2.

First, repulsive energies from the exchange GGA functional PW86 were compared to

the exact HF repulsive energies computed on the basis-set free NUMOL program [137,

138]. The reference exact HF repulsive energies are obtained from [30]. The GGA

exchange functional PW86 was chosen because it reproduces the exact HF exchange

energies most accurately as addressed by Lacks and Gordon [27], Kannemann and

Becke [30] and Murray, Lee, and Langreth [31].

Second, the exchange-correlation energies, calculated with the GGA functionals PW86

+PBE, were compared to reference energies calculated at the same level of theory with

large basis sets, aug-pc-3 and aug-cc-pVQZ. The reference energies were computed

using the 200590 unpruned grid without CP correction.

3.8.2 Comparison of PW86 and HF Repulsive Energies

The PW86 repulsive energies calculated with aug-cc-pVTZ and aug-cc-pVDZ with

and without counterpoise (CP) correction using the unpruned grid 200590 are com-

pared to the numerical HF energies and the PW86 energies computed using aug-cc-

pV5Z with counterpoise correction obtained from [30]. The results are reported in

Table 3.1 and Figure 3.2.

The PW86 repulsive energies computed with aug-cc-pVTZ without CP are much

similar to the PW86 repulsive energies computed with aug-cc-pV5Z with CP. The

MAPEs compared to the numerical HF repulsion energies are only 10% and 13%

with quintuple and triple zeta basis sets, respectively. Without CP correction, triple

zeta basis produces better repulsive energies than the double zeta basis set. CP

corrections with the double zeta basis set significantly improve the repulsive energies

42



Table 3.1: Repulsion energies (in μH) of ten rare-gas diatomics.

HF PW86 PW86 PW86
numerical aug-cc-pV5Z/CP aug-cc-pVTZ (CP) aug-cc-pVDZ (CP)

He2 28 29 34 (36) 28 (38)
He-Ne 47 52 41 (51) 13 (40)
He-Ar 85 87 96 (101) 76 (105)
He-Kr 103 98 104 (112) 88 (116)
Ne2 96 117 114 (135) 19 (80)
Ne-Ar 190 198 196 (211) 117 (182)
Ne-Kr 227 219 206 (222) 136 (200)
Ar2 435 503 519 (537) 482 (573)
Ar-Kr 538 626 632 (655) 621 (711)
Kr2 674 796 786 (818) 807 (897)
MPE 8 9 (18) -21 (12)
MAPE 10 13 (19) 30 (22)
MaxAPE 22 21 (41) 80 (36)

of diatomics which include the Ne atom. The conclusion from this section is that aug-

cc-pVTZ without CP has virtually the same accuracy in repulsion energies obtained

with aug-cc-pV5Z with CP, thus it is very reliable.

Figure 3.2: Repulsive energies of ten rare-gas diatomic systems with numerical HF
(solid line) and with PW86 using different basis sets.
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The Effect of the Grid Size on the PW86 Energies

The statistical results, with and without CP correction, for the exchange energies

calculated with PW86 are listed in Table 3.2. From this table, it is observed that the

three grids are equivalent when PW86 repulsive energies of the ten rare-gas dimers

are computed.

Table 3.2: Statistical analysis of the PW86 repulsive energies using multiple basis sets
and grid sizes with and without counterpoise correction. P and U stand for pruned
and unpruned, respectively.

Without CP Correction With CP Correction
Basis Set Grid MPE MAPE MaxAPE MPE MAPE MaxAPE

aug-cc-pVDZ Default -30 33 70 11 22 34
Ultrafine P -22 31 81 12 22 35
Ultrafine U -22 31 82 11 22 35
200590 U -21 30 81 12 22 34

aug-cc-pVTZ Default -2 11 32 17 17 29
Ultrafine P 8 13 21 18 18 38
Ultrafine U 8 13 21 18 18 38
200590 U 9 13 20 18 18 40

aug-pc-1 Default -49 57 176 25 35 69
Ultrafine P -55 79 228 26 33 79
Ultrafine U -55 79 229 26 33 79
200590 U -54 79 227 27 33 78

aug-pc-2 Default -12 12 24 36 36 67
Ultrafine P -1 5 12 38 38 70
Ultrafine U -1 5 13 38 38 70
200590 U 0 4 10 39 39 72

aug-pc-3 Default -7 11 27 8 9 20
Ultrafine P 6 6 16 10 10 19
Ultrafine U 6 6 16 10 10 18
200590 U 7 7 16 10 10 21

In case of non-CP-corrected energies, repulsive energies obtained with the double zeta

Dunning basis set are much more reliable than repulsive energies obtained with the

equivalent Jensen double zeta basis set. This observation, however, is not valid with

triple zeta basis sets. The Jensen triple zeta basis set gives slightly better statistics
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than the Dunning triple zeta basis set. However, there are two major drawbacks

associated with using the Jensen triple zeta basis set, aug-pc-2 basis. First, it is not

applicable to all atoms, e.g., the Kr atom. In this study, dimers involving the Kr

atom were not included when this particular basis set was used. Second, it is not

readily available in the Gaussian package.

With Dunning basis sets, larger grids do not improve the MAPEs. However, with

pc basis sets, larger grids reduce the MAPEs and the MaxAPEs by a factor of ∼2.

Therefore, when no CP corrections are included, default grid can be used with cc

basis sets, while ultrafine pruned grids are recommended with the pc basis sets.

3.8.3 The Effect of the Grid Size on the PW86+PBE

Energies in vdW Complexes

In this section, exchange-correlation energies computed with PW86 and PBE are

compared to exchange-correlation energies obtained from PW86+PBE with large

quadrupole zeta basis sets, aug-pc-3 and aug-cc-pVQZ. Statistical analysis for the

PW86+PBE energies are listed in Table 3.3.

From Table 3.3, it is deduced that increasing the number of angular points increases

the computational cost without improving the statistical data. However, increasing

the number radial shells drastically improves the statistical data. This is clear when

e.g. results from the 056302 grid are compared to those from the 100302 grid.

Correlation consistent basis sets, especially aug-cc-pVTZ, obviously give better MAPEs

than polarization consistent basis sets when exchange-correlation energies are calcu-

lated without CP correction. Thus the use of the aug-cc-pVTZ basis set is recom-

mended for computing accurate PW86+PBE energies.
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Table 3.3: Statistical analysis of the PW86+PBE energies using multiple basis sets
and grid sizes with and without counterpoise correction.

Witout CP Correction With CP Correction
Basis Set Grid MPE MAPE MaxAPE MPE MAPE MaxAPE

aug-cc-pVDZ 056302 U -324.70 397 1752 97.29 104 376
100302 U -174.54 183 683 100.42 102 383
099590 U -177.13 185 672 100.54 102 397

aug-cc-pVTZ 056302 U -176.52 259 1129 87.19 87 329
100302 U -16.52 29 130 89.92 90 343
099590 U -21.72 32 137 89.71 90 355

aug-pc-1 056302 U -921.36 1003 3146 117.37 136 242
100302 U -800.41 803 2884 119.82 124 194
099590 U -808.73 811 2896 118.85 123 193

aug-pc-2 056302 U -343.36 709 3146 185.89 161 466
100302 U -250.51 251 682 189.08 189 481
099590 U -257.24 257 689 186.47 186 472

3.9 Conclusions

Double and triple zeta Dunning basis sets are the most reliable basis sets to use

for computing repulsive and binding energies in rare-gas diatomics. Under certain

conditions, polarization consistent basis sets give slightly better statistical values than

correlation consistent basis sets. However, the differences are not worth importing

the basis set from an external reference. In addition, pc basis sets are not available

for all atoms. Therefore, for the next study presented in the following chapter, double

and triple zeta Dunning basis sets will be used with the unpruned 200590 grid. The

counterpoise correction for the basis set superposition error is impractical and thus

will not be used in the following studies.
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Chapter 4

Assessment of the

PW86+PBE+XDM Density

Functional on van der Waals

Complexes at Equilibrium

Geometries

A. D. Becke, A. A. Arabi, and F. O. Kannemann, Can. J. Chem. 88, 1057, (2010).

Permission is granted from NRC Research Press.

4.1 Abstract

The purpose of this chapter is to describe a new nonempirical GGA functional which

can accurately capture interactions weaker than hydrogen-bonding, e.g., dispersion

interactions. The basis set study assessed (in Chapter 3) is considered in the devel-

opment of this nonempirical functional. The functional developed is a sum of three
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terms: PW86 functional for exchange energy [26], PBE functional for correlation

energy [28] and XDM model for dispersion energy [65, 66, 113]. This choice of the

PW86+PBE+XDM functionals comprises a nonempirical density-functional theory

of high accuracy for thermochemistry and van der Waals complexes, as demonstrated

by Kannemann and Becke [74]. In [74], Kannemann and Becke tested the functional

with self-consistent LDA orbitals using the basis-set-free NUMOL code [137, 138]. In

this study, the functional is tested with self-consistent GGA orbitals obtained from

the basis-set dependent G09 package [118].

4.2 Introduction

The accuracy of functionals that capture weak interactions is greatly dependent on

the choice of the exchange functional [29], especially at the limit of large reduced

density gradient (sσ = |�ρ|
ρ4/3

). Comparing the available exchange functionals in the

literature to the HF exact exchange, PW86 and “B86b” (by Becke [24]) were reported

to reproduce the HF repulsive energies most accurately (with PW86 being slightly

superior to the B86b) [27, 29, 30, 31]. As demonstrated in the previous chapter, the

mean absolute percent error of the self-consistent PW86 with a triple zeta basis set

is 13% when compared to the numerical HF repulsive energies. Therefore, PW86

was used to account for the exchange energies. The PBE correlation functional was

chosen because it is a parameter free functional and performs well when combined

with PW86 and XDM [30, 74]. The XDM model was used [66, 139], also because it

is a nonempirical functional and is relatively simple compared to other models (as

discussed in Chapter 2). The nonempirical XDM model exploits non-sphericity of

the exchange hole around its reference point to generate C6, C8, and C10 interatomic

dispersion coefficients.

Kannemann and Becke tested the binding energy curves using PW86+PBE+XDM for
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ten rare gas diatomics [30] and 65 vdW complexes [74]. They demonstrated that this

functional reproduces excellent binding-energy curves. However, they computed the

post-LDA energies, i.e., they used the numerical program NUMOL, which computes

the exchange and correlation energies self-consistently with the LDA orbitals. Then,

by using a “post-LDA” code to extract the necessary information from the wavefunc-

tion files, dispersion energies are calculated and added to the exchange-correlation

energies. In this study, “post-GGA” binding-energy curves are assessed. This means

the exchange-correlation energies are computed self-consistently using the Gaussian

package, then the necessary data, e.g., dispersion coefficients, are extracted from the

wavefunction file to compute the dispersion energies. The “post-GGA” method has

advantages over the “post-LDA” method. With “post-GGA”, forces suitable for ge-

ometry optimization of intermolecular complexes can be obtained. However, forces

cannot be obtained from the NUMOL “post-LDA” method. Self-consistent NUMOL

GGA calculations are not yet feasible because NUMOL numerical grid noise in the

GGA exchange-correlation potential is too large for application to dispersion-bound

systems.

The total energy in this study is given by

EGGA
total = EPW86

X + EPBE
C + EXDM

Disp , (4.2.1)

where the exchange-correlation energy is calculated with G09 and the dispersion is

calculated using the post-GGA code.

4.3 Binding Energies of Intermolecular Complexes

Although XDM generates asymptotic dispersion coefficients without empirical fit pa-

rameters, two (universal) fit parameters are required in order to damp the dispersion

energy at small internuclear separations (as explained in Chapter 2). A brief review
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of the damped dispersion energy is presented in this section.

EXDM
disp = −1

2

∑
i �=j

(
C6,ij

R6
vdW,ij +R6

ij

+
C8,ij

R8
vdW,ij +R8

ij

+
C10,ij

R10
vdW,ij +R10

ij

)
(4.3.1)

with the dispersion coefficients C6,ij, C8,ij, C10,ij [66] and [64] given by (2.5.9), (2.5.10)

and (2.5.11) in section 2.5. The “Becke-Roussel”, BR, variant of XDM [64] is used as

the BR variant was found to be superior to the “exact exchange”, XX, variant [74].

The effective vdW interatomic separations, RvdW,ij, are linearly related to “critical”

interatomic separations Rc,ij by

RvdW,ij = a1Rc,ij + a2 (4.3.2)

with the critical separationRc,ij given by the average of (C8,ij/C6,ij)
1/2, (C10,ij/C6,ij)

1/4

and (C10,ij/C8,ij)
1/2. The two damping parameters, a1 and a2, were fit to benchmark

binding energies of 65 intermolecular complexes obtained from [74]. The reference

binding energies range from 0.022 kcal mol−1 (He2) to 20.65 kcal mol−1 (uracil dimer),

i.e., spanning three orders of magnitude.

The set of 65 complexes is listed in Table 4.1 along with their reference binding

energies. This set includes the ten rare-gas diatomics with reference data from Tang

and Toennies [133], 21 complexes from the test set of Johnson and Becke [65], the

22 complexes of the “S22” biochemical benchmark set of Jurecka et al. [140], and

12 complexes from Zhao and Truhlar [141, 142]. Cartesian coordinate files of all the

complexes and their monomers are available as supplementary data to [74].

With the “post-GGA” approach, self-consistent PW86+PBE orbitals were computed

with G09 using aug-cc-pVDZ and aug-cc-pVTZ basis sets, without CP corrections,

and an unpruned grid size of 200 radial x 590 angular points as motivated in Chapter 3.

The XDM dispersion energy was then computed non-self-consistently by an interface

program, “post-G09”, [143] that reads G09 orbital information from “wfn” files. As
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supported by Kong et al. [144], ignoring self-consistency in the EXDM
disp term is of

negligible consequence since the dispersion energy is a very small fraction of the total

energy.

The binding energies are calculated using (4.2.1). Binding energies calculated numer-

ically [74], with a double zeta, and with a triple zeta are listed in Table 4.1. Binding

energies calculated in this study using Dunning basis sets are quite similar to those of

the numerical post-LDA method by Kannemann and Becke [74]. The present mean

absolute percent errors (MAPEs) with the aug-cc-pVDZ and aug-cc-pVTZ basis sets

are 16.6 % and 11.5 %, respectively. MAPE using the numerical method is 12.6 %

[74]. Best-fit values (minimum RMS percent error) of the damping parameters are

a1=0.80 , a2=1.49 Å (SCF aug-cc-pVDZ)

a1=0.79 , a2=1.36 Å (SCF aug-cc-pVTZ)

a1=0.82 , a2=1.16 Å (numerical post-LDA [74]).

The damping parameters, especially a1, are similar for the basis-set and the numerical

results. The quality of the double-zeta results, though not as good overall as triple-

zeta, is pleasantly surprising. Even the rare-gas diatomic binding energies involving

Ne are in good agreement with reference data, despite the notably poor repulsion

energies discussed in Chapter 3. The under-repulsive tendency of the DZ basis set

compared to TZ (see Table 3.1) is apparently compensated by a slightly larger best-fit

a2 parameter. The only significant qualitative failure of the double-zeta method is

the parallel benzene dimer (the last entry in Table 4.1), for which only one third of

the reference binding energy is obtained. This failure is not observed in the numerical

or triple-zeta results.
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Table 4.1: Binding energies (in kcal mol−1) of vdW intermolecular complexes.

Complex Data Seta Referenceb Numericalc TZd DZe

(post-LDA) (post-GGA)

He-He TT 0.022 0.018 0.021 0.015
He-Ne TT 0.041 0.048 0.051 0.050
He-Ar TT 0.059 0.059 0.058 0.052
He-Kr TT 0.063 0.065 0.064 0.055
Ne-Ne TT 0.084 0.100 0.088 0.097
Ne-Ar TT 0.132 0.143 0.133 0.132
Ne-Kr TT 0.141 0.164 0.154 0.148
Ar-Ar TT 0.285 0.255 0.245 0.217
Ar-Kr TT 0.333 0.311 0.302 0.256
Kr-Kr TT 0.400 0.381 0.378 0.311
He-N2 L shaped JB 0.053 0.040 0.046 0.035
He-N2 T shaped JB 0.066 0.062 0.066 0.082
He-FCl JB 0.097 0.077 0.080 0.096
FCl-He JB 0.182 0.157 0.181 0.191
CH4-C2H4 JB 0.50 0.67 0.67 0.75
CF4-CF4 JB 0.78 0.70 0.76 0.82
SiH4-CH4 JB 0.81 0.88 0.90 1.13
CO2-CO2 JB 1.37 1.15 1.19 1.07
OCS-OCS JB 1.40 1.38 1.35 1.19
C10H8-C10H8 parallel JB 3.78 4.5 4.55 3.98
C10H8-C10H8 parallel crossed JB 5.28 5.85 5.92 5.28
C10H8-C10H8 T shaped JB 4.34 4.46 4.62 4.68
C10H8-C10H8 T shaped crossed JB 3.09 3.50 3.59 3.63
CH4-NH3 JB 0.73 0.97 0.96 1.12
SiH4-HF JB 0.73 0.62 0.62 0.91
CH4-HF JB 1.65 1.76 1.79 1.94
C2H4-HF JB 4.47 5.16 5.21 5.27
CH3F-CH3F JB 2.33 2.16 2.16 2.17
H2CO-H2CO JB 3.37 2.99 3.00 3.09
CH3CN-CH3CN JB 6.16 6.13 6.18 6.2
HCN-HF JB 7.30 7.71 7.83 7.91
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Complex Data Seta Referenceb Numericalc TZd DZe

(post-LDA) (post-GGA)

(NH3)2 [C2h] S22 3.17 3.24 3.23 3.29
(H2O)2 [Cs] S22 5.02 5.23 5.22 5.25
Formic acid dimer [C2h] S22 18.61 19.13 19.14 18.99
Formamide dimer [C2h] S22 15.96 16.09 16.08 16.20
Uracil dimer [C2h] S22 20.65 20.28 20.45 20.70
2-pyridoxine-2-aminopyridine
[C1]

S22 16.71 17.44 17.53 17.89

Adenine-thymine WC [C1] S22 16.37 16.68 16.89 17.17
(CH4)2 [D3d] S22 0.53 0.54 0.53 0.77
(C2H4)2 [D2d] S22 1.51 1.36 1.38 1.55
Benzene-CH4 [C3] S22 1.50 1.48 1.48 1.50
Benzene dimer parallel displaced
[C2h]

S22 2.73 2.63 2.64 2.63

Pyrazine dimer [Cs] S22 4.42 3.69 3.62 3.64
Uracil dimer stack [C2] S22 10.12 8.78 8.71 8.47
Indole-benzene stack [C1] S22 5.22 4.27 4.23 4.16
Adenine-thymine stack [C1] S22 12.23 10.07 9.96 9.82
Ethene-ethyne [C2v] S22 1.53 1.71 1.76 1.92
Benzene-H2O [Cs] S22 3.28 3.17 3.19 3.12
Benzene-NH3 [Cs] S22 2.35 2.22 2.24 2.24
Benzene-HCN [Cs] S22 4.46 4.15 4.30 4.26
Benzene dimer T shaped [C2v] S22 2.74 2.40 2.52 2.79
Indole-benzene T shaped [C1] S22 5.73 4.95 5.16 5.42
Phenol dimer [C1] S22 7.05 6.52 6.55 6.65
HF-HF ZT 4.57 4.91 4.86 4.90
NH3-H2O ZT 6.41 7.12 7.17 7.45
H2S-H2S ZT 1.66 2.02 2.25 2.35
HCl-HCl ZT 2.01 2.43 2.45 2.50
H2S-HCl ZT 3.35 4.43 4.53 4.76
CH3Cl-HCl ZT 3.55 4.06 4.08 4.16
HCN-CH3SH ZT 3.59 4.20 4.21 4.44
CH3SH-HCl ZT 4.16 6.14 6.22 6.59
CH4-Ne ZT 0.22 0.14 0.17 0.24
C6H6-Ne ZT 0.47 0.35 0.35 0.37
C2H2-C2H2 ZT 1.34 1.64 1.49 1.57
C6H6-C6H6 parallel ZT 1.81 1.49 1.50 0.56

a) Tang-Toennies (TT) [133], Johnson-Becke (JB) [65], S22 [140], Zhao-Truhlar (ZT)
[141, 142].
b) Reference binding energy from respective data set.
c) Numerical post-LDA binding energy from [74].
d) Present aug-cc-pVTZ post-GGA binding energy.
e) Present aug-cc-pVDZ post-GGA binding energy.
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Table 4.2: Statistical errors on the binding energies of the 65 vdW intermolecular
complexes.

Statistics Numericala TZ DZ
(post-LDA) (post-GGA)

MAEb(kcal mol−1) 0.33 0.34 0.39
MAPEc (%) 12.60 11.50 16.60
MaxAPEd (%) 47.6 49.5 69.1

a) Numerical post-LDA statitstics from [74].
b) MAE is mean absolute error.
c) MAPE is mean absolute percent error.
d) MaxAPE is maximum absolute percent error.

4.4 Conclusions

The PW86+PBE+XDM is a promising DFT for vdW complexes with a wide range

of binding energies from 0.022 kcal mol−1 for helium dimer to 20.65 kcal mol−1 in

uracil dimer. The mean absolute error on the 65 complexes is 0.34 kcal mol−1 (i.e.,

11.5 % error) with the augmented Dunning triple zeta basis set. The post-LDA

approach [30, 74], while useful for assessing the performance of density functionals

on energetics, cannot provide forces for optimization of geometries. In this study, a

methodology was tested with the promise to provide energies, and forces (as shall be

shown in a later chapter), at reasonable computational cost.
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Chapter 5

Assessment of the

PW86+PBE+XDM Density

Functional on van der Waals

Complexes at Non-Equilibrium

Geometries

Reprinted with permission from A. A. Arabi and A. D. Becke, J. Chem. Phys. 137,

014104, (2012). Copyright 2012, American Institute of Physics.

5.1 Abstract

As mentioned in the introductory chapter, the deficiency of conventional DFT in

properly describing van der Waals (especially dispersion-bound) complexes has been

extensively addressed in the past decade. There are now several new methods pub-

lished in the literature that are capable of accurately capturing weak dispersion inter-
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actions in complexes at equilibrium geometries. However, the performance of these

new methods at non-equilibrium geometries remains to be assessed. As mentioned

in the previous chapters, PW86+PBE+XDM for exchange + correlation + disper-

sion, respectively, is a highly accurate functional for general thermochemistry [74] and

vdW complexes at equilibrium geometries [145]. Here we show that this nonempirical

functional also performs well for vdW complexes at compressed and stretched inter-

monomer separations. The mean absolute relative error (MARE) is 9.4% overall for

vdW complexes in the “S22x5” database incorporating compressed and stretched ge-

ometries [146]. The largest MARE on the S22x5 database is 13.3% on the compressed

geometry set.

5.2 Introduction

Dispersion is a weak interaction resulting from a long-range electron correlation effect.

Conventional DFT methods (LDA, GGA, meta-GGA, or “hybrid functionals”) are

unable to describe van der Waals (vdW) interactions [55, 147]. Efforts have been

made in the past decade to properly describe dispersion interactions as they are

ubiquitous in materials sciences, biological systems and many chemical reactions.

Many attempts to capture dispersion are purely empirical; some are rigorously derived

from first principles. The former are conventional functionals with a large number of

empirical parameters, e.g., X3LYP [78] and M05-2X/M06-2X [148]. The latter are

physically derived, e.g., the vdW-DF nonlocal correlation functional of Langreth et

al. [93, 100], the local response dispersion (LRD) model of Sato and Nakai [62] and

the exchange-hole dipole moment (XDM) dispersion model of Becke and Johnson [64,

65, 66]. The functional PW86+PBE+XDM is a nonempirical GGA-based functional

of high accuracy for general thermochemistry (mean absolute error of atomization

energies of 222 molecules in the G3/99 data set is 10 kcal mol−1 [74]) and for inter -

as well as intra-molecular vdW interactions [66, 74, 145]. As shown in the previous
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chapter, the mean absolute error for the binding energies of 65 vdW complexes is

0.34 kcal mol−1 (MARE is 11.50%) when an augmented Dunning triple zeta basis set

is used [145]. This result is remarkably good as these 65 complexes include a wide

variety of complexes (H-bonded, dispersion-bound and mixed) with binding energies

spanning three orders of magnitude, from 0.022 kcal mol−1 (He dimer, the weakest

dispersion interaction possible) to 20.65 kcal mol−1 (uracil dimer) [13,14]. In addition,

this nonempirical method achieves high accuracy at a negligible computational cost.

The cost of the computation is basically from the GGA part, PW86+PBE, of the

functional. The XDM dispersion term is computed in a “post-GGA” manner.

This functional, like the majority of other vdW functionals in the literature, has been

tested on vdW complexes at equilibrium geometries. It is important, however, to con-

sider vdW interactions at non-equilibrium compressed and stretched intermonomer

separations. As pointed out by Molnar et al. [149] and Hobza et al. [146, 150],

accurate description of dispersion in complexes at non-equilibrium geometries is im-

portant. In graphite, for instance, dispersion plays a role not only between consecu-

tive graphene sheets, but non-consecutive sheets also [151]. In addition, in biological

macromolecules such as DNA, vdW interactions are not limited to consecutively-

stacked base pairs only.

The purpose of this study is to test the performance of the nonempirical vdW func-

tional PW86+PBE+XDM on vdW complexes at non-equilibrium geometries. The

database used for this study is the S22x5 set of Hobza et al. [146]. The S22x5 set

is an extension of the S22 benchmark set [140] where the 22 complexes are consid-

ered at five different intermonomer separations: equilibrium, compressed to 90%, and

stretched to 120%, 150% and 200% of the equilibrium separations.
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5.3 Method and Computational Details

The PW86+PBE+XDM functional is the focus of all calculations is this study. The

PW86+PBE exchange-correlation energy is calculated self-consistently using the G09

program [118]. After extracting orbital data from the wavefunction (wfn) file gen-

erated by G09, the XDM dispersion energy is calculated non-self-consistently in a

post-GGA manner. In other words, the XDM dispersion energy is added perturba-

tively to the PW86+PBE exchange-correlation energy. The perturbative addition of

dispersion to a conventional DFT functional has been shown to be a valid approxi-

mation [100, 144].

5.3.1 Choice of the Basis Set

As shown in Chapter 3, the Dunning triple zeta basis set, augmented with diffuse

functions, is a good basis set for computing binding energies of vdW complexes with

the PW86+PBE+XDM functional [145]. We used aug-cc-pVTZ with 200x590 atomic

grids and an SCF convergence criterion of 10−6 throughout.

5.3.2 Choice of the Damping Parameters

Damping functions are needed to prevent divergences in the dispersion energy at

small internuclear separations. In the XDM model, the damped dispersion energy is

given by [66]:

EXDM
disp = −1

2

∑
i �=j

(
C6,ij

R6
vdW,ij +R6

ij

+
C8,ij

R8
vdW,ij +R8

ij

+
C10,ij

R10
vdW,ij +R10

ij

)
, (5.3.1)

where RvdW,ij is linearly related to a “critical” internuclear separation Rc,ij by:

RvdW,ij = a1Rc,ij + a2, (5.3.2)
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and a1 and a2 are two universal fit parameters. The critical radius Rc,ij is the inter-

nuclear separation where the three dispersion terms are approximately equal:

C6,ij

R6
c,ij

≈ C8,ij

R8
c,ij

≈ C10,ij

R10
c,ij

. (5.3.3)

Rc,ij is taken to be the average of

(
C8,ij

C6,ij

)1/2

,

(
C10,ij

C6,ij

)1/4

and

(
C10,ij

C8,ij

)1/2

.

The damping parameters can be fit by minimizing the root mean square percent error

(RMSPE) of binding energies to suitable reference data. As presented in the previous

chapter, at equilibrium geometries, the damping parameters are reasonably transfer-

able regardless of the basis set used or whether the PW86+PBE part is calculated

with LDA or GGA orbitals (i.e., “post-LDA” versus “post-GGA”) [74, 145]. In this

study, the transferability of these parameters was examined using several databases

covering a wide variety of complexes at equilibrium and non-equilibrium separations.

The damping parameters a1 and a2 were fit to multiple sets; namely S22 [140], S22x5

[146] and to the 65 complexes from [74]. For the remainder of this chapter, the pa-

rameters will be referred to as the Fit22, Fit22x5 and Fit65 parameters. The S22 set

is a benchmark database of 22 vdW complexes of bio-organic type. It is a popular

database commonly used for parameterizing or validating new computational meth-

ods for weak interactions. The S22x5 set was recently introduced by Hobza’s group

[74] as well. It includes the 22 complexes of the S22 set, but at five different inter-

monomer separations (one compressed by a factor of 0.9 relative to the equilibrium

distance, one at equilibrium, and three stretched by factors of 1.2, 1.5 and 2.0). In

other words, the S22x5 database includes five points along the dissociation curve of

each complex. The set of 65 complexes used here was introduced by Kannemann and

Becke [74]. It includes a wide variety of vdW complexes (dispersion, H-bonded and

mixed complexes) with a wide range of binding energies (0.022 kcal mol−1 for He-He

through 20.65 kcal mol−1 for the uracil dimer). See [74] for the reference binding

59



energies and geometry files of these 65 complexes.

In this work, fits denoted by “S22” are not fit at the reference geometries reported

in [140], but rather at equilibrium geometries given by PW86+PBE+XDM. The

binding energies of each complex are computed at the five intermonomer separations

given in S22x5, then plot a potential energy curve for each complex. Using cubic

splines, the potential energy curves were then interpolated to determine the mini-

mum PW86+PBE+XDM binding energy. A similar interpolation scheme has been

employed in [152, 64, 65, 153].

5.3.3 Choice of Methods for Comparison Purposes

Our PW86+PBE+XDM method is compared to several others, some of which are

wavefunction theory (WFT) based and some density-functional theory (DFT) based.

Table 5.1: A list of selected DFT methods to be compared with our method
PW86+PBE+XDM.

DFT Methods Classification

TPSS/LPa Nonempirical meta-GGA
M06-2X/aDZb Empirical meta-GGA
BLYP-D/TZVP Pure GGA + Empirical D
PBE-D/TZVP Pure GGA + Empirical D
B2PLYP/TZVPP Double hybrid GGA
B2PLYP-D/TZVPP Double hybrid GGA + Empirical D

a) LP is largest Pople basis set: 6-311++G(3df,3pd).
b) aDZ is augmented Dunning double zeta basis set, aug-cc-pVDZ.

Table 5.1 lists the DFT methods for comparison, from a larger list of DFTs tested

by Hobza’s group [146]. The wavefunction theory (WFT) methods selected are spin-

component-scaled SCS-CCSD, SCS-MP2, and MP2.5. The reference binding energies

from [74] are computed at the CCSD(T) level at the complete basis set limit. We re-

port the mean absolute relative error (MARE) as indicative of the overall performance
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of the method:

MARE =
1

N

N∑
i=1

∣∣∣∣BEmethod − BEref

BEref

∣∣∣∣ ∗ 100, (5.3.4)

N is the number of complexes in the set used, and BEref is the reference binding

energy. We also report the mean relative error (MRE) to reveal the direction of the

error with each method:

MRE =
1

N

N∑
i=1

(
BEmethod − BEref

BEref

)
∗ 100, (5.3.5)

The root-mean-square error (RMSE) and root mean square percent error (RMSPE)

is calculated as follows:

RMSPE =

√√√√ 1

N

N∑
i=1

(
BEmethod − BEref

BEref

)2

∗ 100, (5.3.6)

The mean absolute error (MAE) is commonly reported in the literature. For com-

pleteness, we therefore report MAEs as well:

MAE =
1

N

N∑
i=1

∣∣∣∣BEmethod − BEref

∣∣∣∣, (5.3.7)

5.4 Results and Discussion

5.4.1 Transferability of the Damping Parameters a1 and a2

The parameters a1 and a2 were shown in [145] to be transferable with use of differ-

ent basis sets or the use of post-GGA versus post-LDA procedures. In this section,

we test the transferability of the damping parameters with respect to fit sets which

differ either by the complexes included in the set (S22 versus the 65 complexes), or

by the intermonomer separations of the complexes in the set (S22 versus S22x5). As
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explained above, the S22x5 set includes the S22 complexes at equilibrium, at one

compressed, and at three stretched intermonomer separations.

Table 5.2: List of the values for the parameters a1 and a2 fit to three different sets.

Fit Set a1 a2(Å) RMSPE

S22 0.80 1.39 6.95
S22x5 0.66 1.58 15.93
65 0.79 1.36 13.72

Table 5.2 shows that the Fit22 and the Fit65 parameters are almost identical. This

result confirms the transferability of the damping parameters for complexes at equi-

librium, regardless of the complexes included in the fit set. This result is expected as

the XDM model is derived from first principles and the dispersion computed using

this model is environment dependent. The parameters change slightly when fit to the

S22x5 set of complexes at non-equilibrium geometries. The parameter a1 decreases

from 0.80 to 0.66 and a2 increases from 1.39 to 1.58 Å. The skew in the parameters

arises mainly from the complexes at compressed intermonomer separations. As will

be shown below, binding energies of complexes at compressed separations change dra-

matically with minor changes in the damping parameters. This high sensitivity to

minor changes in the parameters is a result of the very steep potential energy curve

at compressed separations.

5.4.2 Comparison of Methods

In this section, all of the statistics reported for the WFT methods, the DFT methods

listed in Table 5.1, and the CCSD(T)/CBS reference binding energies are obtained

from the supplementary information of [146] and [74]. Figure 5.1 displays the MARE

(%) for the binding energies of the S22x5 complexes. The equilibrium distances are
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scaled by factors of 0.9, 1.0, 1.2, 1.5 and 2.0 to get the compressed, equilibrium and

three stretched separations.

Figure 5.1: Mean absolute relative error [MARE (%)] for many methods used to com-
pute the binding energies of 22 complexes at five different intermonomer separations.

Figure 5.1 clearly depicts poor performance for all methods at compressed separations,

noting that the monomers are compressed only by 10% of the equilibrium separation.

The worst situation is observed with the TPSS functional which is not designed to

capture dispersion interactions. The MARE is 343.4%. The only two exceptions are

the SCS-CCSD method (MARE is 4.7%), and our method PW86+PBE+XDM, with

the Fit22x5 parameters, (MARE is 13.3%). The large MARE at shorter separations

is not surprising since the potential energy curve is very steep in this region, and it is

difficult to mimic the Hartree-Fock (HF) repulsion with a GGA functional [30]. The

binding energies of the complexes at compressed intermonomer distances have almost

100% MARE with the Fit65 or FitS22 parameters.

Table 5.3 shows how the binding energies for the dispersion-bound complexes are

severely below the reference binding energies with the Fit65 and Fit22 parameters.
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Table 5.3: Binding energies for the S22 complexes at the compressed separations. The
binding energies are reported using three sets of damping parameters, S22, S22x5 and
the 65 complexes. HB, S and T stand for hydrogen-bonded, stacked and T shaped.

Ref BE BE with BE with BE with Complex
Fit 65 Fit 22 Fit 22x5
parameters parameters parameters

HB 2.410 2.507 2.456 2.682 ammonia dimer
4.319 4.537 4.498 4.658 water dimer
16.337 16.592 16.464 16.992 formic acid dimer
14.141 14.125 13.996 14.543 formamide dimer
18.729 18.474 18.334 18.924 uracil dimer HB
15.126 15.861 15.695 16.387 2-pyridoxine-aminopyridine
15.021 15.334 15.154 15.882 adenine-thymine WC

DISP 0.337 0.170 0.110 0.374 methane dimer
0.681 0.203 0.088 0.648 ethene dimer
1.088 0.863 0.752 1.235 benzene-methane
0.148 -1.221 -1.598 0.174 benzene dimer S
1.686 -0.755 -1.129 0.638 pyrazine dimer
6.763 3.485 2.999 5.225 uracil dimer S
1.429 -0.727 -1.229 1.119 indole-benzene S
7.991 2.415 1.734 4.909 adenine-thymine S

MIX 1.174 1.528 1.476 1.716 ethene-ethyne
3.007 2.712 2.605 3.08 benzene-water
2.040 1.715 1.604 2.098 benzene-ammonia
4.018 3.536 3.409 4.002 benzene-HCN
2.204 1.557 1.395 2.143 benzene dimer T
4.995 3.847 3.637 4.587 indole-benzene T
6.422 5.631 5.462 6.213 phenole dimer

In contrast, when using the Fit22x5 parameters, the binding energies of the dispersion-

bound complexes are reproduced quite well (except for the pyridine dimer and the

stacked AT base pair). For the hydrogen-bonded complexes, the binding energies are

reproduced accurately regardless of the fit. For the mixed complexes, the binding

energies computed using S22 and 65 fits are acceptable. They are, however, more

accurate using Fit22x5 parameters.

A quantitative comparison of the MARE of binding energies using the Fit22, Fit22x5
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and Fit65 damping parameters is presented in Table 5.4. The statistics are classified

by the relative intermonomer separation.

Table 5.4: MARE (%) for the binding energies computed with PW86+PBE+XDM
with damping parameters fit to S22, S22x5 and the database of 65 complexes.

Relative Fit S22 Fit 65 Fit S22x5
Intermonomer
Distances

0.9 91.87 74.13 13.25
1.0 9.71 7.09 7.52
1.2 4.00 4.52 8.86
1.5 4.73 5.48 7.14
2.0 9.05 9.28 9.99
All 23.87 20.10 9.35

As Table 5.4 quantifies, at compressed separations, Fit22x5 parameters significantly

reduces the MARE of the binding energies by 60.88% and 78.62% compared to MARE

with Fit65 and Fit22 parameters, respectively. With the Fit22x5 parameters, the

MARE does not exceed 13.25% at all separations. For all three fits, the MARE

remains almost unaltered at equilibrium and stretched geometries. With fits S22 and

65 (which have almost identical parameters), the MAREs are slightly better than

those with Fit S22x5, especially at a relative separation of 1.2. The MAREs with the

Fit65 parameters are only slightly better (compared to MAREs with the S22x5 fit)

by 0.4, 4.3, 1.7 and 0.7 % at 1.0, 1.2, 1.5 and 2.0 relative separations, respectively

(See Table 5.4). For completeness, mean absolute errors (MAE) are reported in Table

5.5.

Figure 5.2 is a zoom-in on Figure 5.1 in which MARE (%) is depicted for binding

energies only at equilibrium and stretched separations (i.e., compressed separations

are omitted).

This figure illustrates how, at each different separation, all three fits for the PW86+PBE
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Table 5.5: MAE (kcal mol−1) for the binding energies computed with
PW86+PBE+XDM with damping parameters fit to S22, S22x5 and the database
of 65 complexes.

Relative Fit S22 Fit 65 S22x5
Intermonomer
Distances

0.9 1.13 0.98 0.51
1.0 0.53 0.44 0.35
1.2 0.01 0.01 0.02
1.5 0.10 0.12 0.02
2.0 0.04 0.04 0.04
All 0.40 0.36 0.28

Figure 5.2: Mean absolute relative error [MARE (%)] for many methods used to
compute the binding energies of 22 complexes at only equilibrium and stretched in-
termonomer separations. The “X” and the “check mark” indicate the two least and
the two most reliable methods.

+XDM method have very similar MARE (%). For instance, at twice the equilibrium

distances, the MAREs are 9.1, 10.0 and 9.3 % when the damping parameters are fit to

S22, S22x5 and the 65 databases, respectively. The MAREs vary slightly at different

separations, e.g., with the S22x5 fit, the MAREs are 7.5, 8.9, 7.1 and 10.0 for inter-
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monomer separations scaled by 1.0, 1.2, 1.5 and 2.0, respectively. At all separations,

the MARE is the smallest with SCS-CCSD and PW86+PBE+XDM (parameters fit

to S22x5) while it is the greatest with TPSS and B2PLYP. The MARE obtained with

PW86+PBE+XDM (parameters fit to S22x5) is 2.8 times greater than the MARE

with the SCS-CCSD method. B2PLYP augmented with an empirical dispersion term

(B2PLYP-D) is the only DFT method that has a MARE comparable with MP2.5

(second best among WFT methods), as can be seen in Figure 5.2.

Figure 5.3: Mean relative error [MRE (%)] for many methods used to compute the
binding energies of 22 complexes at five different intermonomer separations. Refer to
[146] for details about the basis sets used with the wavefunction methods.

Figure 5.3 reveals the direction of the error for each method at the five separations.

The largest MREs are observed at the compressed separations. Among the DFT

methods, TPSS and B2PLYP gave the largest error, while MP2 and SCS-MP2 are

the WFT methods that gave the largest errors. At compressed intermonomer sepa-

rations, our method PW86+PBE+XDM has a MRE less than zero for all fits, the

smallest (in absolute value) being -3.32% with the S22x5 fit. The negative MRE
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might be due to the over-repulsion of the PW86 exchange functional at short dis-

tances [30]. At stretched separations, the binding energies are consistently slightly

overestimated (1.53% to 9.09%). MP2, a strongly basis-set dependent method, con-

sistently overestimates the binding energies at equilibrium and distorted separations.

This is a well known result, namely at equilibrium geometries of dispersion-bound

complexes. MP2.5 is the average of MP2 and MP3 methods. MP2.5 usually gives

good results by an inherent cancellation of errors [146]. A positive MRE can be due to

the dominant overestimation of MP2 over the underestimation of MP3. SCS-CCSD is

a spin-component-scaled coupled cluster method, where the correlation energy is de-

composed into parallel and anti-parallel spin components, each of which is multiplied

by a parameter. SCS-CCSD gives very small MRE (1.2 - 1.7%), it is the best method

among all methods tested in this study. SCS-MP2 [154] also scales the anti-parallel

and the parallel spin correlation energies separately. However, the MRE with SCS-

MP2 is large as this method was originally parameterized for reaction energies rather

than intermolecular interactions. The SCS-CCSD method was also originally param-

eterized for reaction energies. Nevertheless, CCSD, to begin with, is more accurate

than MP2 for intermolecular interactions. B2PLYP is a double hybrid functional: the

exchange part is a hybrid of B88 [155] and HF; and the correlation part is a hybrid of

LYP [34] and MP2. While the MP2 method is known to overbind dispersion-bound

complexes, the GGA exchange functional B88 is over-repulsive especially at shorter

separations. If the over-repulsion of the B88 functional dominates the overbinding

of MP2, the MRE should be less than zero as it is in this study. The much smaller

MRE with B2PLYP-D compared to B2PLYP is attributed to the dispersion correc-

tion added to B2PLYP-D. TPSS is a nonempirical meta-GGA functional that has

no proper physics for capturing dispersion interactions. The MRE of TPSS is con-

sistently underestimated, but it is the largest among all other methods considered.

This result is expected as TPSS is not designed to capture dispersion interactions.

M06-2X is a highly parameterized meta-GGA, which makes it difficult to explain any
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of its trends. M06-2X overestimates dispersion, except for the complexes at 200% of

the equilibrium separation.

5.5 Conclusions

In conclusion, the nonempirical functional PW86+PBE+XDM is an accurate func-

tional for not only general thermochemistry and vdW complexes at equilibrium

geometries, as previously shown [74, 145], but also for vdW complexes at non-

equilibrium (compressed and stretched) intermonomer separations. The authors of

[146] state, based on the DFT methods they tested, that DFT in general is not capa-

ble of properly describing vdW interactions at non-equilibrium geometries. However,

this chapter demonstrates that (PW86+PBE+XDM) can indeed capture vdW in-

teractions properly at equilibrium and non-equilibrium geometries. Binding energies

of complexes at separations shorter than equilibrium separations are the most chal-

lenging to compute, but even in these compressed cases the mean absolute relative

error can be as small as 13.3% for the complexes in the S22x5 database. Accurate

binding energies at stretched geometries, however, are more important especially in

biological systems. For stretched geometries, our method (with Fit22 parameters)

can give mean relative error as small as 1.5, 4.1 and 7.3 at intermonomer distances

scaled by a factor of 1.2, 1.5 and 2.0, respectively. This work can be extended to the

new database, S66x8, released recently also by Hobza’s group [150]. This database is

a larger set of 66 complexes at 8 different intermonomer separations.
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Chapter 6

Assessment of the

PW86+PBE+XDM Density

Functional on a Balanced Database

of van der Waals Complexes at

Non-Equilibrium Geometries

6.1 Abstract

In the previous chapter, the performance of the nonempirical functional for vdW

complexes, PW86+PBE+XDM, was assessed on the S22x5 database. In this chapter,

the purpose is still to assess the performance of this functional on vdW complexes

at non-equilibrium geometries. However, the database used in this study, S66x8, is

larger and more balanced. The S66x8, published by Hobza’s group [150], contains

66 complexes at eight different separations ranging from compressing to 90% of the

equilibrium geometry to stretching to 200% of the equilibrium geometry. The overall
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root mean square percent error (RMSPE) on this lager database using aug-cc-pVTZ

is 14.58%.

6.2 Introduction

In the past decade, the focus for benchmarking methods that capture weak interac-

tions has been on databases with vdW complexes only at equilibrium geometries. For

example, the S22 database [140] is one of the most popular databases for benchmark-

ing newly developed methods. Recently, there has been interest in databases which

include complexes not only at equilibrium geometries, but also at non-equilibrium

geometries. It is important to be able to capture dispersion interactions properly

in vdW complexes that are at non-equilibrium geometries as pointed out by Molnar

et al. [149] and Hobza et al. [150, 146]. In biological systems, for instance in a

folded protein, there are some intra-molecular dispersion interactions between amino

acids that are not necessarily at equilibrium positions with respect to one another.

S22x5 [146] and S66x8 [150] are examples of databases that include complexes at

non-equilibrium geometries.

In the previous chapter, it was shown that the nonempirical functional PW86+PBE

+XDM was the only DFT method, amongst many others (TPSS, M06-2X, BLYP-D,

PBE-D, B2LYP and B2PLYP) to perform well at compressed geometries of the 22

complexes in the S22x5 database. Compressed vdW complexes are more challenging

than stretched complexes as demonstrated in the previous chapter. Our smallest

mean absolute relative error (MARE) on 22 compressed complexes (from the S22x5

database [146]) was 13.3%.

In this chapter, a larger, more balanced database (S66x8) [150] will be used to further

test the accuracy of PW86+PBE+XDM on binding energies of vdW complexes at

non-equilibrium geometries. The S66x8 has 66 complexes combined from 14 different
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monomers. This database is an extension of the S22x5 which is, itself, an extension of

the S22 database [140]. S66x8 does not include dimers with a binding energy smaller

than 1.5 kcal mol−1. The range of compression and stretching of intermonomer sep-

arations in S22x5 and S66x8 is the same. As in S22x5, the compression is no more

than 10% and the stretching is no longer than twice the equilibrium separation. The

difference, however, is in the 44 extra complexes in S66x8 and the number of inter-

monomer separations considered for each complex (5 and 8 for S22x5 and S66x8,

respectively). The eight different separations are: equilibrium, compressed to 90%

and 95%, and stretched to 105%, 110%, 125%, 150% and 200% of the equilibrium

separations. The S66x8 is a more balanced database as it includes equal numbers

of complexes in each of the three subcategories (23 hydrogen-bonding complexes, 23

dispersion-bound complexes and 20 mixed, i.e., electrostatic/dispersion, complexes).

The 44 extra complexes (compared to S22x5) include some single hydrogen-bonding

complexes which are otherwise absent in S22x5. In S66x8, the dispersion-bound

complexes are not only π − π stacked complexes (10) (as in S22x5) but there are

also dispersion interactions between aliphatic hydrocarbon chains, which include aro-

matic aliphatic (8) and aliphatic aliphatic (5) interactions. The S66x8 is not heavily

weighted toward nucleic acid-like structures as in S22 and S22x5. In the S66x8, the

same basis set was used systematically for a final optimization of all complexes, reso-

lution of the identity-MP2, with an augmented triple zeta basis set and with counter-

poise correction, RI-MP2/aug-cc-pVTZ (cp). Binding energies were computed using

the CCSD(T)/CBS method.

6.3 Method and Computational Details

In this study, the DFT exchange and correlation energies were computed with PW86

and PBE, respectively, using the G09 program [118]. The XDM dispersion correction

was then added perturbatively to the exchange-correlation energy.
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6.3.1 Choice of the Basis Set

For consistency, the basis set, grid and convergence criterion used for all calculations

are identical set to what was used in the previous study on the S22x5. Thus, as in

Chapter 3 and Ref [145], aug-cc-pVTZ was used with 200x590 atomic grids and an

SCF convergence criterion of 10−6.

6.3.2 Damping Parameters

As presented in Chapter 2, the dispersion energy can diverge at small separations.

It is thus necessary to add a damping function to avoid this divergence. Grimme

has shown that the form of the damping function is not as important as correctly

parameterizing it [156]. As reiterated in the previous chapters, in the XDM model

the damped dispersion energy is given by [66]:

EXDM
disp = −1

2

∑
i �=j

(
C6,ij

R6
vdW,ij +R6

ij

+
C8,ij

R8
vdW,ij +R8

ij

+
C10,ij

R10
vdW,ij +R10

ij

)
, (6.3.1)

where the linear relationship between RvdW,ij and the“critical” internuclear separation

Rc,ij is given by:

RvdW,ij = a1Rc,ij + a2, (6.3.2)

where a1 and a2 are universal damping parameters. The critical radius Rc,ij is the

internuclear separation where the three dispersion terms contribute equally to the

dispersion energy:

C6,ij

R6
c,ij

≈ C8,ij

R8
c,ij

≈ C10,ij

R10
c,ij

. (6.3.3)

Rc,ij is taken to be the average of

(
C8,ij

C6,ij

)1/2

,

(
C10,ij

C6,ij

)1/4

and

(
C10,ij

C8,ij

)1/2

.

In this study, as in previous chapters, the damping parameters are determined by min-

imizing the root mean square percent error (RMSPE) of binding energies of complexes
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in a given database. We have observed that there is a strong correlation between a1

and a2 regardless of the database. Figure 6.1 depicts this relationship.

Figure 6.1: Plot of a2 (Å) with respect to a1. The parameters are determined by
minimizing the RMSPE of the binding energies of the S22 complexes.

Figure 6.1 shows a strong linear relationship between a1 and a2 described by the

following equation:

a2 = −3.0826a1 + 3.729 (6.3.4)

The relationship between a1 and a2 determined by minimizing the RMSPE of the

binding energies of the S22x5 complexes is given by:

a2 = −3.1482a1 + 3.668 (6.3.5)

If a1 and a2 were determined by minimizing the RMSPE of the “interpolated” equi-

librium binding energies from the S22x5 database, the relationship is given by:

a2 = −3.0804a1 + 3.852 (6.3.6)
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By “interpolated”, it is meant that a potential energy surface for each of the 22 com-

plexes was created by using the energies at five different intermonomer separations.

Using cubic splines, the curve was interpolated to get the minimum PW86+PBE+XDM

energy. A similar interpolation scheme has been employed in [64, 65, 153, 152].

These rather strong relationships (note the similar equations regardless of the database

chosen) demonstrate how a2 decreases as a1 increases. Fitting the damping parame-

ters to S66x8 resulted in a RMSPE of 14.58% with a1 = 0.60 and a2 = 1.84 Å. These

damping parameters are comparable to those obtained by fitting to S22 [140], S22

interpolated (Arabi A. A. and Becke A. D, submitted to JCP), S22x5 [146] and the

65 complexes of Kannemann and Becke [74] as shown in Table 6.1.

Table 6.1: List of the values for the fit parameters a1 and a2.

Fit Set a1 a2(Å) MARE

Numericala 65 0.82 1.16 12.6
aug-cc-pVTZ 65 0.79 1.36 11.9
aug-cc-pVDZ 65 0.80 1.49 16.6
aug-cc-pVTZ S22 0.70 1.57 5.3
aug-cc-pVTZ S22 interpolated 0.80 1.39 5.6
aug-cc-pVTZ S22x5 0.66 1.58 9.8
aug-cc-pVTZ S66 0.72 1.57 5.8
aug-cc-pVTZ S66x8 0.60 1.84 9.1

a) All calculations are post-GGA except for this one which is post-LDA from
[74].

The equations for mean absolute relative error (MARE), mean relative error (MRE),

root mean square error (RMSE) and root mean square percent error (RMSPE) have

been already explicitly written in Chapter 5.
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6.4 Results and Discussion

The 66 complexes (at equilibrium) in S66x8 along with their reference binding ener-

gies, the binding energies computed with PW86+PBE+XDM/aug-cc-pVTZ and their

classification based on the dominant type of interaction are summarized in Table 6.2.

The damping parameters used for computing the S66 (at equilibrium) complexes are

a1 = 0.72 and a2 = 1.57 (as shown in Table 6.1). For this set of 66 complexes at

equilibrium, RMSPE is 7.24% and MARE is 5.82 %.

Table 6.2: List of the 66 complexes at equilibrium with binding energies (in kcal
mol−1) and classification based on type of interaction. E, D and M stand for Electro-
static, Dispersion and Mixed, respectively. Reference BEs are obtained from [150].

Complex Ref BE Calculated BE Classification

Water-Water 4.894 5.130 E

Water-MeOH 5.569 5.687 E

Water-MeNH2 6.875 7.619 E

Water-Peptide 8.075 8.095 E

MeOH-MeOH 5.745 5.865 E

MeOH-MeNH2 7.540 8.194 E

MeOH-Peptide 8.220 8.460 E

MeOH-Water 4.997 5.200 E

MeNH2-MeOH 3.035 3.163 M

MeNH2-MeNH2 4.152 4.276 M

MeNH2-Peptide 5.406 5.304 M

MeNH2-Water 7.245 7.718 E

Peptide-MeOH 6.180 6.011 E

Peptide-MeNH2 7.451 7.782 E

Peptide-Peptide 8.624 8.582 E

Peptide-Water 5.118 5.022 E

Uracil-Uracil, BP 17.182 17.544 E

Water-Pyridine 6.834 7.526 E

MeOH-Pyridine 7.404 8.079 E

AcOH-AcOH 19.090 19.816 E

AcNH2-AcNH2 16.260 16.552 E
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Complex Ref BE Calculated BE Classification

AcOH-Uracil 19.491 19.908 E

AcNH2-Uracil 19.190 19.374 E

Benzene-Benzene, pi-pi 2.736 2.735 D

Pyridine-Pyridine, pi-pi 3.825 3.550 D

Uracil-Uracil, pi-pi 9.821 8.732 M

Benzene-Pyridine, pi-pi 3.369 3.212 D

Benzene-Uracil, pi-pi 5.705 4.907 D

Pyridine-Uracil, pi-pi 6.814 5.937 M

Benzene-Ethene 1.412 1.645 D

Uracil-Ethyne 3.737 3.543 M

Pyridine-Ethene 1.861 1.992 D

Pentane-Pentane 3.774 3.890 D

Neopentane-Pentane 2.611 2.845 D

Neopentane-Neopentane 1.772 2.132 D

Cyclopentane-Neopentane 2.405 2.673 D

Cyclopentane-Cyclopentane 2.997 3.234 D

Benzene-Cyclopentane 3.569 3.555 D

Benzene-Neopentane 2.894 3.030 D

Uracil-Pentane 4.839 4.413 D

Uracil-Cyclopentane 4.132 3.801 D

Uracil-Neopentane 3.700 3.510 D

Ethene-Pentane 1.989 2.031 D

Ethyne-Pentane 1.749 1.911 D

Peptide-Pentane 4.244 4.023 D

Benzene-Benzene, TS 2.866 2.648 D

Pyridine-Pyridine, TS 3.533 3.180 D

Benzene-Pyridine, TS 3.324 3.055 D

Benzene-Ethyne, CH-pi 2.864 2.733 M

Ethyne-Ethyne, TS 1.523 1.755 M

Benzene-AcOH, OH-pi 4.704 4.372 M

Benzene-AcNH2, NH-pi 4.358 4.154 M

Benzene-Water, OH-pi 3.268 3.185 M

Benzene-MeOH, OH-pi 4.187 4.047 M

Benzene-MeNH2, NH-pi 3.231 3.109 D

Benzene-Peptide, NH-pi 5.280 4.967 M

Pyridine-Pyridine, CH-N 4.146 3.984 M
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Complex Ref BE Calculated BE Classification

Ethyne-Water, CH-O 2.847 2.941 E

Ethyne-AcOH, OH-pi 4.860 5.161 E

Pentane-AcOH 2.879 2.845 D

Pentane-AcNH2 3.505 3.483 D

Benzene-AcOH 3.801 3.495 D

Peptide-Ethene 2.988 2.928 M

Pyridine-Ethyne 3.990 4.525 E

MeNH2-Pyridine 3.966 3.884 M

In Table 6.2, the maximum percent error is 20.3 % for the aliphatic-aliphatic dispersion-

bound Neopentane-Neopentane complex.

6.4.1 Comparison of Results Between S22x5 and S66x8

In this subsection, the results from S22x5 (from the previous chapter) and S66x8 will

be compared by looking at the mean absolute relative error of the 22 and 66 com-

plexes at different intermonomer separations.

Table 6.3: MARE (%) for the binding energies of S22x5 and S66x8 computed with
PW86+PBE+XDM.

Relative S66x8 S22x5
Intermonomer
Distances

0.90 15.81 13.25
0.95 7.99 NA
1.00 7.54 7.52
1.05 8.03 NA
1.10 8.53 NA
1.20 NA 8.86
1.25 8.79 NA
1.50 7.51 7.14
2.00 8.17 9.99
All 9.05 9.35
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The damping parameters used are (as displayed in Table 6.1) a1 = 0.66 and a2 = 1.58

for the S22x5 and a1 = 0.60 and a2 = 1.84 for the S66x8 databases. If the damping

parameters are interchanged, the MARE for S66x8 would increase (by 3%) to 12.1%

and the RMSPE for S22x5 increases (also by 3%) to 12.6%.

Figure 6.2 illustrates the difference in the MARE of binding energies in S22x5 com-

pared to the MARE in S66x8, at the various non-equilibrium geometries.

Figure 6.2: Mean absolute relative error [MARE (%)] for the binding energies of
S22x5 and S66x8 complexes at different intermonomer separations.

As discussed in Chapter 5, and as shown in Table 6.3 and Figure 6.2, the binding

energies of vdW complexes at compressed distances is more challenging than equi-

librium and stretched distances. The test on the S66x8 database demonstrates that

for vdW complexes at equilibrium and those compressed by 5%, the statistical er-

ror on the binding energies is almost identical (see Table 6.3 and Figure 6.2). This

means the challenge starts when complexes are compressed beyond 5%. This chal-

lenge arises from the steep repulsive behavior of the exchange functional at shorter

distances [30]. Figure 6.2 illustrates that the statistical errors for the binding energies

in S22x5 and S66x8 are comparable, with a MARE slightly smaller overall for the
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S66x8. Despite the larger error at the shortest separations, the overall error is close

to what is observed at equilibrium geometries. This demonstrates that the damping

parameters are roughly transferable at equilibrium and stretched geometries but not

at compressed geometries as in this region a minuscule change in parameters causes

a significant change in the binding energies.

6.4.2 Consequences of Fitting to S66x8

By fitting the parameters to S66x8, a higher accuracy is achieved for the S66x8 overall

including the challenging compressed cases. However, there is a slight sacrifice in the

accuracy of binding energies of complexes in the other databases as shown in Table

6.4. In this table, the MARE listed for each database is for the damping parameters

fit to S66x8, i.e., a1 = 0.60 and a2 = 1.84 (see Table 6.1). ΔMARE denotes the

difference between the smallest MARE achieved by fitting the parameters to the set

itself (i.e., parameters listed in Table 6.1) and the MARE listed in this table (i.e.,

using parameters fit to S66x8).

Table 6.4: MARE (and difference in MARE) for the binding energies computed with
PW86+PBE+XDM using different parameters.

MARE at a1 a2 ΔMARE
FitS66x8

parameters

65 12.02 0.79 1.36 1.71
S22 5.79 0.70 1.57 0.53
S22x5 12.61 0.66 1.59 2.78
S66 7.54 0.72 1.57 1.72
S66x8 9.05 0.60 1.84 0.00

The increase in the statistical error (ΔMARE) can be as small as 0.53% (for S22)

and as large as 2.78% for the S22x5 database. Nevertheless, even 2.78% is not a very

large difference in error.
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6.4.3 Comparison of Methods

In this section, the performance of PW86+PBE+XDM is compared to that of wave-

function theory (WFT) methods as depicted in Figure 6.3. The RMSE for the WFT

methods were obtained from the supplementary information of [150].

Figure 6.3: RMSE (kcal mol−1) for many methods used to compute the binding
energies of the S66x8 complexes.

Figure 6.3 depicts the RMSE for each method, the statistical error is explicitly

displayed for each method. This figure illustrates how PW86+PBE+XDM/aug-cc-

pVTZ outperforms all MP2 methods listed except for the SCS-MI-MP2/CBS which

has an RMSE smaller by only 0.03 kcal mol−1. Our DFT functional also outperforms

the MP3/CBS and CCSD/CBS methods by 0.21 and 0.31 kcal mol−1, respectively.

SCS-MI-CCSD/CBS, MP2.5/CBS and SCS-CCSD/CBS are the only three meth-

ods that give RMSE smaller than PW86+PBE+XDM. SCS-MP2/CBS results in the

largest statistical error.

The basis-set dependent MP2 method is the cheapest computationally compared to

the other WFTs listed, but it is well known to overbind dispersion-bound complexes.

DFT has the advantage of being even less computationally expensive than MP2 and
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gives more accurate binding energies for the S66x8 (and S22x5 as shown in the pre-

vious chapter) vdW complexes. MP3, in contrast to MP2, underestimated dispersion

interactions. The MP2.5, which is an average of MP2 and MP3 gives a well-balanced

description of vdW complexes (RMSE of only 0.1 kcal mol−1) due to the cancellation

of the overestimation and the underestimation of MP2 and MP3, respectively. The

dispersion weighted MP2, is a weighted average of MP2/CBS and SCS-MP2/CBS

(spin component scaled MP2, scaling for opposite-spin and parallel-spin MP2 corre-

lation). The idea behind DW-MP2 is similar to that behind the MP2.5 method as the

overbinding MP2 is combined with the underbinding SCS-MP2 to reach some system-

atic cancellation of systematic opposite errors. The better performance of SCS-CCSD

and SCS-MI-CCSD compared to CCSD is because both were parametrized using S22

[150].

6.5 Conclusions

In conclusion, the DFT functional PW86+PBE+XDM for exchange, correlation and

dispersion, respectively, is an accurate method for computing energies of vdW com-

plexes at equilibrium and distorted geometries. This DFT method even competes

with wavefunction theory methods, e.g., MP2 and some of its derivatives. The mean

absolute relative error for the S66x8 database (of 66 complexes at eight different

separations each) is 9.1%. The largest statistical error was for the complexes com-

pressed by 10%, MARE is 15.8 % (compared to 13.3% in S22x5). The MARE for

the well-balanced S66x8 (9.05% overall) is 0.3% smaller compared to the MARE for

S22x5 complexes (9.35%). The damping parameters a1 and a2 are strongly linearly

correlated with each other and they are roughly universal with the exception of com-

plexes compressed by more than 5% (i.e., 10%). At such short distances, the potential

energy curve is very steep and a minor change in the parameters results in a large

deviation in the binding energies. The good performance of PW86+PBE+XDM at
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equilibrium as well as distorted geometries leads to a promising DFT for simultaneous

optimization of inter - and intra-molecular geometries in complex chemical systems.
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Chapter 7

Dispersion Forces From the

PW86+PBE+XDM Density

Functional for van der Waals

Complexes

7.1 Abstract

As presented in the previous chapters, the nonempirical functional PW86+PBE+XDM

comprises an accurate functional for thermochemistry and for van der Waals (vdW)

complexes at equilibrium and non-equilibrium geometries [74, 145, 157]. This sets the

stage for the further goal of optimizing the geometries of vdW complexes with this

functional. In order to optimize molecular geometries, forces must be computed by

differentiating the energy with respect to nuclear coordinates. We will assume that

our dispersion coefficients are constant with respect to changes in the nuclear coordi-

nates. This approximation allows us to avoid the complexity of taking the derivatives

of the dispersion coefficients with respect to the density. The purpose of this chap-
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ter is to validate this assumption by checking if, along a diatomic potential energy

surface (PES), the internuclear distance at which the energy is minimum is commen-

surate with the distance at which the force vanishes to zero. This test was done on

ten rare-gas diatomic systems using various integration grids and SCF convergence

criteria.

7.2 Introduction

Dispersion is estimated to account for a thousandth of the correlation energy in chem-

ical systems [64]. This is why conventional exchange-correlation GGA functionals fail

to describe van der Waals (vdW) complexes [55, 147, 158] or, at best, give erratic

results. In DFT, a functional can properly treat vdW interactions if a fully nonlocal

dispersion correction is added.

The exchange-hole dipole moment (XDM) model proposed by Becke and Johnson

[64, 65, 66] can accurately capture dispersion interactions, yet it is a simple model.

This model is applicable to any DFT-D type method. For instance, it can be combined

with PW86 [26] (a GGA functional for exchange) and PBE [28] (a GGA functional

for correlation) to obtain PW86+PBE+XDM which comprises a nonempirical DFT

method for vdW complexes. This functional (PW86+PBE+XDM) is of high accuracy

for ordinary thermochemistry. Its mean absolute error (MAE) for the atomization

energies of the 222 molecules in the G3/99 thermochemistry dataset is 10 kcal mol−1

[74, 145]. In addition, as presented in Chapter 4, this functional predicts accurate

binding energies for vdW complexes. With an augmented triple zeta Dunning basis

set, the mean absolute percent error (MAPE) for the binding energies of complexes

in the S22 set is 5.5 % [145], a statistical value to be compared with 2.4 % and 20.4

% using CCSD(T*)/F12/AVDZ [159] and MP2/CBS [160], respectively. Chapter

5 also showed the ability of this functional to properly describe complexes at non-
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equilibrium intermonomer separations. The mean absolute relative error (MARE) for

the binding energies on the S22x5 set [146] is 9.4 % on average with a maximum of

13.3 % at compressed separations, i.e., the most challenging case [157]. The reader

is reminded here that the S22x5 set of complexes includes the 22 complexes of the

well known S22 database [140] at five different intermonomer separations scaled by

factors of 0.9, 1.0, 1.2, 1.5 and 2.0 relative to the equilibrium distances.

The choice of the exchange functional in DFT-D [74, 145] is not obvious as the

performance of common exchange GGA functionals can range anywhere from super-

ficial overbinding to extreme over-repulsion. Among the common GGA functionals

in the literature, PW86 reproduces the exact HF exchange energy in vdW systems1

[137, 138] most accurately [30]. The correlation functional PBE was chosen as it is a

nonempirical GGA functional. XDM is also nonempirical, it is an add-on functional

that corrects for nonlocal correlation effects [64, 65, 66]. Hence we obtain the present

DFT-D functional PW86+PBE+XDM.

As discussed in Chapter 2, the XDM model is based on the position-dependent dipole

moment of the exchange hole given by

hXσ(�r1, �r2) = − 1

ρσ(�r1)

∑
ij

ψiσ(�r1)ψjσ(�r1)ψiσ(�r2)ψjσ(�r2), (7.2.1)

where ρσ is the σ-spin density and ψiσ are occupied Hartree-Fock or Kohn-Sham

orbitals. Orbitals are assumed to be real. This hole is a measure of the depletion

of probability (with respect to the total σ-spin electron density, ρσ) of finding an

electron of spin σ at a point �r2 next to a reference electron of same spin σ at point

�r1.

1Exact exchange repulsion energy for rare-gas diatomic systems was computed with the basis set
free NUMOL code.
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The damped [56, 68, 115, 116] dispersion energy in XDM is given by

Edisp = −
∑
i>j

(
C6,ij

R6
vdW,ij +R6

ij

+
C8,ij

R8
vdW,ij +R8

ij

+
C10,ij

R10
vdW,ij +R10

ij

)
, (7.2.2)

where RvdW,ij is an effective van der Waals internuclear separation that linearly de-

pends on a critical separation Rc,ij:

RvdW,ij = a1Rc,ij + a2, (7.2.3)

where a1 and a2 are two universal fit parameters, and the critical separation Rc,ij is

the separation at which the Cm

Rm (m= 6, 8, 10) terms have roughly the same value:

C6,ij

R6
c,ij

≈ C8,ij

R8
c,ij

≈ C10,ij

R10
c,ij

. (7.2.4)

As shown in equation 7.2.2, the XDM model includes not only C6 coefficients, but

also C8 and C10 coefficients, all of which are environment (i.e., density) dependent.

This allows the functional to be widely applicable to accurate descriptions of inter -

or even intra-molecular dispersion interactions. We use the values of a1= 0.79 and

a2=1.36 Å [145] in this work.

The dispersion coefficients in the XDM model are functionals of the electron spin den-

sity through the exchange-hole function (eq 7.2.1), and expectation values of atomic

moment integrals and atomic polarizabilities (Chapter 2). Since XDM depends on

electron spin densities, the dispersion coefficients are geometry dependent.

However, when taking the derivatives of the PW86+PBE+XDM energy with respect

to x, y and z coordinates, it is convenient to treat the dispersion coefficients as

constants. The purpose of this chapter is to validate this approximation. This goal

can be achieved by verifying that forces computed with PW86+PBE+XDM vanish

at equilibrium geometries.
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7.3 Computational Details

In this study, calculations are performed using PW86+PBE+XDM in a post-GGA

fashion. The GGA part of this functional PW86+PBE is computed self-consistently

with the G09 package [118]. The XDM part is then added as a perturbative correction

to the self-consistent GGA exchange-correlation energy. When forces are computed

(i.e., total energy derivatives with respect to nuclear coordinates), our dispersion co-

efficients are assumed to be constants at the given geometry, even though in principle

they are not.

The binding energies and the force curves of ten rare-gas diatomic systems (from He,

Ne, Ar and Kr noble gases) are computed. Single-point calculations are performed

on the diatomic systems at the experimental equilibrium internuclear separation (ob-

tained from [133]) with plus and minus 40 points at increasing and decreasing distance

increments of 0.01 Å. The forces are the sum of the G09 PW86+PBE force and the

derivative of eq. (7.2.2) assuming that the dispersion coefficients are constants.

Augmented Dunning double and triple zeta basis sets are tested. The aug-cc-pVTZ

gives accurate binding energies, but the aug-cc-pVDZ basis set is more economical

for geometry optimizations [145]. Two SCF convergence criteria were tested, 10−6

and the tighter criterion 10−8 as the latter is becoming common practice nowadays.

For the GGA part, two different grids are considered 99590 and 200590. The grid

notation xxxyyy means there are xxx radial shells surrounding each nucleus and yyy

angular points distributed on each shell. For all calculations where the grid is not

explicitly mentioned, the 200590 grid is used.
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7.4 Results

Using PW86+PBE+XDM, the energies and forces are tested on closed shell rare-gas

diatomics as they are the prototype of vdW interactions.
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Figure 7.1: Binding energy of He-Kr in kcal mol−1 (left side x-axis) and the force in
He-Kr in atomic units (right x-axis) as a function in internuclear separation in Å.

The forces are total forces (GGA+XDM forces) acting on each nucleus. Since these

systems are only diatomic, the force on nucleus A is equal in magnitude to the force

on nucleus B, but opposite in sign. This means we have only one unambiguous force

at each geometry. In the case of triatomic or polyatomic molecules, the analysis might

be ambiguous depending on the choice of the atom on which the force is exerted.

Figure 7.1 is a graph combining two plots for the binding energy and the force in He-Kr

as a function of the internuclear separation (those are calculations using aug-cc-pVTZ,

a 200590 grid and a convergence criterion of 10−8). This figure is a representative of

ten similar graphs for the ten rare-gas diatomics considered in this study. The binding

energy curve and the force curve are displayed in the same graph to investigate if the

zero-force geometry is commensurate with the minimum-energy geometry along the
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PES. Binding energies are plotted rather than absolute energies for scaling purposes.

This graph illustrates how at distance 3.67 Å, the binding energy of He-Kr is minimum

(-0.0646 kcal mol−1) and the force vanishes to 2.64E-7 atomic units (au) (which is

essentially zero). The calculated equilibrium separation is in great agreement with

the experimental equilibrium separation (3.69 Å [74]), with only 0.5% difference.

The functional PW86+PBE+XDM slightly overbinds He-Kr by 3.4% (experimental

binding energy is -0.0625 kcal mol−1 [74]). For all ten rare-gas diatomics considered

in this study, the distance of minimum binding energy is commensurate with the

distance of vanishing force. At worst, the distance at which the force is zero is of

order 0.01 Å greater than the distance at which the binding energy is at a minimum.

These results confirm that negligible errors are introduced by excluding dispersion-

coefficient derivatives in the total-energy derivative calculations.

The most important issue behind this study has now been addressed. However, there

are other minor, yet essential, details that should be considered when computing

energies and forces. These details include the choice of a suitable SCF convergence

criterion necessary grid size for the GGA computations.

7.4.1 Assessment of the SCF Convergence Criterion:

Binding Energies

While an SCF convergence criterion of 10−8 (the default in some software packages)

ensures a tight threshold, it might impede SCF convergence in many complexes. The

purpose of this section is to investigate the effect of lowering the SCF convergence

criterion from 10−8 to 10−6 on the binding energies of the ten rare-gas diatomics.

This assessment will be done for both augmented double and triple zeta Dunning

basis sets.
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(a) GraphA

(b) GraphB

(c) Graph C

Figure 7.2: Binding energy curves of three rare-gas diatomic systems, Ar-Ar (graph
A), Kr-Kr (graph B) and Ne-Kr (graph C) using augmented double and triple Dunning
basis sets with SCF convergence criteria of 10−6 and 10−8.
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Figure 7.2 shows representative plots of the binding energies with respect to inter-

atomic distances of the ten rare-gas diatomics using different basis sets and SCF

convergence criteria. It is evident from Figure 7.2 that, for a given basis set, different

convergence criteria make negligible difference in the binding energies along the whole

range of internuclear separations. With either basis set, and for all ten diatomic sys-

tems, the maximum difference in binding energy between SCF convergence criteria of

10−6 and 10−8 is in the order of μkcal mol−1. This means a convergence criterion of

10−6 allows high accuracy of binding energies even for the weakest cases such as the

helium dimer. These results give us confidence in using an SCF convergence criterion

of 10−6 to appreciably facilitate SCF convergence without concern for the accuracy of

the binding energies. These graphs also illustrate how a double zeta basis set binds

the rare-gas diatomic systems less than a triple zeta basis set. In Ne-Kr (graph C)

and molecules similar to it, at a certain distance beyond the equilibrium separation,

this trend is flipped, i.e., the molecules are more bound with a double zeta basis set

rather than the triple zeta basis set. This might be due to basis set superposition

error. Nevertheless, it is worth mentioning that the difference in binding energies

between aug-cc-pVDZ and aug-cc-pVTZ is only of order 0.1 kcal mol−1 (with both

convergence criteria).

7.4.2 Assessment of the SCF Convergence Criterion: Forces

Graphs in Figure 7.3 are similar to graphs in Figure 7.2, except that the forces are

now assessed rather than the binding energies. For all rare-gas diatomic systems, the

nuclear derivatives computed with aug-cc-pVDZ are smaller than those computed

with aug-cc-pVTZ. As depicted in Graphs A and B, the only difference between the

ten diatomic systems is the separation between the double and the triple zeta curves.

Again the differences are minuscule. With the convergence criterion of 10−6, the

maximum difference in the force between aug-cc-pVDZ and aug-cc-pVTZ is 100 μau.
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(a) GraphA

(b) GraphB

Figure 7.3: Force curves of two rare-gas diatomic systems, He-He (graph A), He-Ar
(graph B) using augmented double and triple Dunning basis sets with SCF conver-
gence criteria of 10−6 and 10−8.
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This difference drops to 90 μau with a convergence criterion of 10−8.

The message to be drawn from this figure is that the choice of the SCF convergence

criterion (10−6 versus 10−8) does not affect the values of the forces regardless of the

basis set used. There is a maximum of ∼0.1 μau difference arising from different

convergence criteria used at either basis set.

7.4.3 Assessment of the Grids

The integrals in the exchange-correlation potential in DFT GGA functionals are too

complicated to be solved analytically. They have to be evaluated numerically on a real

space grid [132]. As Johnson et al. have shown, fine grids are needed to get reliable

results and smooth potential energy curves with meta-GGA functionals [161]. This

section is an investigation of the grids required for computations with our post-GGA

functional.

Graphs in Figure 7.4 show that changing the grid for the GGA part changes the shape

of the binding energy and force curves. The 99590 grid gives sporadic results, with

oscillations in the force curve of He-Kr (the change in the binding energy is much less

pronounced). To remedy the situation, a refined grid, 200590, should be used. This

refined grid includes more radial shells around each nucleus and gives smooth binding

energies and force curves.

As to observations made with the rest of the diatomic systems: He-Ar is sensitive to

the grids used (just as He-Kr is), He-He, He-Ne and Ne-Ne are less sensitive; while

Ar-Kr, Ar-Ar, Kr-Kr, Ne-Ar and Ne-Kr are not sensitive at all to the change of grids.

94



(a) GraphA

(b) GraphB

Figure 7.4: Binding energy (graph A) and force (graph B) curves of He-Kr using
99590 grid (ultrafine grid) versus 200590 grid in G09.
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7.5 Conclusions

For all ten rare-gas diatomics, the internuclear distance at which the binding energy

is minimal along the potential energy surface is commensurate with the distance

at which the force vanishes. This validates the assumption of constant dispersion

coefficients in the computation of forces. For smooth potential energy surfaces and

accurate binding energies and forces, a very fine grid must be used. In this chapter

we find that the 200590 grid is more reliable than the 99590 grid. The use of an SCF

convergence criterion of 10−6 is sufficient, as the difference between SCF convergence

criteria of 10−6 and 10−8 in the evaluation of binding energies and forces in rare-gas

diatomics is very negligible.
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Chapter 8

Optimization of van der Waals

Complexes Using the

PW86+PBE+XDM Density

Functional

8.1 Abstract

All the work presented in the previous chapters can be combined towards building an

optimizer for van der Waals complexes including inter - and intra-molecular interac-

tions. This optimizer for vdW complexes with a DFT method is achieved by using

the “external” keyword in the Gaussian package (i.e., using the Berny optimizer).

This new optimizer with the GGA density functional PW86+PBE+XDM will be

a compromise between accurate geometries and binding energies for weakly-bound

complexes and reasonable computational cost. This chapter will cover testing the

optimizer and using it in some applications.
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8.2 Introduction

Throughout the chapters of this thesis, it was demonstrated that the GGA functional

PW86+PBE+XDM gives accurate thermochemistry, binding energies on vdW com-

plexes (including hydrogen/electrostatic bonding, dispersion-bound complexes and

mixed complexes) at equilibrium and distorted geometries (as tested on S22 [140],

the 65 complexes of Kannemann and Becke [74, 145], S22x5 [146] and S66x8 [150]).

The accuracy of this functional in computing forces by taking the derivative with

respect to infinitesimal nuclear changes has been also demonstrated in the previous

chapter. The ultimate goal is to have an optimizer for vdW complexes using an ac-

curate nonempirical DFT method. The importance of such an optimizer is the full

optimization of vdW complexes while accounting for the deformation geometry and,

subsequently, the deformation energy. The majority of newly developed methods

for vdW interactions are benchmarked against reference binding energies which do

not account for deformation energies. This means the complexes are optimized at

one particular method (e.g. MP2) then single point calculations are performed at a

higher level of theory and a larger basis set (an extrapolation to a complete basis set

limit in most cases). This is a valid approach for economizing the computational cost.

However, the problem is in the monomers which are taken as fixed geometries. The

structures of the monomers taken directly from the optimized dimer results in missing

the deformation energy. This is where the importance of the optimizer presented in

this chapter shines.

The Berny optimizer in the Gaussian package can be used with many wavefunction

methods. The disadvantage, however, is the expensive computational cost, which

limits the system under study to a small finite system. The Berny optimizer can be

also used with empirical DFT functionals for vdW complexes. The disadvantage in

this case is the empiricism, which limits the applications to systems identical or sim-

ilar to what is included in the training sets. The optimizer presented in this chapter
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compensates between accuracy and computational cost. The setup of this optimizer

is displayed in Figure 8.1.

Figure 8.1: A schematic diagram of the steps undertaken by the optimizer for vdW
complex using the “external” keyword in the Gaussian package.

In the first step Gaussian runs a single point calculation where the exchange and

correlation energies are calculated self-consistently using PW86+PBE. In the next

step, the necessary data for computing the XDM energy according to the equations

presented in Chapter 2 is extracted from the wavefunction file of the single point

calculation. This step is done non-self-consistently with a post Gaussian code. In the

last step, the dispersion energy is added as a perturbative correction to the exchange

+ correlation energies and the XDM forces are added to the PW86+PBE forces to

get a new geometry and start a new cycle until geometry convergence is achieved.
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8.3 Assessment of the Reproducibility of the

Optimizer

In this section, the reproducibility of the optimizer is tested on dispersion-bound

rare-gas diatomic systems, which are the prototype of dispersion interactions. The

assessment will be also conducted on a more practical example, the stacked benzene

dimer. In this section, PW86+PBE+XDM /aug-cc-pVTZ is used.

8.3.1 rare-gas Diatomic Systems

In this section, the test is conducted on ten rare-gas diatomic systems from the He,

Ne, Ar and Kr monomers. The experimental equilibrium intermonomer distances of

these molecules were obtained from [133]. To test the optimizer, several input files

were prepared by compressing and stretching the experimental distances by 2.2 Å in

alternating increments of 0.01 and 0.1 Å as shown in Figure 8.2.

Figure 8.2: Steps of compressing and stretching the experimental distances of the ten
rare-gas diatomic systems. The numbers shown under the arrows are the increment
(in Å) x number of times, to give a total shift (in Å) displayed above the arrows.

The results after submitting the input files for an optimization with PW86+PBE+XDM

/aug-cc-pVTZ (a1 = 0.79 and a2 = 1.36) are summarized in Table 8.1.

As shown in Table 8.1, the equilibrium distance is recovered with a maximum RMSE

of 0.07 Å in Ar-Ar, Ar-Kr and Kr-Kr. The maximum RMSPE is 1.79% for Ne2.

This table also displays the range of minimum to maximum distances recovered after

optimization. The results of this test demonstrate the good reproducibility of the

optimizer on the most sensitive dispersion-bound complexes, ten rare-gas diatomics.
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Table 8.1: Statistical results for the optimization of the ten rare-gas diatomic systems
starting at different geometries.

He-He He-Ne He-Ar He-Kr Ne-Ne Ne-Ar Ne-Kr Ar-Ar Ar-Kr Kr-Kr

Ref 2.97 3.05 3.50 3.69 3.09 3.48 3.65 3.76 3.89 4.01
Avg 2.99 3.04 3.50 3.67 3.15 3.51 3.67 3.82 3.96 4.08
Max 3.07 3.09 3.55 3.70 3.18 3.54 3.69 3.84 3.96 4.08
Min 2.90 3.00 3.46 3.64 3.11 3.49 3.65 3.81 3.95 4.07
RMSPE 1.05 0.49 0.32 0.58 1.79 1.06 0.64 1.77 1.74 1.71
RMSE 0.03 0.01 0.01 0.02 0.06 0.04 0.02 0.07 0.07 0.07

8.3.2 Stacked Benzene Dimer

In this subsection, the optimizer will be tested on the stacked benzene dimer which

is dispersion-bound through a π-π stacking interaction. The steps and increments of

the increase and decrease in intermonomer distance are depicted in Figure 8.3.

Figure 8.3: Steps of compressing and stretching the experimental distances of the
stacked benzene dimer. The numbers shown under the arrows are the increment (in
Å) and the total shift is displayed (in Å) above the arrows. The last row summarizes
the results.

As the intermonomer distance varies from 3.82 to 3.96 Å in increments of 0.01 Å,

the optimized geometry recovers the same initial separation. For separations ranging

from 2.20 to 3.82 and from 3.96 to 5.2 Å, the benzene dimer is optimized to 3.9 Å

with RMS errors of 0.20 to 0.22 %, i.e., 0.009 to 0.008 Å. Beyond these ranges, no

optimization takes place because at the larger separations the benzene monomers are

too far to interact and the optimization does not take place.

When the benzene dimer is optimized without dispersion (i.e. PW86+PBE without

XDM), the percent error in the binding energy increases by one order of magnitude
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from 1.03 to 36.64% [the reference binding energy is 1.70 kcal mol−1, it is computed at

the CCSD(T)/aug-cc-pVQZ* level of theory (the star * indicates a modified number

of basis functions was used for the hydrogen atoms) [162].]. This particular example

shows the great power of an optimizer that can account for dispersion.

In this section, with the tests on the rare-gas diatomic systems and the stacked

benzene dimer, it was demonstrated that the optimizer gives reproducible geometrical

parameters with highly accurate binding energies, which include deformation energies.

8.4 Application to Simple Systems

This section includes biologically relevant applications on DNA base pair complexes

(to show the importance of dispersion in stacked nucleobases) and on conformational

energies of substituted tetrahydropyrans and cyclohexanes (to study the anomeric

effect). All calculations in this section were performed with PW86+PBE+XDM/aug-

cc-pVTZ/W06. W06 is a density fitting set [163] of Ahlrichs et al. With density

fitting, the two-electron integrals needed to compute the Coulomb interaction are

approximated. Density fitting expands the density in an auxiliary basis set of atom-

centered functions. With W06, by expressing the four-index integrals in terms of

three-index integrals, time is saved as the storage requirements are reduced (much

less I/O to read). Density fitting is used in this chapter to verify its reliability in

computing geometries and energies. Density fitting is useful because it accelerates

the PW86+PBE GGA computations significantly, which is an important feature for

studying large complexes most efficiently without loosing accuracy.

8.4.1 Nucleic Acid Bases Interactions

In this subsection, nucleic acid interactions between DNA bases adenine, thymine,

guanine and cytosine are studied. As depicted in Figure 8.4, a total of four complexes
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are considered in this study, two are Watson and Crick hydrogen-bonded GC and AT

and the other two are stacked bases.

Figure 8.4: Stacked and hydrogen-bonded nucleobase pairs AT and GC obtained from
[164].

The geometries obtained from [164] were optimized using RI-MP2/TZVPP. The refer-

ence binding energies were calculated at MP2/CBS + (ΔECCSD(T )−ΔEMP2)cc−pV DZ .

There are more updated reference binding energies, e.g., in [140]. However, the cur-

rent particular geometries and reference binding energies were chosen for comparison

purposes with what has been previously published in [104] on the same systems us-

ing HF/aug-cc-pVTZ+BR+XDM. In [104], the exchange energy is computed using

HF, the Becke-Roussel (BR) [36] and XDM are used for dynamical correlation and

dispersion energies, respectively.

The binding energies for these four complexes are computed with and without dis-

persion. Single point calculations were performed on the reference geometries, then

binding energies were reevaluated after optimization using the optimizer presented

above.
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Figure 8.5: Bar graph for the binding energies of stacked and hydrogen-bonded nu-
cleobase pairs AT and GC. The binding energies are calculated with and without
dispersion from a single point calculation and after an optimization. Reference bind-
ing energies are obtained from [164].

Figure 8.5 displays the binding energies of the four complexes. This figure clearly

depicts the repulsive energy of the stacked AT complex when optimized without

dispersion. The hydrogen-bonded complexes do not show this repulsive behavior

even when optimized without XDM, as in these complexes the electrostatic hydrogen

bonding is dominant. GGAs can capture the HB interactions. This figure also shows

the greater binding energy of hydrogen-bonding complexes compared to the stacked

complex. Table 8.2 lists quantitatively the binding energies along with a statistical

analysis.

From the first two rows of Table 8.2, it is obvious that XDM is crucial for the stacked

complexes. Even if the complex was optimized with a wavefunction method, a single

point calculation without XDM gives a very poor binding energy. This binding energy

gets even worse as the complex is optimized without dispersion. With the hydrogen-
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Table 8.2: Binding energies (in kcal mol−1) and statistical errors for four nucleobase
pairs. S and HB stand for stacked and hydrogen-bonding, respectively.

PW86+PBE PW86+PBE PW86+PBE PW86+PBE HF+BR Refc

+XDM (spa) +XDM (optb) (spa) (opta) +XDMd

A-T S 9.10 9.99 0.37 -2.54 7.20 11.6
C-G S 15.51 NA 7.26 NA 13.20 16.9
A-T HB 17.02 16.11 14.25 13.35 14.50 15.4
C-G HB 31.52 29.15 28.30 25.98 30.00 28.8

RMSPE 13.54 8.46 56.33 71.02 22.19
RMSE 2.14 1.03 7.43 8.41 2.97
MAE 2.06 0.89 5.63 6.34 2.55
ME 0.11 -0.18 -5.63 -6.34 -1.95
Min Error -2.50 -0.18 -0.50 -2.05 -0.90
Max Error 2.72 -1.61 -11.23 -14.14 -4.40

a) sp means the binding energy was calculated from a single point calculation.
b) opt means the binding energy was calculated after an optimization.
c) The reference binding energies are obtained from [164].
d) These binding energies are obtained from [104].
In this table, root mean square error (RMSE), mean absolute error (MAE), mean
error (ME), Min and Max error (in absolute value) in binding energies are given in
kcal mol−1. Root mean square percent error (RMSPE) is a percent error.

bonded complexes, the difference in binding energies with and without dispersion or

in single point versus optimization is not as pronounced as in the stacked complexes.

There is a small difference in the statistical errors for the PW86+PBE+XDM versus

the HF+BR+XDM. This means that as long as a proper functional is chosen for

exchange and for correlation and as long as dispersion is accounted for with XDM,

the binding energy evaluated will be accurate.

The RMSPE for all complexes drops from 13.5% to almost half (8.5%) as an optimiza-

tion is performed in the presence of XDM. This difference is due to the deformation

energy, which is accounted for with optimization, but not with a single point calcula-

tion. As mentioned above, with the latter approach, the geometry of the complex is

optimized at the MP2 level, however, the monomers are at fixed geometries, they are

obtained directly from the optimized complex geometry. With the optimization cal-

culation, both the complex and the monomers are optimized, which allows computing
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the deformation energy. As dispersion is turned off, the error increases to more than

55%. In this case, as opposed to the case in the presence of XDM, the optimization

causes an increase in the error from 56.3 to 71.0%. This is not unexpected, as after an

optimization in the absence of XDM, the binding energy is computed for a complex at

a less stable geometry. Thus it is better to compute single point energies at geometries

“pre-optimized” at a level of theory that includes long-range nonlocal correlation ef-

fects rather than computing energies at geometries optimized with PW86+PBE. The

mean error shows that in all cases the energies are underestimated, the only excep-

tion being PW86+PBE+XDM (sp). The minimum and maximum errors in binding

energies show that PW86+PBE+XDM (opt) gives the smallest range of errors and

the largest errors are in the absence of XDM (both sp and opt) especially for the

stacked complexes.

The reason why there are no results for the optimized stacked GC (with and without

dispersion) is that the complex will optimize to a hydrogen-bonding complex in both

cases. This result is not surprising when the dispersion is turned off as stacked GC

is basically a dispersion-bound complex. Therefore, the stacked complex will not

exist, it will form instead the hydrogen binding GC. What was not expected is a

hydrogen-bound GC after the optimization of the stacked GC even when XDM is

turned on. Since the optimizer is doing a proper job of capturing the deformation

energy in stacked AT, this means the optimizer is giving reliable results. Therefore,

the conclusion in this particular case is that the naked stacked GC, in this particular

orientation of G with respect to C, is not stable enough to exist; the more stable

hydrogen-bonding GC is rather the final product after optimization. The stacked

base pair would be stable if the dipole moments of the monomers are opposite to

each other. The steps of the optimization in the presence of XDM for stacked GC are

displayed in Figure 8.6.
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Figure 8.6: Optimization steps of stacked GC using PW86+PBE+XDM.

8.4.2 Anomeric Effect

The anomeric effects are of great biological importance. This effect is also known

as Edward-Lemieux, named after the scientist who originally discovered this effect

in 1955. In a cyclic molecule, e.g., a mono-substituted cyclohexane, the functional

group on the equatorial position is preferred over the axial position. This is explained,

in organic chemistry, by the steric hindrance effect where a functional group in the

equatorial position is less hindered compared to the axial position, and is thus more

stable. The anomeric effect predicts the axial position for a functional group attached

to the anomeric carbon (C1) of a heterocyclic cyclohexane to be more stable than

the equatorial position. This can be explained by a better orbital overlap in the axial

orientation leading thus to a more stable molecule. Another explanation is the dipole

cancellation of the heteroatoms in the axial stereoisomer. An example of substituted
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heterocyclic hexanes is the hexoses which are ubiquitous in biological systems. If a

wrong stereoisomer of a hexose is predicted computationally, then the stereospecificity

of enzymes involved in the metabolic pathways of carbohydrates might not catalyze

the reaction. This will lead to a metabolic malfunctioning in the body. Therefore,

given the importance of correctly predicting the more stable diastereomer, it is neces-

sary to have methods that describe energies accurately. Examples of computational

and experimental studies on the anomeric effects can be found in [165, 166, 167, 168].

In this subsection, four mono-substituted cyclohexanes and four mono-substituted

tetrahydropyrans (at the anomeric carbon) will be considered to test the accuracy of

the PW86+PBE+XDM method in predicting the anomeric effect. Figure 8.7 depicts

the molecules considered in this study.

Figure 8.7: Molecular structures of cyclohexane mono-substituted at the axial position
and mono-substituted tetrahydropyran at the equatorial position of the anomeric
carbon. In both molecules the substituent shown is a methoxy group.

As calculated in [169] and interpreted in [104] for this particular example of molecules,

dispersion (specifically intra-molecular dispersion) plays a vital role. The calcula-
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tions in this study were repeated with and without XDM, with single point and

optimization procedures. The basis set limit CCSD(T) reference energies were ob-

tained from [169] and the geometries were obtained from a private communication

with Dr. Erin Johnson. Using these particular geometries allows for a valid com-

parison of the current single point calculations and those in [104] calculated using

HF+BR+XDM. Augmented triple zeta Dunning basis set is used to compute the HF

energy in HF+BR+XDM, the BR and XDM were then computed numerically in a

“post-HF” procedure. The results of this study are summarized in Table 8.3.

Table 8.3: Difference in energies (in kcal mol−1) between axial and equatorial forms
of four mono-substituted cyclohexanes and tetrahydropyrans along with a statistical
errors analysis.

PW86+PBE PW86+PBE PW86+PBE PW86+PBE HF+BR Refc

+XDM (spa) +XDM (optb) (spa) (opta) +XDMd

Tetrahydropyrans
2-fluoro 2.56 2.92 2.40 2.78 2.18 2.45
2-hydroxy 0.62 0.80 0.36 0.56 0.57 0.86
2-methoxy 0.89 1.05 0.45 0.65 0.94 1.27
2-methyl -2.79 -2.76 -3.19 -3.15 -2.96 -2.82

Cyclohexanes
fluoro -0.37 -0.19 -0.53 -0.33 -0.18 -0.20
hydroxy -0.82 -0.65 -1.10 -0.90 -0.58 -0.56
methoxy -0.56 -0.35 -1.04 -0.73 -0.33 -0.21
methyl -1.79 -1.76 -2.20 -2.15 -1.90 -1.75

RMSPE 69.26 26.51 158.11 96.68 26.00
RMS 0.23 0.20 0.54 0.40 0.20
MAE 0.20 0.13 0.49 0.37 0.17
ME -0.16 0.00 -0.49 -0.29 -0.16

a) sp means the binding energy was calculated from a single point calculation.
b) opt means the binding energy was calculated after an optimization.
c) The reference energies are obtained from [169].
c) These energies are obtained from [104].
The energy difference is calculated using Eequatorial − Eaxial.
Root mean square error (RMSE), mean absolute error (MAE), mean error (ME), Min
and Max error in binding energies are given in kcal mol−1. Root mean square percent
error (RMSPE) is a percent error.

A positive energy means the axial position is more stable relative to the equatorial
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position, which is what should be expected with the tetrahydropyrans, while the op-

posite should be expected for cyclohexanes. The molecule 2-methyl tetrahydropyran

does not have an anomeric affect, it is governed by the steric rules. Table 8.3 shows

the expected relative stability for all molecules at all methods. The accuracy of each

method is significantly different. Similar to the case with DNA nucleobases, exclud-

ing the XDM from the calculation causes a significant increase in the error, by a

factor of about 2 - 3. An optimization with XDM lowers the error from 69.3 to 26.5%

(with the single point calculation), with a remarkable mean error. This improvement

in accuracy indicates that the current optimization is more accurate than the MP2

optimization. While the RMSPE of HF+BR+XDM is 0.5% smaller than that of

PW86+PBE+XDM (opt), the MAE and the ME are smaller in the latter. A con-

sistent negative mean error is an indicative of an overstabilization of the equatorial

position.

8.5 Conclusions

An optimizer for vdW complexes using the nonempirical DFT method PW86+PBE

+XDM is presented in this chapter. This optimizer was built using the “external”

keyword in the package Gaussian (03 or 09). This optimizer proved to be very repro-

ducible for the weakest dispersion-bound complexes (ten rare-gas diatomic systems

from the four monomers, He, Ne, Ar and Kr) and for a parallel stacked benzene

dimer. The complexes are reproducibly optimized to final geometries that are in ex-

cellent agreement with the reference geometries. In addition, the computed binding

energies are remarkably accurate. The use of this optimizer on biologically relevant

studies proved the accuracy of this optimizer and its reliability for using it in further

applications including inter - or intra-molecular interactions.
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PART II



Chapter 9

Introduction

This part of the thesis investigates the effect of strong static electric fields on the

double proton transfer reaction in Watson and Crick base pairs. Proton transfer

reactions are common in biochemistry, accounting for the very high electrical conduc-

tivity of water, “proton wires” affecting proton transport across biological membranes

[170, 171, 172, 173, 174], proton pumps such as bacteriorhodopsin [175, 176, 177], car-

bonic anhydrase [178, 179], photosynthetic reactions [180, 181, 182], ATP synthase

[183, 184, 185], and has been invoked in the Löwdin mechanism of mutation and aging

[186, 187, 188, 189, 190, 191, 192, 193].

The literature documents a number of biological effects of electric fields [194, 195,

196, 197]. For example, exposures of Drosophila melanogaster females to static elec-

tric fields of 1500 V cm−1 and 3300 V cm−1 for 24-hours increase the frequency of

sex-linked recessive lethal mutations [198]. In another study, calculations show that

weak residual external electrostatic fields can be amplified by a factor of ∼4x106

near the sharp edges of the junction linking two dividing cells [199]. These locally

amplified fields are thought to inhibit cell proliferation [199]. The enhancement of

the chemotherapeutic effect by electric fields, electrochemotherapy [200, 201, 202],

is believed to result from the synergy between the chemotherapeutic drug and field-
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induced electroporation of metastatic cell membranes [202].

In double-helical DNA, adenine (A) pairs with thymine (T) through two hydrogen

bonds (A=T) and guanine (G) pairs with cytosine (C) with three hydrogen bonds

(G≡C). Each hydrogen bond is essentially a proton trapped into an asymmetric dou-

ble well potential between two electronegative atoms. The resulting potential barrier

is too elevated for the proton to hop to the complementary base at room temperature.

When the quantum nature of the proton is taken into account, however, the proton

has a small, but finite, probability of tunneling through the barrier.

If a single proton tunnels from one base to its complementary partner, charge sepa-

ration will result in a zwitterionic base pair and hence is improbable. When protons

hop in pairs in opposite directions, charge neutrality is preserved. As a result of the

double proton hopping, the DNA bases are converted to their less stable tautomers

(the tautomeric forms that do not normally exist in stable DNA double helices), de-

noted by the asterisks: A*=T* and G*≡C*. If such double hopping occurs during

DNA synthesis, a rare tautomer in the template helix is hydrogen bonded to a differ-

ent base than in the Watson-Crick pairing scheme. For example, the base C (instead

of T) would be complementary to A*, and T (instead of C) would hydrogen bond to

G* (see Figure 9.1). This is the essence of Löwdin’s mechanism for spontaneous and

induced mutations [186, 187, 189, 191, 192, 203, 204].

Fu et al. showed that among several possible DNA mutation processes, only Löwdin

mechanism for double proton transfer could commonly explain the universal mutation

bias [205]. The slow accumulation of such errors, as long as they are non-lethal, is a

possible contributor to the process of ageing. This study explores the effect of very

strong electric fields on the double proton transfer reaction in WC dimers of DNA.

While DNA base pairs are surrounded by the polar/ionic sugar-phosphate backbone,

counterions, and histone proteins with their cationic side chains, these sources and

sinks of electrostatic field are likely balanced. However, ionic compounds that interact

with DNA can generate very intense local fields.
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Figure 9.1: A schematic representation of a normal and mutated DNA replication
at an AT base pair. In normal cases, the central AT unwinds to wild types A and
T which will interact with a free T and A, respectively. This will form two normal
replicates of AT (as shown at the bottom). With a mutation, the central AT unwinds
to A* and T*. These rare tautomers cannot form a stable base pair with wild T and
A, respectively (as shown in the above part of the sheme).

9.1 Field Strengths

The DNA molecule is surrounded by the highly charged phosphate backbone, his-

tone proteins and metal cofactors. Even though these sources of charges are likely

balanced, these charges create electric fields that vary in strength depending on the

charges and the separation between them. In a WC double stranded B-DNA, the

anomeric carbon atoms of two deoxyribose sugar groups are separated by ∼10 - 11

Å, and the diameter of the double helix is ∼20 Å. Therefore, 10 - 35 Å are typi-
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cal separations to be considered between charges in the microenvironment of a DNA

macromolecule. In vacuum, the electric field created at the mid-distance between

two points separated by 10 Å and bearing a 0.5 au charge each (see Figure 9.2), is

5.14x109 V m−1. This strength of the field decreases by an order of magnitude (i.e.,

to 5.14x108 V m−1) if the charged points were separated by 34 Å. Such strong electric

Figure 9.2: A schematic representation of two point charges separated by a distance
of 12 Å. The equidistant point in the middle where the strength of the electric field
is calculated.

fields are commonly encountered in biological systems. For example, phospholipid

bilayers possess differently charged lipid heads creating aligned dipoles at the inter-

faces. These dipoles, in addition to the concentration gradient of ions at both sides

of biomembranes, create electric fields in the order of 109 V m−1 [177]. Therefore, the

strengths of the external electric field applied in this study are 5.14 to 51.42x108 V

m−1. These fields are two to three orders of magnitude stronger than electric fields

encountered in a mass spectrograph using the field-induced droplet ionization (FIDI)

techniques [206, 207]. On the other hand, the field strength in the tip-sample gap of a

typical scanning tunneling microscope (STM) is ∼3x109 V m−1 for a tip-surface sep-

aration of 2 Å and a bias voltage of 0.6 V [208]. The field strengths in an STM, which

fall in the range of field strengths examined in this study, are enough to overwhelm

the tendency of water molecules to form hydrogen-bonded networks and to align their

dipoles ([208] and the literature cited therein). It is well known that strong electric

fields can strip atoms and molecules from an electron or more. Thus, the question

of whether the field strengths used in our studies are sufficient to ionize the complex

via tunneling ionization at the time scale of the proton transfer reaction has to be
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addressed. Neglecting the orientation-dependence of the Stark shift of a molecule in

an external electric field, the rate of tunneling ω of an electron from the complexes

in the presence of an external electric field is approximately [209, 210]:

ω(t) = 4
ω0

|E|(2IP )
5
2 exp

[
− 2

3

(2IP )
3
2

|E|

]
, (9.1.1)

where | E | is the electric field strength, IP is the vertical ionization potential, both

expressed in au, and the atomic unit of frequency is ω0 = 4x1016 s−1. The vertical IP

of a complex is the total energy of the neutral dimer minus the total energy of the

cation at the same geometry.

The inverse of the tunneling ionization rates is interpreted as the average time per

ionization event, a characteristic time that decreases with field strength. Together,

the tunneling ionization rate and the half-life of the reaction determine if an ionization

event will take place at the time scale of the double proton transfer reaction.

The first chapter of this section tests the effect of static electric fields on the double

proton transfer on formic acid dimer, which is a symmetric dimer. In this chapter, a

benchmark study is also performed to assess the performance of the computationally

inexpensive DFT B3LYP method compared to the wavefunction method MP2. The

second chapter deals with the effects of electric fields on the DNA base pairs.
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Chapter 10

Electric Field-Effects on Double

Proton Transfer Kinetics in the

Formic Acid Dimer

Reproduced by permission of the PCCP Owner Societies.

http://pubs.rsc.org/en/content/articlelanding/2011/cp/c1cp20175a

10.1 Abstract

Molecules can be exposed to strong local electric fields of the order of 108 - 1010 V m−1

in the biological milieu. The effects of such fields on the rate constant (k) of a model

reaction, the double-proton transfer reaction in the formic acid dimer (FAD), are in-

vestigated. The barrier heights and shapes are calculated in the absence and presence

of several static homogenous external fields ranging from 5.14x108 to 5.14x109 V m−1

using density functional theory (B3LYP) and second order Møller-Plesset perturba-

tion theory (MP2) in conjunction with the 6-311++G(d,p) Pople basis set. Conven-

tional transition state theory (CTST) followed by the Wigner tunneling correction is
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then applied to estimate the rate constants at 25oC. It is found that electric fields

parallel to the long axis of the dimer (the line joining the two carbon atoms) lower the

uncorrected barrier height, and hence increase the raw k. The fields also flatten the

potential energy surface near the transition state region and, hence, decrease the mul-

tiplicative tunneling correction factor. The net result of these two opposing effects is

that fields increase k(corrected) by a factor of ∼3 - 4 (DFT-MP2, respectively) com-

pared to the field-free k. Field strengths of ∼3x109 V m−1 are found to be sufficient

to double the tunneling-corrected double proton transfer rate constant at 25oC. Field

strengths of similar orders of magnitudes are encountered in the scanning tunneling

microscope (STM), in the microenvironment of a DNA base-pair, in an enzyme active

site, and in intense laser radiation fields.

10.2 Introduction

The double proton transfer in the formic acid dimer is studied as a model for a bio-

chemical proton transfer reaction under the influence of a strong local electric field.

The rate of double proton transfer in a dimer depends on the height of the barrier

and the shape of the potential energy surface (PES). External electromagnetic fields

have been shown to have considerable effects on the shape of the PES of gas-phase

proton transfer reactions [211, 212]. Bandrauk et al. have shown that IR laser fields

of intensity ranging from 1 to 3x1017 W m−2 (corresponding to maximal electric field

strengths of ∼8.8x109 - 1.5x1010 V m−1, respectively) induce considerable changes

to the PES of the reactions of halogens with methane (Xradical + CH4 → HX +

CH3radical, X = F, Cl) [211]. The electric field, time dependent (as in the case of a

laser pulse) or static, has been shown to couple to dipolar and polarizability terms

in the effective potential along the reaction path, a coupling extremized sharply near

the transition-state region. These extrema in field-dipole and field-polarization con-

tributions can be made to interfere constructively by the proper choice of phase. This
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constructive interference can lead to the disappearance or even the inversion of the

barrier into a well. In the latter case, the transition state structure becomes a field-

induced bound state [211].

As we show below, biological systems such as a DNA base pair can experience in-

tense local electrostatic fields close to the orders of magnitudes of the fields studied

by Bandrauk et al. [211]. These fields can arise from the surrounding medium in-

cluding ionic/polar sugar-phosphate backbone, ions, and polar or charged histones

intertwined with DNA. What are the effects of these local intense fields on the shape

of the PES and the barrier? And how would these effects alter the rate constant

of the double proton transfer? These are the principal questions addressed in this

chapter.

The model reaction studied in this chapter, the double proton transfer in formic acid

dimer (or related dimers), has been studied primarily in the absence of external fields.

The reaction has been examined in dimers of acetic acid [213, 214], formamide [214],

and formic acid [213, 214, 215, 216, 217, 218]. Chojnacki et al. calculated barrier

heights, energies of dissociation and electrostatic molecular potentials of formic acid

dimer using DFT and MP2 levels of theory [214]. Chocholousova et al. investigated

the PES and the free energy surface of six formic acid dimer isomers using molecular

dynamics and MP2 [215]. Fillaux addressed the issue of a stepwise double proton

transfer versus a synchronous mechanism in formic acid dimer and analogues [216].

Scheiner and Kern also investigated the synchronous interchange of protons in AT

and GC [217]. In addition, they calculated the quantum mechanical tunneling rates

and the equilibrium constants of the proton interchange reaction [217]. Tsuzuki et al.

report a benchmark study on the interaction energies of a series of simple hydrogen-

bonding-complexes using several ab initio levels of theory [218]. Yavuz and Trindle

studied the effect of counterpoise corrections to the basis set superposition error

(BSSE) on geometries, binding energies and frequencies of cis- and trans-formic acid
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dimers at the MP2 level of theory [219]. Vibrational properties of cyclic formic acid

dimer were studied by Bosi et al. [220] and Fernandez et al. [221]. The Raman spectra

of jet-cooled formic acid dimers and deuterated formic acid dimers have recently been

reported for the first time by Zielke and Suhm [222].

The mechanism of double proton transfer in formic acid dimer has been studied by

Ushiyama and Takatsuka [223]. These authors performed a full-dimensional classical

dynamics study of the mechanism of the double-proton transfer in the formic acid

dimer. They concluded that the double proton transfer occurs in a synchronous

(simultaneous) step only within the adiabatic approximation, whereby the positions

of all nuclei adjust instantaneously to the motion of the proton. This approximation

is the one adopted to construct the PES and the minimum energy path connecting

reactants and products. On the other extreme, that is, within the so-called “sudden

approximation” whereby the motion of the proton is infinitely faster than that of the

remainder of the nuclei, Ushiyama and Takatsuka concluded that the two protons

move asynchronously, the second proton lagging by ∼8 fs behind the motion of the

first proton [223].

An early semiempirical (AM1) quantum chemical study appears to be the only one

incorporating the effect of an intense external electric field on double proton transfer

(in DNA base pairs) [224]. This study shows that the single well preventing charge

separation in adenine-thymine base pair (A+-T−) in vacuum is converted to a double-

well potential under the influence of an externally-applied electric field and/or a

polarizable (solvation) medium [224].

With the exception of this AM1 study, the effects of locally intense fields on proton

transfer in DNA doe not appear to have been extensively investigated. The principal

goals of the present study are: (1) to determine the effects of static external fields on

the height and shape of the barrier of the double proton transfer reaction in the formic

acid dimer and on the rate constant, (2) to determine the order of magnitude of the

field strengths sufficient for causing a chemically-significant effect (≥ 1 kcal mol−1),

120



and (3) to compare results obtained at a relatively inexpensive method, B3LYP [155,

46, 34] with a more trustworthy, but computationally demanding, level such as the

second-order Møller-Plesset perturbational approach (MP2) [225].

10.3 Field Strengths

As justified in the previous chapter, the field strength applied in this study range from

5.14x108 to 5.14x109 V m−1. In this section, using eq.9.1.1 we will test if the dimer

will ionize at the time-scale of the double proton transfer reaction in the presence of

such strong fields. The IP of the formic acid dimer, is 11.0155 [MP2/6-311++G(d,p)]

/ 11.0162 eV [B3LYP/6-311++G(d,p)]. At field strengths of 5.14x108 V m−1 and

5.14x109 V m−1, the calculated tunneling ionization rates are 1.1x10−191 s−1 and

7.6x10−3 s−1, respectively, spanning 188 orders of magnitude. The inverse of the

tunneling ionization rates is interpreted as the average time per ionization event, a

characteristic time that decreases with field strength. The average time for a first

ionization event of a formic acid dimer is calculated to be 130 s (∼2.2 minutes) for

the strongest field considered in this study (5.14x109 V m−1). As shown below, the

half-life (t1/2) of the double proton transfer calculated in this work is of the order

of 101 - 103 picoseconds, at least 11 orders of magnitude shorter than an average

field-induced tunneling ionization event. The proportion of formic acid dimers that

ionizes under the influence of the strongest field is, thus, negligible at the time-scale

of the double proton transfer, and hence is not considered.

121



10.4 Computational Details

10.4.1 Electronic Structure Calculations

A series of external static homogenous electric fields of different strengths were applied

parallel to the three orthogonal directions (x, y, z) depicted in Fig. 10.1, in addition

to a field-free set of calculations.

Figure 10.1: Ball-and-stick representation of the formic acid dimer showing the num-
bering scheme and the coordinate axes parallel to which the fields (Ex, Ey, Ez) are
applied. The distortion of the figure from the C2v symmetry is an artifact of the per-
spective view and the tilting of the dimer to make the direction of the y-axis visible
in the drawing (this applies also to Figs. 2 and 3).

The applied fields are of the following strengths (in 108 V m−1): 5.14, 10.28, 20.56,

30.83, 41.12 and 51.40. Two levels of theory were used in this study: (1) DFT’s hybrid

functional B3LYP (three-parameter exchange functional of Becke and the correlation

functional of Lee, Yang and Parr) with the 6-311++G(d,p) Pople basis set; and

(2) MP2 using the same basis set. Gaussian 09 [118] was used for all electronic

structure calculations. Relaxed scans of the potential energy surface were performed

by varying the internuclear separation in one of the two hydroxyl groups (O3-H4, Fig.

10.1) from 0.7 to 2.5 Å in increments of 0.1 Å. Three scans were performed at every
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field strength, one scan in each of the three perpendicular directions depicted in Fig.

10.1. The scans performed at the DFT level were used to locate the approximate

position of the transition state (TS) at each combination of orientation and field

strength. Each one of these approximate transition state geometries was subject to

a TS optimization where the only constraint imposed on the optimized geometry

is the presence of one and only one imaginary frequency. These TS optimizations

starting from the approximate DFT guesses were performed at the two levels of theory

(B3LYP and MP2) followed by a frequency calculation to confirm the existence of

one and only one imaginary frequency as required for first-order saddle points. Unless

mentioned otherwise, the energies (or energy differences) reported in this chapter are

Gibbs energies (or Gibbs energy differences). The imaginary frequencies reported and

tabulated in this chapter, and used in tunneling correction calculations, are the raw

unscaled harmonic frequencies obtained directly from the Gaussian 09 output files

[118].

10.4.2 Transition State Calculations and Proton Tunneling

Correction

Conventional transition state theory (CTST) is used to provide estimates of the dou-

ble proton transfer rate constant in the absence and presence of various field strengths.

The (unimolecular) classical rate constant is expressed as:

k(T ) = κ(T )
kBT

h
exp

(
− ΔG‡

RT

)
(10.4.1)

where kB, T , h, ΔG‡ , and R are the Boltzmann constant, absolute temperature,

Planck’s constant, Gibbs energy of activation, and the universal gas constant, respec-

tively. The factor κ(T ) accounts for deviations from CTST due to mechanisms that

tend to decrease the rate constant such as reflection, or those which tend to increase
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it such as quantum mechanical leakage through the barrier (tunneling). Since the

reaction studied involves the transfer of protons, the effect of tunneling on the reac-

tion rate constant can be expected to be significant in view of the small mass of the

proton. In this work, whereby we are primarily interested in orders of magnitudes

and trends, the simple Wigner tunneling [226] correction suffices:

κ(T ) = 1 +
1

24

[
hIm(ν‡)
kBT

]
(10.4.2)

where Im(ν‡) is the imaginary part of the complex frequency along the reaction path

characterizing the activated complex. To test the validity of the Wigner correction,

Professor J. Raul Alvarez-Idaboy has communicated to us the recalculated κ (25oC)

for the field-free B3LYP using an Eckart barrier, κEckart(25
oC) = 4.39. While larger

than the corresponding Wigner correction [κWigner(25
oC) = 2.52], it indicates that

the Wigner correction is sufficient since it yields the correct order of magnitude and

thus our conclusions should remain unchanged.

10.5 Conventions Used in this chapter

The two levels of theory B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) will be

referred to as DFT and MP2. The DFT results are presented without brackets fol-

lowed by MP2 results in brackets, e.g., 1.830 (1.832) Å. The field strengths of 5.14,

10.28, 20.56, 30.83, 41.12 and 51.40 (in 108 V m−1) will be denoted, for simplicity,

as 5, 10, 20, 30, 40 and 50, respectively, and the field-free case will be denoted as

0. Unless stated otherwise, when the results with and without field are compared,

this implies a comparison between the field-free case and the case under the influence

of the strongest field (i.e., field 50) directed parallel to the long axis of the dimer

(z-axis), (Fig. 10.1).
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10.6 Results and Discussion

10.6.1 Field-Effects on the Mechanism of the Double Proton

Transfer in the Formic Acid Dimer

The potential energy scans in absence or presence of fields in all studied orientations

and strengths revealed no intermediates, i.e., there exists only one transition state for

each combination of orientation and strength of the external field (Fig. 10.2).

Figure 10.2: The potential energy surfaces of the double proton transfer reaction in
formic acid dimer under the effect of electric fields with various strengths applied in
the z direction.

The nature of each of these transition states was confirmed to exhibit one and only

one imaginary frequency. Within the adiabatic approximation, the proton transfer is,

thus, a concerted one step reaction in which both protons move in opposite directions

simultaneously.
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10.6.2 Preferred Orientation of the Formic Acid Dimer in an

External Static Homogenous Electric Field

It is instructive to start by elucidating the preferred orientation of the formic acid

dimer in the external field in the absence of constraints. The symmetry of the dimer

reduces the number of unique principal orientations to be examined. For each field

strength, there exists three principal orientations of the dimer (with the field parallel

to the x-, y-, or z-axes). In every orientation, the energy of the dimer in the field

is calculated before the double proton transfer reaction, and at the transition state.

The most favorable orientation (in all field strengths and for both reactants and tran-

sition states) is found to be in the presence of an external electric field parallel to the

z-axis, a field denoted by Ez. In the remainder of this section, only maximal fields of

maximum strength are considered, i.e., the fields Ex, Ey, and Ez of strength equal

to 5.14x109 V m−1.

Let nx, ny, and nz, represent the mole-fractions of dimers in the orientations defined

by Ex, Ey, and Ez, and let ΔGo
zx and ΔGo

zy be the difference in Gibbs energy of

the system when the orientation of the field is switched from parallel to the z-axis to

parallel to the x- and y-axis, respectively. The relative populations in the principal

orientations with respect to the external field are given by

nz

ni

= exp

(
− ΔGo

zi

RT

)
, i = x, y (10.6.1)

nx + ny + nz = 1 (10.6.2)

The relative populations are listed in Table 10.1. It is clear that the z-direction is

the most favorable orientation at the global minima (reactants/products), as well as
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at the activated complex (transition state) structure. At 25oC, more than 97% of

formic acid dimers at the transition state structure are orientated with their long

axis parallel to the field. A smaller majority [80.9 (76.8) %] of dimers at the global

minimum are also in this orientation with respect to the external field. This indicates

that the system clearly favors this orientation aligning the field parallel/antiparallel

to the direction of proton transfers.

Table 10.1: Mole fractions of formic acid dimers along the three principal orientations
with respect to the external field in the global minimum (reactants/products) and at
the activated complex (transition state) geometries. T = 298.15 K.

Reactants Transition state
Mole fraction DFT MP2 DFT MP2

nz (%) 80.9 76.8 97.8 97.7
nz (%) 12.0 15.7 1.6 1.7
nz (%) 7.1 7.5 0.6 0.6

10.6.3 Field-Effects on the Geometry of the Formic Acid

Dimer in the Reactants/Products and the Transition

State of the Double Proton Transfer

Zero Field

The transition state structure of the formic acid dimer has a D2h symmetry in the

absence of an external electric field (Fig. 10.3).

The transferring protons, H4/H9, are equidistant 1.209 (1.201) Å from the two oxygen

atoms, O3...H4...O5/O8...H9...O10, (see Table 10.2). The angles O3-C2-O10 and O5-

C6-O8 are equal to 126.60o (126.92)o. The reactants/products of the double proton

transfer in the absence of an externally applied field have a C2h point group as can

be seen from Fig. 10.3.
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Figure 10.3: Ball-and-stick representation of reactants (top), transition state (mid-
dle), and products (bottom) of the double proton transfer reaction in the formic acid
dimer in absence of external fields. Bond lengths are in Å.

Fields of Different Strengths in the z-Direction

Fields parallel to the z-axis affect the height and shape of the barrier considerably

more than fields parallel to the x- or y-axes. Thus, emphasis will be placed on the

geometric and energetic changes accompanying fields parallel to the z-axis.

Transition State

The transition state has a C2 rotation axis aligned along the z-axis and belongs to

the C2v point group (Fig. 10.4).

In the presence of a field in the z-direction, bond angles remain essentially unchanged
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Table 10.2: Interatomic distances (in Å) in the reactants, activated complex, and
products of the double proton transfer reaction in the formic acid dimer in absence
and presence of different field strengths parallel to the z-axis.

Field
Strength
(x108 Vm−1)

0 5.14 10.28 20.56 30.83 41.12 51.40

Theory DFT MP2 DFT MP2 DFT MP2 DFT MP2 DFT MP2 DFT MP2 DFT MP2

Transition State
O3-H4 1.209 1.201 1.192 1.185 1.177 1.170 1.148 1.142 1.124 1.119 1.104 1.100 1.088 1.083
H4-O5 1.209 1.201 1.227 1.218 1.245 1.235 1.281 1.270 1.316 1.304 1.351 1.338 1.384 1.370
O8-H9 1.209 1.201 1.227 1.218 1.245 1.235 1.281 1.270 1.316 1.304 1.351 1.338 1.384 1.370
H9-O10 1.209 1.201 1.192 1.185 1.177 1.170 1.148 1.142 1.124 1.119 1.104 1.100 1.088 1.083

Reactants
O3-H4 0.998 0.990 0.996 0.988 0.995 0.987 0.992 0.985 0.989 0.982 0.987 0.981 0.985 0.979
H4-O5 1.700 1.727 1.715 1.741 1.729 1.755 1.758 1.785 1.789 1.817 1.822 1.851 1.857 1.887
O8-H9 0.998 0.990 1.000 0.991 1.002 0.993 1.006 0.996 1.010 1.000 1.015 1.004 1.021 1.009
H9-O10 1.700 1.727 1.687 1.713 1.673 1.699 1.646 1.672 1.620 1.645 1.593 1.619 1.566 1.593

Products
O3-H4 1.700 1.727 1.687 1.713 1.673 1.699 1.646 1.672 1.620 1.645 1.593 1.619 1.566 1.593
H4-O5 0.998 0.990 1.000 0.991 1.002 0.993 1.006 0.996 1.010 1.000 1.015 1.004 1.021 1.009
O8-H9 1.700 1.727 1.715 1.741 1.729 1.755 1.758 1.785 1.789 1.817 1.822 1.851 1.857 1.887
H9-O10 0.998 0.990 0.996 0.988 0.995 0.987 0.992 0.985 0.989 0.982 0.987 0.981 0.985 0.979

Figure 10.4: Ball-and-stick representation of reactants (top), transition state (mid-
dle), and products (bottom) of the double proton transfer reaction in the formic acid
dimer in presence of | Ez | = 5.14x109 V m−1 (0.010 au). Bond lengths are in Å.
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with O3-C2-O10 and H7-C6-O8 slightly decreasing by less than 1o under the influence

of the field. (The reader is reminded that when “field” is mentioned without specifi-

cation of its strength or direction, this field is the strongest, i.e., the field labeled 50,

along the z-direction).

Four bond lengths were significantly altered by the field. Distances O3-H4 and H9-

O10 decrease from 1.209 (1.201) to 1.088 (1.083) Å, while distances H4-O5 and O8-H9

increase from 1.209 (1.201) to 1.384 (1.270) Å. Table 10.2 lists interatomic distances

corresponding to bond lengths from the DFT and the MP2 calculations. A glance at

this table reveals the close agreement between the two levels of theory in reproducing

trends of field-effects on interatomic distances.

Reactants and Products

In the absence or presence of a field in the z-direction, the distances H4-O5, H9-O10,

O3-H4 and O8-H9 in the reactants are equal to the distances O8-H9, O3-H4, H9-O10

and H4-O5 in the products (Table 10.2). In other words, the reactants and products

are identical and related by a 180o rotation around the z-axis for both the field free

case (Fig. 10.3) and in the presence of Ez (Fig. 10.3). We will thus adopt the nota-

tion “reactants/products” henceforth.

Bond angles for reactants/products remain nearly unchanged when fields of differ-

ent strengths are applied in the z-direction. The field in the z-direction reduces the

symmetry of the system. In the reactants/products, the field lengthens the H...O hy-

drogen bond and shortens the covalent O-H bond while inducing the opposite effect

in the other arm of the dimer. The length of the hydrogen bond linking H4 and O5,

dH4-O5, is 1.857 (1.887) Å, and the length of the O3-H4 bond, dO3-H4, equals 0.985

(0.979) Å (Table 10.2). The corresponding distances in the other hydrogen bonded

arm of the dimer are dH9-O10 = 1.566 (1.593) Å and dO8-H9 = 1.021 (1.009) Å,

respectively (Figs. 10.3, 10.4).

In the reactants/products, the presence of a field directed parallel to the z-axis has
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minimal influence on the H1-C2 and C6-H7 distances. This field causes the C2-H1 to

shorten by 0.003 Å from 1.096 (1.095) Å to 1.093 (1.092) Å; while C6-H7 is stretched

by 0.007 Å from 1.096 (1.095) Å to 1.102 (1.101) Å.

The transition state structure undergoes similar changes under the influence of the

field. Thus, bond angles remain essentially unchanged with the field. C-H distances

dH1-C2 and dC6-H7 undergo only slight modifications: dH1-C2 decreases from 1.095

(1.094) to 1.091(1.090) Å; while dC6-H7 increases from 1.095 (1.094) to 1.106 (1.104)

Å. The “stacked” O-H arms are equal, i.e., bond distances dO3-H4 = dH9-O10 =

1.088 (1.083) Å; while bond distances dH4-O5 = dO8-H9 = 1.384 (1.370) Å (Table

10.2).

The transition state has a higher symmetry than reactants/products. In the absence

of a field, the point groups of the product/reactant and of the transition state are C2h

and D2h, respectively. In the presence of a field, point groups of products/reactants

and transition state structure are Cs and C2v, respectively.

Furthermore, the distance between the monomers changes significantly in the tran-

sition state with respect to the reactants/products. The distance between the two

monomers may be gauged by the inter-oxygen distance, i.e., the O3-O5 (or O8-O10)

distance. In the absence or presence of all field strengths, the O-O distance in the

reactants/products is ∼2.7 Å, to one decimal place, a distance significantly shortened

in all of the respective transition state to only ∼2.4 Å, i.e., the monomers are closer

in the transition state by ∼0.3 Å.

10.6.4 Field-Effects on the Barrier Height of the Double

Proton Transfer

Fig. 10.4 depicts a ball-and-stick representation of the geometries (labeled with bond

lengths) of the reactants, transition state, and products of the double proton transfer,

calculated at the two levels of theory. Since, as discussed above, the reactants and
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the products are identical whether in the presence or the absence of Ez, the calcu-

lated forward and backward barriers are the same and their distinction will, thus, be

dropped in the remainder of this chapter. The energies and barrier heights are listed

in Table 10.3.

Table 10.3: Transition states imaginary frequencies, Gibbs energies (and their differ-
ences), raw and corrected reaction rate constants, and Wigner tunneling corrections
in absence and presence of fields of varying strengths and directions.

Field Strengths /108

V m−1
0.00 5.14 10.28 20.56 30.83 41.12 51.40

Field in the z-Direction (DFT)

Im(ν‡) (cm−1) 1253.03i 1239.90i 1200.85i 1048.91i 816.18i 554.79i 342.12i

G‡ (au) -379.6341 -379.6341 -379.6344 -379.6352 -379.6366 -379.6385 -379.6409

G(reactants) (au)(a) -379.6405 -379.6406 -379.6407 -379.6413 -379.6423 -379.6437 -379.6455

ΔG (kcal mol−1) 4.06 4.04 3.99 3.81 3.54 3.24 2.90

k298K (s−1) 6.54x109 6.76x109 7.36x109 9.97x109 1.57x1010 2.61x1010 4.64x1010

κ298K tunnel 2.52 2.49 2.40 2.07 1.65 1.30 1.11

k298K corrected (s−1) 1.65x1010 1.68x1010 1.76x1010 2.06x1010 2.59x1010 3.39x1010 5.16x1010

t1/2 (ps)(b) 42.03 41.15 39.28 33.63 26.77 20.45 13.43

Field in the z-Direction (MP2)

Im(ν‡) (cm−1) 1351.00i 1338.03i 1299.79i 1152.68i 926.64i 657.59i 420.12i

G‡ (au) -378.6992 -378.6992 -378.6995 -378.7003 -378.7018 -378.7036 -378.7060

G(reactants) (au)(a) -378.7083 -378.7084 -378.7085 -378.7090 -378.7100 -378.7113 -378.7130

ΔG (kcal mol−1) 5.73 5.72 5.67 5.46 5.15 4.78 4.37

k298K (s−1) 3.89x108 3.96x108 4.31x108 6.14x108 1.04x109 1.94x109 3.87x109

κ298K tunnel 2.77 2.74 2.64 2.29 1.83 1.42 1.17

k298K corrected (s−1) 1.08x109 1.08x109 1.14x109 1.41x109 1.90x109 2.75x109 4.53x109

t1/2 (ps)(b) 642.47 639.52 609.53 492.90 364.64 252.06 152.86
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Table 10.3 continued ...

Field in the x-Direction, DFT

Im(ν‡) (cm−1) 1253.03i 1253.04i 1253.07i 1253.20i 1253.41i 1253.71i 1254.09i

G‡ (au) -379.6341 -379.6341 -379.6342 -379.6345 -379.6351 -379.6360 -379.6370

G(reactants) (au) -379.6405 -379.6406 -379.6407 -379.6410 -379.6417 -379.6425 -379.6437

ΔG‡ (kcal mol−1) 4.06 4.06 4.06 4.07 4.10 4.13 4.17

Field in the x-Direction, MP2

Im(ν‡) (cm−1) 1351.00i 1350.99i 1350.96i 1350.84i 1350.56i 1350.31i 1349.98i

G‡ (au) -378.6992 -378.6992 -378.6993 -378.6996 -378.7002 -378.7011 -378.7022

G(reactants) (au)(a) -378.7083 -378.7083 -378.7084 -378.7088 -378.7094 -378.7103 -378.7115

ΔG‡ (kcal mol−1) 5.73 5.74 5.74 5.75 5.77 5.80 5.84

Field in the y-Direction, DFT

Im(ν‡) (cm−1) 1253.03i 1253.07i 1253.19i 1253.68i 1254.50i 1255.66i 1257.17i

G‡ (au) -379.6341 -379.6341 -379.6341 -379.6344 -379.6348 -379.6353 -379.6361

G(reactants) (au)(a) -379.6405 -379.64 -379.6406 -379.6410 -379.6415 -379.6423 -379.6432

ΔG‡ (kcal mol−1) 4.06 4.06 4.08 4.13 4.22 4.34 4.51

Field in the y-Direction, MP2

Im(ν‡) (cm−1) 1351.00i 1350.95i 1351.10i 1351.66i 1352.66i 1354.06i 1355.91i

G‡ (au) -378.6992 -378.6992 -378.6992 -378.6995 -378.6999 -378.7004 -378.7011

G(reactants) (au)(a) -378.7083 -378.7083 -378.7083 -378.7086 -378.7090 -378.7098 -378.7108

ΔG‡ (kcal mol−1) 5.73 5.73 5.71 5.69 5.75 5.87 6.05

(a)By symmetry, G(products)=G(reactants), for any given field.
(b)t1/2= ln 2/k.

The energies of all species (reactants/products, and transition state) decrease as a

function of the magnitude of Ez. Fields stabilize the transition state more than they

stabilize the reactants/products, and hence fields parallel to the z-direction decrease

the barrier height.

The calculated Gibbs energies and barrier heights are collected in Table 10.3. As

can be seen from this table, the trends from the MP2 and DFT results are remark-

ably consistent, especially with respect to the effect of fields on barrier heights. The

agreement in trends between the two levels of theory can also be construed from Fig.

10.5.

The results in the Table 10.3 and Fig. 10.5 show that the most significant effect on
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Figure 10.5: Barrier heights (ΔG‡) as a function of field strength, orientation, and
level of theory in kcal mol−1. The fields parallel to the x-, y- and z-axes are la-
beled with the corresponding subscripts and symbolized by blue squares, red trian-
gles and black circles, respectively. Interpolated curves linking the data points were
added to guide the eye. The curves originating at the top-left are calculated at the
MP2/6-311++G(d,p) level and those originating at the bottom left at the B3LYP/6-
311++G(d,p) level.

the barrier height is achieved when the external field is parallel to the z-axis, and that

this effect increases significantly with the field strength. It is important to note that

the MP2 barriers are systematically higher than the corresponding barriers calculated

at the DFT level of theory by ∼1.5 kcal mol−1. This difference translates into more

than one order of magnitude change in rate constants.

The field applied in the x-direction causes the barrier to increase from 4.06 (5.73) kcal

mol−1 (in the absence of field) to 4.17 (5.84) kcal mol−1 at the maximum field intensity.

Similar slight increase in the barrier height is also achieved by the application of fields
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parallel to the y-axis (perpendicular to the plane of the molecule). The MP2 barrier

height remains nearly constant (decreases insignificantly from 5.73 to 5.69 kcal mol−1)

with field strengths from 0 to 20, then increases gradually to 6.05 kcal mol−1 as the

field increases from 20 to 50. In the case of DFT, the barrier height consistently

increases from 4.06 to 4.51 kcal mol−1 for field strengths from 0 to 50. At the maximal

field strength (field “50”) in the z-direction, the barrier height is lowered to ∼76 (71)

% of its field-free value.

10.6.5 Field-Effects on the Imaginary Vibrational

Frequencies

The imaginary vibrational frequencies at the transition states (DFT and MP2) are

listed in Table 10.3. The magnitudes of the imaginary frequencies obtained from

DFT calculations are systematically lower by (∼100 cm−1) than the corresponding

frequencies at the MP2 level of theory, whether in absence or presence of field. In the

field-free case, these frequencies are 1253.03i (1351.00i), at the DFT (MP2) levels,

respectively. Fields oriented parallel to the x- or y- axes have a minor effect on

the imaginary frequency at all strengths studied, as can be seen from Table 3. The

averages (± standard deviation) of the magnitudes of the imaginary frequency in the

presence of Ex and Ey are:
〈
Im(v‡)Ex

〉
= 1253.42i± 0.38(1350.61± 0.37)cm−1; and〈

Im(v‡)Ey

〉
= 1254.55i± 1.47(1352.72± 1.77)cm−1.

Fields aligned (anti)parallel to the direction of proton transfer, Ez, have considerably

more significant effect on the magnitude of the imaginary vibration than Ex or Ey, the

effect being most pronounced above a field strength threshold around 109 V m−1 (Fig.

10.6). Beyond this threshold, Ez fields cause a significant decrease in the magnitude

of the imaginary frequency.

Since a low Im(v‡) is associated with a small curvature of the PES at the transition

state region [227], the decrease in the magnitude of the imaginary frequency with
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Figure 10.6: Magnitude of the imaginary frequency [Im(ν‡) / cm−1] (top), first order
rate constant (k / s−1) at 25oC (298.15 K) obtained from CTST [Eq. 11.4.1] after
Wigner’s tunneling correction [Eq. 11.4.2] (middle), and half life [t1/2 / picoseconds]
(bottom) of the double proton transfer in the formic acid dimer as a function of | Ez
|(in V m−1) and level of theory. Plots on the left are based on B3LYP/6-311++G(d,p)
calculations, those on the right derive from the MP2/6-311++G(d,p) results. (Note
the one order of magnitude reduction in scale of the middle-right plot reporting k298
at the MP2 level compared to the corresponding plot obtained at the DFT level
(middle-left).
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increasing field strength indicates that strong z-fields flatten the potential energy sur-

face considerably near the transition state region. As can be gleaned from Table 10.3

and Fig. 10.6, the imaginary frequency drops from its field-free value 1253i (1351i)

to 342i (420i) cm−1 at maximal field strength (5.14x109 V m−1). The magnitude

of the imaginary frequency, thus, decreases by ∼75 (70) % under the influence of

the maximal field intensity in the z-direction when compared to the zero-field case.

The lowering of the barrier brought about by the application of intense Ez is, thus,

accompanied with a considerable field-induced flattening of the PES.

10.6.6 Field-Effects on the Unimolecular Reaction Rate

Constant of the Double Proton Transfer

The first order reaction rate constants k(T) calculated from CTST at 25oC (T =

298.15 K) in the absence and presence of all studied fields parallel to the z-axis (at

both levels of theory) are collected in Table 10.3.

The entry “k298” in Table 10.3 is the classical unimolecular rate constant calculated

from Eq. (11.4.1), i.e., when the dimensionless non-classical correction factor is unity

(κ298K = 1). As mentioned above, the ∼1.5 kcal mol−1 systematic difference in the

calculated barrier heights between MP2 and DFT is magnified, through the expo-

nential function, to more than one order of magnitude difference in the value of the

rate constant. Thus, the uncorrected CTST rate constants at the DFT level range

from 6.59x109 s−1 in the field-free case to 4.46x1010 s−1 at the limit of strongest

field strength, while the corresponding values at the MP2 level are 3.89x108 s−1 and

3.87x109 s−1, respectively (Table 10.3).

Using the magnitudes of the imaginary frequencies calculated at the DFT (MP2)

levels at 25oC, the Wigner correction [226] (κ298K) ranges from 2.52 (2.77) for the

field-free case, to 1.11 (1.17) for the case of maximal field intensity. While tunnel-

ing corrections can be more accurately predicted by more sophisticated treatments
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such as that of Skodje and Truhlar [228] especially for κ > 2, this is not expected to

give rise to a qualitatively different picture in this case since κ < 2.8. For small to

moderate tunneling (1.1 < κ < 4) [229], the Wigner correction should be sufficiently

accurate as has been confirmed by comparing the DFT field-free value with the one

calculated from an Eckart potential.

With the inclusion of the Wigner tunneling correction, the corrected rate constants

range from 1.65x1010 (1.08x109) s−1 for the field-free case to 5.16x1010 (4.53x109) s−1

in the case of the strongest field along the z-direction (Table 10.3 and Fig. 10.6). In

other words, the tunneling-corrected net effect of the strongest Ez field is to approx-

imately triple (quadruple) the rate constant of the double proton transfer reaction in

the formic acid dimer at 25oC. The field-induced magnification of k298K(corrected) is

reflected on the half-life (t1/2) of the dimer, a time that decreases quickly with field

strength as can be seen from Table 10.3 and Fig. 10.6.

As can be anticipated from Fig. 5, the tunneling-corrected rate constant is exponentially-

correlated to the z-field strength. The following equations represent the lines of best

exponential fit to the data:

kDFT
298K(corrected) ≈ 1.312× 1010exp(2.53× 10−10 | Ez |),

[n = 7, r2 = 0.953] (10.6.3)

and

kMP2
298K(corrected) ≈ 7.508× 108exp(3.39× 10−10 | Ez |),

[n = 7, r2 = 0.964] (10.6.4)

where the pre-exponential constants have the dimensions/units of k (s−1) and the

constants in the exponents have the dimensions/units of reciprocal electric field (m

V−1), and | Ez | is in V m−1. The strength of the above correlations is reflected
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in both the r2 and the root mean square deviation (RMSD) of the fitted and the

calculated values of k298K(corrected), being slightly stronger for in the case of the

MP2 results (Eq. 10.6.4).

10.7 Conclusions

The double proton transfer reaction in the formic acid dimer has been studied in the

presence of external static homogenous electric fields of various strengths in three

perpendicular directions. The reaction path linking reactants and products is found

to exhibit a single transition state without intermediate species in the absence or in

the presence of all of the studied fields. The lack of a “double/multiple hump(s)”

along the reaction path indicates that the double proton transfer in the formic acid

dimer occurs synchronously within the adiabatic approximation.

The transition states have a higher symmetry than the reactants or products. When

the applied field is parallel to the z-direction, the reactants and products belong to

the Cs symmetry point group, while the transition states belong to the C2v group.

The relative Boltzmann orientations in an external field indicate a strong tendency

for the formic acid dimers in vacuum-phase to align their long axis (the line pass-

ing through the carbons) parallel to the field, i.e., parallel to the z-direction. Mole

fractions of ∼77% (MP2) - 81% (DFT) of reactants/products and ∼98% (MP2 and

DFT) of transition states are aligned with the C-C axis parallel to the external field.

Fields in the x- and y-direction (Ex, Ey, respectively) do not have a significant effect

on the potential energy barrier height of this reaction and were not considered in

detail. In contrast, fields parallel to the C-C axis (Ez) have a considerably effect on

the barrier height. The most intense Ez fields (| Ez |= 5.14 × 109 V m−1) decrease

the barrier height by ∼25% (MP2) - 30% (DFT). The same field also decreases the

magnitude of imaginary frequency considerably by ∼70% (MP2) - 75% (DFT). Since

the imaginary frequency measures the curvature of the potential energy surface along

139



the reaction path at the transition state region, this means that the Ez significantly

flattens the potential energy surface at or near the transition state region.

The flattening of the potential energy surface along the reaction path near the transi-

tion state is accompanied with a significant decrease in the rate of tunneling through

the barrier. The flattening of the surface, thus, reduces the overall (corrected) rate

constant. Therefore, Ez elicits two opposing effects on the rate constant: On one

hand it increases the raw rate constant (k), that is, k uncorrected for tunneling, by

decreasing the barrier. On the other hand, it reduces the magnitude of the dimen-

sionless tunneling multiplicative correction κ and hence tends to slow the decrease

in k achieved through the lowering of the barrier. The combined effect of these two

opposing contributions is a net relative increase of the tunneling-corrected k with the

magnitude of Ez, albeit around half as fast as the relative increase or raw (uncor-

rected) k with field strength (Table 10.3). Thus, the rate of reaction increases with

increasing field strength in the z-direction, an effect particularly notable beyond a

field-strength threshold of ∼109 V m−1. With the inclusion of tunneling corrections,

the value of k (at 25oC) increases by a factor between ∼3.1 (DFT) and ∼4.2 (MP2)

by going from the field-free case to an | Ez | of 51.40x108 V m−1 (the strongest field

strength considered in this work).

The intensity of field necessary to double of the speed of the double proton transfer

reaction is a little higher than ∼3x109 V m−1. This field strength is typically encoun-

tered in the gap between the tip and the sample of an STM [208], and represents the

order of magnitude of fields in the microenvironment of biological molecules such as

DNA, enzymes active sites, or due to solvent fluctuations. It is recommended, thus,

to consider the effect of strong local electric fields on the kinetics of reactions likely

to take place in such electrical environments.
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Chapter 11

Effects of Intense Electric Fields on

the Double Proton Transfer in

Watson-Crick DNA Base Pairs

11.1 Abstract

This chapter investigates the effect of strong electric fields encountered in the mi-

croenvironment of DNA on the double proton transfer reactions in DNA base pairs,

adenine-thymine and guanine-cytosine. Fields in the order of 108 to 109 V m−1 were

applied in two opposite directions along the movement of the protons. Using the den-

sity functional theory with a triple zeta Pople basis set, the results show that while

fields applied in the positive direction elicit an increase of the tunneling-corrected rate

of the double proton transfer in the forward direction, the opposite effect is observed

for the reverse reaction. However, when fields are applied in the negative direction,

the rate of both the forward and reverse reactions, in general, increases exponentially

with stronger fields.
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11.2 Introduction

External electromagnetic fields can considerably alter the topography of the poten-

tial energy surfaces of gas-phase proton- [212, 230], double proton- [231], hydrogen-

[230, 232, 233, 234], or hydride-transfer reactions [212]. Intense electric fields 5.14x108

- 5.14x109 V m−1 can also determine the selectivity of a particular reaction chan-

nel of bond activation by porphine-based catalysts between two competing channels

(whether the reaction proceeds to C-H hydroxylation or C=C epoxidation) [235].

There is also ample literature examining the biological effects of electric fields [194,

195, 196, 197, 231]. As an example of a direct observable biological field effects

of static external electric fields, the frequency of sex-linked recessive lethal muta-

tions in Drosophila melanogaster females exposed to static electric fields of 1.5 and

3.3x105 V m−1 for 24-hours increase significantly [198]. Further, weak residual ex-

ternal electrostatic fields to which a cell may be exposed can locally be amplified

4x106 times in proximity of sharp edges of the junction joining a pair of dividing

cells [199]. Such locally-amplified fields are believed to inhibit cell proliferation [199].

Electrochemotherapy is an entire domain of biomedical research concerned with the

enhancement of the chemotherapeutic effect of certain drugs by external electric fields

[200].

Intense local electric fields (∼108 to 109 V m−1) in the normal cellular microenviron-

ment have been demonstrated to have significant effects on the kinetics of a model

double proton transfer reaction [231]. In the previous chapter, the proton exchange

within a formic acid dimer has been used as a simple model for a DNA Watson-Crick

(WC) dimer where such proton exchange has long been postulated as a molecular ba-

sis for spontaneous and induced mutations [186, 187, 189, 190, 191, 192, 193, 203, 204].

In double-helical DNA, in the absence of external fields, the relatively high potential

barrier for the forward reaction at room temperature (ΔG‡ ≥ 10 kcal mol−1) results

in very little reaction (Keq ∼10−8), which accounts for the great stability of DNA and
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the fidelity with which the genetic code is preserved and transmitted to the daughter

cells. The small remaining probability of reaction is a mechanism, first proposed by

Löwdin, for the accumulation of genetic errors with the passage of time during the

life of the organism leading to mutations that cause aging and possibly cancer.

The present study explores the effect of very strong electric fields on the double proton

transfer reaction in WC dimers of DNA. While DNA base pairs are surrounded by the

polar/ionic sugar-phosphate backbone, counterions, and histone proteins with their

cationic side chains, these sources and sinks of electrostatic field are likely balanced.

However, ionic compounds that interact with DNA can generate very intense local

field.

Local microscopic electric fields are ubiquitous in biology and are central to nerve ex-

citation, transport processes, and energy transduction [151, 236, 237, 238, 239, 240,

241, 242, 243, 244]. Several authors have shown an order of magnitude change in the

rate of photosynthetic reactions under the influence of electric fields of the order of 108

V m−1 [245, 246, 247]. Murgida and Hildebrandt demonstrated that charge transfer

across biological interfaces can be controlled by the modulation of activation energies

through induced electric fields [248]. Multiple studies investigated the decrease in the

enzymatic activity of cytochrome c oxidase under the influence of an electric field

[249, 250, 251, 252]. Wackerbarth and Hildebrandt studied the structural (conforma-

tional) and dynamical changes in proteins under the influence of strong electric fields

of strength 8x109 V m−1 which are similar to the strengths of local electric fields

in interfacial regions of biomembranes [253]. These authors studied the native state

and another conformational state of cytochrome c adsorbed on the electrical double

layer of a silver electrode/electrolyte interface. It was also shown that similar electric

field strengths (∼108 V m−1) affect the kinetics of charge recombination in bacterial

reaction centers by an order of magnitude [245, 246, 247].

Other examples of the importance of strong local electric fields in a biological con-

text include the effect of pH and local electric field generated from biomembranes on
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proton binding energy in the light-activated proton pump bacteriorhodopsin [254].

Other studies have demonstrated the blocking of the transmembrane proton trans-

fer though affecting the photocycle of oriented bacteriorhodopsin in the presence of

an electric field [255, 256]. Choi and Moon investigated the effects of high electric

fields on the structure of an ion-exchange membrane [257]. Simons studied the ef-

fects of electric fields on the proton transfer between membrane-bound amines and

water [258]. The group of Zewail reported a strong dependence of the rate of pro-

ton transfer on polarity in the base pair in 7-azaindole (an analogue of AT base

pair) in the condensed phase [259]. Electric fields are also well known to influence

(enhance) the chemotherapeutic effect of certain drugs, in what became known as

“electrochemotherapy” [202, 260, 261].

Strong electric fields are, thus, frequently encountered in the microenvironment of

biomolecules and of biochemical reactions. This chapter reports an investigation of

the effects of strong static homogenous electric fields on the rate constant of the dou-

ble proton transfer in the two WC base pairs: AT and GC. So far, the dynamics of

this reaction has been studied without the explicit inclusion of strong external fields

into the calculations. There are several studies that were performed in the presence

of (explicit or continuum) solvation and/or ions, and these calculations, naturally, in-

clude the field effects of the solvent or ions. However, as a sampling of the literature

demonstrates, these studies do not generally study, systematically, the effects of field

strengths and orientations on the kinetics. Gorb et al., for instance, studied the dou-

ble proton transfer in AT and GC in the gas phase and in the presence and absence

of water molecules and metal ions [191]. These authors found (computationally using

B3LYP/6-31G(d) and MP2/6-31G(d) levels of theory), that the rare tautomeric form

A*T* does not exist while that of the equilibrium constant between GC and G*C* at

room temperature [MP2/infinite//MP2/6-31G(d)] is estimated to be 2.0x10−6 s−1.

Water molecules were found to stabilize GC more than metal ions do. A comparison

study of double proton transfer (DPT) in isolated GC versus embedded-GC in a dou-
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ble stranded DNA sequence (GCGCG) was undertaken by Zoete and Meuwly [262].

They found that the barrier height is 18.8 and 18.7 kcal mol−1 for the isolated and

embedded GC, respectively. Liu et al. investigated the electronic promotion effect of

DPT on the conduction of DNA [263]. They found that the DPT lowers the ionization

potentials (by 0.38 and 0.25 eV) for GC and AT, respectively), and it enhances the

charge transfer along the DNA duplex. None of these studies was conducted in the

presence of an explicit and well-characterized electric field with a single exception we

are aware of: A semiempirical (AM1) investigation of the effect of strong electric fields

on the double proton transfer in DNA base pairs has demonstrated the existence of

a double-well potential under either strong external electric fields or when the base

pairs are surrounded by a polarisable medium (continuum solvent) [224].

The previous chapter described the effect of explicit well characterized external elec-

tric fields on the kinetics of the double proton transfer in the formic acid dimer [231].

Two electronic structure methods have been explored in the aforementioned study, a

perturbational approach (second order Møller-Plesset perturbation theory, or MP2)

and a density functional approach (DFT) using the B3LYP functional. External fields

of gradually increasing strength in the range (108 to 109 V m−1) have been applied

and their effects on the alignment of the free dimers, their geometries, and the poten-

tial energy surfaces (PES) of the DPT reaction have been studied. After tunneling

corrections, it was found that the strongest applied field (5.14x109 V m−1) enhances

the rate constant by a factor of 3 - 4 at 25oC. B3LYP and MP2 gave similar qualita-

tive results, but there exists a systematic bias of ∼1.4 kcal mol−1 in the ΔG barriers

(MP2 barriers being higher than the corresponding DFT barriers). This is enough to

alter the vales of k and t1/2 by an order of magnitude. In the present work, and in

view of the relatively large size of the two WC dimers and the extensive calculations

necessary to systematically alter the orientations field strengths, the DFT/B3LYP

level is used.

The goal of the present study is to extend the previous one [231] by considering the
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biochemical double proton transfer reaction in the hydrogen-bonded AT and GC base

pairs. The influence of strong external electric fields on the rate constant of double

proton transfer in base pairs is investigated to obtain insight about the effects of these

fields on the rate/probability of mutation brought about by this mechanism.

11.3 Field Strengths

In a WC double stranded B-DNA, the anomeric carbon atoms of two deoxyribose

sugar groups are separated by ∼10 - 11 Å, the diameter of the double helix is in the

vicinity of 20 Å, while an enzyme active site can be even larger in size. The electric

field at the center of a 10 Å dipole where the charges are of a magnitude of 0.5 au

is 5.14x109 V m−1 in vacuum, a value that decreases by an order of magnitude if

the distance between the charges is 34 Å. In view of these considerations, the chosen

strengths of the external electric field in this study are (in 108 V m−1): 0.00, 5.14,

12.86, 25.71, 36.00, 38.57, and 51.42.

To ensure that these fields strengths do not ionize the DNA dimers by field-induced

tunneling of electron from the dimer, the frequency of tunneling (ω) of an electron is

calculated according to Eq. 9.1.1 in the introductory chapter.

The electric fields are applied in the two opposite directions along the long axis of

the dimer (±x directions) (see Fig. 11.1).

Table 11.1 lists the inverse (1/ω) of the electron tunnelling. 1/ω may be interpreted

as the average (characteristic) time for an ionization event.

Under the strongest field the shortest calculated characteristic tunnel ionization time

of the GC base pair is ∼8.4x10−8 s; the lifetime of GC is ∼3 ps (similar to the half

life calculated in this study, for the reverse reaction in the absence of field, 5x10−13).

One study reports that the estimated frequency of double proton transfer in GC to

be 10−7 to 10−9 s−1 [205]. Another study reports that the timescale for the double
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Figure 11.1: Ball-and-stick representation of the hydrogen-bonded GC in the absence
of external fields. Reactants (top), transition state (middle) and products (bottom).
The numbering scheme, bond lengths (Å), and the coordinate axes are also displayed.
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Table 11.1: Reciprocal tunneling ionization rates (characteristic ionization times), in
s, for the two forms of the GC base pair (GC and G*C*) in the presence of different
strengths of electric fields applied in the x-direction.

| E | (V m−1) 5.14x108 1.29x109 2.57x109 3.60x109 3.86x109 5.14x109

| E | (au) 1.00x10−3 2.50x10−3 5.00x10−3 7.00x10−3 7.50x10−3 1.00x10−2

GC 1.07x1095 4.90x1026 1.20x104 4.77x10−3 4.14x10−4 8.38x10−8

G*C* 7.26x1095 1.05x1027 1.74x104 6.20x10−3 5.29x10−4 1.00x10−7

The calculated vertical IP of the GC-dimer is 0.2695 au (7.33 eV) and that of the
G*C*-dimer is 0.2708 au (7.37 eV).

proton transfer in GC is in the 100 fs timescale [262]. We conclude that no significant

population of an ensemble of base-pairs would ionize by tunnel ionization up to a

threshold of approximately 38.57x108 V m−1 (0.0075 au).

11.4 Computational Details

11.4.1 Electronic Structure Calculations and External Fields

All calculations were performed using the B3LYP functional [46, 34] with a 6-311++G(d,p)

basis set. No solvation has been included in the calculations, which may be justifi-

able since the processes of replication and transcription of DNA occur either in the

complete absence of water in the immediate (enzyme/protein) surrounding or in the

presence of a partial hydration [264, 265].

The Gaussian 09 package [118] was used in all calculations. A “very tight” geom-

etry optimization threshold has been imposed with a maximum (gradient) force on

the nuclei of 2.0x10−6 hartrees/bohrs, a maximum root-mean-square (RMS) force of

2.0x10−6 hartrees/bohrs, a maximum displacement is 4.0x10−6 hartrees/bohrs, and a

RMS displacement of 1.0x10−6 bohr. An ultrafine grid has been used throughout to

maximize the accuracy of the subsequent harmonic frequency analysis. The type of

the stationary point is confirmed by the frequency analysis where the presence of a
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single imaginary frequency indicates a transition state (TS) structure.

Fields perpendicular to the motion of double proton transfer (in-plane and/or out-

of-plane) have been shown to have significantly less influence on the kinetics of the

double proton transfer in the formic acid dimer [231]. In view of the similarity of DNA

dimers to the formic acid dimer (planar, double proton transfer across two hydrogen

bonds), it may be reasonably assumed that this conclusion is also valid in the case

of the DNA WC dimers. Hence, only fields parallel and antiparallel to the long axis

of the dimers (±x) are considered in this study. Finally, the field strengths applied

in the electronic structure calculations are (x108 V m−1): 5.14, 12.86, 25.71, 36.00,

38.57 and 51.42.

11.4.2 The Reactions and their Potential Energy Surfaces

In the AT base pair, there is only one possible double proton transfer reaction be-

tween the purine (A) and the pyrimidine (T) as there are only two hydrogen bonds.

In the GC base pair, however, there are three hydrogen bonds and, therefore, there

are three possible double proton transfers reactions (H4/H8, H8/H9, and H4/H9).

Three relaxed scans were performed by moving one of the three protons at a time.

The most stable tautomer G*C* is that where H4 and H8 undergo the double pro-

ton transfer reaction. This result is consistent with other studies [262, 263]. Similar

potential energy scans repeated in the presence of electric fields along led to similar

conclusions, that the most stable G*C* is that where the double proton transfer in-

volves H4 and H8, and this is the only form of G*C* that will be considered in this

thesis.

Initial guesses of the transition state structures were obtained from the potential en-

ergy scans in the presence and absence of electric fields. These initial guesses were

each subjected to a transition state optimization with the single constraint of the

presence of one and only one imaginary frequency. The reaction path was then de-
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termined by descending from the position of the TS on the potential energy surface

(PES) toward the reactants and products by following the negative gradient, that is,

the line of steepest descent. All traced reaction paths have been found to connect the

correct reactant, TS, and products.

Unless mentioned otherwise, the energies (or energy differences) reported in this chap-

ter are Gibbs energies obtained from the electronic structure calculation, and the

imaginary frequencies are the raw unscaled harmonic frequencies.

11.4.3 Rate and Equilibrium Constants and Proton

Tunneling Correction

The rate constant of the double proton transfer is estimated from conventional tran-

sition state theory (CTST) [266]:

k(T ) = κ(T )
kBT

h
exp

(
− ΔG‡

RT

)
(11.4.1)

where κ(T ) is a temperature-dependent (Wigner) tunneling correction factor, kB

Boltzmann constant, T the absolute temperature, h Planck’s constant, ΔG‡ Gibbs

energy of activation, and R the universal gas constant. The tunneling correction used

in this thesis is given by [226]:

κ(T ) = 1 +
1

24

[
hIm(ν‡)
kBT

]
(11.4.2)

where Im(ν‡) is the imaginary frequency.

The equilibrium constants were calculated by taking the ratio of the tunneling-

corrected rate constant of the forward reaction over the tunneling-corrected rate

constant of the reverse reaction (kforward/kreverse).

150



11.5 Conventions

The field strengths of 5.14, 12.86, 25.71, 36.00, 38.57 and 51.42 (in 108 V m−1) are

denoted in italics as Field 5, 13, 26, 36, 39 and 51, respectively, for simplicity. When

the results with field are compared to those without, the comparison includes the

reaction under the influence of the strongest field (i.e., field 51). The direction of

the field will be reflected in the sign (as in ±E). In some sections, the quantities

reported for the forward reaction will be followed by the corresponding quantities

for the reverse reaction (in parentheses). Otherwise the direction of the field will be

explicitly specified.

11.6 Results and Discussion

11.6.1 Double Proton Transfer in the AT Base Pair

With the adenine-thymine base pair, the conclusions drawn analysing the electronic

energies are different from those drawn using Gibbs energies at 25oC or 37oC. Consid-

ering the electronic energy, the double proton transfer occurs with a forward barrier

height ranging from 13.68 (at 5.14x108 V m−1) to 16.56 kcal mol−1 (at 5.14x109 V

m−1) (depending on the field strength), and a reverse barrier height ranging form 0.07

to 1.96 kcal mol−1. The reverse barrier heights are deemed insignificant as they are

smaller in magnitude than the average errors in estimating barrier heights by B3LYP.

The field-free Gibbs energy surface at 25oC and at 37oC demonstrates that the re-

verse reaction has a negative energy of activation (i.e., the TS is more stable than the

reactants) (refer to Table 11.2 for details).

We were unable to trace the reaction path linking the TS to the product in this

case and hence we can only speculate that there is a small dip in the energy profile

just before the TS (since the TS is well characterized with one imaginary frequency).
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Table 11.2: Electronic and Gibbs energies (ΔG‡) at 25oC and 37oC and imaginary
frequencies [Im(ν‡) ] of the double proton transfer reaction in the adenine-thymine
DNA base pair.

Electronic Energy
| E | (x108 V m−1) 0.00 5.14 25.71 51.42
E Reactant (au) -921.7474 -921.7483 -921.7548 -921.7699
E Product (au) -921.7258 -921.7263 -921.7327 -921.7493
E Transition State (au) -921.7256 -921.7256 -921.7284 -921.7462
ΔG‡ forward (kcal mol−1) 13.68 14.22 16.56 14.89
ΔG‡ reverse (kcal mol−1) 0.07 0.42 2.69 1.96
Im (ν‡) (cm−1) 372.22i 705.92i 1016.78i 1034.16i
ΔE (kcal mol−1) 13.60 13.80 13.86 12.93
Gibbs Energy at 25oC
Field Strength (x108 V m−1) 0.00 5.14 25.71 51.42
E Reactant (au) -921.5665 -921.5672 -921.5737 -921.5897
E Product (au) -921.5451 -921.5450 -921.5505 -921.5677
E Transition State (au) -921.5468 -921.5473 -921.5516 -921.5688
ΔG‡ forward (kcal mol−1) 12.37 12.50 13.87 13.10
ΔG‡ reverse (kcal mol−1) -1.03 -1.47 -0.68 -0.68
Im (ν‡) (cm−1) 372.22i 705.92i 1016.78i 1034.16i
ΔE (kcal mol−1) 13.40 13.98 14.54 13.78
Gibbs Energy at 37oC
Field Strength (x108 V m−1) 0.00 5.14 25.71 51.42
E Reactant (au) -921.4127 -921.4134 -921.4198 -921.4365
E Product (au) -921.3914 -921.3906 -921.3954 -921.4131
E Transition State (au) -921.3944 -921.3955 -921.4011 -921.4178
ΔG‡ forward (kcal mol−1) 11.44 11.21 11.74 11.78
ΔG‡ reverse (kcal mol−1) -1.92 -3.08 -3.58 -2.95
Im (ν‡) (cm−1) 372.22i 705.92i 1016.78i 1034.16i
ΔE (kcal mol−1) 13.36 14.29 15.32 14.73

The calculated vertical IP of the GC-dimer is 0.2695 au (7.33 eV) and that of
the G*C*-dimer is 0.2708 au (7.37 eV).

Similar observation of a negative reverse barrier height (when considering Gibbs en-

ergies) has been already observed by Gorb et al. [191] and Ceron-Carrasco et al.

[204]. These observations are generalized here to the same reaction in the presence

of electric fields in the range of 108 - 109 V m−1. The AT to A*T* will, hence, not

be considered further in this thesis and will be the subject of a closer inspection in a

future study.
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11.6.2 Double Proton Transfer in the GC Base Pair

In the absence and presence of all studied field strengths in either direction (±x),

the PES exhibits a single maximum along the reaction path, exhibiting different

curvatures (including close to complete flatness) as a function of the field strength

and orientation (Fig. 11.2).

Figure 11.2: Potential energy curves (electronic energies) of the double proton transfer
under different field strengths applied in the +x and -x direction.

Since PESs exhibit no intermediates, the double proton transfer is a synchronous one-

step reaction irrespective of the field strength or direction, within the approximations

of this work.
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11.6.3 Field-Effects on the Geometry of the GC Complex

In the absence of fields, the inter-monomer N-N internuclear distance is 2.95 Å. As

the field-free reaction progresses, the guanine and cytosine monomers get closer to-

gether, then the six-membered rings of each monomer are elongated along the x-axis.

This elongation accompanies the shortening of the N-N distance to 2.62 Å in the

TS structure. As the reaction proceeds, the N22-H23 bond stretches faster than the

N8-H9 bond (Figures 11.1 and 11.3 and Table 11.3). In the products, the N-N bridge

lengthens back, close to its original separation, to 2.91 Å. The O21-N8 bridge also

shrinks in the TS structure. The TS is propeller-twisted by ∼11o, whether gauged

by the dihedral angle d1(N11-N22-N25-O13) = -11o or d2(N11-N22-O21-N8) = -11o.

The products exhibit a slight propeller twist of -5o (d1) and -4o (d2). The reactant

dimer is perfectly planar.

Table 11.3: Selected distances that vary along the double proton transfer reaction in
the absence of field. The reactant is perfectly planar.

Reactant Transition State Product

N22-N11 2.95 2.62 2.91
O21-N8 2.81 2.48 2.71
N22-H23/N11-H23 1.03/1.92 1.34/1.28 1.86/1.05
N8-H9/O21-H9 1.03/1.77 1.34/1.14 1.71/1.00

In the strongest field in the +x direction, the monomers move very slightly closer to

each other, but there is no elongation of the six-membered rings. The N-N distance

changes from 3.11 Å (reactants), to 2.65 Å (TS), and to 3.11 Å (products). The

transition state structure is considerably more propeller twisted than in the field-free

case, the twist is -21o = d1 = d2. The reactants in this case are also propeller twised,

unlike the field-free case, (d1 = 6o, d2 = 5o) and the products (d1 = 6o, d2 = 7o).

In the presence of the strongest field in the -x direction, the movement of the monomers

with respect to each other is less significant than in the field-free case. The N-N dis-
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Figure 11.3: Ball-and-stick representation of the hydrogen-bonded GC in the presence
of the strongest field (5.14x109 V m−1) applied in the -x direction (left) and the
+x direction (right) for the reactants (top) transition states (middle) and products
(bottom). The numbering scheme and optimized bond lengths (Å) are also displayed.

tance varies from 2.95 Å (reactants), to 2.65 Å (TS), and back to 2.87 Å (products).

The reactants are planar, while products have a slight propeller twist, d1 = 3o and d2

= 2o. The transition state structure exhibits a higher propeller twist of d1 = 11o and

d2 =13o. The general observation is that the GC dimer twists as a function of the

double proton transfer reaction coordinate with a maximal twist near the TS region.

155



11.6.4 Effects of Electric Fields on the Barrier Height and

Reaction Energy of the Double Proton Transfer

Reaction: GC to G*C*

Fields applied in the positive x-direction

Table 11.4 shows that for the forward reaction bathed in fields pointing to the positive

x-direction, the (Gibbs) activation energy barrier first rises from its field-free value of

12.1 kcal mol−1 under the influence of the weakest field (5.14x108 V m−1) to 13.4 kcal

mol−1, and then the barrier generally decreases with the field strength reaching its

lowest value of 10.3 kcal mol−1 under a 5.14x109 V m−1 field. The small oscillations

of the barrier heights in the range from ∼3 to 4x109 V m−1 is below the accuracy of

the electronic structure method (4.7 kcal mol−1 for barrier heights and 2.0 kcal mol−1

for reaction energies) [267] (Table 11.4). The observed behavior of the barrier as a

function of field strength is consistent with a net result of two competing effects one

dominant at relatively weak field strengths and one dominant at high intensities of

the external field.

The reaction in the reverse direction has a much smaller barrier height compared to

the barrier in the forward direction at zero and relatively weak fields. At zero field

and up to ∼1.3x109 V m−1, the barrier of the reverse reaction remains around 2 kcal

mol−1 then sharply rise to ∼12 kcal mol−1 for field strength of 2.6x109 V m−1 and

remains fairly constant beyond this threshold, almost equal (within the accuracy of

the calculations) to the forward barrier. The calculated Gibbs energies of reaction

indicate that the double proton transfer reaction is endergonic for zero- and low-fields

up to 2.6x109 V m−1. This is reflected in the very small magnitudes of the calculated

Keq which are much smaller than 10−8 indicating a dominance of reactants over the

products. The Gibbs energies of reaction in fields beyond 2.6x109 V m−1 are exergonic

(see Fig. 11.5), reflected in Keq values that fall between ∼1 and 10.
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Table 11.4: Gibbs energies, transition state imaginary frequencies [Im(ν‡)], forward
and reverse barrier heights (ΔG‡ forward/reverse), reaction energies (ΔE), Wigner
tunneling corrections [K298K ], raw and corrected reaction rate constants [k298K for-
ward/ k298K reverse and k298K corrected forward/reverse] in addition to half-lives
(t1/2 forward/reverse) reactions, equilibrium constants (Keq), concentration of rare
tautomer after 1 second of applying the field ([G*T*]), percent tautomerization after
one second of applying the field (%G*T*), and Boltzmann distributions (BD) for
reactants, products and transition states; in absence and presence of fields of varying
strengths in the ±x directions.

Fields Applied in the Positive Direction

Field Strength (V m−1) 0.00 5.14x108 1.29x109 2.57x109 3.60x109 3.86x109 5.14x109

E Reactant (au) -937.6359 -937.6346 -937.6315 -937.6285 -937.6302 -937.6308 -937.6318

E Product (au) -937.6190 -937.6168 -937.6141 -937.6294 -937.6302 -937.6306 -937.6338

E Trasition State (au) -937.6166 -937.6132 -937.6112 -937.6104 -937.6115 -937.6120 -937.6154

Im(ν‡) (cm−1) 1316.767i 1254.74i 1225.61i 1165.25i 1056.07i 1013.79i 612.99i

ΔG‡ forward (kcal mol−1) 12.13 13.41 12.76 11.38 11.76 11.82 10.33

ΔG‡ reverse (kcal mol−1) 1.52 2.26 1.85 11.92 11.71 11.70 11.58

ΔE (kcal mol−1) 10.60 11.16 10.91 -0.54 0.05 0.12 -1.25

κ298K tunnel 2.68 2.53 2.46 2.32 2.08 2.00 1.36

k298K forward (s−1) 8.03x103 9.15x102 2.74x103 2.83x104 1.48x104 1.35x104 1.68x105

k298K forward corrected(s−1) 2.15x104 2.31x103 6.74x103 6.56x104 3.08x104 2.69x104 2.29x105

t1/2 forward (s) 3.22x10−5 3.00x10−4 1.03x10−4 1.06x10−5 2.25x10−5 2.58x10−5 3.03x106

k298K reverse (s−1) 4.77x1011 1.38x1011 2.73x1011 1.14x104 1.61x104 1.65x104 2.02x104

k298K reverse corrected (s−1) 1.28x1012 3.48x1011 6.72x1011 2.64x104 3.36x104 3.30x104 2.75x104

t1/2 reverse (s) 5.42x10−13 1.99x10−12 1.03x10−12 2.63x10−5 2.06x10−5 2.10x10−5 2.52x105

Keq 1.68x10−8 6.65x10−9 1.00x10−8 2.49 9.19x10−1 8.14x10−1 8.31

.[G*T*] after 1 sec 6.85x10−9 6.55x10−9 9.93x10−9 7.13x10−1 4.79x10−1 4.49x10−1 8.93x10−1

%G*T* after 1 sec 0.00 0.00 0.00 71.32 47.88 44.88 89.26

BD Reactants 78.90 18.78 0.74 0.03 0.19 0.35 1.01

BD Products 0.00 0.00 0.00 0.86 1.94 3.16 94.04

BD TSs 76.30 2.07 0.24 0.11 0.34 0.56 20.39
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Table 11.4 continued...

Fields Applied in the Negative Direction

Field Strength (V m−1) 0.00 5.14x108 1.29x109 2.57x109 3.60x109 3.86x109 5.14x109

E Reactant (au) -937.6359 -937.6380 -937.6421 -937.6509 -937.6598 -937.6622 -937.6761

E Product (au) -937.6190 -937.6215 -937.6265 -937.6352 -937.6439 -937.6463 -937.6679

E Trasition State (au) 937.6166 937.6175 937.6228 937.6355 937.6469 937.6500 937.6665

Im(ν‡) (cm−1) 1316.76i 406.62i 306.53i 800.79i 1052.31i 1096.73i 1246.72i

ΔG‡ forward (kcal mol−1) 12.13 12.86 12.07 9.65 8.04 7.67 6.01

ΔG‡ reverse (kcal mol−1) 1.52 2.52 2.30 -0.18 -1.94 -2.30 0.82

ΔE (kcal mol−1) 10.60 10.34 9.77 9.82 9.98 9.96 5.18

κ298K tunnel 2.68 1.16 1.09 1.62 2.07 2.17 2.51

k298K forward (s−1) 8.03x103 2.31x103 8.82x103 5.28x105 7.94x106 1.48x107 2.46x108

k298K forward corrected(s−1) 2.15x104 2.68x103 9.62x103 8.57x105 1.65x107 3.22x107 6.17x108

t1/2 forward (s) 3.22x10−5 2.59x10−4 7.21x10−5 8.09x10−7 4.21x10−8 2.15x10−8 1.12x10−9

k298K reverse (s−1) 4.77x1011 8.76x1010 1.27x1011 8.37x1012 1.65x1014 2.99x1014 1.55x1012

k298K reverse corrected (s−1) 1.28x1012 1.02x1011 1.39x1011 1.36x1013 3.42x1014 6.48x1014 3.88x1012

t1/2 reverse (s) 5.42x10−13 6.82x10−12 4.99x10−12 5.10x10−14 2.03x10−15 1.07x10−15 1.79x10−13

Keq 1.68x10−8 2.63x10−8 6.92x10−8 6.31x10−8 4.82x10−8 4.96x10−8 1.59x10−4

.[G*T*] after 1 sec 6.85x10−9 1.63x10−8 5.92x10−8 5.31x10−8 3.82x10−8 3.96x10−8 1.59x10−4

%G*T* after 1 sec 0.00 0.00 0.00 0.00 0.00 0.00 0.02

BD Reactants 0.00 0.00 0.00 0.00 0.00 0.00 100.00

BD Products 0.00 0.00 0.00 0.00 0.00 0.00 100.00

BD TSs 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Fields applied in the negative x-direction

With fields applied in the negative direction (Fig. 11.4, Table 11.4), the barrier of

the forward reaction rises slightly first (from the field-free value of 12.1 to 12.9 kcal

mol−1 under the weakest field) then continues to drop to reach its lowest value of 6.0

kcal mol−1 under the strongest field, 50 % from of its field-free magnitude.

One concludes that strong fields (in excess of ∼109 V m−1) applied in the negative

x-direction facilitate the classical (over-the-barrier) reaction.
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Figure 11.4: Barrier heights ( in kcal mol−1) as a function of the field strength (in
absolute values). Barrier heights when fields are applied in the +x and -x directions
are represented in pink and blue colors, respectively. The forward barrier heights
are represented by the diamond shape and the reverse barrier heights are represented
with squares. The dotted lines were added to guide the eye in linking the data points.

The field free barrier in the reverse reaction is low (1.5 kcal mol−1) and only slightly

affected by external fields for all studied field strengths. The barrier of the reverse

reaction increases to 2.5 kcal mol−1 under the weakest field and vanishs at ∼3x109 V

m−1 before reaching a minimum (of -2.3 kcal mol−1) at 4x109 V m−1 and then rise

again slightly above zero (0.82 kcal mol−1) at the strongest field. The barrier heights

are all within 2 kcal mol−1 from zero, the small fluctuations probably of little physi-

cal significance (the known uncertainty of the electronic structure method is 4.7 kcal

mol−1 for barrier height and 2.0 kcal mol−1 for reaction energy) [267]. It is, hence,

difficult to draw a clear conclusion in this case regarding the barrier of the reverse

reaction with the fields applied in the negative x-direction.

The energy of (forward) reaction is∼10 kcal mol−1 in all cases (except for the strongest

field). In the latter case (E = -5.14x109 V m−1), the energy of reaction drops abruptly

to 5.2 kcal mol−1. With stronger fields applied in the negative x-direction, the ener-

gies of reactants, TS species, and products always decrease (become more and more

stable), as can be seen from Table 11.4 and Fig. 11.5.
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Figure 11.5: Reaction energies (kcal mol−1) as a function of the field strength (in
absolute values) applied in the +x and -x directions. The dotted lines are added to
guide the eye in linking the data points.

This suggests that stronger fields applied in the -x-direction stabilize the base pair

regardless of its position on the reaction path.

11.6.5 Effects of Fields on the Imaginary Vibrational

Frequencies

As the strength of field applied in the positive x-direction increases, the magnitude

of the (single) imaginary vibrational frequency at the TS structure decreases. The

magnitude of this frequency decreases consistently from 1316.8i, its zero-field value, to

612.9i cm−1 at the strongest field. This decrease in the magnitude of the imaginary

frequency indicates a flattening of the potential energy surface near the transition

state as can be gleaned from Fig. 11.2. This field-induced reduction of the magnitude

of the imaginary frequency indicates a flattening of the PES, i.e., a thicker potential

energy barrier, and hence a decrease in the quantum mechanical tunneling probability

of protons (treated as quantum, non-classical particles). The Wigner correction factor

κ(T) at 25oC decreases from 2.68 (field-free case) to only 1.3 (5.14x109 V m−1).
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There is a small rise in the forward barrier from the field-free value of 12.1 kcal mol−1

to 13.4 kcal mol−1 for the weakest field, which then decrease (with small fluctuations)

to reach 10.3 kcal mol−1 for the strongest field. At strong fields, thus, there is a

decrease in the barrier, and hence a classical acceleration of the reaction but there is

also a concomitant decrease in the magnitude of the quantum mechanical tunneling

probability. The actual rate constant will, thus, be the result of these two competing

tendencies, vide infra. This classical-quantum field effect has been recently described

in the context of the double proton transfer reaction in the formic acid dimer [231].

When the field direction is reversed, i.e., oriented in the negative x-direction, the

magnitude of the imaginary frequency decreases substantially first with weaker fields

5.14x108 - 1.29x109 V m−1 (406.6i, 306.5i, see Table 11.4 and Fig. 11.6) then rises

again to react 1246.7i at the strongest studied field of 5.14x109 V m−1. Because of

this behavior of the imaginary frequency, the Wigner correction starts at 2.68 for

the field-free case, reaches a minimum of 1.09 at 1.29x109 V m−1 to regain almost its

free-field value at the strongest field (2.51). The substantial decrease in the activation

energy barrier dominates kforward in this case (due to the exponential dependence of

k on ΔG‡) (Table 11.4).

The imaginary frequency for the transition state at field strength of 3.60x109 V m−1

is nearly the same regardless of the direction of the field applied. It is 1057i and 1052i

cm−1 for 3.60x109 V m−1 and -3.60x109 V m−1, respectively.

11.6.6 Field-Effects on the Rate Constant of the Double

Proton Transfer

The rate constants were calculated using CTST. The rates constants of the first order

double proton transfer reaction were calculated at 25oC.
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Figure 11.6: Imaginary frequencies (cm−1) as a function of the field strength (in
absolute values) applied in the +x and -x directions. The dotted lines are added to
guide the eye in linking the data points.

Field applied in the positive x-direction

The tunneling correction decreases from 2.68 (field-free case) to 1.36 (strongest field,

5.14x109 Vm−1). Compared to the field-free case (k = 2.15x104 s−1), the rate constant

of the forward reaction with fields 5.14x108 V m−1 to 1.29x109 V m−1 decreases by

an order of magnitude (∼103 s−1). With fields of 2 .57x109 V m−1 to 3.86x109 V

m−1, the rate constant (∼104 s−1) is similar to the field-free case. This rate constant

increases by an order of magnitude (2.29x105 s−1) under the strongest field.

For the reverse reaction, the corrected rate constant (1.28x1012 s−1) is eight orders of

magnitudes larger than of the forward reaction (2.15x104 s−1) (refer to Fig. 11.7 in

this section).

At fields 5.14x108 V m−1 to 1.29x109 V m−1, k decreases by one order of magnitude

(∼1011 s−1). Since, up to and including 1.29x109 V m−1 fields, the rates constants for

the forward reaction are much smaller than those of the reverse reaction, this indicates

that even if the rare tautomers form; the WC-base pair is recovered at a much faster
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Figure 11.7: Tunneling-corrected rate constants at 25oC for the forward reactions
(left) and the reverse reactions (right) in the presence of fields applied in the +x
direction (top) and -x direction (bottom). The lines in the top plots are only to help
guiding the eye while the lines in the bottom plots are best fit exponential functions.

rate provided that the reverse reaction is thermodynamically allowed. Furthermore, at

fields up to and including 1.29x109 V m−1, the reverse reaction is thermodynamically

favored as the reactants are more stable than the products by∼11 kcal mol−1. Second,

the equilibrium constant Keq, defined as the ratio of rates kforward/kreverse, is much

smaller than one, it is ∼10−8 - 10−9. A Boltzmann distribution shows that reactants

are more populated at weak fields: 79% of the population of reactants is in the field-

free case,18% are populated at the weakest field, the other 3% are distributed at the

stronger fields. At fields of 2.57x109 V m−1 and above, kreverse drops to ∼104 s−1,

which is of the same order of magnitude as kforward. More specifically, at fields 12.57

- 3.86x109 V m−1, the forward and reverse rates are almost equal, which is a result

of having equal forward and reverse barrier heights. The following three factors: (1)

equal rates for forward and reverse reactions, (2) energies of reaction almost equal

to zero, and (3) 0.8 < Keq < 2.5; suggest that, at this range of field strengths, the

reactants and products are almost freely interchangeable at similar rates.

It is only at the strongest field that the rate of tautomerization is faster in the forward
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direction (2.29x105 s−1) compared to the reverse direction (2.75x104 s−1), with a

Keq of 8.31 (i.e., well above one); and the tautomerization is exergonic favoring the

products by 1.25 kcal mol−1 over the reactants. The calculated equilibrium constants

(at 25oC) suggest that rare tautomers form only at the strongest field applied in

the +x direction. In other words, DNA base pairs undergo a double proton transfer

spontaneously only in very strong fields (above 5.14x109 V m−1). The percentage of

reactants converted to products after a certain time (in the presence or absence of

field) is given by the following equation [189]:

G∗T ∗(t) =
kf [GT ]i − kr[G

∗T ∗]i
kf + kr

{
1− exp

[− (kr + kf )t
]}

(11.6.1)

Where G∗T∗ (t) is the concentration of the rare tautomer at time t, kf and kr are the

forward and reverse rate constants, [GT]i is the initial concentration of the reactant,

[G∗T∗]i is the initial concentration of the rare tautomer. Starting with 1.0 M of the

reactants and 1.0 nM of rare tautomer, after 1 sec, the concentration of the rare

tautomer remains at the nanomolar scale for fields +0 to +12.57x108 V m−1. At

fields stronger than +12.57 V m−1, if applied for 1 sec, the concentration of the rare

tautomers ranges from 0.48 to 0.89 M, i.e., 48 to 89% of the molecules will convert

to the rare tautomers.

Fields applied in the negative x-direction

When fields are applied in the negative direction, the tunneling correction factor

ranges approximately from 1 to 3. Initially the weakest field applied (-5) decelerates

the forward reaction by an order of magnitude (103 s−1) compared to the field-free

case (104 s−1). The reaction rate then increases steadily by one order of magnitude

for each increment of 5 V m−1 until it reaches 6.0x108 s−1 at the strongest field. This

is again reflected by the proportional decrease in the half-life. The half-life is shorter
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by one order of magnitude as the reaction goes faster by one order of magnitude

(SeeTable 11.4 and Fig. 11.8).

Figure 11.8: Half-lives (s) as a function of the field strength (in absolute values)
applied in the +x and -x directions. Half-lives when fields are applied in the +x and
-x directions are represented in pink and blue colors, respectively. The forward half-
lives are represented by the diamond shape and the reverse half-lives are represented
with squares. The dotted lines were added to guide the eye in linking the data points.

Even though the increase is not gradual, the rate constant of the reverse reaction

increases with stronger fields in the -x direction to reach a maximum of 2.99x1014 s−1

at a field strength of -38.6x108 V m−1. The only exception is at the strongest field

where the rate constant drops by two orders of magnitudes (to 1.55x1012 s−1).

For fields in the -x direction, the rates in the reverse direction are much greater than

those in the forward direction. In addition, the equilibrium constants are almost zero

in all cases, which is strongly favoring the reactants. Also, unlike the case with fields

in the ±x direction where, depending on the field applied for a one second, ∼50 to

90% of reactants are converted to products (provided that [GT]i = 1M and [G*T*]i

=1 nM), with the field applied in the -x direction, none of the reactant is converted

to products after applying the field for one sec (only 0.01% do at the strongest field).

Among all fields; reactants, transition states and products have the lowest energy at
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the strongest field. This is in agreement with the Boltzmann distribution analysis

where the population of each is 100% at the strongest field; and with the Keq which

is 2x10−4 at the strongest field while ∼10−8 for the rest of the fields. In conclusion,

the reactants are more favored than products and they are the most stable at the

strongest field.

When the field is applied in the -x direction, the rate constants of the forward reaction

fit an exponential function given by:

kforward(−x-direction) ≈ 2379exp(2× 10−9 | E−x |),

[n = 7, r2 = 0.931] (11.6.2)

Excluding the data point at the strongest field applied in the -x direction, the rate

constants of the reverse reaction fit an exponential function given by:

kreverse(−x-direction) ≈ 1× 1011exp(2× 10−9 | E−x |),

[n = 7, r2 = 0.802] (11.6.3)

In the above equations, the constant multiplying the exponential function has the

dimension of the rate constant (unit: s−1) and the constant in the exponent has the

dimension of inverse electric field (unit: mV−1). The strong correlation between the

data points is shown by the value of r2 which is close to unity in both cases.

11.7 Conclusions

The double proton transfer in AT is not likely to occur in the absence or even the

presence of an electric field. This work has, thus, focused on the GC base pair pri-

marily.

In the presence of fields of any strength or direction, the double proton transfer occurs
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synchronously. In all cases, the reactants and products are essentially planar and the

TS is propeller twisted by ∼11o to 21o. As the reactants (in the forward reaction) or

the products (in the reverse reaction) reach the transition state, the base pairs get

closer to each other, as measured by the distance of the N-N bridge.

As the field applied in the -x direction increases, the tunneling-corrected rate con-

stants of the forward and reverse reaction increase exponentially (note that krevese at

the strongest field in the positive direction is an outlier as mentioned in the discus-

sion).

The rate constant oscillates as a function of the field strength applied in the positive

direction. The general trend, however, is that krevese decreases with increasing field

strength while kforward increases with increasing field strengths.

Unlike the case of the formic acid dimer, where two contradictory effects take place

simultaneously, with GC, under stronger electric fields applied in the negative direc-

tion, the barrier height decreases and the potential energy curve gets sharper at the

transition state. These complementary effects (in the presence of -| E |) help increase

the rate of the double proton transfer.
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Chapter 12

Conclusion

This thesis consists of two major parts. The first deals with dispersion interactions

in density functional theory. The second deals with effects of external static electric

fields on the double proton transfer reaction in hydrogen-bonded DNA base pairs.

The first chapter is a general introduction to DFT. The history of functionals improve-

ment for filling some gaps in DFT is also summarized. The second chapter presents

the exchange-hole dipole moment model which is a nonempirical model for capturing

dispersion interactions. Dispersion interactions are weak long-range interactions that

are not properly described by the conventional DFT methods introduced in Chapter

1.

The first part of this thesis is mainly about the nonempirical van der Waals den-

sity functional PW86+PBE+XDM. With this functional the PW86+PBE exchange

+correlation energy is computed self-consistently, while XDM is computed non-self-

consistently. This is a “post-GGA” approach where dispersion is added as a pertur-

bative correction to the total energy. The ultimate goal of this part is to have an

optimizer for vdW complexes using a nonempirical DFT method.

The first study (Chapter 3) is a benchmark study for basis sets. From this study

it was concluded that augmented Dunning double or triple zeta basis sets without
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counterpoise correction and with a large grid is an optimal combination to get high

accuracy with a reasonable computational cost.

The next study (Chapter 4) consists of testing the performance of this functional on

a wide variety of 65 complexes (including hydrogen bonding, dispersion and mixed

complexes). The test set includes complexes with binding energies ranging from 0.022

(helium dimer) to 22.65 (uracil dimer) kcal mol−1. The mean absolute percent error

for the binding energies of complexes in this database is 11.5 and 16.6% with aug-

cc-pVDZ and aug-cc-pVTZ, respectively. This study confirmed the highly accurate

performance of the functional on molecules at equilibrium geometry.

Being interested in an optimizer, it is necessary to assess the accuracy of binding

energies at distorted geometries. For this purpose two studies were performed and

presented in Chapters 5 and 6. In Chapter 5, a database of 22 vdW complexes at

five different intermonomer separations was considered. The conclusion from this

study was that compressed complexes are the most challenging ones to accurately

describe. Nevertheless, PW86+PBE+XDM gives a mean absolute relative error of

9.4% on the binding energies of the entire set, and 13.3% on the binding energies of

the compressed complexes. This study showed that this functional is the only density

functional (amongst many others) that can accurately describe compressed geome-

tries.

In Chapter 6, a larger database of 66 vdW complexes at eight different separations,

S66x8, was considered. This database is more balanced in terms of the number

of complexes in each subcategory (electrostatic, dispersion and mixed). S66x5 in-

cludes some new types of dispersion-bound complexes such as aliphatic-aliphatic and

aliphatic-aromatic interactions. In addition a systematic method/basis set was used

for the optimization and energy evaluation of all complexes in S66x8. With this

database, the compressed complexes were also challenging, but the overall perfor-

mance of the method on this database was very good, RMSPE is 14.6%. The MARE

is 9.1% which is slightly smaller than that of the S22x5 database.
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The following chapter (Chapter 7) deals with the accuracy of the computed XDM

forces. These forces are evaluated by taking the derivative of the energy with re-

spect to infinitesimally small changes in the nuclear coordinates. In this chapter, the

distance at which the energy is minimum was tested to be commensurate with the

distance at which the forces vanish to zero. The test was done for the ten rare-gas

diatomic systems from the He, Ne, Ar and Kr elements. The results of this test were

highly satisfying. In addition, in this chapter, the smoothness of the GGA potential

energy surfaces and the force curves were found to be sensitive to the grid used.

The last chapter in this part (Chapter 8) presents the optimizer for vdW complexes

with a nonempirical DFT method. This optimizer was built using the “external”

keyword in the Gaussian package (G03 or G09). The optimizer was tested to be

reproducible on ten rare-gas diatomic systems and on a stacked parallel benzene

dimer. This optimizer was then used in two biologically relevant studies that in-

volve DNA nucleotides and tetrahydropyrans/cyclohexanes to study the anomeric

affects. From these applications, it was shown that the optimizer accounts prop-

erly for the deformation energy of vdW complexes. It improves the binding energies

significantly compared to single point calculations on pre-optimized geometries (usu-

ally at the MP2 level of theory) using PW86+PBE+XDM. These applications also

demonstrated the importance of including XDM when considering dispersion-bound

complexes. When XDM is turned off, the errors increase by a factor of 2 - 10. Overall,

PW86+PBE+XDM is a very accurate nonempirical DFT method for vdW complexes,

it can be used in single point calculations and with an optimizer.

The second part of this thesis deals with the effect of external applied fields on the

double proton transfer in DNA base pairs. This reaction in DNA base pairs produces

the tautomeric form of the bases, which results in a complementarity mismatch of

the DNA base pairs during the replication process as discussed in chapter 9. This

phenomenon causes a mutation in the DNA, which can consequently cause aging and
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cancer.

As a prelude study, away from the complexity of a non-symmetric system, the formic

acid dimer was used as a simple symmetric model of a cyclic double hydrogen-bonding

system. In this study (Chapter 10), fields were applied in three different directions

with field strengths of 5x108 to 50x108 V m−1, i.e., similar to fields encountered in

a DNA microenvironment. Multiple conclusions were drawn from this study. The

mechanism of this reaction occurs synchronously as one and only one transition state

structure is found on the potential energy surface. Only the field applied along the

movement of the double proton transfer makes a significant difference in frequencies,

barrier heights and reaction rates. The strongest field causes a 75% decrease in the

vibrational frequency, which results in a flatter potential energy surface around the

transition state region. This causes the tunneling correction factor, estimated us-

ing Wigner approximation, to decrease, leading to a decrease in the reaction rate

as the field strength gets stronger. On the other hand, more intense fields decrease

the barrier height causing an acceleration of the reaction rate. As the field applied

gets stronger by one order of magnitude from 5x108 to 50x108 V m−1, the net effect

of the two opposing factors is an increase in the reaction rate by a factor of 3 to 4

depending on the method used (B3LYP vs. MP2). The last conclusion was that MP2

and DFT produce identical trends for all properties. Therefore, despite the difference

in the absolute values, B3LYP can be as reliable as MP2 for trends in the presence

of applied electric fields.

In the next study, the effect of electric fields of the same magnitude is studied in

DNA base pairs. In this study, the electric fields were applied only along the axis

of the double proton transfer in AT and GC, but in two opposite directions due to

the non-symmetry of the systems. Since the reactant is different than the product

with DNA base pairs, both forward and reverse reactions were considered. For AT,

the conclusion was that the reaction does not take place as the transition state is

lower in energy compared to the products. The only way protons can be exchanged
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between the base pairs is when the hydrogen atoms act as wave-packets and tunnel

from one side to another (i.e., without overcoming a barrier height). In GC, there

are three possible double proton transfer reactions as there are three hydrogen bonds

between G and C, however, only one of them produces the major tautomers as shown

in Chapter 11. Similar to the mechanism of the double proton transfer in FAD, that

of GC is synchronous in the absence and presence of all field strengths studied (5x108

to 50x108 V m−1). As the field applied in the -x direction increases, the tunneling-

corrected rate constants of the forward and reverse reaction increase exponentially.

With stronger fields applied in the +x-direction, the rate constant oscillates with a

general trend: krevese decreases while kforward increases. The rate of the double proton

transfer increases as the field strength (applied in the -x-direction) increases. Two

complementary effects help increase this DPT rate: lower barrier heights and sharper

potential energy curve at the transition state.

From the work done in this thesis, there are plenty of directions for future work.

One study of particular interest to conduct in the future is the study of the effect

of electric fields on stacked DNA base pairs where dispersion interactions are major.

This study can be a big future project as there are many issues to be addressed. First

the performance of the optimizer presented in Chapter 8 has to be assessed in the

presence of electric fields. In addition, the validity, as well as the accuracy, of doing

all types of calculations (e.g., scan, transition state optimization, frequency analysis,

computing Gibbs energies instead of electronic energies) has to be tested. For a

frequency calculation, a new code has to be prepared and tested for the optimizer to

compute not only the first derivatives (forces), but also the second derivatives. These

calculations can be done using MP2 for geometries; however, as shown in Chapter 8,

optimizing with MP2 and running single point calculations can result in significantly

larger errors than optimizing and computing energies with PW86+PBE+XDM. This

error is expected to be even more significant in larger systems where more dispersion
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interactions are encountered. Second, there are numerous complexes to be included,

AT-AT, AT-TA, AT-GC, AT-CG, GC-GC and GC-CG. The number of hydrogen

bonds in these systems can vary from four in AT-AT or AT-TA to six in GC-GC or

GC-CG. Therefore, there are many possible calculations to be conducted based on,

first, the amount (one to four) and, second, the identity of protons to be moved in

scan calculations. The number of calculations will also double as the electric fields

will be applied in two opposite directions for each complex. This study can be further

extended to include three stacked base pairs, which is still within the limit of what

the optimizer can handle at a reasonable computational cost using augmented double

or triple zeta Dunning basis sets and density fitting.

Another application, currently under study, is also a big project involving the effect

of the DNA sequence of two and three stacked base pairs on the twist of the DNA

molecule. The other aspect of this study is to investigate whether the twist of the

DNA molecule is predominantly from the dispersion interaction of naked stacked base

pairs or whether it is a result of the rigid structure of the phosphate backbone. This

study can be further extended to investigations of different molecules intercalated

between DNA base pairs.
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