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Objective: To develop a predictive model for preoperative differentiation 

between benign (B) and malignant (M) histology in patients with renal masses 

(RM) using recursive partitioning. 

Methods:  We analyzed preoperative patient and tumour characteristics in 395 

subjects who had surgery for RM suspicious for renal cell carcinoma. 

Results: The model predicted B vs. M histology with an overall accuracy of 

89.6% (95% CI 86.2,92.5). It assigned patients with smaller tumours (<5.67cc) 

and a predominantly (>45%) exophytic component a high risk of B disease 

(52.6%). Patients with symptoms, larger tumours (>5.67cc) and larger endophytic 

component (>35%) have a 0% risk of B disease. 

Conclusion: B vs. M disease can be predicted accurately. This predictive 

accuracy is higher than that shown in renal biopsy series. It is hypothesized that 

for smaller and exophytic RMs, a biopsy is indicated. Symptomatic, larger and 

endophytic RMs should be removed without further investigations. 

  



AJCC  = American Joint Committee on Cancer 

B = Benign 

CART = Classification and Regression Tree 

CI = Confidence Interval 

cm3 = Cubic Centimeters 

cm = Centimeters 

CT  = computed tomography 

Endo = Degree of Endophytic Component 

M = Malignant 

MRI = Magnetic Resonance Imaging 

N = Number of Observations 

OR = Odds Ratio 

PMH = Princess Margaret Hospital 

R cm3 = Renal Cell Carcinoma 

UICC  = International Union Against Cancer 

USA = United States of America 

Vol = Tumour Volume at Diagnosis 

y = Years of Age 
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Susan Kirkland, whose expertise, understanding, and patience, added 

tremendously to my graduate experience. I appreciate their vast expertise and 

skills in different areas, which combined added great depth to this project and my 

knowledge overall. 



1.1. The Diagnostic and Treatment Dilemma of Small Renal Masses 

 

Renal cell carcinoma (RCC) is the most common malignancy of the kidney. 

Renal cell carcinoma usually presents incidentally on abdominal imaging 

performed for various reasons. The incidence of small, incidentally detected renal 

masses presumed to be renal cell carcinoma is rising.1 The only proven curative 

treatment for RCC is surgical removal with partial or radical nephrectomy. These 

procedures have a significant complication rate and affect the renal function. 

Traditionally, newly diagnosed renal masses are surgically removed based on 

image findings only and are infrequently biopsied before surgery. Upon surgical 

removal of these renal masses, up to 48% of them have proven to be benign, 

thereby exposing these patients to unnecessary risks. Currently, there are no 

adequate pre-operative predictors of benign or malignant disease for these 

radiologically detected renal masses. The only decision tool available for clinical 

use is a complex nomogram that is rarely utilized and uses variables that have 

limited predictive ability. The purpose of this study was to develop a classification 

tree in order to aid in the pre-operative assessment of which patients have an 

increased risk of harbouring a benign renal mass. It is anticipated that a 

classification tree with a good overall predictive accuracy will be more user 

friendly for clinicians and therefore will be utilized more often. 



1.2. Hypothesis 

 

Using pre-operative prognostic factors, a predictive model can be developed that 

can accurately classify renal masses < 5 cm, presumed to be renal cell 

carcinoma, as benign or malignant. 

 

1.3. Primary Objective 

 

To develop a pre-operative classification tree to determine which renal masses 

<5 cm presumed to be renal cell carcinoma are in fact malignant or benign. 

 

1.4. Secondary Objectives 

 

1.4.1. To validate the classification tree 

1.4.2. To evaluate the predictive ability of the classification tree 

  



 

2.1. Descriptive Epidemiology of Kidney Cancer 

 

Renal Cell Carcinoma is the most common malignancy of the kidney. In Canada, 

kidney cancer accounts for approximately 3.5% of all adult male cancers and 

2.5% of all adult female new cancer diagnoses.1 Kidney cancer also accounts for 

2.7% and 1.7% of all adult male and female cancer deaths respectively. Close to 

5,600 new cases are expected in Canada in 2012, with an estimate of 1,700 

resulting deaths. The lifetime probability of developing renal tumours amongst all 

races in Canada is 1.6% while the lifetime probability of dying from renal tumours 

is 0.7% with an approximate mortality of 43% at 5 years. 

 

The incidence of RCC in Canada and the United States of America (USA) is 

increasing (Figure 1.).1-3 In Canada, the annual percent change in age-

standardized incidence rates between 1998 and 2007 for males was 2.6 and 1.9 

for females while the annual percent change in age-standardized mortality rates 

between 1998 and 2007 for males was -0.8 and -0.9 for females. In Canada and 

the USA, the majority of new RCCs are asymptomatic and are incidentally 

discovered. The TNM classification developed by the International Union Against 

Cancer (UICC) and the American Joint Committee on Cancer (AJCC) guidelines 

is the most commonly used system to stage tumour status.4 Clinical stage 



migration to localized stage T1N0M0RCCs has been observed over the past 30 

years.3 Patients are now diagnosed with smaller tumours. Patients in the 7th-9th 

decades of life have experienced the largest increase in incidence with a ten-fold 

rise between 1935-39 and 1985-89.3 There are at least two possible explanations 

for this increase. First, there is an artefact of increased imaging studies as slow 

growing lesions, which may have been asymptomatic for years, are now more 

likely to be detected through X-rays while still small. This hypothesis is based on 

earlier series. Second, two recent studies have demonstrated a true increase in 

incidence as evidenced by a rise in the incidence in all tumour stages.3,5 This 

concept is further validated by the observation of a stable rate of cases of renal 

cancer diagnosed only at autopsy over the last 40 years despite the more 

frequent use of imaging modalities.6 The reasons for this rise in incidence are 

unknown. 

 

From 1969 to 2002 the mortality rate for renal tumours in the United States and 

Canada increased.2,3 Most of this rising trend in mortality seems to be accounted 

for by a significant increase until 1992. Mortality data over the last decade 

published in the USA (1992-2002) shows that mortality rates may have stabilized 

and in fact it appears that they are starting to decline.1,2,7 This could be explained 

by the positive impact of the management of metastatic RCC or a true impact on 

mortality due to early detection and treatment. To date, there is no evidence to 

support one hypothesis over the other. 

 



 

2.2. Histology of Renal Masses 
 

Most solid renal masses are RCCs. The histologic subtypes of RCC are 

classified according to the Heidelberg classification, the UICC and AJCC 

guidelines.8,9 They include clear cell, papillary, chromophobe, collecting duct and 

unclassified RCC subtypes. Several studies have demonstrated that 

chromophobe and papillary carcinomas have a better prognosis than clear cell 

type carcinomas. In addition, patients who present with papillary and 

chromophobe RCCs tend to have tumours of lower stage compared with patients 

who have clear cell RCC.10 To date, the proportion of different subtypes of RCC 

have not changed supporting the hypothesis that that risk factors have not 

changed significantly over time and observed changes are real. 



Historical series reported that approximately 80-90% of solid renal masses were 

RCCs.11 Several more recent reports have shown that for small renal masses the 

incidence of benign histology after partial or radical nephrectomy is as high as 

48%.10 With such high rates of benign disease, there is clearly a need for more 

pre-operative indicators of pathology. It has also been demonstrated that elderly 

patients with small renal masses are up to 3.5 times more likely to have benign 

lesions than RCC.12 

 

2.3. Current Treatment of Renal Masses 

 

Once a renal mass is identified on imaging studies, a treatment decision is made. 

The only established curative treatment for RCC remains surgery with radical or 

partial nephrectomy. For the past 50 years, the accepted standard treatment for 

RCC has been radical nephrectomy. More recently, excellent cancer control has 

been obtained with partial nephrectomy which has become the standard 

treatment for most small renal masses. Among those who undergo partial 

nephrectomy, excellent five and ten year survival rates are accompanied by a 

low risk of local (3.2%) and distant (5.8%) recurrence with preservation of renal 

function in 98% of cases.13 

 

The rates of partial and radical nephrectomy are rising. Although morbidity from 

nephrectomy and partial nephrectomy has decreased, it is still significant and 

reported to be between 11% and 40%.13,14 In particular, older patients, with 



significant comorbid disease are at increased risk of perioperative mortality and 

morbidity.15 Despite this rising trend in the use of partial and radical 

nephrectomies, the mortality rate from RCC has not decreased. In fact, the 

mortality rate had been rising steadily until recently.1 Possible explanations for the 

increase in detection with minimal change in mortality include: 1) a lead time bias 

due to earlier detection, resulting in increased incidence but not changing the 

lifetime mortality risk from RCC; 2) length time bias resulting in the diagnosis of 

indolent tumours, without altering the mortality rate from life threatening tumours; 

or 3) mortality improvement that has yet to be seen for these small tumours with a 

long natural history and a wider window of curability. If this is the case, a change 

in mortality may only be expected 10 to 15 years following the era of increased 

detection, and we are only starting to see this now.1 

 

With the introduction of Active Surveillance, ablative treatments (Radiofrequency 

Ablation and Cryotherapy) and laparoscopic and open partial nephrectomy for 

the management of small renal masses, the pretreatment histologic diagnosis of 

these masses has become very relevant. The pretreatment ability to classify 

tumours into benign and malignant, would aid to decrease the occurrence of 

unnecessary complications in patients with benign masses treated surgically and 

would increase the confidence in the patient and physician to decide on an 

expectant approach. 

 



Different approaches have been evaluated in order to try to decrease the rate of 

surgery for benign disease. 

 

2.4. Role of mass biopsy 
 

The traditional indications for biopsy of small renal masses are limited to cases 

with atypical images, a suspected secondary tumour or to establish the primary 

tumour pathology in the presence of metastases. The technique, risks and 

results of needle biopsy have improved significantly as a result of better image 

guidance and one-handed automated needles with echogenic and depth 

markings.16 Masses <1cm can be biopsied, although biopsies of masses >1cm 

and particularly >2 cm are more likely to provide useful information. A high 

degree of accuracy can be achieved with respect to tissue sampling 

interpretation. This has been reported as high as 100% sensitivity and specificity 

and 90% accuracy.16 Volpe et al., demonstrated in a cohort of 100 patients that 

84 (84%) biopsies were diagnostic for a malignant (66) or a benign (18) tumour.17 

Larger tumour size and a solid pattern were significant predictors of a diagnostic 

result. Histological subtyping and grading were possible on core biopsies in 93% 

and 68% of renal cell carcinomas, respectively. In that cohort, 20 patients 

underwent surgery after a diagnostic biopsy demonstrating a histological 

concordance of biopsies and surgical specimens was 100%. 

 

Needle biopsy of a renal mass presumed to be RCC appears to be safe. A 



systematic review of the literature published on renal biopsy showed that in 

contemporary series, minor complications are rare (<5%), and catastrophic 

complications and mortality (no reported cases) are exceedingly rare.18 While 

some degree of bleeding was evident on 85% to 91% of computed tomography 

(CT) images obtained routinely following renal mass biopsy, renal hemorrhage 

necessitating hospital admission or blood transfusion occurred in only 1-2% of 

cases and kidney loss was extremely rare. Other complications such as clinically 

significant pneumothorax were also found to be rare (<1%). Tumour seeding, a 

feared complication of renal mass biopsies, has a reported incidence of <0.01% 

and since 1994, no cases have been reported. 

 

In spite of improved technique resulting in higher tissue yield and diagnostic 

accuracy as well as a decreased complication rate, the technical failure and 

indeterminate or inaccurate pathological diagnosis is still significant.18 In addition, 

further studies that address the impact of tumour heterogeneity and sampling 

error for contemporary percutaneous renal biopsies are lacking. Furthermore, the 

amount of diagnostic and prognostic information obtained from histopathological 

analysis continues to be limited. Based on these facts, currently relatively young 

and healthy patients who are unwilling to accept the uncertainty associated with 

renal biopsies are still best treated with surgical excision. Therefore, a more 

rational approach to biopsying none or all renal masses, would be to biopsy all 

those masses with a higher risk of harbouring benign disease.  

 



2.5. Tumour Morphology and Anatomy 

Tumour morphology and anatomy also provide prognostic information regarding 

clinical behavior. It has been found that small, well marginated, and 

homogeneous tumours have lower nuclear grade, while higher grade lesions 

demonstrate irregular margins and greater inhomogeneity.19 In a retrospective 

analysis of 193 patients, Zhang et al. found that clear cell RCC commonly (88–

79%) and predictably (OR 22–54 in comparison with papillary/chromophobe 

tumours) presented with a mixed enhancement pattern of both hypervascular 

soft-tissue components and low-attenuation areas that corresponded to necrotic 

or cystic changes.20 Kutikov et al. reported on the use of the R.E.N.A.L 

nephrometry scoring system to evaluate whether radiographic features correlated 

with histology and high-grade disease (Figure 2.).21 The R.E.N.A.L. score was 

initially developed to standardize radiographic tumour reporting for assessment 

of perioperative complications and partial nephrectomy utilization rates. These 

authors found that nephrometry score correlated with both histology (P<0.0001) 

and grade (P<0.0001). They created a nomogram incorporating age, sex, and 

R.E.N.A.L. score with an area under the curve of 0.76 for histology and 0.73 for 

grade. Of importance, the R.E.N.A.L. component of the score only marginally 

added to the value of the nomogram, with size being the dominant component. 

Unfortunately these and other nomograms are rarely employed in clinical practice 

due to their complexity. 

 

 



 

2.6. Prognostic Factors 

2.6.1. Tumour Size 

 

Renal masses can now be more accurately characterized by imaging using CT 

and magnetic resonance imaging (MRI). However specificity decreases to 

80% for tumours ≤ 3.5 cm. At present, the only non-invasive and readily 

available preoperative prognostic factor is tumour size. As early as 1938, the 

association between tumour size and metastatic potential was recognized.22 

Many authors have demonstrated that a 4cm cut-off point accurately 



differentiates prognosis and that patients who are treated for tumours this size 

or smaller have a local recurrence-free survival of 98.9%, distant recurrence-

free survival of 97.8% and cancer-specific survival of 98.5%.10,13,14,23,24 These 

figures are significantly better than those of larger tumours, with recurrence-

free survival in the range of 40 to 90%.10,23 

 

Studies evaluating the accuracy and reproducibility of CT image 

measurements of small renal masses have been performed and inter and 

intra-observer variability has been evaluated.25 An excellent overall reliability 

coefficient of 97% in the X and Y axes mass diameters, and 96% in the Z axis 

mass diameter has been reported. This suggests that the measurement of 

renal tumour size on imaging is both accurate and reproducible. 

 

Based on local observations, the location of renal masses appears to have a 

role in the distinction between benign and malignant masses. We have 

reported that central masses are five times more likely to be malignant when 

compared with peripheral ones.26 Three additional groups have reported on 

the implications of tumour location in relation with pathological features. Frank 

and coauthors reported their series of outcomes in patients who underwent 

laparoscopic partial nephrectomies in 2006.27 They included 154 patients with 

central tumours and 209 patients with peripheral masses. The average tumour 

size as measured by CT was 3.0 cm (range 1.0–7.0) and 2.4 cm (range 0.7–

10.0) for central and peripheral masses respectively (p<0.001) In their 



secondary analysis, they identified RCC in 80.1% and 65.5% of the patients 

with central and peripheral tumours respectively (p=0.002). 

 

Venkatesh and colleagues reported in 2006 their outcomes of laparoscopic 

partial nephrectomies in 123 patients.28 The average tumour size was 2.6 cm 

for all masses. In their series, only 55% of the peripheral renal masses had 

malignant histopathologic features, compared with 86%, 75% and 85.7% of 

the mesophytic, endophytic and hilar masses, respectively (p<0.05). They also 

found that the proportion of tumours having worse Fuhrman nuclear features 

(3 and 4) was only 3.7% in the exophytic masses, compared with 13.9% in the 

mesophytic and 25% in the endophytic lesions (p<0.05). Fuhrman grade is a 

scale from 1 to 4 that describes the grade of nuclear differentiation. Higher 

Fuhrman grades are associated with worse prognosis. 

 

Nadu and coauthors also reported on the outcomes of laparoscopic partial 

nephrectomy performed in 212 patients.29 In their series, 53 and 159 patients 

had central and peripheral masses, respectively. The reported proportion of 

malignant disease was 94% in the central masses compared with 82% of the 

peripheral ones. This difference was not found to be statistically significant. 

2.6.2. Histology 

 

Histological prognostic factors have been described after surgical removal of 

tumours. As discussed above, papillary and chromophobe tumours have more 



benign behaviour than the other types of RCC. Presence of tumour necrosis 

has been associated with death from RCC in patients with clear cell and 

chromophobe subtypes but not papillary tumours.30,31 Sarcomatoid 

differentiation has been proposed as a prognostic factor, but this finding is 

typically rare and not all studies have identified it as an independent 

prognostic feature.31 

 

Nuclear grading has been associated with prognosis. The most commonly 

used grading system was developed by Fuhrman.32 Current data supports the 

utility of nuclear grading in particular for papillary and clear cell RCC. Its 

applicability to other less frequent histological subtypes is not conclusive. 

 

In summary, the incidence of small, incidentally detected renal masses presumed 

to be renal cell carcinoma is rising. The only treatment for RCC associated with 

decreased mortality is surgical removal with partial or radical nephrectomy. 

These procedures have a significant complication rate and affect the renal 

function. Traditionally, newly diagnosed renal masses are surgically removed 

based on image findings only and are rarely biopsied. Upon removal of these 

renal masses, up to 48% of them have proven to be benign, thereby exposing 

these patients to unnecessary risks. Currently, there are few pre-operative 

predictors of benign or malignant disease for these radiologically detected renal 

masses and these predictive tools have either low predictive ability or are 



cumbersome to use or both. A classification tree method is proposed herein in 

order to predict benign vs. malignant disease. 

 

2.7. Statistical Background 

 

Prediction of histology based on patient and tumour characteristics has 

traditionally been based solely on tumour size. More recently, it has become 

clear that this prediction with more variables is a new and complex field. In the 

particular case of renal masses, relationships between variables are largely 

unknown and may be strongly nonlinear and involve high-order interactions. The 

commonly used exploratory and statistical modeling techniques often fail to find 

meaningful predictive patterns from such data. Classification and regression 

trees are statistical techniques ideally suited for both exploring and modeling this 

type of data.33 As a non-parametric statistical method, classification trees are 

conventionally constructed for classification purposes and risk factor analyses.34 

 

Trees explain variation of a single response variable based on one or more 

explanatory variables.35 The response variable can be either categorical 

(classification trees) or numeric (regression trees), and the explanatory variables 

can be categorical and or numeric. 

For classification purposes in medical literature, most reported studies show that 

there is really very little difference between the performance of logistic model 

methods and trees.36-38 The rules and subgroups that are derived from trees are 



promoted as being very easily described to clinicians since they logically 

demarcate clusters of symptoms, signs and other features. 

 

The tree is constructed by continuously splitting the data, defined by a simple 

rule based on a single explanatory variable. At each split, the ‘parent node’ data 

is partitioned into two mutually exclusive and disjoint subsets (‘children nodes’), 

each of which is as homogeneous as possible. The splitting procedure is then 

applied to each new group separately. The main objective is to partition the 

response into homogeneous groups, but also to keep the tree reasonably small. 

Splitting is continued until an overlarge tree is grown. The splitting procedure 

stops when all the records belong to the same class of response variable or all 

the records have identical attribute values (explanatory variables). 

 

The way that explanatory variables are used to form splits depends on their 

type.34 For a categorical explanatory variable with two levels, only one split is 

possible, with each level defining a group. For categorical variables with 3 or 

more levels, any combinations of levels can be used to form a split. For numeric 

explanatory variables, a split is defined by values less than, and greater than, a 

particular selected value. From all possible splits of all explanatory variables, the 

one that maximizes the homogeneity of the two resulting groups is selected. 

 

During tree development, each subgroup (node) is typically characterized by the 

assignment of the majority class of the response variable (benign vs. malignant), 

group size (total number of benign and malignant lesions in that particular group), 



and the values of the explanatory variables that define it (a cutoff point for 

continuous variables and the specific characteristic for categorical variables).  

 

Trees are then represented graphically, with the root or parent node, which 

represents the original undivided data set, at the top, and the branches (internal 

nodes) and leaves (each leaf represents one of the final groups) beneath (Figure 

5.).34,35 Additional information can be displayed on the tree, e.g., summary 

statistics of nodes. 

 

To determine how well a characteristic (explanatory variable) performs, the 

degree of impurity of the parent node (before splitting) and the degree of impurity 

of the children nodes (after splitting) need to be compared. The larger their 

difference, the better the predictive ability. The gain is a criterion that can be 

used to determine the goodness of a particular split. This measurement of 

impurity takes the value zero for completely homogeneous nodes (null tree), and 

increases as homogeneity decreases. Thus maximizing the homogeneity of the 

groups is equivalent to minimizing their impurity. Homogeneity can be defined in 

many ways, with the choice depending on the type of response variable. There 

are five measures of impurity (splitting criteria).33 In this particular analysis, the 

Gini index is employed.39 This index measures the heterogeneity in the sample. 

The formula for the Gini index is 

 

Once the impurity has been measured in a node, the node splits and the drop in 
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impurity achieved by the split of the parent node into children nodes is a measure 

of the goodness of split. The formula for the goodness of split criterion is 

where i(N) is the value of the parent impurity, p(NR) is the probability of a case 

falling in the right daughter node and p(NL) is the probability of a case falling in 

the left daughter node. 

 
This measure in drop of impurity is described as ‘improve’ in the rpart software 

package. Improve is a numerical value assigned to each explanatory variable. 

The variable with the highest improve is then chosen as the splitting criterion. 

 

Once the tree has been developed, an evaluation of the performance of the 

classification model is based on the counts of outcomes correctly and incorrectly 

predicted by the model.34,35 These counts are tabulated in a table known as a 

confusion matrix (Table 5.). Although a confusion matrix provides the information 

needed to determine how well a classification model performs, summarizing this 

information with a single number makes it more convenient to compare the 

performance of different models. This can be done using accuracy (number of 

correct predictions / total number of predictions) or can also be expressed in 

terms of its error rate (number of wrong predictions / total number of predictions). 

After the evaluation of the performance of the tree, an internal validation is 

performed. There are several internal validation methods.40 In the Hold out 

method, the analyst assigns a proportion of the data (typically 50/50 or 70/30) for 

training (create the tree) and another for testing (internal validation). 34,35The 



main drawback with this method is that it does not use all the data for the 

creation of the tree. This is a particularly limiting step for small data sets or data 

sets with low frequency outcomes. The Random subsampling method is 

essentially when the Hold out method is repeated several times in order to try 

and improve the estimation of the performance.  

 

The Cross-Validation method creates the tree in a large proportion of the 

population and leaves out a small proportion for testing.34,35 This is performed 

systematically until all data has been used for training and testing the model. One 

version of the method carries out a 10-fold cross-validation where the data is 

divided into 10 subsets of equal size (at random) and then the tree is grown 

leaving out one of the subsets and the performance assessed on the subset left 

out from growing the tree. This is done for each of the 10 sets. The average 

performance is then assessed. The advantage of this method is that it uses the 

entire data set to train and test the model.  

 

Most classification prediction models originating from complex data sets result in 

an overgrown tree that is difficult to use clinically and can suffer from data 

fragmentation. As recursive partitioning is a top-down approach, the number of 

records in each subgroup become smaller as we navigate down the tree. At the 

terminal nodes, the number of records may be too small to make a statistically 

robust prediction. For these reasons, most trees require subsequent pruning.  



Pruning of the classification tree can be performed a priori by applying a set of 

early stopping rules to limit tree growth at inception: 1) stopping rule that dictates 

that a split must exceed a preset percentage of root node impurity; 2) ruling that 

splitting stops if a node contains less than 5 observations; or 3) stopping splitting 

if a node is pure or all observations are identical.34,35 

Error-complexity pruning of the classification tree can also be performed after the 

tree is formed by trimming the fully grown tree in a bottom-up fashion to generate 

a sequence of pruned subtrees.33  Cross-validation is used to estimate the 

overall impurity of each of the pruned subtrees and the tree with the lowest 

estimated overall impurity is selected. 

  

Pruning of the tree can also be performed using a clinically based decision that 

allows the clinician to develop a tree that ‘makes sense’ for a particular use. If 

this approach is utilized, the performance of the pruned tree is measured using 

the confusion matrix and the overall accuracy is compared with that of the full 

tree. 

 

Post-pruning tends to give better results than prepruning because it makes 

pruning decisions based on a fully-grown tree, unlike prepruning, which can 

suffer from premature termination of the tree-growing process.  



The advantages of classification trees are that: 1) they can cope with any data 

structure or type; 2) they have a simple form such as a flow chart with great 

appeal for clinical use; 3) they use conditional information effectively; 4) they are 

invariant under transformations of the variables; 5) they are robust with respect to 

outliers; and 6) they give an estimate of the misclassification rate. The main 

disadvantages of classification trees are that: 1) they do not use combinations of 

variables as predictors; 2) trees can be deceptive – if a variable is not included it 

might appear to be “masked” by another variable; and 3) tree structures may be 

unstable – a change in the sample may give different trees, although this is also 

true for other modelling techniques. 

 

2.8. Summary 

 

The incidence of small incidentally detected renal masses is growing mostly at 

the expense of presentation in the elderly years when comorbidities are highly 

prevalent. The traditional approach for the treatment of renal masses is with 

surgical excision with partial or radical nephrectomy. These procedures carry a 

significant risk or complications. This is of particular importance, as up to 40% of 

these masses can be benign.  

 

One approach to decreasing this high risk of benign disease in histological 

evaluation is to biopsy all renal masses. It has been demonstrated that with 

improved biopsy techniques, complication rates can be reduced, but the 



information obtained by biopsies is still limited. Another approach is to develop 

predictive tools using patient and tumour characteristics. To date, only one group 

has reported on the prediction ability of their nomogram. This nomogram is 

complex and because of this, it is rarely used in clinical practice. 

 

A classification tree was developed in order to aid in the pre-operative 

assessment of which patients have an increased risk of harbouring a benign 

renal mass and thereby decreasing the chances of offering an unnecessary 

operation to those patients who do not require it. 

  



3.1 Study Population / Sample 

3.1.1. Inclusion Criteria: 

 

All patients > 18 years of age who underwent a partial or radical nephrectomy 

for a renal mass < 5 cm in largest diameter presumed to be a renal cell 

carcinoma performed by Dr. Ricardo A. Rendon (RAR) and Dr. Joseph G. 

Lawen (JGL) at the Queen Elizabeth II Health Sciences Centre, Halifax, Nova 

Scotia, Canada between July 01, 2001 and June 30, 2010 were identified. 

These two surgeons were chosen as they performed the largest volume of 

these surgical procedures. The specified time period was selected in order to 

include contemporary cases with available imaging studies. 

 

Dr. Lawen’s cases were identified via billing codes for partial and radical 

nephrectomy. Dr. Rendon’s cases were identified through a prospectively 

maintained database. Dr. Rendon’s billings were also obtained in order to 

corroborate that no cases were missing in the database. Once all patients who 

had a partial or radical nephrectomy performed by the two surgeons during the 

specified period of time were identified, a review of all pathology reports was 

performed. All patients with masses that measured up to six centimeters 



postoperatively were recorded. All preoperative abdominal imaging studies 

(CT, MRI, and ultrasound) were reviewed and patients with renal masses with 

a maximum one-dimensional diameter of less than five centimeters were 

ultimately included in the study. Only patients who had available information 

on all outcomes and potential predictor variables were included in the study. 

 

Approval was obtained from the Capital District Health Authority Research 

Ethics Board. 

 

3.1.2. Exclusion Criteria: 

 

Patients undergoing a surgical intervention for a previously known benign 

tumour (large or symptomatic angiomyolipomas) 

 

3.2. Data Collection 

 

The following measures were abstracted from the prospectively maintained 

database (RAR’s patients) and from a retrospective chart review (RAR’s and 

JGL’s patients) for all cases meeting inclusion and exclusion criteria using the 

data collection tool (Appendix 1). 

 



3.3. Outcome of Interest: 

 

Benign or malignant disease 

Post-operative histological diagnosis was utilized to determine whether the 

excised mass was malignant or benign. Histologic subtypes for both benign and 

malignant lesions were collected. 

 

3.4. Potential prognostic factors: 

 

3.4.1. Tumour size: 

Tumour size was obtained from the last CT or MRI performed pre-operatively. 

The maximum diameter in centimeters of each mass was recorded in all 

patients. When possible, two or three diameters in different dimensions were 

measured and recorded. All digital images were blindly (reviewer unaware of 

outcome of interest) and separately reviewed by Ross Mason (medical 

student) and RAR. Conflicts were resolved by re-review of images by both 

reviewers. 

 

Tumour volume was calculated in one of three ways depending on the number 

of available dimensions: 1) for three dimensions, the formula for ellipsoid 

volume was employed (0.5326xyz), 2) for two different dimensions, the formula 

0.5326xy(x+y/2) was used, and 3) for one dimension, the formula for volume of 

a sphere was employed ((4/3)(3.14)(x/2)3) which is equivalent to 0.5326x3. 



3.4.2. Tumour location: 

Central-Hilar-Peripheral 

3.4.2.1. Central - A central mass was defined as one which extends into the 

kidney in direct contact with or invading into the collecting system and/or 

renal sinus (Figure 3.) 

3.4.2.2. Hilar - A hilar mass was defined as one which is directly against or 

invading the main renal vessels (Figure 4.) 

3.4.2.3. Peripheral - All other masses were defined as peripheral (Figure 5.) 

 



 



3.4.3. Degree of exophytic component: 

After review of the images, all masses were assigned a percentage of 

exophytic component. This was defined as the amount of growth of the mass 

extruding beyond the contour of the kidney (1-100%). 

3.4.4. Age in years 

3.4.5. Sex 

3.4.6. Symptoms at presentation: 

Incidental - No symptoms at diagnosis 

Hematuria – Microscopic or gross hematuria 

Pain – Pain present at diagnosis and perceived by treating physician to be  

caused by the renal mass 

As most cases in the current study presented with incidental tumours, it was 

decided to use a binary classification. Patients who presented with hematuria 

and pain were grouped into presentation with symptoms and all others were 

classified as incidental. 

 

3.5. Statistical Analysis 

3.5.1. Descriptive Statistics 

Data preparation was performed in Excel (Microsoft Excel for Mac Version 

14.2.3). Descriptive statistics were utilized to describe the study population. 

Means were employed to summarize continuous measures such as age, 



tumour size and degree of exophytic component. Proportions were used to 

summarize categorical variables including final histology, symptoms at 

presentation, tumour location and Fuhrman grade. 

 

3.5.2. Analytic Statistics 

 

The main research question was addressed using Classification Tree 

methodology. Using the rpart package in the R language for statistical 

computing, a classification tree model was built using malignancy as the 

outcome variable and potential predictor variables as the covariates.41  The 

covariates used were: age, symptoms at presentation, sex, degree of 

endophytic component, tumour volume, and central vs. peripheral location. 

The tree model was then validated using the 10-fold cross-validation routine in 

rpart, and all the error rate estimates were calculated for the 10 samples and 

then the mean estimate of the error rate was calculated. 

  

The tree was pruned in order to develop the most parsimonious tree that made 

clinical sense (simpler) without a significant change in the predictive ability 

(overall accuracy). A confusion matrix was generated in order to obtain overall 

accuracy, sensitivity, specificity, positive and negative predictive values for the 

unpruned and pruned trees using malignancy as the outcome of interest. For 

the purposes of showing the results in a traditional framework a dummy 

variable with 5 levels was created. These levels correspond to the 5 terminal 



nodes of the final pruned tree. The variable was then used as a predictor in a 

logistic regression model, the outcome being tumour histology. Odds ratios 

with 95% confidence intervals were calculated using as the reference the 

terminal node in the tree that corresponded to: Tumour volume > 5.67 cm3, 

Endophytic component > 35% and Incidental diagnosis. 

 

Analysis sequence, R code and SAS code are displayed in Appendices 2, 3 

and 4. 



 

In total 395 patients who fulfilled all the inclusion and exclusion criteria were 

identified. 

4.1. Descriptive Results 

 

Table 1 depicts patient characteristics. The median age was 61 years (range 24-

90). Fifty five percent of the patients were male and 81% of the masses were 

detected incidentally, while 19% presented with symptoms such as hematuria or 

pain. 

 

Table 2 depicts preoperative tumour characteristics. The median diameter of 

dimension X in CT or MRI was 3.1 cm (range 1-4.9), the median diameter of 

dimension Y was 2.8 cm (range 1.2-4.7), and the median diameter of dimension 

Z was 2.6 cm (range 1.1-4.7). For dimensions Y and Z there were 265 and 316 



measurements missing respectively. The median tumour volume was 14.38 cm3 

(range 0.53-62.66). Two hundred and fifty two tumours (63.8%) had a central 

location and 143 (36.2%) were peripherally located. 

cm3

 

Table 3 displays the characteristics of the surgical intervention. Most (76.5%) had 

a laparoscopic procedure while only 23.5% had an open surgical approach. 

There were 223 patients (56.5%) who had a partial nephrectomy and 172 

(43.5%) who had a radical nephrectomy. 



The median tumour diameter for dimension X as measured in the surgical 

specimen (pathology) was 3 cm (range 0.4-6.5), 3.5 cm (range 0.4-5.5) for 

dimension Y and 2.4 cm (range 0.4-5.5) (Table 4.). There were 2, 87 and 103 

missing measurements for dimensions X, Y and Y respectively. Of the 395 

patients with renal masses, there were 45 (10.4%) benign and 350 (89.6%) 

malignant lesions. The most common malignant subtype was Conventional Clear 

Cell Carcinoma in 264 (66.8%) masses. The predominant benign histology was 

Oncocytoma in 20 (5.1%) lesions. Amongst the benign tumours, the most 

common Fuhrman grade was 2 (51.5%), followed by Fuhrman 3 (24.8%), for a 

total of 81.4% of the masses with Fuhrman grades 2-3. Sixty one pathology 

reports did not describe the Fuhrman grade. The pathological stage of all 350 

malignant lesions was available in 308 histological reports. Most (71.7%) patients 

were stage pT1a. Eighty-six (24.6%) patients were upstaged to pT1b and 14 

(3.7%) to pT3a. Vascular and fat invasion was identified in 11 (2.8%) and 18 

(4.6%) specimens respectively. The surgical margins were positive in 2.3% of the 

patients. 

 

 

 

 

 

 

 





4.2. Analytic Results 

 

The graphic representation of the full classification tree can be seen in Figure 6; 

the results are depicted in a tabular format in Table 6. The model to predict 

benign vs. malignant histology from preoperative information was generated 

based on the following variables: age, symptoms at presentation, sex, degree of 

endophytic component, tumour volume, and central vs. peripheral location.  

 



The following variables, cutoff points and improvement measures were identified 

at the first node: 

Volume    > 5.665266  improve = 3.1908580 

       Endophytic   < 35  improve = 3.0922840 

       Peripheral     improve = 3.0055210 

       Sex            improve = 1.2194190 

       Incidental     improve = 0.4135021 

 

Where improve is the improvement in impurity given by a particular split. 

 

From these results, it can be seen that even though the tree automatically splits 

using tumour volume, degree of endophytic component and peripheral vs. central 

location are almost as good predictors. 

 

At the second node, the splitting happens based on < 35% degree of endophytic 

component: 

Endophytic   < 35   improve = 2.6071720 

      Peripheral    improve = 1.4929760 

      Age   < 62.5  improve = 0.4622516 

      Sex     improve = 0.4439324 

      Volume   < 20.44918  improve = 0.4335753 

Here it can be appreciated that there is a larger difference in the improvement 

measure between the first and second and third variables. 



In the third node, the splitting occurs at < 45% degree of endophytic component: 

Endophytic   < 45   improve = 4.14485400 

Age          < 72.5  improve = 1.72376600 

Volume    < 1.737608  improve = 0.86734220 

Sex            improve = 0.78203370 

Incidental     improve = 0.09490196 

 

In the fourth node, the splitting occurs at symptoms at presentation: 

Incidental     improve = 0.4124183 

Endophytic   < 85   improve = 0.3673256 

Peripheral     improve = 0.3430060 

Volume    < 40.59451  improve = 0.2752715 

Age          < 60.5  improve = 0.2689320 

From this, it can be seen that the improvement measure for the first variable is 

lower than that observed in the previous nodes. 

 

It can be appreciated that there is no further splitting on the right side of the tree 

after the third node and no additional splitting on the extreme left hand side of the 

left side of the tree. 

 

The following are the variables, cutoff points and improvement measures that 

were observed for nodes 9, 19, 39, 79 (there were no additional splits at other 

nodes). These nodes correspond to split 5, 6, 7 and 8. It is important to mention 



that the mathematical model creates a node for every single possible split, even 

though it is not statistically significant. For this reason, node 79 equates to split 

number 8. Moreover, nodes 40 to 78 were created but not displayed in the graph 

as they do not separate each subsample into subsequent different samples: 

Node 9  

Endophytic   < 85  improve = 0.45853320 

Age          < 60.5  improve = 0.34951460 

Peripheral     improve = 0.34919850 

Volume    < 40.59451  improve = 0.32436010 

Sex            improve = 0.01810746 

Node 19 

Endophytic   < 65   improve = 0.626249400 

Age          < 62.5  improve = 0.487280100 

Volume    < 40.59451  improve = 0.458698100 

Peripheral     improve = 0.336415200 

Sex            improve = 0.005497328 

Node 39 

Age          < 60.5      improve = 2.488889000 

Volume    < 19.47239  improve = 1.043566000 

Sex            improve = 0.012698410 

Endophytic   < 75   improve = 0.006554019 

 

 



Node 79 

Age   < 56.5  improve = 3.500000 

Volume   < 19.47239  improve = 1.121795 

 

The calculated overall accuracy of the full tree is 89.6% with a 95% confidence 

interval of 86.2 to 92.5 (Table 5). The sensitivity is 96.6% and the specificity is 

35.6%. The positive predictive value and the negative predictive value are 92.1% 

and 57.1% respectively. These performance measures were all calculated for 

malignancy as the main outcome. 

 

In order to internally validate the predictive tree, a 10-fold cross validation was 

performed. The 10 fold estimates of error rate were,  

 

 

 

 



Fold Actual Error Rate for Each Fold 

1 0.23076923 

2 0.17948718 

3 0.17948718 

4 0.12820513 

5 0.20512821 

6 0.12820513 

7 0.12820513 

8 0.02564103 

9 0.10256410 

10 0.15384615 

 

The mean estimate error rate of the 10 folds was 0.1461538, which results in an 

overall predictive accuracy (accuracy = 1 – error) of 0.8538462 or 85.4%. As 

expected, the overall 10-fold cross-validated error rate, is slightly higher than that 

generated by re-substitution error rate but still at a clinically acceptable level. 

 

This analysis resulted in a rather complex tree that is difficult to use in clinical 

practice. When we tried to perform error-complexity pruning, the low frequency of 

event (benign) resulted in the generation of either a very large, non-clinically 

useful tree or a null tree (parent node only) with only one terminal leaf. Based on 

this, we employed a clinically based pruning of the full tree. It can be seen that 

after node 3, all subsequent partitions originated from one of the two partitions of 



node 2. This resulted in the pruned tree illustrated in Figure 7. Based on this final 

tree, 5 disjoint groups of patients with varied risks of benign disease can be 

depicted in a tabular form (Table 6.).  

 

 

 

 

 



Terminal Node N Benign  
N (%) 

OR* (95% CI) 

Vol > 5.67 cm3, Endo > 35%, Incidental 206 14(6.8) Reference 

Vol > 5.67 cm3, Endo > 35%, Symptoms 57 0(0) NA 

Vol > 5.67 cm3, Endo < 35% 47 11(23.4) 4.19 (1.76,9.97) 

Vol < 5.67 cm3, Endo > 45% 66 10(15.2) 2.45 (1.03,5.81) 

Vol < 5.67 cm3, Endo < 45% 19 10(52.6) 15.24 (5.33,43.61) 

 

The calculated overall accuracy of the final pruned tree is 88.9% with a 95% 

confidence interval of 85.3 to 91.8 (Table 5). The sensitivity is 97.4% and the 

specificity is 22.2%. The positive predictive value and the negative predictive 

value are 90.7% and 52.6% respectively. This overall accuracy of the pruned tree 

compares favourably with that calculated for the full tree. This demonstrates that 

by simplifying and creating a more clinically useful decision tree, there is no 

significant decrease in model performance.  

  



 

Small renal masses are becoming a growing problem. The incidence is rising 

mostly at the expense of incidental findings in the elderly. Over the past decade 

we have learned that not all these small masses are in fact renal cell carcinoma 

and more importantly, even those that are RCCs may not need to be treated. In 

addition, the treatment of these masses is complex and often leads to significant 

morbidity as a result of immediate postoperative complications or due to loss of 

renal mass and subsequent renal insufficiency. Based on these facts, it is 

becoming increasingly clear that the traditional approach for the management of 

small renal tumours, with immediate surgical intervention, results in 

overtreatment and in many cases, unnecessary morbidity. In order to overcome 

this problem, two areas of knowledge need to be improved: 1) The nature 

(histology) of renal masses and 2) The natural history of untreated renal masses.  

 

In this study the nature of renal masses was explored. The predictive ability of 

patient and tumour characteristics to differentiate between benign and malignant 

histology was explored. This study included 395 patients who underwent 

laparoscopic or open partial or radical nephrectomies for renal masses less than 

5 cm in largest diameter. The age and size distribution represent that of a 

surgical cohort. The present series is populated by a larger number of endophytic 

and central renal masses when compared to other large series reported in the 

literature. This is the result of a referral bias of one of the surgeons (RAR) whose 



practice is based on the management of more complex renal masses treated 

with partial nephrectomy for a large catchment area. Even though this may 

introduce a selection bias in this population, the cohort was partially balanced by 

inclusion of other cases more reflective of a general practice (JGL’s patients). 

 

The rationale for selection of masses smaller than 5 cm in largest diameter is the 

fact that larger masses start to engulf more of the kidney and therefore the 

proportion of peripheral masses decreases dramatically. One of the problems 

with all predictive tools is that for rare outcomes, larger samples are necessary. 

In the present study, close to 11% of the masses were benign. The inclusion of 

larger masses, which have a lower likelihood of harbouring benign disease, 

would have resulted in a lower proportion of benign disease. Even though these 

size inclusion criteria may appear restrictive, it in fact represents close to 70% of 

all renal masses diagnosed nowadays. Based on all these facts, we believe that 

this inclusion criteria represents well the population where the main management 

dilemma exists. 

 

In the past, several authors, including our group, have reported on isolated 

patient and tumour characteristics as predictors of benign disease. Regarding 

patient characteristics, several authors have reported on the relationship 

between sex and histology. In 2007, Lane et al. reported their findings on 

preoperative patient characteristics as a predictor of benign versus malignant 

histology and found that younger women were more likely to harbour benign 



disease (36%) than men (8%); on the other hand, older men had a higher 

likelihood of benign disease than older women.42 Hsieh et al. demonstrated that 

the incidence of benign tumour was greater in females (p=0.014) and tumour size 

2 cm or less (p=0.02), compared with males and tumour size more than 2 cm, 

respectively.43  

 

Regarding tumour characteristics, in a previous study, our group demonstrated 

that peripheral masses are more likely to be benign than central ones.26 In this 

study we identified that the proportion of benign disease by location was 5.9% 

and 19.5% for central and peripheral masses, respectively. The effect of location 

was found to have a significant prognostic value (p = 0.0273) with an adjusted 

odds ratio of 3.51 (95% CI = 1.38-19.62) for the odds of a benign diagnosis in 

peripheral compared to central tumours. Tumour size and patient sex were not 

significant predictors of benign pathology (p = 0.483 and 0.191, respectively). 

Malignant histology has also been found to be strongly correlated with tumour 

size. Frank et al. found that 46% of tumours less than 1.0cm in maximal diameter 

were benign and only 2.3% of these tumours were high grade.44 Conversely, only 

6.3% of tumours ≥ 7 cm were benign and 57.7% were high grade. Clear cell 

RCC, which has a higher malignant potential than papillary RCC, was also more 

common in larger tumours. Thompson and his group reported in a large surgical 

dataset, that the odds ratio for the association of malignancy with tumour size 

was 1.16 (95% CI 1.11–1.22, P<0.001), suggesting that each incremental 

centimeter in tumour size was associated with a 16% increase in the odds of 



malignancy.45  

 

Instead of utilizing single patient and tumour parameters, and using several 

patient and tumour characteristics, the current study demonstrated that benign 

vs. malignant can be predicted with an overall accuracy of the full tree of 89.6% 

with a 95% confidence interval of 86.2 to 92.5. This is the first time a 

classification tree has been used to determine preoperatively whether a renal 

mass is benign or malignant. 

 

Using this tree for example, a patient with a renal mass with a volume of < 5.66 

cm3 that is < 45% endophytic has a 52.6% chance of having benign pathology. 

Conversely, a renal mass with a volume > 5.66 cm3 that is > 35 % endophytic 

has only a 5.3% possibility of being benign. More over, a patient with similar 

characteristics but who presented with symptoms at diagnosis has a 0% chance 

of having a benign tumour. The risk difference of harbouring malignant disease 

between these three hypothetical patients is clearly different and this finding can 

be of help when deciding which patients should undergo further evaluation before 

exposing them to morbid surgical procedures. From the results of the logistic 

regression analysis modeling benign diagnosis, it can be seen that there is an 

increasing trend from left to right in the odds of having a renal mass that 

harbours benign disease. Of note, the odds ratio estimates have wide confidence 

intervals due to the low event frequencies (45/395). The implication of these 



findings is that not surprisingly, the logistic regression analysis demonstrates a 

predictive tool with generalizability limitations

 

Other groups have taken different approaches to determine the risk of benign vs. 

malignant disease using multivariable models. Kutikov et al. reported on the use 

the R.E.N.A.L nephrometry scoring system to evaluate whether radiographic 

features correlated with histology and high-grade disease.21 The R.E.N.A.L. 

score was initially developed to standardize radiographic tumour reporting for 

assessment of perioperative complications and partial nephrectomy utilization 

rates. These authors found that nephrometry score correlated with both histology 

(P<0.0001) and grade (P<0.0001). They created a nomogram incorporating age, 

sex, and R.E.N.A.L. score with an area under the curve of 0.76 for histology and 

0.73 for grade (Figure. 2). Of importance, the component of the score only 

marginally added to the value of the nomogram, with size being the dominant 

component. Specifically, the p values for age, sex, age-sex interaction, R, E, N, L 

and H scores were 0.053, 0.189, 0.203, <0.001, 0.041, 0.951, 0.002 and 0.583 

(R = radius, E = exophytic/endophytic; N = nearness to collecting system, L = 

location , H = hilar). From this we can see that one of the major drawbacks of 

using predictive models in other situations (prediction of histology) rather than its 

original purpose (prediction of perioperative complications) is that the model uses 

variables that are not predictive, thereby reducing the overall predictive ability of 

the tool. 

 



Even though the RENAL score model has been made available as a Web tool for 

point-of-service use (www.cancernomograms.com), unfortunately this nomogram 

and other traditional regression models are rarely employed in clinical practice 

due to their complexity and the fact that they are hard to memorize and time 

consuming (Figure 2.). Conversely, a huge appeal of classification and 

regression tree (CART) methodology is that it makes a very intuitive diagram to 

represent risk. Such a diagram is very visually appealing and not difficult to 

memorize for the clinician. Furthermore, these intuitive diagrams replicate the 

clinician’s thought process when encountering a diagnostic dilemma and using 

decision rules (trees). 

 

A downside of CART is its predictive accuracy. In most cases, CART 

oversimplifies the risk determination. In Figure 7, it can be seen that the highest 

risk patients’ need is tumour volume > 5.66 cm3 only and nothing else matters. 

As detailed in the results section, two other variables were closely competing 

with tumour volume as the number one splitting factor: Volume < 5.66 (improve = 

3.1908580), Endophytic component < 35 (improve = 3.0922840) and Peripheral 

vs. central component (improve = 3.0055210). From this it could be hypothesized 

that the model may be unstable at this node and with an increase in sample size, 

small variations on predictive ability of any of these variables, the node could split 

on a different characteristic, thereby changing the classification tree. 

 



Another downside of the CART approach is that it assumes that those patients in 

a particular group are homogeneous with respect to risk. Some specific 

comparisons of CART and neural networks with traditional regression equations, 

which would not make the homogeneous risk assumption, tend to favor 

regression as a more accurate approach.46 

 

A final downside of this predictive tool, as it is for every other predictive modeling 

tool, is data fragmentation. As recursive partitioning is a top-down approach, the 

number of records in each subgroup become smaller as we navigate down the 

tree. At the terminal nodes, the number of records may be too small to make 

statistically robust predictions.  

 

This classification tree demonstrated a sensitivity of 96.6%, a specificity of 

22.2%, with positive and negative predictive values of 92.1% and 57.1% 

respectively. This high sensitivity (proportion of true malignant lesions that are 

correctly identified by the predictive model) is very important when trying to 

differentiate benign vs. malignant histology. In oncology in general, high 

sensitivity is desired in order to decrease the chance of missing malignant cases. 

On the other hand, the specificity (proportion of true benign lesions that are 

correctly identified by the predictive model) is relatively low (22.2%). For this 

particular model this low specificity is a drawback. One way to deal with this 

problem is to adjust the pre-modeling probability of a lesion being benign by 

assigning more weight to this outcome.35 



Finally, another way to identify the histologic nature of renal masses is to perform 

a percutaneous biopsy in all patients at the time of diagnosis. As discussed 

earlier, the use of percutaneous biopsy in the evaluation of renal masses has 

been limited by concerns of false negative results and complications. Over the 

last decade, imaging and biopsy techniques have improved, thereby increasing 

the accuracy in detecting malignancy and decreasing the false negative rate in 

experienced centres. Additionally, with the evolution of biopsy techniques and 

utilization of a core needle biopsy through a coaxial cannula, no cases of tumour 

seeding were reported in the last decade. Experienced centres have also 

reported complication rates that do not exceed 10%, consisting mainly of 

hematomas treated conservatively by bed rest and transfusion in the majority of 

cases. Other complications such as arteriovenous fistula, pneumothorax, and 

bowel perforation are now rare. It is important to mention that the published 

literature on this topic comes from a handful of centres, and to date, there is no 

data available on similar procedures performed by centres with less expertise. 

Even though percutaneous biopsy of renal masses can now be safely performed 

with high sampling accuracy in experienced centres, we continue to depend on 

limited histological information provided by these biopsies. It has been 

demonstrated that biopsies tend to be adequate for differentiation between 

benign and malignant disease but have difficulties differentiating chromophobe 

RCC (malignant) from oncocytoma (benign). Moreover, further studies that 

address the impact of tumour heterogeneity within the same mass and sampling 

error for contemporary percutaneous renal biopsies are lacking. Furthermore, the 



amount of diagnostic and prognostic information obtained from histopathological 

analysis continues to be limited to histologic subtype, which alone has not shown 

to provide prognostic information in any of the studies evaluating active 

surveillance for the management of renal masses. In the future, other histologic 

parameters and tissue molecular markers that have not permeated the clinical 

scene, afforded by tissue biopsy, may help formulate therapeutic plans for 

patients.  

Based on the aforementioned facts, it seems that a blanket approach to 

biopsying all renal masses is unjustified and a more risk-based approach is 

necessary. 

 

Clinical Impact 

 

This classification tree for the prediction of benign vs. malignant histology of renal 

masses at diagnosis based on patient and tumour characteristics has great 

overall accuracy and sensitivity but low specificity. This predictive tool is a major 

improvement over the current treatment algorithm, which is to surgically excise or 

biopsy all renal masses. This classification tree identifies masses that have a 

high risk (> 50%) of benign disease, for which a biopsy is recommended. 

Furthermore, it identifies masses that have a high risk (0 – 5%) of malignant 

disease requiring surgical removal in the young and healthy individual. Based on 

the low (10%) frequency of the main outcome (benign disease) and the low 

specificity of this predictive tool, there is a significant proportion of masses that 



are classified as intermediate risk for harbouring benign disease. Currently there 

are no better predictive tools than the one discussed in this study. In spite of the 

deficiencies of this predictive tool, it represents a significant improvement in the 

management of small renal masses. Further refinements to this predictive tool 

are underway. 

  



6.1. Conclusion 

Preoperative tumour histology (benign vs. malignant disease) can be predicted 

using a classification tree based on patient and tumour characteristics with an 

89.6% overall accuracy. This predictive accuracy is higher than that shown in 

biopsy series.47 In this era of incidentalomas, tumour size maintains its predictive 

ability to differentiate benign vs. malignant lesions. Based on these data, it is 

hypothesized that for smaller renal masses that are less endophytic, a pre-

operative biopsy may be indicated due to the higher risk of benign pathology. 

Conversely, larger and more endophytic masses have a very high risk of 

harbouring malignant disease and those should be surgically excised without 

further investigations. We believe that classification trees like the one proposed 

herein are easier to use in the clinical setting when compared with logistic 

regression models as they mimic the clinician’s thought process and therefore 

will be more utilized. 

 

6.2. Strengths and Limitations 

 

The main strength of this study is its novelty. Although one other group has 

utilized a multivariable approach to differentiate malignant from benign disease in 



this context, there are no reports on prediction of benign vs. malignant histology 

using a classification tree method.21 Moreover, the nomogram used by Uzzo’s 

group was developed for another purpose, thereby exposing the model to lower 

predictive accuracy when used to predict benign or malignant histology. 

 

Another strength lies in the fact that most of the series that identify prognostic 

factors report information on patients accrued before this era of incidental 

diagnosis at earlier stages. As described above, to date, the most important pre-

operative prognostic factor has been tumour size.  Currently, the vast majority of 

renal masses are identified when they are still small in size and therefore we 

hypothesize that tumour size might not carry the prognostic weight it once did. 

 

All clinical, radiographical and histological data have been analyzed 

retrospectively. In order to minimize any potential biases, the reviewers of the 

imaging studies were blinded to the outcomes of interest. Additionally, all 

sequential patients who underwent surgery during the study period were included 

in the study. By following these two steps, it was intended to minimize any 

potential biases introduced by retrospective data collection. 

 

In this study, the most important predictor of benign disease was tumour volume. 

Even though in clinical practice it is customary to use a single diameter to 

measure tumour size, tumour volume provides a better representation of the real 

tumour size as not all masses are perfect spheres. The dataset utilized for this 



analysis had many missing values for dimensions Y and Z, 265 and 316 

respectively. Even though tumour volume can be derived from a single diameter, 

it is hypothesized that the three diameters would have provided a more accurate 

estimate of volume. 

 

From a statistical point of view, the robustness of a Classification Tree (chances 

of classification errors) lies in the sample size and the frequency of the outcome 

variable. This particular dataset has an overall 11% event rate and event rates 

within the different levels of the predictive tool, ranged from 0 to 52.6%. These 

low event rates, make statistical modeling computationally challenging which is 

true for all statistical modeling approaches. 

 

Finally, the 10-Fold Cross-validation overall accuracy for the final (pruned tree) 

has not been calculated. The rpart package determines this for the trees that are 

pruned using the automated cost-complexity pruning approach. As described 

above, the chosen tree was clinically (manually) pruned. In order to perform the 

10-Fold Cross-validation this would have to be performed manually by creating 

10 different subsamples and then calculate the error estimate for all and obtain 

the means of all error rates. These steps will be performed in a future analysis. 

 

 

 



6.3. Future Directions 

 

6.3.1. External Validation 

Ethics approval has been obtained at Princess Margaret Hospital (PMH), 

Toronto, Ontario and CDHA, Halifax, Nova Scotia to validate the current 

predictive tool using an external sample. 

 

6.3.2. Integration of Predictive Tools  

It has become evident that in medicine, with few exceptions, a single 

approach to solve a problem tends to fail. It is our intent to combine our 

Classification Tree with data from a cohort of 500 patients who underwent 

renal biopsies for small renal masses at PMH. It is our opinion that neither 

the current Classification Tree alone or renal biopsies for all patients 

perform as well separately as when they are combined. It is hypothesized 

that using the Classification Tree to direct biopsies for masses with higher 

risk of harbouring benign pathology and immediate surgery for masses with 

high risk of malignancy will provide a lower risk and a more comprehensive 

approach.
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STEP # ANALYTICAL SEQUENCE 

1 rpart, caret and tree packages are loaded in R 

2 The dataset is duplicated and renamed 

3 The descriptive summary of the entire dataset and the renamed Fuhrman 

variable are extracted into a file 

4 The main research question was addressed using Classification Tree 

methodology. Using the ‘rpart’ package in the R language for statistical 

computing, a classification tree model was built using malignancy as the 

outcome variable and potential predictor variables as the covariates.41  The 

covariates used were: age, symptoms at presentation, sex, degree of 

endophytic component, tumour volume, and central vs. peripheral location 

5 The output is directed to specific files 

6 The brief and detailed information derived from the tree are saved into a file 

7 The confusion matrix generates measures of overall accuracy, sensitivity, 

specificity, positive and negative predictive values for the tree 

8 The tree model was then validated using the 10-fold cross-validation 

routine in rpart and all the estimate of error rates are calculated for the 

10 samples and then the mean estimate of the error rate is calculated 

9 The tree was pruned using the ‘tree’ package in R in order to develop 

the most parsimonious tree that made clinical sense (simpler) without 

a significant change in the predictive ability (overall accuracy) 

10 The confusion matrix was generated in order to obtain overall accuracy, 

sensitivity, specificity, positive and negative predictive values for the pruned 

tree 

11 For the purposes of showing the results in a traditional framework a dummy 

variable with 5 levels was created. These levels correspond to the 5 terminal 

nodes of the final pruned tree. The variable was then used as a predictor in a 

logistic regression model with Benign as the outcome variable. Odds ratios 

with 95% confidence intervals were calculated using as the reference the 

terminal node in the tree that corresponded to: Tumour volume > 5.67 cc, 

Endophytic component > 35% and Incidental diagnosis 

  



library(rpart) 
library(caret) 
library(tree) 
 
dat = indat 
 
# outputs descriptive statistics to a file called desc.txt 
sink("/Users/rrendon/Dropbox/THESIS/R FILES/desc.txt") 
summary(dat) 
summary(dat$Fuhrman) 
sink() 
 
# CART ANALYSIS 
 
z.renalmass = rpart(benign ~ age + sex + incidental + Endophytic + 
radVolume + peripheral, data=dat) 
pdf("/Users/rrendon/Dropbox/THESIS/R FILES/z.renalmass.pdf") 
plot(z.renalmass) 
text(z.renalmass, all=TRUE, use.n=TRUE, cex=.6) 
dev.off() 
 
sink("/Users/rrendon/Dropbox/THESIS/R FILES/zrenalmass.txt") 
z.renalmass 
summary(z.renalmass) 
# sensitivity and specificity 
z.renalmass.pred = predict(z.renalmass, newdata=dat, type="class") 
print("the cost of a FN is equal to the cost of a FP") 
confusionMatrix(z.renalmass.pred, dat$benign, positive="Malignant") 
 
# re-substitution estimate of error rate for the full tree 
1-confusionMatrix(z.renalmass.pred, dat$benign, 
positive="Malignant")[[3]][1] 
 
# K-fold cross-validation estimate of error rate 
# less biased (higher than re-sub estimate) 
# (this code was obtained from 
http://cours.zucker.fr/PROGRAMMES/rpartTitanic.R) 
n = nrow(dat) 
K = 10 
foldsize = n%/%K 
set.seed(5) 
alea = runif(n) 
rang = rank(alea) 
bloc = (rang-1)%/%foldsize + 1 
bloc = as.factor(bloc) 
print(summary(bloc)) 
 
all.err = numeric(0) 
for (k in 1:K){ 
    arbre = rpart(benign ~ age + sex + incidental + Endophytic + 
radVolume + peripheral, data=dat[bloc!=k,], method="class") 
    pred = predict(arbre, newdata=dat[bloc==k,],type="class") 
    mc = table(dat$benign[bloc==k],pred) 
    err = 1.0 - (mc[1,1]+mc[2,2])/sum(mc) 
    all.err = rbind(all.err,err) 



} 
print(all.err) 
 
err.cv = mean(all.err) 
print(err.cv) 
sink() 
 
#PRUNED SUBTREE WITH 5 TERMINAL NODES 
z.RenalMass <- tree(benign ~ age + sex + incidental + Endophytic + 
radVolume + peripheral, data=dat,split="gini") 
plot(z.RenalMass) 
text(z.RenalMass) 
 
snip.RenalMass <- snip.tree(z.RenalMass,nodes=c(4,5,6,14,15)) 
plot(snip.RenalMass) 
text(snip.RenalMass) 
 
sink("/Users/rrendon/Dropbox/THESIS/R FILES/SnipRenalMass.txt") 
snip.RenalMass 
summary(snip.RenalMass) 
# sensitivity and specificity 
snip.RenalMass.pred = predict(snip.RenalMass, type="class") 
print("the cost of a FN is equal to the cost of a FP") 
confusionMatrix(snip.RenalMass.pred, dat$benign, positive="Malignant") 
 
# re-substitution estimate of error rate 
1-confusionMatrix(snip.RenalMass.pred, dat$benign, 
positive="Malignant")[[3]][1]  



proc format ; 
 
value CARTvar 1 = "volLT5.67 EndoLT45" 
    2 = "volLT5.67 EndoGT45" 
    3 = "volGT5.67 EndoLT35" 
    4 = "volGT5.67 EndoGT35 Symptoms" 
    5 = "volGT5.67 EndoGT35 Incidental" ; 
 
value Benign 0 = "Malignant" 
    1 = "Benign" ; 
 
value incidental 0 = "Symptoms" 
     1 = "Incidental" ; 
 
run; 
 
data final ; 
 infile '/Users/rrendon/Dropbox/THESIS/R FILES/ spreadsheet-110712 
for SAS Final.csv' lrecl=2000 dlm=',' firstobs=2 truncover ; 
 input ido idf age sex $ incidental hematuria pain radX radY radZ  
  Upper Middle Lower Anterior Posterior Medial Lateral  
  Endophytic CHP $ Benign PartialNeph Laparoscopic Stage $  
  clearCell papillary chromophobe GranularCell angiomyolipoma  
  oncocytoma benignCystic metanephricAdenoma leiomyoma 
cysticNephroma  
  SpindleCell vascInvasion fatInvasion Fuhrman Margins $ 
Size1 Size2 Size3  
  histological Axis1 $ Axis2 $ Axis3 $ radVolume Peripheral $ 
; 
 if radVolume < 5.66527 and Endophytic < 45 then CARTvar = 1 ; 
 if radVolume < 5.66527 and Endophytic > 45 then CARTvar = 2 ; 
 if radVolume > 5.66527 and Endophytic < 35 then CARTvar = 3 ; 
 if radVolume > 5.66527 and Endophytic > 35 and incidental = 0 
then CARTvar = 4 ; 
 if radVolume > 5.66527 and Endophytic > 35 and incidental = 1 
then CARTvar = 5 ; 
 format CARTvar CARTvar. Benign Benign. incidental incidental. ; 
run ; 
 
proc logistic ; 
 class CARTvar (ref="volGT5.67 EndoGT35 Incidental") ; 
 model Benign (event="Benign") = CARTvar ; 
run ; 
 
 


