THE IN SILICO SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S THERAPEUTIC

by

Autumn Meek

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy
at

Dalhousie University
Halifax, Nova Scotia
December 2011
© Copyright by Autumn Meek, 2011

DALHOUSIE UNIVERSITY

DEPARTMENT OF CHEMISTRY

The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled "THE IN SILICO SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S THERAPEUTIC" by Autumn Meek in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

Dated: December 9, 2011
External Examiner:

Research Supervisor:
Examining Committee:

Departmental Representative:

DALHOUSIE UNIVERSITY

DATE: December 9, 2011

AUTHOR: Autumn Meek
TITLE: THE IN SILICO SEARCH FOR AN ENDOGENOUS ANTIALZHEIMER'S THERAPEUTIC
DEPARTMENT OR SCHOOL: Department of Chemistry
DEGREE: PhD CONVOCATION: May YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. I understand that my thesis will be electronically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

The author attests that permission has been obtained for the use of any copyrighted material appearing in the thesis (other than the brief excerpts requiring only proper acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

Philippians 4:13

For my family

TABLE OF CONTENTS

LIST OF TABLES xvi
LIST OF FIGURES xxxi
ABSTRACT xxxv
LIST OF ABBREVIATIONS USED xxxvi
ACKNOWLEDGEMENTS xl
CHAPTER 1: INTRODUCTION 1
1.1 Alzheimer's Disease and β-Amyloid 1
1.1.1 Acetylcholine and its Role in Alzheimer's Disease. 2
1.1.2 β-Amyloid and the Amyloid Cascade. 3
1.1.2.1 The Generation of β-Amyloid from Amyloid Precursor Protein. 3
1.1.2.2 β-AMYLOID AGGREGATION AND TOXICITY. 6
1.1.2.3 FAMILIAL AlZHEIMER'S DISEASE AS Evidence of THE RoLE OF β-AMYLOID in Disease Initiation. 8
1.1.2.4 β-AmYLOID AND NEUROFIBRILLARY TANGLES. 9
1.1.3 Why Research Alzheimer’s Disease? 11
1.1.3.1 CURRENT ALZHEIMER'S DRUGS 12
1.1.4 Current Research in Treating Alzheimer’s Disease 15
1.1.4.1 DRUGS TARGETing β-Amyloid AGGREGATION. 15
1.1.4.2 DRUGS Promoting Clearance of β-Amyloid from the Brain. 16
1.1.4.3 Drugs targeting the Reduction of the Production of $A \beta$. 16
1.1.4.4 Drugs Targeting Other Aspects of Alzheimer's Disease. 17
1.1.5 Current Methods in Diagnosing Alzheimer’s Disease 18
1.1.5.1 Biomarkers Used to Diagnose Alzheimer's Disease. 18
1.1.5.2 Imaging Agents for AlZheimer's DISEASE. 19
1.1.6 Defining the Drug Molecule 20
1.1.6.1 Characteristic Features of Drug Molecules 20
1.1.6.2 ReQUirements for a Bioavailable Drug Molecule. 22
1.1.7 The Promiscuous Drug Concept 23
1.1.7.1 HHQK 24
1.2 Molecular Modelling 24
1.2.1 What are Force Fields? 24
1.2.2 The DREIDING2.21 Force Field 26
1.2.3 The CHARMM Force Field and QUANTA 29
1.2.4 Energy Minimization Algorithms 32
1.2.4.1 The Steepest Descent Algorithm 33
1.2.4.2 The Conjugate Gradient Algorithm 34
1.2.4.3 The Truncated Newton AlGorithm. 35
1.3 Quantitative Structure-Activity Relationships 36
1.4 Research Goals. 40
CHAPTER 2: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING HHQK: PHOSPHOSERINE 43
2.1 The HHQK Region of β-Amyloid as a Binding Target 43
2.2 Identification of Phosphoserine as an Endogenous Molecule to Target THE HHQK REGION OF β-AMYLOID 44
2.3 Phosphoserine in the Brain 45
2.4 Expansion to Target the EVHHQK Region of β-AMYLOID 46
2.5 In Vacuo Calculations of Phosphoserine Interacting with β-AMYLOID 47
2.5.1 Selection of β-Amyloid Conformers 48
2.5.2 Preparation of the Phosphoserine Molecule 53
2.5.3 Calculating Gas Phase Interactions Between Phosphoserine and Various Conformers of β-AMYloid. 54
2.5.3.1 Selecting Initial Orientations for Optimization 54
2.5.3.2 Optimization of the Gas Phase Systems 55
2.5.4 Gas Phase Results of Phosphoserine Interacting with β-amyloid 56
2.5.4.1 Results of the Gas Phase Calculations of Phosphoserine Interacting with the lamb Conformer of β-AMYLOID 56
2.5.4.2 Results of the Gas Phase Calculations of Phosphoserine Interacting with the lamC Conformer of β-AMyloid 59
2.5.4.3 Results of the Gas Phase Calculations of Phosphoserine Interacting with the lamL Conformer of β-Amyloid 61
2.5.4.4 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1BA4 Conformer of β-Amyloid 63
2.5.4.5 Results of the Gas Phase Calculations of Phosphoserine Interacting with the liYt Conformer of β-AMYLOID 65
2.5.4.6 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 2BP4 Conformer of β-AMYLOID 66
2.6 Solution Phase Calculations of Phosphoserine Interacting with β -
AMYLOID. 68
2.6.1 The Use of Explicit Solvation 69
2.6.2 Set-Up of the Solution Phase Calculations of Phosphoserine Interacting with β-Amyloid 70
2.6.2.1 Solvating the System 70
2.6.2.2 PERIODIC Boundary Conditions 72
2.6.2.3 Minimization of the Solvated Phosphoserine- β-Amyloid System. 73
2.6.2.4 Energy Calculations of the Solvated a β-Phosphoserine Interactions 73
2.6.2.5 Determination of Binding Interactions 75
2.6.3 Solution Phase Results of Phosphoserine Interacting with Six Different β-Amyloid Conformers 75
2.6.3.1 Results of the Solution Phase Interaction Between Phosphoserine AND THE 1AMB CONFORMER OF β-AMYLOID 76
2.6.3.2 Results of the Solution Phase Interaction Between Phosphoserine AND THE 1AMC CONFORMER OF β-AMYLOID 80
2.6.3.3 Results of the Solution Phase Interaction Between Phosphoserine AND THE 1 AML CONFORMER OF β-AMYLOID. 82
2.6.3.4 Results of the Solution Phase Interaction Between Phosphoserine AND THE 1BA4 CONFORMER OF β-AMYLOID. 84
2.6.3.5 Results of the Solution Phase Interaction Between Phosphoserine and the liYt Conformer of β-Amyloid. 87
2.6.3.6 Results of the Solution Phase Interaction Between Phosphoserine AND THE 2BP4 CONFORMER OF β-AMYLOID. 89
2.7 Biological Support of Phosphoserine Interacting with β-Amyloid 92
2.8 Phosphoserine Interacting with BBXB 94
2.8.1 Set-Up of BBXB Optimizations 94
2.8.1.1 INTERLEUKIN-4 94
2.8.1.2 INTERLEUKIN-12. 95
2.8.1.3 INTERLEUKIN-13 96
2.8.1.4 S100ß 96
2.8.1.5 RANTES 97
2.8.1.6 ICAM-1 97
2.8.1.7 OPTIMIZATION METHODS 98
2.8.2 Results of the Optimization of Phosphoserine with Selected Proteins Containing BBXB 99
2.9 Conclusions 101
2.10 INTERPRETATION 103
CHAPTER 3: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING HHQK. 106
3.1 The HHQK and LVFF regions of β-Amyloid as Binding Targets 106
3.2 Identification of Amino Acids and Their Metabolites as Target Molecules 107
3.3 Phenylalanine and β-Amyloid 107
3.3.1 Gas Phase Interactions Between Phenylalanine and β-Amyloid 109
3.3.1.1 Selection of Initial Orientations for Optimization..... 109
3.3.1.2 Optimization of the Gas Phase Systems. 110
3.3.2 Gas Phase Results of Phenylalanine Interacting with β-Amyloid 110
3.3.3 Solution Phase Optimization of Phenylalanine Interacting with β - AMYLOID 116
3.3.3.1 Solvation and Minimization Set-Up for Phenylalanine and β - AMYLOID. 117
3.3.4 Solution Phase Results of Phenylalanine Interacting with Six DIFFERENT CONFORMATIONS OF β-AMYLOID 118
3.3.5 Conclusions of Phenylalanine Interacting with β-Amyloid 123
3.4 Dopamine and β-AmYloid 124
3.4.1 Gas Phase Interactions Between Dopamine and Different CONFORMERS OF β-AMYLOID. 125
3.4.1.1 Selection of Initial Orientations for Optimization. 125
3.4.1.2 Optimization of the Gas Phase Systems 126
3.4.2 Gas Phase Results of Dopamine Interacting with β-Amyloid 127
3.4.3 Solution Phase Results for Dopamine Interacting with β-Amyloid 131
3.4.4 Conclusions of Dopamine Interacting with β-Amyloid. 138
3.5 TRyptophan and β-Amyloid 138
3.5.1 Preparation of the β-Amyloid Conformers for Optimization 140
3.5.2 Gas Phase Interactions Between D- and L-Tryptophan and β-Amyloid 140
3.5.2.1 Preparation of D- and L-Tryptophan for Optimization. 141
3.5.2.2 Selection of Initial Orientations for Optimization of Tryptophan AND β-AMYLOID. 141
3.5.2.3 Optimization of the Gas Phase Systems. 142
3.5.3 Gas Phase Results of the Optimization of D-Tryptophan and L- TRyptophan with β-AMYLOID 142
3.5.4 Solution Phase Optimization of D-Tryptophan and L-tryptophan with β-Amyloid 148
3.5.4.1 Solvation and Minimization Set-Up for D-and L-Tryptophan AND β-AMYLOID. 148
3.5.5 Solution Phase Results of the D-Tryptophan and L-Tryptophan Interacting with β-Amyloid 149
3.5.6 CONCLUSIONS OF D- and L-Tryptophan Interacting with β-Amyloid 158
3.6 TRyPTAMINE AND β-AMYLOID 159
3.6.1 Gas Phase Interactions Between Tryptamine and β-Amyloid. 160
3.6.1.1 Selection of Initial Orientations for Gas Phase Optimization. 160
3.6.1.2 Optimization of the Gas Phase Systems. 160
3.6.2 Gas Phase Results of Tryptamine Interacting with β-Amyloid 161
3.6.3 Solution Phase Results for Tryptamine Interacting with β-AMYLOID 162
3.6.4 Conclusions of Tryptamine Interacting with β-Amyloid 169
3.7 3-Hydroxyanthranilic Acid and β-Amyloid 169
3.7.1 Gas Phase Interactions Between 3-hydroxyanthranilic acid and β - Amyloid 170
3.7.1.1 Preparation of 3-hydroxyanthranilic acid for Optimization. 170
3.7.1.2 Selection of Initial Orientations for Optimization of 3HAA and β - AMYLOID. 170
3.7.1.3 Optimization of the Gas Phase Systems 171
3.7.2 Gas Phase Results of the Optimization of 3-hydroxyanthranilic ACID WITH β-AMYLOID 171
3.7.3 Solution Phase Results for 3-hydroxyanthranilic acid Interacting with β-Amyloid 184
3.7.4 Conclusions of 3-Hydroxyanthranilic acid Interacting with β - Amyloid In Silico 210
3.8 Biological Support of 3-hydroxyanthranilic acid as a Lead Molecule 211
3.9 A Quantitative Structure-Activity Relationship Study of 3- hydroxyanthranilic acid and its Analogues 214
3.9.1 Development of a Series of Analogues Based on 3-HYDROXYANTHRANILIC ACID 215
3.9.2 Development of a QSAR for Activity Prediction 220
3.9.3 Development of a Binary QSAR to Predict 3HAA Analogue Activity 220
3.9.4 Prediction of Activity of a Series of Analogues Based on 3- HYDROXYANTHRANILIC ACID 225
3.10 Novel Bi-aromatic Compounds Targeting the BBXB Region of Proteins Involved in Alzheimer's Disease 228
3.10.1 Preparation of the Lead Molecules and Proteins 231
3.10.1.1 β-AMYLOID 232
3.10.1.2 α_{1}-ACT. 232
3.10.1.3 ACHE. 233
3.10.1.4 APO\&4. 233
3.10.1.5 B7-1 233
3.10.1.6 BHMT 234
3.10.1.7 C1QA 234
3.10.1.8. $I F N-\gamma$ 234
3.10.1.9 IL-1 β CE. 235
3.10.1.10 MIP-1 α AND MIP-1 β 235
3.10.1.11 NEP 235
3.10.1.12 SDF-1 235
3.10.1.13 TRANSFERRIN. 236
3.10.2 Gas Phase Optimization of the NCE Compounds with BBXB 236
3.10.3 Results of the Optimization of the NCE Compounds with BBXB 237
3.10.4 Conclusions on the NCE Molecules Interacting with Proteins Containing BBXB 256
3.11 NCE-217 as a Drug Molecule Capable of Targeting BBXB 257
3.11.1 Gas Phase Optimization of NCE-0217 and Proteins Bearing BBXB 258
3.11.2 Gas Phase Results of the Optimization of NCE-0217 with Proteins Bearing BBXB 259
3.11.3 CONCLUSIONS OF NCE-0217 Optimized with Proteins Bearing BBXB 264
3.11.4 Development of a QSAR for Analogues of NCE-0217 265
3.11.4.1 Development of the QSAR model of NCE-0217. 265
3.11.4.2 Results of the NCE-0217 QSAR 269
3.12 CONCLUSIONS 269
3.13 InTERPRETATION 270
CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING EVHHQK 273
4.1γ-Aminobutyric Acid 274
4.1.1 Gas Phase Optimizations of GABA and β-Amyloid 274
4.1.1.1 Preparation of Systems for Optimizations 274
4.1.1.2 Selection of Systems for Optimization 275
4.1.1.3 Optimization of the Gas Phase Systems 275
4.1.2 Results of the Gas Phase Optimizations of GABA and β-Amyloid 276
4.1.3 The Solution Phase Optimization of GABA and β-Amyloid 277
4.1.4 The Results of the Solution Phase Optimization of GABA and β - AmYloid 278
4.2β-Alanine 285
4.2.1 The Gas Phase Optimization of β-Alanine and β-Amyloid. 285
4.2.2 The Gas Phase Results of β-Alanine Interacting with β-Amyloid 286
4.2.3 The Solution Phase Optimization of β-Alanine and β-Amyloid 287
4.2.4 The Results of the Solution Phase Optimization of β-Alanine and β - AMYLOID 288
4.3 Homotaurine 295
4.3.1 Gas Phase Optimizations of Homotaurine and β-Amyloid. 295
4.3.2 The Gas Phase Results of Homotaurine Interacting with β-Amyloid 296
4.3.3 The Solution Phase Optimization of Homotaurine and β-Amyloid 297
4.3.4 The Results of the Solution Phase Optimization of Homotaurine and β-AMYLOID 297
4.4 3-Aminopropyl Dihydrogen Phosphate 304
4.4.1 Gas Phase Optimizations of 3-Aminopropyl Dihydrogen Phosphate and β-Amyloid 304
4.4.2 Results of the Gas Phase Optimizations of 3-Aminopropyl Dihydrogen Phosphate and β-Amyloid 305
4.4.3 The Solution Phase Optimization of 3-Aminopropyl Dihydrogen Phosphate and β-Amyloid 307
4.3.4 The Results of the Solution Phase Optimization of 3-Aminopropyl Dihydrogen Phosphate and β-Amyloid 307
4.5 Semi-Empirical Energy Calculations of GABA, β-Alanine, Homotaurine and 3-Aminopropyl Dihydrogen Phosphate with β-Amyloid 314
4.5.1 Selection of Systems for Semi-Empirical Calculations 314
4.5.2 Semi-Empirical Energy Calculation Set-Up 315
4.5.3 Results of the Semi-Empirical Energy Calculations 315
4.6 Conclusions on GABA, β-Alanine, Homotaurine and 3-Aminopropyl Dihydrogen Phosphate Interacting with the EVHHQK Region of β - Amyloid 319
4.7 InTERPRETATION 320
CHAPTER 5: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING LVFF 323
5.1 Interactions Between an Indole and the HHQK and LVFF Regions of β-AMYLOID 323
5.1.1 Isolation of the HHQK and LVFF Regions of β-Amyloid. 324
5.1.2 The Gas Phase Optimization of an Indole with HHQK and LVFF 325
5.1.3 The Results of the Gas Phase Optimizations of an Indole and the HHQK and LVFF REGIONS OF β-Amyloid 326
5.1.4 The Solution Phase Optimization of an Indole with HHQK and LVFF 329
5.1.5 The Results of the Solution Phase Optimizations of an Indole and the HHQK and LVFF regions of β-Amyloid. 329
5.2 Interactions Between a Biindole and the HHQK and LVFF Regions of β-AMYLOID 336
5.2.1 The Gas Phase Optimization of a Biindole with HHQK and LVFF 337
5.2.2 The Results of the Gas Phase Optimizations of a Biindole and the HHQK and LVFF regions of β-Amyloid 338
5.2.3 The Solution Phase Optimization of a Biindole with HHQK and LVFF 341
5.2.4 The Results of the Solution Phase Optimizations of a Biindole and THE HHQK and LVFF Regions of β-Amyloid 342
5.3 Interactions Between a Bi-aromatic Molecule and the HH and FF Regions of β-Amyloid 354
5.3.1 Preparation of the Bi-aromatic Systems for Optimization 354
5.3.2 Gas Phase Results of the Optimization of a Bi-aromatic Molecule with HH and FF OF β-Amyloid 356
5.3.3 Results of the Semi-empirical Optimization of a Bi-aromatic Molecule with HH and FF on β-Amyloid 358
5.4 Conclusions on Aromatic Compounds Binding to HHQK and LVFF of β-Amyloid 359
5.5 INTERPRETATION 359
CHAPTER 6: THE SEARCH FOR A DIAGNOSTIC AGENT FOR ALZHEIMER'S DISEASE 362
6.1 Solapsone as an Imaging Agent for Alzheimer's Disease 362
6.1.1 Preparation of Solapsone, EDTA, and DPDP 365
6.1.2 Gas Phase Optimization of Solapsone, EDTA, and DPDP Chelating GD^{3+} AND Mn^{2+} 366
6.1.3 Solution Phase Optimization of Solapsone, EDTA, and DPDP Chelating Gd ${ }^{3+}$ and Mn^{2+} 367
6.1.4 CONCLUSIONS ON SOLAPSONE, EDTA AND DPDP CHELATING GD ${ }^{3+}$ AND Mn^{2+} 368
6.2 The Optimization of a Solapsone-Gd ${ }^{3+}$ Complex with β-Amyloid 370
6.2.1 Preparation of β-Amyloid-Solapsone-Gd ${ }^{3+}$ Systems for Gas Phase Optimization 370
6.2.2 The Gas Phase Results of Solapsone-Gd ${ }^{3+}$ Optimized with β-Amyloid. 371
6.2.3 The Solution Phase Optimization of Solapsone-Gd ${ }^{3+}$ with β-Amyloid. 381
6.2.4 Results of the Solution Phase Optimization of Solapsone-Gd ${ }^{3+}$ with β-Amyloid 381
6.3 SOLAPSONE AS AN AMYLOID ANTI-AGGREGANT 395
6.3.1 Gas Phase Optimizations of Solapsone with β-Amyloid 395
6.3.2 Results of the Gas Phase Optimization of Solapsone and β-Amyloid396
6.3.3 Results of the Solution Phase Optimization of Solapsone with β - Amyloid 423
6.4 Biological Validation of Solapsone-Gd ${ }^{3+}$ as an Imaging Agent 452
6.5 Conclusions on Solapsone as a Diagnostic Imaging Agent for AlZHEIMER's DISEASE 454
6.6 INTERPRETATION. 455
CHAPTER 7: CONCLUSIONS 457
7.1 Phosphoserine 457
7.2 HHQK as a Target for Anti-Alzheimer’s Drugs. 457
7.3 BBXB and the "Promiscuous Drug" Concept 458
7.4 EVHHQK as a Target for Anti-Alzheimer's Drugs 458
7.5 LVFF as a Target for Anti-Alzheimer's Drugs 459
7.6 Solapsone as an Imaging Agent for Alzheimer's Disease 459
7.7 GENERAL CONCLUSIONS 460
References 461
Appendix 1: The Library of Endogenous Molecules of the Brain 469
Appendix 2: Method for Uniting Two $30 \AA$ Water Boxes in QUANTA 492
Appendix 3: Sample Initial File for Solvation in QUANTA Using United Water Boxes 493
Appendix 4: CHARMM .STR File for Uniting Two $30 \AA$ Water Boxes for Solvating Larger Systems 503
Appendix 5: Methodology of Biological Assays. 514
Appendix 6: Protein Energies of A β. 516
Appendix 7: Analogues of 3-Hydroxyanthranilic Acid 524
Appendix 8: BBXB Protein Energies 527
Appendix 9: Anaolgues of NCE-0217. 528
Appendix 10: Library of Known Drugs 545
Appendix 11: Gas Phase Results of Solapsone- Gd^{3+} and Solapsone. 561

LIST OF TABLES

Table 2.1: Total energies of the six β-amyloid conformers as calculated using the DREIDING2.21 force field for gas phase calculations in Cerius ${ }^{2}$.
 52

Table 2.2 Total energy of phosphoserine in the gas phase as calculated in Cerius ${ }^{2}$ using the DREIDING2.21 force field. 54
Table 2.3: Gas phase results of phosphoserine interacting with the 1 AMB conformer of β-amyloid. 57
Table 2.4: Potential interactions of phosphoserine and the 1 AMB conformer of $\mathrm{A} \beta$ for solvation 58
Table 2.5: Gas phase results of phosphoserine interacting with the 1AMC conformer of β-amyloid. 60
Table 2.6: Potential interactions of phosphoserine and the 1 AMC conformer of $\mathrm{A} \beta$ for solvation 60
Table 2.7: Gas phase results of phosphoserine interacting with the 1AML conformer of β-amyloid. 62
Table 2.8: Potential interactions of phosphoserine and the 1 AML conformer of $\mathrm{A} \beta$ for solvation 63
Table 2.9: Gas phase results of phosphoserine interacting with the 1BA4 conformer of β-amyloid. 64
Table 2.10: Potential interactions of phosphoserine and the 1BA4 conformer of $A \beta$ for solvation 65
Table 2.11: Gas phase results of phosphoserine interacting with the 1IYT conformer of β-amyloid. 66
Table 2.12: Gas phase results of phosphoserine interacting with the 2BP4 conformer of β-amyloid. 67
Table 2.13: Potential interactions of phosphoserine and the 2 BP 4 conformer of $\mathrm{A} \beta$ for solvation 68
Table 2.14: Total energies of the six β-amyloid conformers and phosphoserine calculated in a solvated environment 76
Table 2.15: The solution phase results of phosphoserine interacting with the 1AMB conformer of β-amyloid 77
Table 2.16: The solution phase results of phosphoserine interacting with the 1AMC conformer of β-amyloid 80
Table 2.17: The solution phase results of phosphoserine interacting with the 1AML conformer of β-amyloid. 82
Table 2.18: The solution phase results of phosphoserine interacting with the 1BA4 conformer of β-amyloid. 85
Table 2.19: The solution phase results of phosphoserine interacting with the 1IYT conformer of β-amyloid. 87
Table 2.20: The solution phase results of phosphoserine interacting with the 2BP4 conformer of β-amyloid. 90
Table 2.21: Gas phase optimization of phosphoserine interacting with the BBXB motif on various proteins implicated in Alzheimer's disease. 100
Table 3.1: Gas phase energy of phenylalanine. 108
Table 3.2: Gas phase results of phenylalanine interacting with the 1 AMB conformer of β-amyloid. 112
Table 3.3: Gas phase results of phenylalanine interacting with the 1AMC conformer of β-amyloid 113
Table 3.4: Gas phase results of phenylalanine interacting with the 1AML conformer of β-amyloid. 113
Table 3.5: Gas phase results of phenylalanine interacting with the 1BA4 conformer of β-amyloid. 114
Table 3.6: Gas phase results of phenylalanine interacting with the 1IYT conformer of β-amyloid. 114
Table 3.7: Gas phase results of phenylalanine interacting with the 1Z0Q conformer of β-amyloid. 115
Table 3.8: Selected interactions for optimization of phenylalanine with β-amyloid in the solution phase. 116
Table 3.9: Total energies of phenylalanine in the solution phase. 118
Table 3.10: The solution phase results of phenylalanine interacting with the 1AMB conformer of β-amyloid. 120
Table 3.11: The solution phase results of phenylalanine interacting with the 1AMC conformer of β-amyloid. 120
Table 3.12: The solution phase results of phenylalanine interacting with the 1AML conformer of β-amyloid. 121
Table 3.13: The solution phase results of phenylalanine interacting with the 1BA4 conformer of β-amyloid. 121
Table 3.14: The solution phase results of phenylalanine interacting with the 1IYT conformer of β-amyloid. 122
Table 3.15: The solution phase results of phenylalanine interacting with the 1 Z 0 Q conformer of β-amyloid. 122
Table 3.16: Gas phase energy of dopamine. 125
Table 3.17: Gas phase results of dopamine interacting with the 1 AMB conformer of β-amyloid. 128
Table 3.18: Gas phase results of dopamine interacting with the 1 AMC conformer of β-amyloid. 128
Table 3.19: Gas phase results of dopamine interacting with the 1AML conformer of β-amyloid. 129
Table 3.20: Gas phase results of dopamine interacting with the 1BA4 conformer of β-amyloid. 129
Table 3.21: Gas phase results of dopamine interacting with the 1IYT conformer of β-amyloid. 130
Table 3.22: Gas phase results of dopamine interacting with the 1Z0Q conformer of β-amyloid. 130
Table 3.23: Selected interactions of dopamine interacting with β-amyloid for optimization in the solution phase 131
Table 3.24: Total energies of dopamine in the solution phase. 132
Table 3.25: The solution phase results of dopamine interacting with the 1AMB conformer of β-amyloid 134
Table 3.26: The solution phase results of dopamine interacting with the 1AMC conformer of β-amyloid. 135
Table 3.27: The solution phase results of dopamine interacting with the 1AML conformer of β-amyloid. 135
Table 3.28: The solution phase results of dopamine interacting with the 1BA4 conformer of β-amyloid. 136
Table 3.29: The solution phase results of dopamine interacting with the 1IYT conformer of β-amyloid. 136
Table 3.30: The solution phase results of dopamine interacting with the 1Z0Q conformer of β-amyloid. 137
Table 3.31: Gas phase energies of D- and L-tryptophan 141
Table 3.32: The gas phase results of D- and L-tryptophan interacting with the 1AMB conformer of β-amyloid 143
Table 3.33: The gas phase results of D- and L-tryptophan interacting with the 1AMC conformer of β-amyloid 144
Table 3.34: The gas phase results of D- and L-tryptophan interacting with the 1AML conformer of β-amyloid 144
Table 3.35: The gas phase results of D- and L-tryptophan interacting with the 1BA4 conformer of β-amyloid 145
Table 3.36: The gas phase results of D- and L-tryptophan interacting with the 1IYT conformer of β-amyloid 145
Table 3.37: The gas phase results of D- and L-tryptophan interacting with the 1 Z 0 Q conformer of β-amyloid 146
Table 3.38: Selected systems of D- and L-tryptophan for solution phase optimization 147
Table 3.39: Energies of solvated D-tryptophan and L-tryptophan 149
Table 3.40: The solution phase results of D - and L-tryptophan interacting with the 1 AMB conformer of β-amyloid. 151
Table 3.41: The solution phase results of D - and L-tryptophan interacting with the 1 AMC conformer of β-amyloid. 152
Table 3.42: The solution phase results of D - and L-tryptophan interacting with the 1AML conformer of β-amyloid 153
Table 3.43: The solution phase results of D - and L-tryptophan interacting with the 1BA4 conformer of β-amyloid. 154
Table 3.44: The solution phase results of D- and L-tryptophan interacting with the 1IYT conformer of β-amyloid. 155
Table 3.45: The solution phase results of D - and L-tryptophan interacting with the 1Z0Q conformer of β-amyloid. 156
Table 3.46: Gas phase energies of tryptamine 160
Table 3.47: The gas phase results of tryptamine interacting with β-amyloid 162
Table 3.48: Total energies of tryptamine calculated in a solvated environment 164
Table 3.49: The solution phase results of tryptamine interacting with the 1AMB conformer of β-amyloid 165
Table 3.50: The solution phase results of tryptamine interacting with the 1AMC conformer of β-amyloid 166
Table 3.51: The solution phase results of tryptamine interacting with the 1AML conformer of β-amyloid. 166
Table 3.52: The solution phase results of tryptamine interacting with the 1BA4 conformer of β-amyloid 167
Table 3.53: The solution phase results of tryptamine interacting with the 1IYT conformer of β-amyloid 168
Table 3.54: The solution phase results of tryptamine interacting with the 1IZ0Q conformer of β-amyloid 169
Table 3.55: Gas phase energy of 3-hydroxyanthranilic acid 170
Table 3.56: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMB conformer of β-amyloid 172
Table 3.57: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMC conformer of β-amyloid. 173
Table 3.58: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AML conformer of β-amyloid. 174
Table 3.59: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1BA4 conformer of β-amyloid 175
Table 3.60: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1IYT conformer of β-amyloid. 176
Table 3.61: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 Z 0 Q conformer of β-amyloid. 177
Table 3.62: Selected systems of 3-hydroxyanthranilic acid and the HHQK region of $A \beta$ for solvation. 178
Table 3.63: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AMB conformer of β-amyloid. 179
Table 3.64: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AMC conformer of β-amyloid. 179
Table 3.65: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AML conformer of β-amyloid. 180
Table 3.66: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1BA4 conformer of β-amyloid 180
Table 3.67: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1IYT conformer of β-amyloid 180
Table 3.68: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 Z0Q conformer of β-amyloid. 181
Table 3.69: Selected systems of 3-hydroxyanthranilic acid and the EVHHQK region of $A \beta$ for solvation. 182
Table 3.70: The gas phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of β-amyloid. 183
Table 3.71: Selected systems of 3-hydroxyanthranilic acid and the LVFF region of $A \beta$ for solvation. 184
Table 3.72: The solution phase energy of 3-hydroxyanthranilic acid 185
Table 3.73: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMB conformer of β-amyloid. 186
Table 3.74: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMC conformer of β-amyloid. 188
Table 3.75: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AML conformer of β-amyloid. 190
Table 3.76: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1BA4 conformer of β-amyloid 192
Table 3.77: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1IYT conformer of β-amyloid. 193
Table 3.78: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1Z0Q conformer of β-amyloid. 195
Table 3.79: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AMB conformer of β-amyloid. 198
Table 3.80: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AMC conformer of β-amyloid 199
Table 3.81: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AML conformer of β-amyloid. 200
Table 3.82: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1BA4 conformer of β-amyloid. 201
Table 3.83: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 IYT conformer of β-amyloid 202
Table 3.84: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the $1 Z 0 Q$ conformer of β-amyloid 203
Table 3.85: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1AMB conformer of β-amyloid 205
Table 3.86: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1 AMC conformer of β-amyloid 206
Table 3.87: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1AML conformer of β-amyloid 207
Table 3.88: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1IYT conformer of β-amyloid 208
Table 3.89: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1 Z 0 Q conformer of β-amyloid 209
Table 3.90: 3HAA analogues and their calculated $\mathrm{IC}_{50} \mathrm{~S}$ 219
Table 3.91: Descriptors used in the QSAR for 3HAA 222
Table 3.92: Predicted activities for the training and validations sets of 3HAA analogues 1-50. 224
Table 3.93: Predicted and observed activities of analogues 51-76 of 3HAA 227
Table 3.94: Identification of the amino acids composing the BBXB motif. 231
Table 3.95: Energies of the four NCE molecules 232
Table 3.96: Results of the optimization of the lead molecules and α_{1}-ACT. 239
Table 3.97: Results of the optimization of the lead molecules and $A \beta$. 239
Table 3.98: Results of the optimization of the lead molecules and AChE 240
Table 3.99: Results of the optimization of the lead molecules and Apos4 240
Table 3.100: Results of the optimization of the lead molecules and B7-1 241
Table 3.101: Results of the optimization of the lead molecules and BHMT. 241
Table 3.102: Results of the optimization of the lead molecules and C1qA. 242
Table 3.103: Results of the optimization of the lead molecules and ICAM-1 243
Table 3.104: Results of the optimization of the lead molecules and IFN- γ. 243
Table 3.105: Results of the optimization of the lead molecules and IFN- γ at two binding sites. 244
Table 3.106: Results of the optimization of the lead molecules and IL-1 β CE 245
Table 3.107: Results of the optimization of the lead molecules and IL-4. 246
Table 3.108: Results of the optimization of the lead molecules and IL-12. 247
Table 3.109: Results of the optimization of the lead molecules and IL-13 247
Table 3.110: Results of the optimization of the lead molecules and MIP-1 α. 248
Table 3.111: Results of the optimization of the lead molecules and MIP-1 α at two binding sites. 249
Table 3.112: Results of the optimization of the lead molecules and MIP-1 β. 250
Table 3.113: Results of the optimization of the lead molecules and MIP-1 β at two binding sites. 251
Table 3.114: Results of the optimization of the lead molecules and NEP. 252
Table 3.115: Results of the optimization of the lead molecules and RANTES. 252
Table 3.116: Results of the optimization of the lead molecules and RANTES at two binding sites. 253
Table 3.117: Results of the optimization of the lead molecules and S100 254
Table 3.118: Results of the optimization of the lead molecules and SDF-1. 254
Table 3.119: Results of the optimization of the lead molecules and Transferrin. 255
Table 3.120: Gas phase energy of NCE-0217. 258
Table 3.121: The gas phase results of the optimization of NCE-0217 with A β, C1qA, ICAM-1, IFN- γ, IL-4, Il-12 and IL-13. 260
Table 3.122: The gas phase results of the optimization of NCE-0217 with MIP-1 α, MIP-1 β, and RANTES. 261
Table 3.123: Descriptors used for the QSAR of NCE-0217 analogues 267
Table 3.124: Predicted activities for the training and validation sets of the NCE-0217 analogues 268
Table 4.1: Gas phase energies of GABA. 275
Table 4.2: The gas phase results of GABA interacting with β-amyloid. 277
Table 4.3: Solution phase energies of GABA 278
Table 4.4: The solution phase results of GABA interacting with the 1 AMB conformer of β-amyloid. 279
Table 4.5: The solution phase results of GABA interacting with the 1AMC conformer of β-amyloid 280
Table 4.6: The solution phase results of GABA interacting with the 1AML conformer of β-amyloid 281
Table 4.7: The solution phase results of GABA interacting with the 1BA4 conformer of β-amyloid. 282
Table 4.8: The solution phase results of GABA interacting with the 1IYT conformer of β-amyloid 283
Table 4.9: The solution phase results of GABA interacting with the $1 Z 0 \mathrm{Q}$ conformer of β-amyloid 284
Table 4.10: The gas phase energies of β-alanine. 285
Table 4.11: The gas phase results of β-alanine interacting with β-amyloid 287
Table 4.12: Solution phase energies of β-alanine. 288
Table 4.13: The solution phase results of β-alanine interacting with the 1 AMB conformer of β-amyloid 289
Table 4.14: The solution phase results of β-alanine interacting with the 1 AMC conformer of β-amyloid 290
Table 4.15: The solution phase results of β-alanine interacting with the 1 AML conformer of β-amyloid 291
Table 4.16: The solution phase results of β-alanine interacting with the 1BA4 conformer of β-amyloid 292
Table 4.17: The solution phase results of β-alanine interacting with the 1IYT conformer of β-amyloid 293
Table 4.18: The solution phase results of β-alanine interacting with the 1 Z 0 Q conformer of β-amyloid 294
Table 4.19: The gas phase energies of homotaurine 295
Table 4.20: The gas phase results of homotaurine interacting with β-amyloid 296
Table 4.21: Solution phase energies of homotaurine. 297
Table 4.22: The solution phase results of homotaurine interacting with the 1 AMB conformer of β-amyloid 298
Table 4.23: The solution phase results of homotaurine interacting with the 1AMC conformer of β-amyloid 299
Table 4.24: The solution phase results of homotaurine interacting with the 1 AML conformer of β-amyloid. 300
Table 4.25: The solution phase results of homotaurine interacting with the 1BA4 conformer of β-amyloid. 301
Table 4.26: The solution phase results of homotaurine interacting with the 1IYT conformer of β-amyloid. 302
Table 4.27: The solution phase results of homotaurine interacting with the 1Z0Q conformer of β-amyloid. 303
Table 4.28: The gas phase energies of 3-aminopropyl dihydrogen phosphate. 304
Table 4.29: The gas phase results of 3-aminopropyl dihydrogen phosphate interacting with β-amyloid. 306
Table 4.30: Solution phase energies of 3-aminopropyl dihydrogen phosphate. 307
Table 4.31: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1 AMB conformer of β-amyloid. 308
Table 4.32: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1 AMC conformer of β-amyloid. 309
Table 4.33: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1 AML conformer of β-amyloid. 310
Table 4.34: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1BA4 conformer of β-amyloid. 311
Table 4.35: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1IYT conformer of β-amyloid. 312
Table 4.36: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1 Z 0 Q conformer of β-amyloid. 313
Table 4.37: Energies of GABA, β-alanine, homotaurine and 3-aminopropyl dihydrogen phosphate calculated at the AM1 level of theory 316
Table 4.38: AM1 energies of GABA interacting with β-amyloid. 316
Table 4.39: AM1 energies of β-alanine interacting with β-amyloid. 317
Table 4.40: AM1 energies of homotaurine interacting with β-amyloid 317
Table 4.41: AM1 energies of 3-aminopropyl dihydrogen phosphate interacting with β-amyloid. 318
Table 5.1: The gas phase energies of an indole. 325
Table 5.2: The gas phase results of an indole interacting with the HHQK region of β-amyloid. 327
Table 5.3: The gas phase results of an indole interacting with the LVFF region of β-amyloid. 328
Table 5.4: The solution phase energies of an indole. 329
Table 5.5: The solution phase results of an indole interacting with HHQK and LVFF on the 1 AMB conformer of β-amyloid. 330
Table 5.6: The solution phase results of an indole interacting with HHQK and LVFF on the 1 AMC conformer of β-amyloid. 331
Table 5.7: The solution phase results of an indole interacting with HHQK and LVFF on the 1 AML conformer of β-amyloid 332
Table 5.8: The solution phase results of an indole interacting with HHQK and LVFF on the 1BA4 conformer of β-amyloid. 333
Table 5.9: The solution phase results of an indole interacting with HHQK and LVFF on the 1IYT conformer of β-amyloid. 334
Table 5.10: The solution phase results of an indole interacting with HHQK and LVFF on the 1Z0Q conformer of β-amyloid. 335
Table 5.11: The gas phase energies of a biindole. 337
Table 5.12: The gas phase results of a biindole interacting with the HHQK region of β-amyloid. 339
Table 5.13: The gas phase results of a biindole interacting with the LVFF region of β-amyloid. 340
Table 5.14: The solution phase energies of a biindole. 341
Table 5.15: The solution phase results of a biindole interacting with the HHQK region on the 1 AMB conformer of β-amyloid. 342
Table 5.16: The solution phase results of a biindole interacting with the HHQK region on the 1 AMC conformer of β-amyloid. 343
Table 5.17: The solution phase results of a biindole interacting with the HHQK region on the 1 AML conformer of β-amyloid. 344
Table 5.18: The solution phase results of a biindole interacting with the HHQK region on the 1BA4 conformer of β-amyloid. 345
Table 5.19: The solution phase results of a biindole interacting with the HHQK region on the 1IYT conformer of β-amyloid. 346
Table 5.20: The solution phase results of a biindole interacting with the HHQK region on the 1 Z 0 Q conformer of β-amyloid 347
Table 5.21: The solution phase results of a biindole interacting with the LVFF region on the 1 AMB conformer of β-amyloid. 348
Table 5.22: The solution phase results of a biindole interacting with the LVFF region on the 1 AMC conformer of β-amyloid. 349
Table 5.23: The solution phase results of a biindole interacting with the LVFF region on the 1 AML conformer of β-amyloid 350
Table 5.24: The solution phase results of a biindole interacting with the LVFF region on the 1 BA 4 conformer of β-amyloid. 351
Table 5.25: The solution phase results of a biindole interacting with the LVFF region on the 1IYT conformer of β-amyloid 352
Table 5.26: The solution phase results of a biindole interacting with the LVFF region on the 1 Z 0 Q conformer of β-amyloid 353
Table 5.27: The gas phase and semi-empirical energies of 1,2-diphenylethene. 355
Table 5.28: The gas phase results of 1,2-diphenylethene interacting with HH and FF on β-amyloid. 357
Table 5.29: Results of the semi-empirical calculations of a bi-aromatic molecule with HH and FF on β-amyloid 358
Table 6.1: Gas phase results of solapsone, EDTA and DPDP chelating Gd ${ }^{3+}$. 367
Table 6.2: Gas phase results of solapsone, EDTA and DPDP chelating Mn^{2+}. 367
Table 6.3: Solution phase results of solapsone, EDTA and DPDP chelating Gd^{3+} 368
Table 6.4: Solution phase results of solapsone, EDTA and DPDP chelating Mn^{2+} 368
Table 6.5: The gas phase energies of solapsone chelating gadolinium 371
Table 6.6: Selected results of the gas phase minimization of solapsone- Gd^{3+} with the 1 AMB conformer of β-amyloid. 373
Table 6.7: Selected results of the gas phase minimization of solapsone-Gd ${ }^{3+}$ with the 1 AMC conformer of β-amyloid. 374
Table 6.8: Selected results of the gas phase minimization of solapsone-Gd ${ }^{3+}$ with the 1 AML conformer of β-amyloid. 375
Table 6.9: Selected results of the gas phase minimization of solapsone- Gd^{3+} with the 1BA4 conformer of β-amyloid. 376
Table 6.10: Selected results of the gas phase minimization of solapsone- Gd^{3+} with the HHQK region of the 1IYT conformer of β-amyloid. 377
Table 6.11: Selected results of the gas phase minimization of solapsone- Gd^{3+} with the LVFF region of the 1IYT conformer of β-amyloid. 378
Table 6.12: Selected results of the gas phase minimization of solapsone- Gd^{3+} with the HHQK region of the 1 Z 0 Q conformer of β-amyloid. 379
Table 6.13: Selected results of the gas phase minimization of solapsone- Gd^{3+} with the LVFF region of the 1 ZOQ conformer of β-amyloid 380
Table 6.14: The solution phase energies of solapsone- Gd^{3+} 381
Table 6.15: The solution phase results of solapsone- Gd^{3+} interacting with the HHQK region of the 1 AMB conformer of β-amyloid. 382
Table 6.16: The solution phase results of solapsone- Gd^{3+} interacting with the LVFF region of the 1 AMB conformer of β-amyloid. 383
Table 6.17: The solution phase results of solapsone- Gd^{3+} interacting with the HHQK region of the 1 AMC conformer of β-amyloid. 384
Table 6.18: The solution phase results of solapsone-Gd ${ }^{3+}$ interacting with the LVFF region of the 1 AMC conformer of β-amyloid. 385
Table 6.19: The solution phase results of solapsone- Gd^{3+} interacting with the HHQK region of the 1 AML conformer of β-amyloid. 386
Table 6.20: The solution phase results of solapsone- Gd^{3+} interacting with the LVFF region of the 1 AML conformer of β-amyloid. 387
Table 6.21: The solution phase results of solapsone- Gd^{3+} interacting with the HHQK region of the 1BA4 conformer of β-amyloid. 388
Table 6.22: The solution phase results of solapsone-Gd ${ }^{3+}$ interacting with the LVFF region of the 1BA4 conformer of β-amyloid. 389
Table 6.23: The solution phase results of solapsone- Gd^{3+} interacting with the HHQK region of the 1IYT conformer of β-amyloid 390
Table 6.24: The solution phase results of solapsone-Gd ${ }^{3+}$ interacting with the LVFF region of the 1IYT conformer of β-amyloid. 391
Table 6.25: The solution phase results of solapsone- Gd^{3+} interacting with the HHQK region of the 1 ZOQ conformer of β-amyloid. 392
Table 6.26: The solution phase results of solapsone-Gd ${ }^{3+}$ interacting with the LVFF region of the 1 Z 0 Q conformer of β-amyloid. 393
Table 6.27: The gas phase energies of solapsone. 395
Table 6.28: The gas phase results of solapsone interacting with the HHQK region of the 1 AMB conformer of β-amyloid. 397
Table 6.29: The gas phase results of solapsone interacting with the LVFF region of the 1 AMB conformer of β-amyloid. 398
Table 6.30: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AMB conformer of β-amyloid. 399
Table 6.31: The gas phase results of solapsone interacting with the HHQK region of the 1 AML conformer of β-amyloid. 403
Table 6.32: The gas phase results of solapsone interacting with the LVFF region of the 1 AML conformer of β-amyloid. 405
Table 6.33: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AML conformer of β-amyloid. 406
Table 6.34: The gas phase results of solapsone interacting with the HHQK region of the 1BA4 conformer of β-amyloid. 409
Table 6.35: The gas phase results of solapsone interacting with the LVFF region of the 1BA4 conformer of β-amyloid. 410
Table 6.36: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of β-amyloid. 411
Table 6.37: The gas phase results of solapsone interacting with the HHQK region of the 1IYT conformer of β-amyloid. 413
Table 6.38: The gas phase results of solapsone interacting with the LVFF region of the 1IYT conformer of β-amyloid. 414
Table 6.39: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of β-amyloid. 415
Table 6.40: The gas phase results of solapsone interacting with the HHQK region of the 1 ZOQ conformer of β-amyloid. 418
Table 6.41: The gas phase results of solapsone interacting with the LVFF region of the 1 ZOQ conformer of β-amyloid. 420
Table 6.42: The gas phase results of solapsone interacting with the HHQKLVFF region of the $1 Z 0 \mathrm{Q}$ conformer of β-amyloid. 421
Table 6.43: The solution phase energies of solapsone. 423
Table 6.44: The solution phase results of solapsone interacting with the HHQK region of the 1 AMB conformer of β-amyloid. 424

Table 6.45: The solution phase results of solapsone interacting with the LVFF
region of the 1 AMB conformer of β-amyloid. 425
Table 6.46: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 AMB conformer of β-amyloid. 426
Table 6.47: The solution phase results of solapsone interacting with the HHQK region of the 1 AML conformer of β-amyloid. 430
Table 6.48: The solution phase results of solapsone interacting with the LVFF region of the 1 AML conformer of β-amyloid. 432
Table 6.49: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1AML conformer of β-amyloid. 433
Table 6.50: The solution phase results of solapsone interacting with the HHQK region of the 1BA4 conformer of β-amyloid. 436
Table 6.51: The solution phase results of solapsone interacting with the LVFF region of the 1BA4 conformer of β-amyloid. 437
Table 6.52: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of β-amyloid. 438
Table 6.53: The solution phase results of solapsone interacting with the HHQK region of the 1IYT conformer of β-amyloid. 440
Table 6.54: The solution phase results of solapsone interacting with the LVFF region of the 1IYT conformer of β-amyloid. 442
Table 6.55: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of β-amyloid. 443
Table 6.56: The solution phase results of solapsone interacting with the HHQK region of the 1 Z 0 Q conformer of β-amyloid. 446
Table 6.57: The solution phase results of solapsone interacting with the LVFF region of the 1 Z 0 Q conformer of β-amyloid. 448
Table 6.58: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 Z 0 Q conformer of β-amyloid. 449

LIST OF FIGURES

Figure 1.1: Acetylcholine 2
Figure 1.2: Enzymatic cleavage of APP. 4
Figure 1.3: The amino acid sequence of β-amyloid 5
Figure 1.4: Interaction between β-amyloid and a membrane surface 6
Figure 1.5: The aggregation pathway of β-amyloid from soluble monomer to insoluble amyloid plaque 7
Figure 1.6: Characteristic features of Alzheimer's disease present in the brain 10
Figure 1.7: Donepezil 13
Figure 1.8: Rivastigmine. 13
Figure 1.9: Galantamine 14
Figure 1.10: Memantine 14
Figure 1.11: Drug molecule interacting with target receptor. 21
Figure 1.12: Steepest descent approach 33
Figure 1.13: Conjugate gradient approach 35
Figure 2.1: Phosphoserine at physiological pH. 44
Figure 2.2: The charged amino acid side chains of the EVHHQK region of β - amyloid 47
Figure 2.3: The 1 AMB conformer of β-amyloid 49
Figure 2.4: The 1AMC conformer of β-amyloid 49
Figure 2.5: The 1 AML conformer of β-amyloid 50
Figure 2.6: The 1BA4 conformer of β-amyloid 50
Figure 2.7: The 1IYT conformer of β-amyloid 51
Figure 2.8: The 2BP4 conformer of β-amyloid 51
Figure 2.9: Neutral phosphoserine molecule with grid search numbers indicated 53
Figure 2.10: The gas phase interaction occurring between phosphoserine and the His 13 and Lys 16 residues of the 1 AMB conformer of β-amyloid 59
Figure 2.11: The interactions between phosphoserine and the 1AMB conformer of β-amyloid in an aqueous environment. 72
Figure 2.12: The binding interactions occurring between phosphoserine and the 1 AMB conformer of β-amyloid upon minimization in an aqueous environment. 79
Figure 2.13: (A) ThT assay of phosphoserine at different concentrations 93
Figure 3.1: Phenylalanine as charged for physiological pH 107
Figure 3.2: Dopamine as charged for physiological pH 124
Figure 3.3: Identification of the functional groups on dopamine 127
Figure 3.4 Tryptophan charged for physiological pH 139
Figure 3.5: L-tryptophan and D-tryptophan. 139
Figure 3.6: Tryptamine at physiological pH 159
Figure 3.7: 3-hydroxyanthranilic acid at physiological pH 169
Figure 3.8: Binding interaction between 3HAA and β-amyloid 210Figure 3.9: Transmission electron microscopy (TEM) of A $\beta_{40}(20 \mu \mathrm{M})$ in theabsence (left) and presence (right) of 3-HAA ($100 \mu \mathrm{M}$)212
Figure 3.10: Thioflavin-T assay of 3-hydroxyanthranilic acid at various concentrationsinteracting with $\mathrm{A} \beta$212

Figure 3.11: Thioflavin S assay of 3-hydroxyanthranilic acid interacting with tau
 214

Figure 3.12: 3HAA analogues 1-25. 217
Figure 3.13: 3HAA analogues 26-50. 218
Figure 3.14: 3HAA analogues 51-76 226
Figure 3.15: NCE-0103, NCE-0112, NCE-0216, and NCE-0325 229
Figure 3.16: Regions of NCE compounds identified for interactions with BBXB 238
Figure 3.17: Example of NCE-0325 binding to IL-1 β CE. 256
Figure 3.18: NCE-0217. 258
Figure 3.19: Interaction between NCE-0217 and RANTES 264
Figure 4.1: GABA at physiological pH 274
Figure 4.2: β-alanine at physiological pH 285
Figure 4.3: Homotaurine at physiological pH 295
Figure 4.4: 3-Aminopropyl dihydrogen phosphate at physiological pH 304
Figure 5.1: Indole 324
Figure 5.2: Biindole 336
Figure 5.3: 1,2-diphenylethene 355
Figure 6.1: Solapsone as charged for physiological pH 363
Figure 6.2: Heparin sulfate. 364
Figure 6.3: EDTA and DPDP charged for physiological pH 365
Figure 6.4: Solapsone chelating gadolinium (III) 369
Figure 6.5: Abbreviations of the functional groups on solapsone 372

Figure 6.6: Solution phase interactions between the chelated solapsone- Gd^{3+} complex and β-amyloid.

Figure 6.7: Solapsone interacting with β-amyloid after solution phase optimization..... 451

Figure 6.8: Synthesis of solapsone452

Figure 6.9: Thioflavin T assay of solapsone and solapsone-Gd ${ }^{3+}$................................... 453

ABSTRACT

Alzheimer's disease (AD) is a progressive, degenerative neurological disorder for which there is no cure. The causative agent is β-amyloid (A β) which becomes neurotoxic upon conformational change from α-helix to β-sheet. In silico methods have been used to indentify endogenous small molecules of the brain that are capable of binding to $A \beta$ to inhibit conformational changes; this is a novel approach to the disease. Through the use of computational methods, several small molecules that are endogenous to the brain, such as phosphoserine, have been identified as being capable of binding to the monomeric forms of $\mathrm{A} \beta$; in vitro studies support their role as anti-aggregants. One of the small molecules identified through these in silico methods, 3-hydroxyanthranilic acid (3HAA) has been developed through the use of Quantitative Structure-Activity Relationship (QSAR) studies to design more potent analogues. These in silico studies have also examined the capacity of synthetic compounds (structurally similar to endogenous molecules) to bind to both $\mathrm{A} \beta$ and other proteins affiliated with AD . Results indicate the potential for a single molecule to bind "promiscuously" to multiple proteins bearing a common BBXB (where B is a basic amino acid) motif affiliated with AD. This will allow for the development of molecules to target AD in a multifaceted approach. Furthermore, these small molecules can be selected through the use of "physinformatics" to bind with equal efficacy to the HHQK and LVFF regions (which play a role in the misfolding process) of $\mathrm{A} \beta$; this will prevent conformational changes of the protein. A novel diagnostic imaging agent for AD has also been developed through computational methods; solapsone (formerly used to treat leprosy) has been identified as being structurally similar to species that bind to $\mathrm{A} \beta$ to initiate conformational changes. Results show that solapsone can chelate gadolinium, used in MRI, and bind to the soluble forms of $A \beta$, allowing for imaging of the toxic species in the human brain, and thus a definitive diagnosis of AD (which is not currently possible with living patients). Computational methods have proved useful in developing a new approach to treating AD, and designing a novel imaging agent.

LIST OF ABBREVIATIONS USED

3HAA 3-hydroxyanthranilic acid

A

A*
A β
A $\beta 40$
A $\beta 42$
ACh
$\mathrm{AChE} \quad$ acetylcholinesterase
AChEI acetylcholinesterase inhibitor
α_{1}-ACT alpha-1-antichymotrypsin
AD
Alzheimer's disease
ADDLs
ApoE
Apoz 4
APP
APPs
Ar
BACE1 beta-site APP cleaving enzyme
B a basic amino acid (in BBXB)
B7-1 \quad T lymphocyte activation antigen
BBB blood-brain barrier
BHMT betaine-homocysteine methyl transferase
C
C*
C1qA
(in AAXA) an aliphatic or aromatic amino acid
alanine, where * indicates its location on the protein chain
β-amyloid
β-amyloid (residues 1-40)
β-amyloid (residues 1-42)
acetylcholine
$\mathrm{A} \beta$-derived diffusible ligands
Apolipoprotein E
Apolipoprotein $\varepsilon 4$
Amyloid precursor protein
soluble shortened APP fragment
an aromatic ring
$\mathrm{CO}_{2}{ }^{-}$functional group
cysteine, where * indicates its position on the protein chain
complement component $1, \mathrm{q}$ subcomponent, chain A

CD circular dichroism
CHARMM Chemistry at HARvard Macromolecular Mechanics

CS
CSF
D*
DPDP
E*
EDTA
EVHHQK

FAD

HHQK amino acid residues histidine13-histidine14-glutamine15-lysine16 of the β-amyloid peptide

I* isoleucine, where * indicates its position on the protein chain
ICAM-1 intercellular adhesion molecule 1
IFN- $\gamma \quad$ interferon-gamma
IL-1 β CE \quad interleukin- 1β converting enzyme
IL-4 interleukin 4
IL-12 interleukin 12
IL-13 interleukin 13
In represents interactions with an indole
InB represents interactions with the benzyl ring of an indole

InP represents interactions with the pyrrole ring of an indole
K* lysine, where * indicates its position on the protein chain

L*
LB1
LB2
LNH
LS1
LS2
LVFF amino acid residues leucine17-valine18-phenylalanine19-phenylalanine20
M* methionine, where * indicates its position on the protein chain
MIP-1 $\alpha \quad$ macrophage inflammatory protein- 1α
MIP-1 $\beta \quad$ macrophage inflammatory protein- 1β
MOE Molecular Operating Environment
MRI magnetic resonance imaging
N
$\mathrm{N}^{*} \quad$ asparagine, where * indicates its position on the protein chain
NCE novel chemical entity

NEP
neprilysin
NFTs neurofibrillary tangles
NMDA N-methyl-D-aspartate
NMR nuclear magnetic resonance
O
OH functional group

OH group meta to the ethylamine on dopamine OH group para to the ethylamine on dopamine non-amyloidogenic fragment cleaved from APP $\mathrm{PO}_{3} \mathrm{H}^{-}$functional group

P*	proline, where * indicates its position on the protein chain
PCA	principal components analysis
PDB	Protein Data Bank
PES	potential energy surface
PET	positron emission tomography
PLS	partial-least squares
PVS	polyvinylsulfonate
Q*	glutamine, where * indicates its position on the protein chain
QSAR	Quantitative Structure-Activity Relationship
R*	arginine, where * indicates its position on the protein chain
RANTES	regulated upon activation, normal T-cell expressed, and secreted
RB1	used to indicate the first benzyl ring on the right side of solapsone
RB2	used to indicate the furthest benzyl ring on the right side of solapsone
RCSB	Research Collaboratory for Structural Bioinformatics
RNH	used to indicate the - NH - on the right side of solapsone
RS1	used to indicate the first sulfonate group on the right side of solapsone
RS2	used to indicate the furthest sulfonate group on the right side of solapsone
S	$\mathrm{SO}_{3}{ }^{-}$functional group
S*	serine, where * indicates its position on the protein chain
SDF-1	stromal cell-derived factor-1
T	threonine, where * indicates its position on the protein chain
ThT	thioflavin T
V*	valine, where * indicates its position on the protein chain
V*	valine, where * indicates its position on the protein chain
W*	tryptophan, where * indicates its position on the protein chain
X	a variable representative of any non-specified amino acid
Y^{*}	tyrosine, where * indicates its position on the protein chain

ACKNOWLEDGEMENTS

I would first like to thank God for His strength and guidance throughout this research. Second, the research encompassed in this thesis would not be complete without the assistance of my supervisor, Dr. Don Weaver.

I would like to acknowledge the assistance of Harman Clair for the assembly of the library of endogenous compounds.

Special thanks to Dr. Chris Barden for his assistance in providing the scripts for calculations in QUANTA, and his assistance with many computer crises.

Thanks to Todd Galloway, Rose Chen, and Gordon Simms for providing the biological data presented.

Gordon Simms is also acknowledged for his synthetic contributions with the 3HAA analogues. Arun Yadav is thanked for his synthetic work on solapsone.

Katharine Anderson, Laural Fisher, and Alaina McGrath were of assistance in providing the analogues of NCE-0217 for the QSAR.

I would like to thank my family for all their support and love throughout this process, and my mom for being an excellent proof-reader.

The Nova Scotia Health Research Foundation and the Gunn Family Studentship in Alzheimer's Research are thanked for their funding of this research.

Finally, thanks to the Toronto Maple Leafs for demonstrating that perseverance brings results. Go Leafs!

CHAPTER 1: INTRODUCTION

Computational chemistry is an extremely useful field of chemistry in the realm of medicinal chemistry and drug design. A variety of techniques available to the computational chemist can be utilized in many aspects of the drug design process. The combined use of computationally calculated descriptors and biological activities can be used to perform quantitative structure-activity relationship (QSAR) studies in order to optimize the design of novel therapeutic molecules. Molecular dynamics simulations can be used to examine how certain molecules will interact with lipid membranes, and molecular modelling can be used to optimize systems to determine whether molecules will bind to proteins at a specific targeted region. These techniques are becoming an integral part of modern drug design, and are particularly useful in developing new drugs to treat Alzheimer's disease (AD). The beginning of this chapter will provide background material on Alzheimer's disease, its development, treatment and diagnosis. The latter part of the chapter will detail the background behind the computational methods used, and the goals of this research.

1.1 Alzheimer's Disease and $\boldsymbol{\beta}$-Amyloid

Alzheimer's disease, so named for Alois Alzheimer who first described the disease in 1907, is a neurodegenerative disorder that is both progressive and degenerative and is the leading cause of dementia among the elderly [1, 2]. This disease is becoming increasingly prevalent as the population ages. Currently there is no cure or drug to prevent this disease [3].

The psychological and physical manifestations of the disease are characterized by many symptoms, including behavioural changes and cognitive deterioration that lead to increasing requirements for care, particularly as the disease progresses from a mild to a severe form, which coincides with a decrease in the patient's functional independence [2, 3]. While the primary symptom is dementia, there can also be symptoms such as irritability or mood changes, depression, disinhibition, anxiety, sleep disorders and wandering [2]. The disease is therefore most often diagnosed through tests for these psychological and memory-related changes, along with the use of imaging techniques of which positron emission tomography (PET) is becoming quite useful since it can determine the acetylcholine levels (an important neurotransmitter in AD), available in the brain [3, 4].

1.1.1 ACETYLCHOLINE AND ITS ROLE IN ALZHEIMER'S DISEASE

The neurotransmitter acetylcholine (ACh) (Figure 1.1) is believed to play a role in cognition and memory since the levels of the neurotransmitter have been shown to be decreased in patients with Alzheimer's disease. This loss is due to a severe decrease in the number of cholinergic neurons (where synthesis of acetylcholine occurs) present in the basal forebrain and neocortex as well as decreased enzyme activity of choline acetyltransferase and acetylcholinesterase, which are enzymes involved in the production and degradation of acetylcholine $[3,5]$.

Figure 1.1: Acetylcholine

Acetylcholine is generated in cholinergic nerve terminals from acetyl coenzyme A and choline via the enzymatic activity of choline acetyltransferase. Decreased levels of this enzyme present in the brain means that less acetylcholine will be synthesized $[6,7]$. As there is no cellular reuptake mechanism for acetylcholine, the neurotransmitter is catabolized into acetate and choline via the activity of acetylcholinesterase, enabling the choline to be recycled [6, 7]. Current drug treatments for Alzheimer's disease consist mainly of acetylcholinesterase inhibitors (AChEI), whose actions prevent the hydrolysis of acetylcholine thus increasing the concentration of the neurotransmitter in the synaptic cleft [7].

1.1.2 $\boldsymbol{\beta}$-Amyloid and the Amyloid Cascade

The most commonly accepted causative agent in the development and progression of Alzheimer's disease is β-amyloid (A β). The amyloid cascade hypothesis suggests that a neurotoxic cascade of events is initiated in the brain when $A \beta$ starts aggregating, and genetic evidence from patients with early-onset AD linking the onset of Alzheimer's disease with β-amyloid aggregation has also helped to support this now widely accepted hypothesis [8, 9].

1.1.2.1 The Generation of β-Amyloid from Amyloid Precursor Protein

β-Amyloid is an amphipathic peptide (having both hydrophilic and lipophilic regions) that is 39-43 amino acids in length and is generated by the proteolytic cleavage of the amyloid precursor protein (APP) [8, 10, 11]. APP is an integral membrane glycoprotein composed of a single transmembrane domain with a short cytoplasmic tail (where the C-terminus is located) and a longer extracellular domain (where the N -
terminus is located) and is cleaved enzymatically via one of two pathways: nonamyloidogenic or amyloidogenic [8, 11]. The non-amyloidogenic pathway produces soluble products and involves α-secretase cleavage occurring within the $\mathrm{A} \beta$ domain, releasing a soluble shortened form of APP, which is then followed by γ-secretase action at the terminal end of the $A \beta$ domain, releasing another soluble and non-amyloidogenic fragment (see Figure 1.2) [11]. In the amyloidogenic pathway, the initial enzymatic action involves beta-site APP cleaving enzyme (BACE1) that cleaves APP near the N -terminus of the β-amyloid domain, which is then followed by the same γ-secretase action, only in this case along with generating the soluble shortened APP there is also the potentially toxic β-amyloid peptide [11].

Figure 1.2: Enzymatic cleavage of APP: 1. Non-amyloidogenic pathway. 2. Amyloidogenic pathway. α is the α-secretase enzyme, γ is the γ-secretase enzyme and BACE1 is beta-site APP cleaving enzyme. APPs ${ }_{\alpha}$ and APPs $_{\beta}$ represent soluble shortened fragments of $A P P$, $p 3$ represents a nonamyloidogenic fragment and $\mathrm{A} \beta$ is the generated $\boldsymbol{\beta}$-amyloid protein.

Generated β-amyloid is between 39 and 43 amino acids in length (see Figure 1.3) and it is this length that plays a role in the self-aggregating nature of the peptide [10, 11]. Most of the $A \beta$ that is generated is 40 amino acids in length (A $\beta 40$), comprising approximately 90 percent of generated β-amyloid, while a smaller portion is the 42 amino acid length peptide (Aß42) - it is this longer peptide that seems to be of most relevance in the development of Alzheimer's disease [11, 12].

Figure 1.3: The amino acid sequence of $\boldsymbol{\beta}$-amyloid.
Production of β-amyloid and its oligomerization appear to begin intracellularly, as APP can be found not only in the plasma membrane, but also in other locations such as the endoplasmic reticulum (ER) and the trans-Golgi network [13, 14]. Interestingly the form of generated $A \beta$ varies with location, as more $A \beta 42$ is produced in the $E R$ and intermediate compartment, while $\mathrm{A} \beta 40$ is produced more so in the Golgi apparatus and beyond [13]. The cholesterol content of the various membranes may play a role in influencing length of the produced $\mathrm{A} \beta[13,14]$.

It is of most importance to realize that β-amyloid is a naturally occurring substance found in the brain and cerebrospinal fluid (CSF) in a soluble non-toxic form; only when it undergoes a conformational change from random coil or α-helix to a β-sheet conformation does $A \beta$ begin to take on neurotoxic properties [9,10]. Given its length, the

42 amino acid length β-amyloid peptide is slightly more hydrophobic than shorter peptide forms, allowing it to self-aggregate more readily [8, 10, 15].

1.1.2.2 β-Amyloid AgGregation and Toxicity

The initiation of β-amyloid aggregation occurs when the peptide takes on a β sheet conformation, which is possibly instigated by the peptide interacting with lipid membranes [10, 14]. Evidence suggests that $\mathrm{A} \beta$ interacts with negatively charged regions on the surface of membranes, causing both misfolding of the protein and damage to the membrane [16, 17]. Figure 1.4 shows where these potential membrane interactions can occur. The positively charged HHQK region can interact with negatively charged glycosaminoglycans on the membrane surface to allow conformational changes to occur around the hinge region: the cholesterol binding domains can further facilitate this transformation from α-helix or random coil to β-sheet for the protein.

Figure 1.4: Interaction between $\boldsymbol{\beta}$-amyloid and a membrane surface. GAG represents glycosaminoglycans; Raft represents cholesterol rafts; CB represents a cholesterol binding domain, and H the hinge region where A $\boldsymbol{\beta}$ folding occurs.
$\mathrm{A} \beta$ first forms small aggregates in the form of dimers, trimers, larger oligomers and protofilaments along with other intermediate structures, which then form larger
protofibrils, all of which are soluble, followed by the insoluble fibrils that deposit to form the amyloid plaques that are characteristic of Alzheimer's disease (Figure 1.5) [14, 18]. These plaques are non-toxic and do not correlate to the severity of the disease [31]. It appears that oligomerization of β-amyloid begins intraneuronally, as the intraneuronal $\mathrm{A} \beta$ will appear first, and levels of intracellular $\mathrm{A} \beta$ decrease as the extracellular levels increase and plaques appear $[14,19]$. As well, the oligomerization may be dependent on the cholesterol levels of the membranes $A \beta$ interacts with as it can affect the folding process and speed of fibrillization [15]. It is likely that extracellular $A \beta$, at least in part, originates from the intracellular $\mathrm{A} \beta$ that causes lysis of the neuron as it aggregates [14].

Figure 1.5: The aggregation pathway of $\boldsymbol{\beta}$-amyloid from soluble monomer to insoluble amyloid plaque

One of the most stable species of the early soluble stage appears to be the $A \beta-$ derived diffusible ligands (ADDLs), which are now suspected to be some of the neurotoxic species as their presence at even nanomolar concentrations has been shown to be toxic $[11,14,16]$. Other small soluble oligomeric species are considered to be neurotoxic as well [16]. The ADDLs have been shown to inhibit long term potentiation, and can also cause disruption of cellular membranes and calcium dysregulation resulting in neuronal changes in the brain as well as being detrimental to memory; levels of soluble forms of $\mathrm{A} \beta$ aggregates are relative to the severity of cognitive impairment and synaptic loss seen in individuals with $\operatorname{AD}[9,11,12,19]$. It has also been reported that the size of the oligomers formed plays a role in which aspects of the brain's functions are affected by the β-amyloid; the smaller oligomers seem to affect the synapses and certain forms of memory while the larger dodecamers appear to influence spatial memory in particular [9]. The oligomeric forms of $\mathrm{A} \beta$ are more hydrophobic than the fibrillar species, and can interact more readily with membranes, as well as having a higher diffusability, explaining why the oligomers are the more toxic species [18]. The causative agent in all of this appears in particular to be the longer $\mathrm{A} \beta 42$ as is evidenced in cases of early-onset Alzheimer's disease [9].

1.1.2.3 Familial Alzheimer's Disease as Evidence of the Role of β-Amyloid in Disease Initiation

There are several genetic mutations that have been discovered that predispose certain families to early-onset Alzheimer's disease, also known as familial Alzheimer's disease (FAD); sporadic AD has not been linked to any such mutations. It appears that cases of FAD are caused either by an increased production of A $\beta 42$ relative to $A \beta 40$, or an overall increase in the production of all forms of the peptide, giving rise to proof that
certainly in some, if not all, cases the chief instigator of Alzheimer's disease is the β amyloid peptide [9].

Mutations occurring in the APP gene, which is located on chromosome 21, have been shown to increase the amount or alter the aggregation properties of β-amyloid [8, 9]. As well, some aggressive cases of Alzheimer's disease that occur earlier in life can also be initiated by mutations affecting the presenilin 1 and presenilin 2 genes. Presenilin forms the catalytic site of the γ-secretase enzyme that generates the C terminal end of the β-amyloid fragment; individuals inheriting these mutated genes have shown an increase in the ratio of $\mathrm{A} \beta 42$ to $\mathrm{A} \beta 40$ that occurs throughout their lifetime [9].

Although it is not guaranteed, there is also an increased chance that individuals with a specific allele of the Apolipoprotein E (ApoE) gene will develop Alzheimer's disease $[8,9,12]$. If an individual possesses the $\varepsilon 4$ allele, as opposed to $\varepsilon 2$ or $\varepsilon 3$, the individuals inheriting the gene are at an increased risk for developing late-onset AD, as opposed to FAD [8, 9, 20]. More recent studies have also indicated a relationship between the CALHM1 gene and an increased susceptibility for late-onset AD [20].

1.1.2.4 β-Amyloid and Neurofibrillary Tangles

The other main feature present in the brains of individuals having Alzheimer's disease are neurofibrillary tangles (NFTs) that are composed primarily of tau protein [1]. These NFTs appear to be the result of processes later on in the neurotoxic cascade and are not an initial factor in the disease, as they cannot themselves cause amyloidosis [12, 18].

Tau is a microtubule-associated protein that is necessary for microtubule stability as well as being involved in their assembly and maintenance [21]. Microtubules are
cellular components that are required for axonal transport, making them critical for neuronal function since breakdown in microtubules prevents vesicles containing molecules such as neurotransmitters being transported to and from the cell body to the synapse; they are also important in forming the cytoskeleton of cells [21, 22]. Therefore the consequences are severe when tau becomes abnormally phosphorylated - it can no longer bind to the microtubules to regulate their polymerization state, and thus can result in the disassembly of these very important support structures [11, 20, 21]. When the microtubules disassemble, the support system needed to maintain cell structure disappears and degradation will occur in the axons and dendrites [11].

The abnormally phosphorylated tau protein self-aggregates to form paired helical filaments that accumulate intraneuronally and thusly causes neuronal degeneration and death [21]. Tau pathology also contributes to the neuronal loss in Alzheimer's patients; however, its abnormal phosphorylation occurs after amyloidosis has started along with other neurotoxic effects [19]. Figure 1.6 shows the pathological artefacts of tau and amyloid in the brain.

Besides the abovementioned neurotoxic effects related to the self-aggregated form of β-amyloid and NFTs, other neurotoxic effects appear to be caused by oxidative stress related to the methionine 35 residue of the β-amyloid peptide [23]. This oxidative stress can result in protein oxidation as well as lipid peroxidation [8]. Inflammation also appears in the vicinity of neurofibrillary tangles and β-amyloid plaques. Overall, the effects of aggregated β-amyloid on the brain are highly unfavourable and as of yet there are no drugs available to halt this aggregation to prevent Alzheimer's disease [11].

Figure 1.6: Characteristic features of Alzheimer's disease present in the brain: intraneuronal neurofibrillary tangles and extracellular β-amyloid plaques

1.1.3 Why Research Alzheimer's Disease?

Alzheimer's disease is currently one of the most significant diseases being researched due to its increasing prevalence and an increasingly ageing society. In 2010 approximately 35.6 million people in the world were living with Alzheimer's disease, and this number will almost double every twenty years; in North America those numbers are expected to increase by approximately 63% in that same time frame [24]. In Canada one in twenty people over the age of 65 has AD today, and that number increases to an astounding one in four people over the age of 85 [25].

After the initial diagnosis of Alzheimer's disease, death usually occurs in individuals between seven and ten years later; it should be noted that there are always
exceptions to the rule [25]. It has also been suggested that the progression from mild to severe Alzheimer's disease occurs over a period of six years; however, the older the person is when diagnosed, the shorter the survival rate [3]. Research by Brookmeyer et al has predicted that delaying disease progression by therapeutic means for a two year period could decrease the number of late stage cases by about 7 million but the number of new cases would increase by 5.2 million; on the other hand, if the onset of the disease could be delayed by two years, the number of cases of Alzheimer's disease will drop by 22.8 million, and even a one year delay in onset results in 11.8 million fewer cases of AD [3]. Therefore the design and development of drugs capable of preventing, or at least delaying the onset of disease could greatly impact and ease the worldwide burden of Alzheimer's disease as opposed to current methods which can only delay the symptomatic progression.

1.1.3.1 Current Alzheimer's Drugs

In Canada, there are two classes of drugs currently available for the treatment of Alzheimer's disease. The first class of drugs consists of three acetylcholinesterase inhibitors which are used for symptomatic treatment in patients suffering from mild to moderate AD : donepezil, rivastigmine and galantamine [25, 26]. The second class of drugs consists of a single drug which is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been conditionally approved by Health Canada for use in the treatment of moderate to severe Alzheimer's disease: memantine [25, 27].

Donepezil, also known as Aricept or E2020 (Figure 1.7), is a non-competitive and reversible inhibitor of acetylcholinesterase that functions mainly through $\pi-\pi$ and cation- π interactions along the gorge of the enzyme wherein the active site (a catalytic triad) is
located [28]. While it does not interact with the active site itself (making it noncompetitive) the drug molecule does prevent the Michaelis complex (the enzymesubstrate complex that in this case involves binding interactions forming between acetylcholine and the catalytic triad) from forming or possibly the deacylation process from occurring [28].

Figure 1.7: Donepezil
Rivastigmine, also known as Exelon (Figure 1.8), is a pseudo-irreversible inhibitor of AChE and acts upon the catalytic triad in a process involving covalent binding where the enzyme treats the drug molecule as a substrate and generates a hydrolytic product, called NAP, which acts as a competitive but reversible inhibitor of the acetylcholinesterase enzyme [29].

Figure 1.8: Rivastigmine
Galantamine (Figure 1.9), also known as Reminyl, is an extended release formulation; it is also known as galanthamine hydrobromide [25, 30]. Like rivastigmine, galantamine also acts upon the catalytic triad; however, it acts through hydrogen bonding interactions making it reversible [30]. The action of galantamine prevents the enzymatic
activity in that the binding occurs with one of the residues of the catalytic triad, a serine residue, which needs to be activated in order to start the catalytic processing of acetylcholine [28, 30].

Unfortunately all of these current treatments provide only symptomatic relief of the disease, and in the case of the acetylcholinesterase inhibitors are only useful so long as acetylcholine is still being produced in the brain; as of yet there are currently no drugs available on the market to treat the pathological agent of importance $-\beta$-amyloid.

Figure 1.9: Galantamine
Memantine (Figure 1.10), also known as Ebixa, acts by blocking the NMDA receptor channel to prevent excitotoxity due to an increase in the influx of calcium ions which is a result of the channel being opened for prolonged periods of time due to excess glutamate present in the brain [27]. It is believed that although excess glutamate is not the primary cause of Alzheimer's disease, its increased concentrations are partially responsible for the loss of cholinergic neurons and thus memantine is used to help prevent the overstimulation of these neurons [27]. Memantine can be used as a monotherapy or it can also be given in conjunction with one of the available acetylcholinesterase inhibitors [27].

Figure 1.10: Memantine

1.1.4 Current Research in Treating Alzheimer's Disease

Current research towards the design and development of new drugs to treat Alzheimer's disease has unfortunately yielded unsuccessful results from clinical trials, even with multiple targets of interest.

1.1.4.1 Drugs targeting β-Amyloid Aggregation

There are currently no drugs on the market approved for treating Alzheimer's disease by targeting $\mathrm{A} \beta$ aggregation. Tramiprosate, also known as homotaurine or Alzhemed, was successful in early stage trials, but failed to show efficacy in phase III trials (probably resulting from the methodology of the trial) [31]. PBT2, being developed by Prana Biotechnology Limited, has demonstrated success in phase II trials and works by binding complexes of $\mathrm{A} \beta$ and copper or zinc to prevent oligomerization; further trials are awaited [31, 32]. Elan pharmaceuticals has finished phase II trials of scyllo-inositol; during the trial, high dosages resulted in deaths, so only low doses were continued in the study [31, 33]. Results of the study have been published and have demonstrated inconclusive results as to the efficacy of the drug due to the small trial size; however, there does seem to be some success in targeting $A \beta 42$, which may be of use in the mild stage of AD [33]. A polyphenol, epigallocatechin-3-gallate, is currently undergoing a
phase II-III study and prevents A β aggregation by binding to the monomeric form of β amyloid [31].

1.1.4.2 Drugs Promoting Clearance of β-Amyloid from the Brain

Research is ongoing in the area of treating AD by removing or reducing the amount of β-amyloid in the brain. This methodology looks at the use of vaccines to target A β, either actively or passively [31]. Active immunization involves provoking an immune response by introducing fragments of β-amyloid, however many of these therapies, such as CAD-106 and ACC-001 are only in phase II trials, and most have only completed phase I trials so far [31]. Passive immunization involves the use of monoclonal antibodies or polyclonal immunoglobulins that target the $A \beta$ protein. There is more progress in this field, with several phase III trials ongoing for compounds such as bapineuzumab, solanezumab and intravenously administered immunoglobulins [31]. The difficulty with these vaccination strategies is that there is the potential for more adverse affects occurring in the case of active immunization, while passive immunization is a costly and time-consuming task [31]. While the benefits of vaccination strategies are recognized, there is some risk involved in this scenario as the monomeric form of $A \beta$ may play a neuroprotective role.

1.1.4.3 Drugs targeting the Reduction of the Production of $A \beta$

The major focus of drug researchers in the search for new ways to treat Alzheimer's disease is to target the enzymes involved in the secretion of A β from APP. There are three enzymes involved in the cleavage of APP: α-secretase is involved in the non-amyloidogenic pathway, BACE1 involved in the amyloidogenic pathway, and γ secretase, which plays a role in both pathways (see Figure 1.2). Drugs that activate α -
secretase have only reached phase II clinical trials, but have shown indications of reducing the production of $\mathrm{A} \beta$ [31]. In terms of γ-secretase inhibitors and modulators, the results have been less than favourable: Eli Lilly halted the phase III trial of semagacestat when it was discovered that the drug had no effect on improving cognition and may lead to increased incidence of skin cancer [34]. Drugs targeting BACE1 have also resulted in little progress; those that have reached phase III trials have demonstrated no efficacy in improving patient outcomes [31]. There are some BACE1 inhibitors in the earlier stages of clinical trials, and it is hoped that they will deliver more promising results [31, 34].

1.1.4.4 Drugs Targeting Other Aspects of Alzheimer's Disease

There is some research focussing on targets other than $A \beta$ to treat AD. Molecules that target the tau protein are being investigated, with Rember (a tau anti-aggregant) being the only drug currently in phase III trials [31, 34]. Results of the only other tau drug to reach phase III, valproate, were disappointing, with no effect on the cognition of Alzheimer's patients [31].

Another phase III trial looking at dimebon as a monotherapy for Alzheimer's disease targeting mitochondria failed to demonstrate any effect on mental status, but is being looked at as part of a combination therapy study for treating $\mathrm{AD}[31,34]$.

Neurotrophins are another target, as nerve growth factor (NGF) is important for the survival of cholinergic neurons that are damaged by the disease [31]. Methods to introduce NGF into the brain are being examined, with phase II trials ongoing.

The current methods for diagnosing Alzheimer's disease and tracking its progression have not been sufficient enough to provide the success desired in curing AD.

1.1.5 Current Methods in Diagnosing Alzheimer's Disease

The diagnosis of Alzheimer's disease in a living patient is dependent on the results of tests that examine the mental status of the individual in question. The decline in cognitive function of an individual is an important factor in diagnosing AD , but is not useful in detecting the disease at a very early stage, before the damage to neurons is significant. While there is a lack of consensus on the use of biomarkers to help diagnose the disease, some methods are available, and others are being investigated.

1.1.5.1 Biomarkers Used to Diagnose Alzheimer's Disease

Currently, there are four identified biomarkers useful to diagnose Alzheimer's disease: $\mathrm{A} \beta 42$, $\mathrm{A} \beta 40$, total tau, and phospho-tau-181 $[35,36]$. Tau and hyperphosporylated tau levels are both increased in patients with AD, while levels of $A \beta 42$ or the $A \beta 42 / A \beta 40$ ratio are significantly reduced, and all of these are needed to diagnose the disease in its sporadic form [35]. The drawback to collecting these biomarkers is that they are obtained by examining the cerebrospinal fluid of the patient, and therefore require a lumbar puncture [35]. Analysis of these biomarkers also requires the use of costly assays, and to date blood plasma biomarkers have not been useful in identifying sporadic AD [35]. It is likely that in the case of biomarkers, especially if blood plasma is the desired source, a combination of stable elements must be identified to use in combination to diagnose the disease [35].

1.3.5.2 Imaging Agents for Alzheimer's Disease

There are no truly commercial diagnostic imaging agents available on the market for AD ; however, there are some currently in development and some are being used in clinical trials of Alzheimer's drugs.

Magnetic resonance imaging (MRI) is used to look at brain volumes, as there is a decrease in the amount of grey matter in individuals with AD as the disease progresses [36]. Studies looking at the use of functional MRI are being expanded to more centres, and this technique is used to determine the effects of drugs on regional brain activation by measuring the blood oxygen-dependent level signals [36].

Positron emission tomography (PET) is the focus of most diagnostic compounds being developed so far. The more noted imaging agent is Pittsburgh compound $\mathrm{B}\left({ }^{11} \mathrm{C}\right.$ PIB) which binds to amyloid plaques in the brain [36, 37]. There are two notable downfalls to this imaging agent, the first being that ${ }^{11} \mathrm{C}$-PIB does not bind to the soluble forms of β-amyloid (and the soluble oligomers are the toxic species). The second downfall is that the half-life of ${ }^{11} \mathrm{C}$-PIB is only 20.4 minutes [36,37]. PET is also used to look at glucose consumption, as a labelled sugar can be used to identify regions of reduced uptake, indicative of the damaged neurons that occur in AD . Molecules continue to be developed for PET use, such as $\left[{ }^{18} \mathrm{~F}\right]$ AV-45, which also binds to $\mathrm{A} \beta$ plaques, and has a significantly longer half-life than ${ }^{11} \mathrm{C}-\mathrm{PIB}$ [37].

Single photon emission computed tomography (SPECT) presents an alternative to PET for diagnostic imaging of AD in that it is available in more hospitals than PET scanners, and the half-lives of the radionuclei are significantly longer [38]. Several
imaging agents for $\mathrm{A} \beta$ plaques are being developed, and are based largely on Congo Red and thioflavin-T, which are known to bind to amyloid aggregates as they are used in staining and fluorescence studies [38].

1.1.6 Defining the Drug Molecule

To understand what is needed to design and develop a new drug, in particular for Alzheimer's disease, it is relevant to know the features of a drug molecule and what properties it must have in order to be bioavailable.

1.1.6.1 Characteristic Features of Drug Molecules

How each drug molecule interacts with its targeted receptor and moves throughout the body is determined by its functional groups and their geometrical arrangement [39]. The functional groups determine the chemical and physical properties of the drug molecule and their geometry in space should be specific enough that they will only bind with the targeted receptor: this should reduce toxicity. If the molecule is too flexible it will be able to bind to other receptors, which can have potentially negative effects [39]. The biological response elicited by the binding of the drug molecule to the target receptor should be beneficial in nature and can result in many different biological responses depending on the receptor in question: the acetylcholinesterase inhibitors mentioned earlier in this chapter bind to their target receptors to block an enzymatic pathway, while other drug molecules can be used to block neurotransmitter receptors, and so forth [39]. Figure 1.11 shows the interaction between a drug molecule and its target receptor.

The structural frame to which the functional groups of the drug molecule are attached in order to maintain a specific three-dimensional arrangement should not be
involved in the interaction themselves, and thus it is generally preferable to use a chemically inert structure composed of hydrocarbons [39]. Rigidity in the framework is also preferable to minimize geometry changes that could affect the target specificity of the molecule and thereby reduce side-effects [39]. In addition the molecule must be able to traverse the hydrophilic and lipophilic regions of the body in order to reach its desired destination, so this chemistry must also be accounted for when designing novel drugs [39]. In the particular case of Alzheimer's disease, drugs need to enter the brain in order to take action; this presents an added obstacle as the drug molecules must pass through the blood-brain barrier (BBB) which is composed of multiple lipid bilayers - drugs must have a proper balance of hydrophilicity and lipophilicity in order to pass through this barrier [39].

Figure 1.11: Drug molecule interacting with target receptor

1.1.6.2 Requirements for a Bioavailable Drug Molecule

There are certain physical and chemical properties that must be met by a drug-like molecule in order for it to be an effective drug molecule assuming an appropriate receptor can be identified [39]. These properties are best summed up by the Rule of Five as proposed by Lipinski: first the molecular weight should be less than $500 \mathrm{~g} / \mathrm{mol}$, since the molecule must be small enough to be transported throughout the body [39, 40]. Second, the molecule should have a $\log P$ value less than 5 (where $\log P$ is the logarithm of the octanol-water partition coefficient) since the molecule must have a certain lipophilicity in order to allow it to cross lipid layers but also have enough hydrophilicity that it can dissolve in the blood and circulate through the body [39, 40]. Third and fourth the molecule should not have more than five hydrogen bonding donors and no more than ten hydrogen bonding acceptors; too many polar groups results in rapid elimination of the drug from the body since the kidneys will filter out highly polar molecules more quickly, resulting in little therapeutic effect of the drug as its half life would be very short (a drug half life is defined as the time it takes for half of the drug molecules delivered to the desired target to be metabolized) [39, 40]. There are exceptions to the above rules should the drug be an analogue of molecules that are transported actively across cell membranes (as opposed to passive diffusion, which is the normal entry method for most drug molecules) [39, 40].

It should also be noted that if these drug molecules must cross the blood-brain barrier there are further limitations; in particular the $\log P$ value must be between 1.5 and 3.0 so as not to be too hydrophilic or consequently so lipophilic that it cannot reach the brain [39]. It is also suggested that there be even fewer hydrogen donors or acceptors
(three is usually the maximum) and it is very unlikely that any charged molecules will be able to pass this barrier if entry is being sought via passive diffusion [39]. If the drug molecule is being transported actively into the brain as a structural analogue of either Lphenylalanine or D-glucose (both being molecules that are actively transported across the BBB), there is more leeway in the type and number of functional groups as well as the size of the drug molecule [39].

Drug molecules can be designed to mimic molecules already present in the body (several such molecules will be examined in the research presented in this thesis) or they can be designed to target pathways involved in the production or elimination of certain molecules [39]. The difficulty with designing drugs for Alzheimer's disease lies in ensuring that they are capable of meeting the above requirements in order to cross the BBB.

1.1.7 THE PROMISCUOUS DRUG CONCEPT

It has been proposed that a novel way of approaching the treatment of AD would be to design a "promiscuous" drug capable of interacting with many of the proteins involved in disease [41]. Analysis of multiple proteins related to Alzheimer's disease has revealed a common $\mathbf{B B X B}$ motif (or pattern of amino acids), where B represents a basic amino acid [41]. This BBXB motif is found only on proteins affiliated with AD. The concept is therefore to design or find a small molecule that is capable of binding to this specific pattern of amino acids. A single molecule could thus act in a "promiscuous" manner by binding to the same motif on multiple proteins, allowing for a multifaceted approach to treating the disease using a single drug molecule.

1.1.7.1 HHQK

One of the identified $\mathbf{B B X B}$ motifs is the $\mathbf{H H Q K}$ region of β-amyloid [41]. This region is particularly significant as it is highly positively charged, and can interact with the negatively charged regions (such as glycosaminoglycans) on the surface of membranes to allow for conformational conversions to occur. Designing and developing small molecules to bind to this HHQK region should prevent such membrane interactions from occurring, and thereby unwanted conformational changes that result in neurotoxicity.

1.2 Molecular Modelling

Molecular modelling involves the use of empirical molecular mechanics force fields to study the conformational energies of molecules. There are a wide variety of force fields available to the computational chemist, ranging from generic force fields that are applicable to a wide range of molecular systems and atom types to those that are specific to small molecules, nucleic acids or proteins.

1.2.1 What are Force Fields?

A force field is composed of a functional form (energy equations) and parameters that are used to calculate the energy of a system based on the inter- and intramolecular forces of that system [42]. Force fields ignore electron contributions, calculating energies based solely on nuclear contributions [42]. As they are empirical in nature, there is no absolutely correct form for a force field; therefore, a force field can be selected based on its suitability for a particular system given that the parameters can determine how well a particular force field functions with certain systems [42].

Each force field has a functional form and parameters with four basic components being common to all force fields; these can be grouped into terms related to bonding interactions and terms related to nonbonding interactions [42]. Energy terms describing the deviation of bond lengths and angles from specified equilibrium values, as well as torsional changes, are the terms related to bonding interactions, whereas electrostatic and van der Waals energy terms compose the non-bonding interaction terms [42]. Depending on the force field in question, $a d$ hoc hydrogen bonding terms can also be included.

The parameters that help define a force field give the various constants necessary for the functional form in terms of atom types [42]. The atom type contains information about the atom such as its hybridization state, the atomic number and, depending on the force field, information about the local environment of the atom [42]. Atom types can be more or less specific, depending on the type of force field being used for molecular modelling. A more generic force field, such as DREIDING2.21, will assign all atoms of the same element the same atomic type, whereas some more specialized force fields, such as CHARMM, will assign different atom types to a particular element depending on the nature of the local environment of the atom; for example, a nitrogen atom in a ring is assigned a different atom type than one in a peptide [42, 43, 44].

Parameters are instituted for force fields based on the properties that the force field is designed to predict [42]. In the realm of molecular modelling, force fields are most typically designed to reproduce structural properties of systems [42]. Another asset of these force fields is that their parameters allow for transferability of the force field new parameters do not have to be defined for each individual molecule in a system, which is to say that related molecules can be treated using the same force field [42]. An example
of the transferability of force fields would be the CHARMM force field, which can be applied to any protein-based system, and can be used for energy calculations, or dynamics simulations of the proteins interacting with other molecules, or energy minimizations, allowing for optimal protein geometries to be located [44].

1.2.2 THE DREIDING2.21 FORCE FIELD

Optimizations performed in the Cerius ${ }^{2}$ molecular modelling environment involve the use of the DREIDING2.21 force field [43, 45]. The DREIDING2.21 force field is a simple, generic force field applicable to a variety of systems from organic and biological molecules to main-group inorganic molecules, and allows for structural predictions as well as dynamics simulations [43]. The force field treats all atoms of the same atomic type identically, with types being assigned automatically based on the topology of the structure in question [43]. The functional form of the DREIDING2.21 force field is as follows:

$$
\begin{equation*}
\mathrm{E}=\mathrm{E}_{\mathrm{val}}+\mathrm{E}_{\mathrm{nb}} \tag{1.1}
\end{equation*}
$$

This equation sums the total energy from the energy of valence interactions (e.g. bonding interactions), $\mathrm{E}_{\text {val }}$ and the energy of nonbonding interaction energies, E_{nb}.

These two energy terms are summations of various energy interactions as follows:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{val}}=\mathrm{E}_{\mathrm{B}}+\mathrm{E}_{\mathrm{A}}+\mathrm{E}_{\mathrm{T}}+\mathrm{E}_{1} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n b}=E_{v d w}+E_{Q}+E_{h b} \tag{1.3}
\end{equation*}
$$

Looking at the valence energy terms, the bond stretching energy, E_{B}, is defined by default as a harmonic oscillator where:

$$
\begin{equation*}
E_{B}=1 / 2 k_{e}\left(R-R_{e}\right)^{2} \tag{1.4}
\end{equation*}
$$

In this case, k_{e} is the stretching constant at equilibrium, R is the variable bond length and R_{e} is the equilibrium value of the bond length. The bond-angle bending energy, E_{A}, is calculated using a harmonic cosine function:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{IJK}}=1 / 2 \mathrm{C}_{I J K}\left[\cos \theta_{I J K}-\cos \theta_{J}^{0}\right]^{2} \tag{1.5}
\end{equation*}
$$

θ is defined as the angle between bonds $I J$ and $J K$ for two bonds sharing a common atom, and θ_{J}^{0} is the equilibrium angle while

$$
\begin{equation*}
\mathrm{C}_{I J K}=\mathrm{K}_{I J K} /\left(\sin \theta_{J}^{0}\right)^{2} \tag{1.6}
\end{equation*}
$$

where $\mathrm{K}_{\mathrm{IJK}}$ is a force constant, independent of I, J and K, defined as:

$$
\begin{equation*}
\mathrm{K}_{I J K}=100(\mathrm{kcal} / \mathrm{mol}) / \mathrm{rad}^{2} \tag{1.7}
\end{equation*}
$$

The dihedral angle torsion energy term, E_{T}, is expressed in the form of a cosine series expansion:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{I J L K}=1 / 2 \mathrm{~V}_{J K}\left\{1-\cos \left[n_{J K}\left(\varphi-\varphi_{J K}^{0}\right)\right]\right\} \tag{1.8}
\end{equation*}
$$

The periodicity is described by $n_{J K}$, the dihedral angle by φ, the equilibrium torsional angle by $\varphi^{0}{ }_{J K}$, while $\mathrm{V}_{J K}$ is a barrier to the rotation and is dependent on the specific case being calculated [42, 43]. The parameters for the torsional term in DREIDING2.21 are based on hybridization rather than on the particular atoms involved [43]. The energy of
the inversion terms, E_{1}, which are terms that describe the ease or difficulty of maintaining planarity, is described as follows:

$$
\begin{equation*}
\mathrm{E}_{1}=\mathrm{E}_{I J K L}^{\mathrm{d}}=1 / 2 \mathrm{C}_{I}\left(\cos \psi-\cos \psi_{I}^{0}\right)^{2} \tag{1.9}
\end{equation*}
$$

$I J K L$ represents four atoms connected together with I being the central atom, and ψ is therefore equal to the angle between the $I L$ bond and the $J K L$ plane. The equilibrium angle is $\psi^{0}{ }_{I}$ and

$$
\begin{equation*}
\mathrm{C}_{I}=\mathrm{K}_{I} /\left(\sin \psi_{I}^{0}\right)^{2} \tag{1.10}
\end{equation*}
$$

K_{I} is the force constant and is a parameter determined by the nature of the molecule whether the system is planar or nonplanar.

The non-bonding energy term has two components, the first being van der Waals interactions, also referred to as dispersion interactions, $\mathrm{E}_{\mathrm{vdw}}$, which is expressed by a Lennard-Jones type function as the default:

$$
\begin{equation*}
E^{\mathrm{LJ}}{ }_{\mathrm{vdw}}=\mathrm{D}_{0}\left[\rho^{-12}-2 \rho^{-6}\right] \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\mathrm{R} / \mathrm{R}_{0} \tag{1.12}
\end{equation*}
$$

The bond length is represented by R, the van der Waals bond length by R_{0}, and the van der Waals well depth by D_{0}. The values for D_{0} and R_{0} are calculated by the following equations:

$$
\begin{align*}
& \mathrm{D}_{0 i j}=\left[\mathrm{D}_{0 i i} \mathrm{D}_{0 j j}\right]^{1 / 2} \tag{1.13}\\
& \mathrm{R}_{0 i j}=1 / 2\left(\mathrm{R}_{0 i i}+\mathrm{R}_{0 j j}\right) \tag{1.14}
\end{align*}
$$

The two atoms being examined in an interaction are represented by i and j [2]. The other component of the non-bonding energy term is the electrostatic interaction energy, E_{Q}, which uses Gasteiger charge estimates and is calculated using a version of Coulomb's law for a system in vacuum $[42,43]$.

$$
\begin{equation*}
\mathrm{E}_{\mathrm{Q}}=(322.0637) \mathrm{Q}_{1} \mathrm{Q}_{2} / \varepsilon \mathrm{R}_{i j} \tag{1.15}
\end{equation*}
$$

The 322.0637 term is a conversion factor used for converting the energy into $\mathrm{kcal} / \mathrm{mol}, \mathrm{Q}_{1}$ and Q_{2} are the point charges, measured in electron units, the dielectric constant is ε and the distance between the two atoms is $\mathrm{R}_{i j}$, measured in angstroms [43]. The DREIDING2.21 force field also contains a term for calculating energies associated with explicit hydrogen bonding within the non-bonding energy term and is represented by E_{hb}.

$$
\begin{equation*}
\mathrm{E}_{\mathrm{hb}}=\mathrm{D}_{\mathrm{hb}}\left[5\left(\mathrm{R}_{\mathrm{hb}} / \mathrm{R}_{\mathrm{DA}}\right)^{12}-6\left(\mathrm{R}_{\mathrm{hb}} / \mathrm{R}_{\mathrm{DA}}\right)^{10}\right] \cos ^{4}\left(\theta_{\mathrm{DHA}}\right) \tag{1.16}
\end{equation*}
$$

The hydrogen donor, the hydrogen atom, and the hydrogen acceptor are represented by D , H, and A, respectively, while the bond angle between these atoms is $\theta_{\text {DHA }}$. The distance between the donor and acceptor atoms (D and A) is given by R_{DA} while the values for D_{hb} and R_{hb} are dependent on the charge calculation method. Further details on the functional form and parameters of this force field are described by Mayo et al [43].

1.2.3 THE CHARMM Force Field and QUANTA

The QUANTA program, from Accelrys Inc., uses the CHARMM (Chemistry at HARvard Macromolecular Mechanics) force field [3, 5]. The CHARMM22 version of this force field is available from MOE (Molecular Operating Environment Inc.), and has been parameterized specifically for proteins, with an emphasis on solution phase interactions in water [47, 48].

The CHARMM force field calculates the energy of a system using a functional form containing bonded and non-bonded interaction energies based on atomic coordinates [44]. The equation for the force field is as follows:

$$
\begin{equation*}
\mathrm{E}=\mathrm{E}_{\mathrm{b}}+\mathrm{E}_{\theta}+\mathrm{E}_{\varphi}+\mathrm{E}_{\omega}+\mathrm{E}_{\mathrm{vdW}}+\mathrm{E}_{\mathrm{el}}+\mathrm{E}_{\mathrm{hb}}+\mathrm{E}_{\mathrm{cr}}+\mathrm{E}_{\mathrm{c} \varphi} \tag{1.17}
\end{equation*}
$$

The energy terms associated with bonding interactions are $E_{b}, E_{\theta}, E_{\varphi}$, and E_{ω}, with E_{b} being the bond potential energy which is calculated via the following:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{b}}=\Sigma \mathrm{k}_{\mathrm{b}}\left(\mathrm{r}-\mathrm{r}_{0}\right)^{2} \tag{1.18}
\end{equation*}
$$

The bond length is r, which is measured in angstroms, and k_{b} is a force constant which is selected based on the atom type along with r_{0} which is the minimal value of the bond length [44, 46]. The energy term associated with bond angles is given the following form [49]:

$$
\begin{equation*}
\mathrm{E}_{\theta}=\Sigma \mathrm{k}_{\theta}\left(\theta-\theta_{0}\right)^{2} \tag{1.19}
\end{equation*}
$$

The bond angle is represented by θ, and the minimum of the bond angle by θ_{0}, while k_{θ} is the force constant specified by the CHARMM parameters [49]. Both the bond length and bond angle energy terms are treated as harmonic oscillators in the form of Hooke's Law [44]. The torsional energy depends on the angle between four connected atoms with rotation occurring around the middle pair of atoms and is calculated by [44,50]:

$$
\begin{equation*}
\mathrm{E}_{\varphi}=\Sigma\left|\mathrm{k}_{\varphi}\right|-\mathrm{k}_{\varphi} \cos (\mathrm{n} \varphi) \tag{1.20}
\end{equation*}
$$

The n is a geometric constant that is equal to $1,2,3,4$, or 6 and is dependent on the parameters selected in CHARMM, the k_{φ} is the force constant and the φ is the dihedral angle of the system in question $[44,50]$. The remaining bonding energy term is the improper inversion term which involves planarity in molecules and takes the form of a harmonic oscillator:

$$
\begin{equation*}
\mathrm{E}_{\omega}=\Sigma \mathrm{k}_{\omega}\left(\omega-\omega_{0}\right)^{2} \tag{1.21}
\end{equation*}
$$

The improper torsion angle is represented by ω, and the minimum torsion angle by ω_{0} and k_{ω} is the force constant [44].

The non-bonding interaction terms begin with the van der Waals energy term,
$\mathrm{E}_{\mathrm{vdW}}$, which is calculated via:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{vdW}}=\sum_{\operatorname{excl}(i, j)=1}\left(\mathrm{~A}_{i j} / \mathrm{r}_{i j}^{12}-\mathrm{B}_{i j} / \mathrm{r}_{i j}^{6}\right) \operatorname{sw}\left(\mathrm{r}_{i j,}^{2}, \mathrm{r}_{\text {on }}^{2}, \mathrm{r}_{\text {off }}^{2}\right) \tag{1.22}
\end{equation*}
$$

The equation involves a switching function, sw, which is equal to either 1 or 0 as determined by a set of formulae that are detailed in the CHARMM force field documentation [44].The van der Waals bond length minima are represented by $\mathrm{A}_{i j}$ and $\mathrm{B}_{i j}$ while the measured distance between two atoms i and j is represented by $\mathrm{r}_{i j}$. The exclusion term $\operatorname{excl}(i, j)=1$ refers to the excluded list that is generated for the system under study - atoms that are too close (i.e. in a bonding situation) are to be excluded from the calculation; a cutoff distance is also determined such that those atoms too far away to interact are not included $[44,50]$. The electrostatic energy term, $\mathrm{E}_{\text {el }}$, is given by $[44,50]$:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{el}}=\sum_{\operatorname{excl}(i, j)=1} \mathrm{q}_{i} \mathrm{q}_{j} / 4 \pi \varepsilon_{0} \mathrm{r}_{j j} \tag{1.23}
\end{equation*}
$$

The partial atomic charges on each of the two atoms involved in the calculation are given by q_{i} and q_{j} while the distance between the two atoms is given by $\mathrm{r}_{i j}$ and the dielectric constant is $\varepsilon_{0}[44,50]$.

Although there is a hydrogen bonding term available in the CHARMM force field, it is often excluded as the hydrogen bonding interactions can be accurately represented by the electrostatic and van der Waals terms [48].

The other two energy terms involved in the functional form are related to atom harmonics, E_{cr} and dihedral constraints $\mathrm{E}_{\mathrm{c} \varphi}$; as these are energies related to constraints
applicable to atoms in the system but were not used in calculations involved in the research for this thesis, the equations will not be given here but are found in Brooks, et al. [44].

1.2.4 Energy Minimization Algorithms

Energy minimization algorithms are used in molecular modelling to assist in identifying the lowest energy, optimal molecular conformation of a system [42]. The use of this energy minimization technique is an essential part of the presented research.

In order for molecular modelling to be viable, the Born-Oppenheimer approximation is applied, which states that for molecules in the electronic ground state, the energy can be considered a function of the nuclear coordinates, and will only change when the nuclear positions change [42]. The energy of a system is thus described by the potential energy surface (PES), where the energy varies with the nuclear coordinates [42]. The goal of these minimization algorithms is to find a local minimum point on the potential energy surface, since a minimum point corresponds to a relatively stable structure or conformation; stable structures are lower in energy than unstable structures and therefore a lower energy conformation will be equivalent to a minimum point on the potential energy surface [42]. These energy minimization techniques, sometimes called geometry optimization algorithms since they find the optimal geometry/conformation for a system, find only the minimum points on the potential energy surface and thus may not actually correspond to the active form of a biological system, particularly since existing in a low energy state is not the only criterion for an active drug molecule [42].

There are many algorithms available for energy minimization [45, 49]. Some of these algorithms are only applicable to small systems. For example, the Newton Raphson algorithm is best suited for systems with 200 or fewer atoms [42]. In the case of molecular modelling, particularly in the case of systems involving explicit solvation, the systems being studied usually contain several thousand atoms, and there are two algorithms particularly suited to the minimization of such large systems: steepest descent and conjugate gradient [42]. These two minimization algorithms are available in QUANTA and Cerius ${ }^{2}$ [45, 46]. In the MOE program, however, three consecutive energy minimization algorithms are applied to a system regardless of the number of atoms present: steepest descent, conjugate gradient and truncated Newton [51].

1.2.4.1 The Steepest Descent Algorithm

Steepest descent is a particularly useful algorithm when starting with an initial conformation in a high energy state [42]. It is a first order minimization method that involves the atomic coordinates being changed gradually as the system is moved closer to an energy minimum point; thus the positional shifts are gentler than some of the other methods. However, the steepest descent algorithm is more likely to generate a low energy structure regardless of the system being optimized [42, 44, 52]. Movements along the PES are made in a direction parallel to the net force, and the direction and gradient of each successive step is orthogonal to the previous step - this stepwise manner is the main reason that the steepest descents method tends to be nonconvergent in larger systems (Figure 1.12) [42, 44].

Figure 1.12: Steepest descent approach
One method for taking these steps downhill is the arbitrary step approach. The step size taken for each iteration is also modified, starting off with a predetermined value and then adjusted according to whether the previous step taken resulted in an increase or decrease in the potential energy; a multiplicative factor is applied to the step size which will either augment or diminish the next step taken [42].

More commonly a line search approach is used for both the steepest descents and conjugate gradient methods of minimization; the line search approach is one dimensional and follows along the direction vector that is determined at each iteration [42, 52]. The line search brackets the minimum along the line, where the minimum point is lower in energy than the two points bracketing it; the distance between these points is then gradually decreased by each iterative step [42].

1.2.4.2 The Conjugate Gradient Algorithm

The other very useful algorithm for optimizing the conformational energies of complex biological systems is the conjugate gradient approach. Unlike steepest descents, it is preferable to apply this algorithm only when the system is close to a minimum on the PES, particularly when larger systems are being studied [52]. Like the steepest descent
algorithm, a line search approach is also taken for the conjugate gradient minimization method; however, the direction of the steps taken differs in that, while the gradients are still orthogonal the direction of the steps is conjugate (Figure 1.13) [42, 52]. These conjugate directions will allow the minimum to be reached in fewer steps than in steepest descents; for example, if one is dealing with a quadratic function, containing M variables, the minimum will be reached in M number of steps - two variables results in two steps until the minimum is achieved [42].

Figure 1.13: Conjugate gradient approach
It is useful to first run steepest descents to relieve strain in high energy systems and then to run the conjugate gradient algorithm to attain a minimum point on the potential energy surface and by doing so, also obtain a stable structure for the system [52]. These algorithms are the most useful for dealing with the large atomic systems that are studied via molecular modelling [42].

1.2.4.3 The Truncated Newton Algorithm

Unlike the steepest descent and conjugate gradient algorithms, the truncated Newton algorithm is a second-order method [42]. Second-order methods use the second derivative, which deals with the curvature of the energy function, to predict where a
minimum will be located along the direction chosen on the PES using the gradient [42, 51, 52]. Given that the algorithm involves solving the Newton equations, which can be an intensive, computationally demanding process, an iterative linear equation solver is employed to solve these equations in an approximate manner that guarantees the minimum will be reached $[51,52,53]$. This iterative solver is terminated after relatively few iterations, leading to the moniker of truncated Newton [51, 53].

The Molecular Operating Environment uses these three algorithms sequentially. Initially several iterations of the steepest descents algorithm are used to bring the gradient down to a more reasonable range and continues only in the direction of energy descent [47,51,53]. The conjugate gradients algorithm is then applied to improve the search for a low energy minimum, bringing the gradient down further so that the truncated Newton algorithm can then be applied to find the lowest energy minimum for the energy function [51, 53].

1.3 Quantitative Structure-Activity Relationships

The use of quantitative structure-activity relationship (QSAR) studies is an extremely useful molecular modelling tool for the development of novel drug molecules. The concept of a QSAR involves the assumption that the physical properties of a compound are related to its structure and therefore related compounds (e.g. in the same family of compounds) will have similar properties [54]. The basis is then that mathematical models can be used to first relate and then predict a particular property for sets of compounds: molecular descriptors are calculated for various data sets and then statistical tools are applied to improve the predictive capacity of the descriptors by determining which of the descriptors are relevant to the desired property (for example the
biological activity of the compounds) and eliminating those which have no significant contribution [54]. While techniques related to QSAR have existed since the mid 1800s, molecular modelling allows for an expanded range of descriptors to be calculated for each compound and detailed statistical analyses to be performed at minimal costs in the process of designing new drugs [54].

Molecular descriptors calculated in QSAR studies cover a wide range of properties: physicochemical, electronic, topological and geometric [39]. These descriptors can use the molecular structure to calculate such properties as bond lengths and angles, molecular dipoles and the polar surface area, the number of particular atom types or the $\log \mathrm{P}$, all of which can play an important role in the biological activity of a particular compound $[39,55]$. Over 330 descriptors can be calculated in MOE for QSAR studies, encompassing two-dimensional (e.g. number of aromatic rings) and three-dimensional descriptors (e.g. the van der Waals volume) [51].

Quantitative structure-activity relationship studies are performed in an iterative fashion in combination with the syntheses of diverse molecules with highly variable biological activity data in order to improve the design of novel drug molecules to obtain maximal efficacy. The process of performing a QSAR requires a set of molecules with known properties. In the case of the presented research this will involve data related to the biological activity of the molecules in question. This training set of molecules contains a selection of compounds with known properties and a significant number of molecular descriptors are calculated for each of the molecules in the set [54, 55].

Statistical analyses in the form of multivariate analyses such as principal components analysis (PCA) and partial-least squares (PLS) are applied to the calculated descriptors to find the most relevant contributions to generate a linear equation capable of predicting the desired property [54]. In PCA, the original data is transformed into linear combinations of the original variables that account for the variance covered by the descriptors, with most of the variance covered in the first principal component (the new variables are referred to as principal components) [56]. In PLS, the data is transformed such that the most variance is represented while retaining the correlation between the dependent and independent variables [56]. In MOE, a binary QSAR model is also available which is non-linear and uses probability distributions to determine how well descriptors can predict the activity or inactivity of molecules [K].

If a large number of descriptors have been calculated for the QSAR, their number is reduced based on their contributions to the predictiveness of the QSAR as otherwise there is a risk of overfitting the data. Overfitting the data means that while the predictions of activity for the training set of compounds will be extremely accurate, the model will be unlikely to provide accurate predictions for the validation set. Descriptors can be "weeded out" based on measures of their importance to correctly predicting activity, and correlation to other descriptors. Two different descriptors may both describe the same property accurately, therefore only one would be needed for the QSAR. As well, some descriptors may provide no information relative to the molecules that are being studied and can thus be eliminated from the QSAR.

The QSAR methods involving linear equations are be validated through the use of statistics such the r^{2}, bootstrap r^{2} and cross-validation methods which deal with the
goodness of fit of the generated mathematical model $[54,56]$. The r^{2} value, the square of the correlation coefficient, measures the goodness of fit of the data and better prediction are obtained the closer this value is to 1 , and the bootstrap r^{2} is the average squared correlation coefficient [56]. The cross-validated r^{2} value is a variation of this measurement where either one or more molecules from the training set are left out, with the remaining molecules used for a model to predict the property of the excluded compound; this value is usually lower than the r^{2} value [56]. Validation of a binary QSAR involves evaluating the sensitivity and the specificity of the model; the sensitivity is measured as the number of correctly predicted actives divided by the number of observed actives, while the selectivity is measured as the number of correctly predicted inactives divided by the number of observed inactives [57]. These two values can be added together and divided by the total number of compounds to determine the overall accuracy of the model [57]. As this is a binary model, Cohen's kappa can also be calculated to determine how accurate the model is by taking into account the correct predictions that could occur by chance; the best model will have a kappa value that is close to 1 [58].

After a mathematical model has been generated for the training set of data with good statistical values, the linear equation is then applied to a validation set of data, which contains a mixture of active and inactive molecules [54]. Successful application of the model will allow for the model to be applied to further related compounds with unknown activity in order to determine which molecules should be selected for synthesis. Unsuccessful models may be the result of not having calculated enough descriptors to adequately relate the structural features to the desired property or may be due to the presence of outliers which will need to be dealt with on an individual basis; overfitting of
the data may also occur when too many descriptors are used [54]. These QSAR studies can be repeated as many times as necessary to improve the activity of lead compounds in the design of novel therapeutics.

Both QSAR studies and molecular mechanics in the field of molecular modelling are useful tools in the development and design of novel therapeutics for Alzheimer's disease.

1.4 RESEARCH GOALS

This research encompasses several goals related to the design and development of novel therapeutics for the treatment of Alzheimer's disease, and also a novel approach to identifying the disease presence in individuals using a known drug in a new and functional manner.

The β-amyloid peptide, as it exists at physiological pH within the brain, contains a highly positively charged region that is believed to be directly involved in its conformational changes, this region is designated as the HHQK peptidic segment. More specifically, this region is concentrated in both aromatic rings capable of $\pi-\pi$ interactions, and cationic charged side chains capable of multiple interaction types. Given this knowledge, the use of highly negatively charged molecules as well as aromatic rings capable of forming aromatic- π interactions as potential therapeutics, presents itself as an option for targeting this area of interest, as these functional groups should allow for binding to this charged region on the $A \beta$ peptide.

In this thesis, computational methods will be used to identify endogenous molecules of the brain that may bind to β-amyloid to prevent its aggregation. This is a
new approach to the disease, as no one has examined small molecules that already exist in the brain for their potential anti-AD properties, or even postulated their existence. This research topic is the continuation of work performed in the Master's thesis by the author entitled "Endogenous Therapeutics for Alzheimer's Disease: Zwitterionic Molecules." Others have suggested peptidic macromolecules as supposed endogenous antiAlzheimer's agents, but none of them are small molecules, and none of them are potential therapeutics [59].

Through the use of these computational methods, an endogenous molecule that exhibits excellent activity in binding to β-amyloid was identified (Chapter 2). The preliminary research in this chapter, encompassing Sections 2.2-2.6, is from the author's Master's thesis work, and is further expanded on in the rest of the chapter. These endogenous molecules present ideal targets as compounds that already exist in the brain are less likely to cause the side effects that non-endogenous molecules may incur. The enzymatic processes involved in the syntheses and metabolism of these molecules can be targeted to increase levels in the brain, or they can be used to design structurally relevant molecules capable of crossing the blood-brain barrier.

The use of computational methods to identify and develop endogenous (and structurally related synthetic) molecules for AD is also a novel approach. These computational techniques have been used to examine the binding of endogenous and synthetic molecules to a common BBXB motif on proteins involved in Alzheimer's disease in order to validate the "promiscuous drug" concept (Chapter 3). Computational methods were also used to develop analogues of endogenous molecules through the use of a QSAR (Chapter 3).

Furthermore, both endogenous and synthetic molecules were examined for their potential to bind to the HHQK region of $\mathrm{A} \beta$, due to its role in the protein misfolding process (Chapter 3). The EVHHQK region was also targeted for binding studies with endogenous and synthetic molecules via computational methods (Chapter 4).

The nearby LVFF region of β-amyloid was also examined as a potential target for identified molecules to bind to in order to prevent aggregation (Chapter 5). The binding strength of molecules with both the HHQK and LVFF regions was compared to determine if a single molecule could target both regions with the same efficacy.

Computational methods have also been used to examine the repurposing of a known drug for use as a diagnostic agent for Alzheimer's disease (Chapter 6). The results of these studies will allow for the development of a novel diagnostic agent for AD , capable of binding to the soluble forms of $A \beta$, allowing for both earlier diagnosis of the disease and definitive diagnosis.

CHAPTER 2: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING HHQK: PHOSPHOSERINE

It is understood that the clinical course of Alzheimer's disease is quite variable from one afflicted person to another. One potential explanation for this variability arises from the possibility that there are "endogenous" protective factors; i.e. chemicals naturally occurring within humans that have anti-amyloidogenic properties. The research in this chapter focuses on the concept of an endogenous molecule of the brain that will bind to β-amyloid in its monomeric form to prevent aggregation from occurring.

2.1 THE HHQK REGION OF $\boldsymbol{\beta}$-AMyloid as a Binding TARGET

The HHQK region of $\mathrm{A} \beta$, residues His13-His14-Gln15-Lys16, is postulated to be a key component in the interactions that lead to the misfolding of $A \beta$ as it has a highly positively charged region that can interact with the surface of membranes [16, 17, 41]. This HHQK segment also fits the $\mathbf{B B X B}$ motif identified as being present in various proteins involved in Alzheimer's disease [41]. Molecules containing negatively charged functional groups or aromatic rings should be able to interact with this charged region to block it from other unwanted interactions and thus prevent protein misfolding.

2.2 Identification of Phosphoserine as an Endogenous Molecule to TARGET THE HHQK REGION OF $\boldsymbol{\beta}$-AMyloid

To identify a molecule capable of interacting with the $\mathbf{H H Q K}$ region, we put in place an in silico library of endogenous compounds. Using standard textbooks of biochemistry and neurochemistry, coupled with an exhaustive review of literature, we assembled a list of 1,451 compounds (having a molecular weight less than 600) that are naturally occurring within the human brain (these are listed in Appendix 1). A library was constructed containing these compounds in energy minimized, fully extended conformations. This library was screened against the identified BBXB motif and phosphoserine (Figure 2.1) is one of the endogenous molecules that was identified through this virtual screening campaign.

Figure 2.1: Phosphoserine at physiological pH
Phosphoserine is a small endogenous molecule of the brain that is believed to play a role in Alzheimer's disease. Despite suggestions that this role is destructive as proposed by Klunk et al, it is in fact possible that phosphoserine has a protective role in the brain by binding to β-amyloid to prevent the conformational conversions that result in neurotoxic aggregates $[60,61]$. Given that phosphoserine is already endogenous to the
brain, and is shown to be capable of binding to this HHQK region, it presents greater possibilities for developing drugs that will be able to prevent β-amyloid neurotoxicity.

2.3 Phosphoserine in the Brain

There is some controversy over the role of phosphoserine in Alzheimer's disease. Studies by Molina et al have shown that levels of phosphoserine are decreased in the brains of patients with Alzheimer's disease, while having higher levels of phosphoserine in plasma compared to age- and sex-matched patients [62]. In contrast, studies by Klunk and Mason et al have shown a correlation between levels of phosphoserine and the presence of β-amyloid plaques; the highest levels of phosphoserine are located in the regions containing the fewest plaques [60,61]. Klunk has measured normal levels of phosphoserine in the brain to be 0.3 mM , with an increase of up to 1 mM in the brain of Alzheimer's patients [63]. Thus controversy arises over whether brain levels of phosphoserine are actually increased or decreased in the disease.

Klunk suggests since phosphoserine bears structural similarity to glutamate, which is an excitatory neurotransmitter, that phosphoserine could therefore act as an NMDA antagonist and be a cause of the memory disturbances in Alzheimer's patients [60]. According to Mason and Klunk, given that levels of phosphoserine is highest in regions with fewer plaques, it may play a role in the pathogenesis of the disease [$60,63,64]$. They further conclude these increased levels of phosphoserine result in membrane changes that lead to the abnormal processing of APP to generate A β [64].

More recent studies by Wu et al suggest rather that the excitotoxicity is the result of D-serine, which is a metabolite of phosphoserine and a potent co-agonist of the NMDA receptor [65]. The rate limiting step in the conversion of L-serine to D-serine is suspected
to be the catabolism of phosphoserine to L-serine [66]. If the brain levels of phosphoserine are increased as Klunk et al claim, it may be that increased levels of Dserine would have more of an effect than phosphoserine.

None of the studies have actually studied the impact that phosphoserine could have on the aggregation of $A \beta$. It could be alternatively interpreted that as levels of phosphoserine are higher in regions with fewer plaques, that it plays a neuroprotective role to prevent amyloid aggregation from occurring. It is possible that phosphoserine may not be detrimental but could be part of the brain's response as a preventative agent in order to protect the brain.

At physiological pH , phosphoserine contains three charged functional groups: a positively charged amino group, a negatively charged carboxylate group and a negatively charged phosphate group. These charged residues are therefore capable of interacting with the HHQK region of the β-amyloid peptide, which itself is highly positively charged at physiological pH .

2.4 EXPANSION TO TARGET THE EVHHQK REGION OF $\boldsymbol{\beta}$-AMYLOID

As the phosphoserine molecule is in a zwitterionic state at physiological pH , it was realized that the targeted region of $\mathrm{A} \beta$ could be expanded to EVHHQK, residues eleven to sixteen which are glutamic acid11 (Glu11), valine12 (Val12), histidine13 (His13), histidine14 (His14), glutamine15 (Gln15), and lysine16 (Lys16). Potential interactions could occur between the positively charged amino group on phosphoserine and the negatively charged glutamic acid residue in EVHHQK, while the negatively charged groups could interact with the positively charged histidine and lysine residues. The EVHHQK region presents four charged sites (see Figure 2.2) with which
phosphoserine can interact with, in the form of electrostatic interactions, between positively charged amino and negatively charged functional groups and vice versa; hydrogen bonding interactions can also occur as both the charged functional groups and amino acid side chains present themselves as hydrogen bond donors and acceptors.

Figure 2.2: The charged amino acid side chains of the EVHHQK region of β amyloid. The acidic Glu11 group is highlighted in red while the basic His13, His14 and Lys16 residues are highlighted in blue.

2.5 In Vacuo Calculations of Phosphoserine Interacting with $\boldsymbol{\beta}$ AMYLOID

The first phase in determining if phosphoserine could bind to β-amyloid was to minimize $A \beta$-phosphoserine systems in vacuo to determine if stable binding interactions could occur. In calculating the gas phase interaction between phosphoserine and the target

EVHHQK region of β-amyloid, some preliminary work was required to set up the molecules in order to perform the molecular modelling tasks.

2.5.1 SELECTION OF $\boldsymbol{\beta}$-AMYLOID CONFORMERS

Six different conformations of β-amyloid were selected from the RCSB Protein Data Bank (PDB) to be tested for their capacity to bind to and interact with phosphoserine [67]. These six conformers ranged in length from 16 to 42 amino acids long, and the variety of conformers allowed for a better determination as to whether phosphoserine was capable of binding to the EVHHQK region of β-amyloid or not.

The six selected conformers, given by their PDB identifications, were as follows: 1AMB, 1AMC, 1AML, 1IYT, IBA4, and 2BP4 [67, 68, 69, 70, 71, 72, 73]. All structures were obtained via the use of NMR and under acidic conditions; therefore the structures required some preparation before they could be used for the gas phase calculations [6873]. The 1AMB and 1AMC conformers are composed of residues one through 28 of the $\mathrm{A} \beta$ and both have α-helical conformations (Figure 2.3 and 2.4) [68, 69]. The 1AML conformer (Figure 2.5) represents the 1-40 length $A \beta$ found in the brain in a random-coil conformation whereas 1BA4 (Figure 2.6), also composed of amino acids 1-40 of A β, has a more α-helical form, although there is a kink in the coil due to a hydrogen-bonded turn being present [70, 71]. 1IYT (Figure 2.7) is composed of 42 amino acids residues, and has a conformation closer to the more toxic A β form and is composed of two α-helices separated by a sharper hydrogen bonded turn [72]. The shortest conformer studied is the 2BP4 conformer (Figure 2.8) which spans the first through sixteenth residues of the β amyloid peptide and exists in an α-helical form [73].

Figure 2.3: The 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

Figure 2.4: The $\mathbf{1 A M C}$ conformer of $\boldsymbol{\beta}$-amyloid

Figure 2.5: The 1AML conformer of $\boldsymbol{\beta}$-amyloid

Figure 2.6: The 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

Figure 2.7: The 1IYT conformer of $\boldsymbol{\beta}$-amyloid

Figure 2.8: The 2BP4 conformer of $\boldsymbol{\beta}$-amyloid
The six selected conformers were studied using the Cerius ${ }^{2}$ program [45]. The first step was to charge the amino acid side chains such that they would be representative of the charged state as seen at physiological pH . This involved either protonating or deprotonating the side chains and terminal ends as required.

The next step was to locate a structure consistent with an energy minimum on the PES, as this provided a stable, low energy structure with which to work. PDB files of the β-amyloid conformers were downloaded and opened in the Cerius ${ }^{2}$ program [45, 67]. Given that the peptide sequences contain polar and charged molecules, the backbones (i.e. the $-\mathrm{N}-\mathrm{C}_{\alpha}-\mathrm{C}_{=}=$- chain) were constrained to prevent a collapse of the structures during the gas phase calculations, since in a vacuum these elements will be attracted to each other whereas in an aqueous environment the charges will be shielded by the water molecules. Once the backbone of the conformer was constrained, the DREIDING2.21 force field was used to provide energy minimizations using a steepest descent approach [43]. This resulting low energy conformer for the β-amyloid conformation was saved for use both in gas phase and solution phase calculations. The final energies from each conformer that were used in calculating the energy differences for the following gas phase calculations are denoted in Table 2.1.

Table 2.1: Total energies of the six $\boldsymbol{\beta}$-amyloid conformers as calculated using the DREIDING2.21 force field for gas phase calculations in Cerius ${ }^{2}$

Conformer	Total Energy $(\mathrm{kcal} / \mathrm{mol})$
1AMB	268.7
1AMC	248.3
1AML	443.4
1BA4	268.2
1IYT	298.7
2BP4	101.4

2.5.2 Preparation Of the Phosphoserine Molecule

An optimized molecule of phosphoserine was constructed for use in the calculations. In order to find a low energy, stable structure a conformational search was performed; being a gas phase calculation, a neutral structure of the molecule was constructed in order to prevent self-interactions from occurring.

Figure 2.9: Neutral phosphoserine molecule with grid search numbers indicated
An extended, neutral conformation of phosphoserine was constructed, with four torsional angles (1-2-3-4, 2-3-4-5, 3-4-5-6, 4-5-6-7 as shown in Figure 2.9) selected and a grid search was performed in 30° steps from -180.0° to 150.0° [45]. From the resulting structures that were generated during the search, the lowest energy structure was found that was also in an extended conformation (as opposed to being folded in on itself). The selected model was then charged for physiological pH , with a protonated amino group, and deprotonated carboxylate and phosphate groups; the charges were then equilibrated using the Gasteiger algorithm [64]. Finally, all atoms except for the hydrogens were constrained and a steepest descent minimization was performed to ensure the hydrogens were located at the optimal geometries to produce a low energy stable structure. This
model of phosphoserine was used for each of the gas phase calculations, and the total energy of the molecule is given in Table 2.2.

Table 2.2 Total energy of phosphoserine in the gas phase as calculated in Cerius ${ }^{2}$ using the DREIDING2.21 force field

Ligand	Total Energy $(\mathrm{kcal} / \mathrm{mol})$
Phosphoserine	-42.0

2.5.3 CalCulating Gas Phase Interactions Between Phosphoserine and VARIOUS CONFORMERS OF $\boldsymbol{\beta}$-AMYLOID.

The purpose of the gas phase calculations was to determine which orientations, if any, of phosphoserine and β-amyloid would result in binding interactions. Should these binding interactions occur, a select few of the most energetically favourable systems would then be examined via solution phase calculations to mimic the natural conditions of the brain, where such interactions would occur in vivo.

2.5.3.1 Selecting Initial Orientations for Optimization

Before the systems were prepared, it was determined that in order for a favourable interaction to occur, two of the charged functional groups should be oriented towards two of the charged side chains in the EVHHQK segment of β-amyloid. Each initial interaction therefore contains two of the charged phosphoserine groups being oriented towards two different charged side chains on $\mathrm{A} \beta$; the overall number of these potential interactions varies between the different conformations of $A \beta$ being examined.

Experimental studies on drug-receptor interactions showed that the best distance to establish favourable interactions was a distance of approximately $3.0 \AA$ between the functional group and the amino acid side chain. Given these distance requirements, any
possible orientation of phosphoserine and β-amyloid that resulted in a distance greater than roughly $3 \AA$ between the two was rejected: in some cases the side chains of the amino acids were on opposite sides of the β-amyloid peptide and were too far apart to be selected for an initial orientation.

2.5.3.2 Optimization of the Gas Phase Systems

Each of the possible binding orientations available was modelled in the Cerius ${ }^{2}$ program [45]. Once phosphoserine was oriented appropriately towards the peptide, the backbone of the peptide was constrained (to prevent self-interactions) and the system was then optimized (to find the lowest energy system) using the steepest descent algorithm. The resulting system was then saved, the energies calculated and finally examined for potential binding interactions: given that all of the charged side chains and amino acids are also capable of forming hydrogen bonds, bonding interactions were determined to have formed in some of the orientations between phosphoserine and β-amyloid.

To determine the favourability of the potential binding interactions that occurred following optimization, the binding energy was determined. The binding energy, which is based on the total energy of the system, was calculated as follows:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {bind }}=\mathrm{E}_{\mathrm{A} \beta \mathrm{phos}}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {phos }} \tag{2.1}
\end{equation*}
$$

where $E_{A \beta p h o s}$ is the total energy of the optimized β-amyloid-phosphoserine system, $E_{A \beta}$ is the total energy of the β-amyloid conformer involved in the interaction, and $\mathrm{E}_{\text {phos }}$ is the total energy of the phosphoserine molecule, all calculated in the gas phase with the DREIDING2.21 force field [43].

2.5.4 Gas Phase Results of Phosphoserine Interacting With $\boldsymbol{\beta}$-amyloid

The main results of the gas phase interactions between phosphoserine and β amyloid were summarized in the following tables according to the selected $A \beta$ conformer. They include the initial orientations that were selected, the resulting orientations after optimization, the binding energy and the number of internal hydrogen bonds that formed. Phosphoserine had a tendency to form internal hydrogen bonds - that is bonds between its charged functional groups, when minimized with β-amyloid in the gas phase. These internal hydrogen bonds needed to be accounted for when determining which interactions were suitable for solution phase calculations: they lowered the energy state of the system, which made the interaction appear more favourable than it truly was with respect to phosphoserine interacting with $\mathrm{A} \beta$.

The initial and final orientations of the functional groups were listed so that the functional group, represented by $\mathrm{NH}_{3}{ }^{+}, \mathrm{CO}_{2}^{-}$, or $\mathrm{PO}_{3}{ }^{-}$, is located under columns indicating the Glu11-Lys 16 amino acids of β-amyloid: in a few cases bonding interactions occurred outside the specified region and were noted as such. The final orientation observed only shows interactions where bonding interactions have formed. The calculated $\Delta \mathrm{E}_{\text {bind }}$ energies are listed in $\mathrm{kcal} / \mathrm{mol}$.

2.5.4.1 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1AMB CONFORMER OF β-AMYLOID

There were twenty-four possible arrangements for phosphoserine to be oriented such that two functional groups were interacting with two of the four charged side chains on the 1 AMB conformer of β-amyloid. Results in Table 2.3 showed that not all of these initial orientations resulted in binding interactions. As the purpose of the experiment was
to determine whether or not phosphoserine is capable of binding to β-amyloid, the phosphoserine molecule should bind to $\mathrm{A} \beta$ in at least two different places, therefore those systems that did not result in binding at sufficient sites were not selected for future calculations.

Table 2.3: Gas phase results of phosphoserine interacting with the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

Examination of the results eliminated eighteen of the twenty-four interactions as viable options for the solution phase calculations. The remaining six were ranked in order of energy. The number of internal hydrogen bonds that formed was also taken in to consideration when choosing four of the remaining systems for aqueous treatment (see Table 2.4). The interaction is specified by the initial orientation of the system, where P, N,
and C are not representative of amino acids but rather the charged functional groups present on phosphoserine; the amino acids are identified by their one-letter abbreviation for naming simplicity.

Table 2.4: Potential interactions of phosphoserine and the 1AMB conformer of A β

 for solvation| Interaction | $\Delta \mathrm{E}_{\text {bind }}$ |
| :--- | :---: |
| HPHQKN | -79.7 |
| HNHQKP | -74.8 |
| EPVHN | -54.3 |
| ENVHHC | -43.7 |
| HPHC | -41.2 |
| ENVHHP | -32.8 |

From this information, the HPHQKN, HNHQKP, ENVHHC, and HPHC
interactions were selected for solution phase calculations; EPVHN although seemingly lower in energy than the last two orientations selected, also had two binding interactions forming within the phosphoserine molecule, which made the binding energy seem more favourable than it truly was. Figure 2.10 shows the binding interaction resulting from the minimization of the phosphoserine- $\mathrm{A} \beta$ system where the amino and phosphate groups were oriented towards the His13 and Lys16 residues initially.

Figure 2.10: The gas phase interaction occurring between phosphoserine and the His13 and Lys16 residues of the 1AMB conformer of $\boldsymbol{\beta}$-amyloid. Hydrogen bonds are represented by the turquoise lines.

2.5.4.2 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1AMC Conformer of β-amyloid

Table 2.5 shows the results of the twenty-four combinations of initial orientations that were available for phosphoserine to interact with the 1 AMC conformer of β-amyloid. Three of the interactions resulted in binding occurring between phosphoserine and the Tyr10 amino acid on $A \beta$.

Table 2.5: Gas phase results of phosphoserine interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation							$\begin{array}{cc} \Delta \mathrm{E}_{\text {bind }} & \text { Internal } \\ (\mathrm{kcal} / \mathrm{mol}) & \mathrm{H} \text {-Bonds } \\ \hline \end{array}$	
Glu11	Val12	His13	His14	Gln15	Lys16	Tyr10	Glu11	Val12	His 13	His14	Gln15	Lys16		
$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$				$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$			-20.8	1
$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$										14.3	1
$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$			-20.2	2
$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$							$\mathrm{CO}_{2}{ }^{-}$			-24.4	1
$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$							$\mathrm{CO}_{2}{ }^{-}$			-21.2	4
$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{NH}_{3}{ }^{+}$						-30.9	1
$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{NH}_{3}{ }^{+}$				$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$			-43.6	2
$\mathrm{NH}_{3}{ }^{+}$		$\mathrm{PO}_{3}{ }^{-}$					$\mathrm{NH}_{3}{ }^{+}$						-26.5	1
$\mathrm{NH}_{3}{ }^{+}$		$\mathrm{CO}_{2}{ }^{-}$							$\mathrm{CO}_{2}{ }^{-}$				-23.1	1
$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{NH}_{3}{ }^{+}$				$\mathrm{NH}_{3}{ }^{+}$				$\mathrm{CO}_{2}{ }^{-}$			6.6	1
$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{PO}_{3}{ }^{-}$											-25.1	1
$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{CO}_{2}{ }^{-}$				$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$				-32.7	1
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{CO}_{2}{ }^{-}$							$\mathrm{CO}_{2}{ }^{-}$			14.8	1
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{CO}_{2}{ }^{-}$				-12.0	0
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$				-25.6	1
		$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{PO}_{3}{ }^{-}$				-17.5	1
		$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{PO}_{3}{ }^{-}$				-20.9	1
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{PO}_{3}{ }^{-}$										1.4	1
		$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$							$\mathrm{CO}_{2}{ }^{-}$	-24.4	1
		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$							$\mathrm{NH}_{3}{ }^{+}$	-54.3	3
		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	-46.2	1
		$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$							$\mathrm{CO}_{2}{ }^{-}$	-34.5	1
		$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	-69.1	1
		$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$							$\mathrm{CO}_{2}{ }^{-}$	-48.5	1

Only seven of the twenty-four interactions demonstrated potential for solution phase calculations. Table 2.6 summarizes the potential of these interactions according to their binding energy.

Table 2.6: Potential interactions of phosphoserine and the 1 AMC conformer of $\mathrm{A} \beta$ for solvation

Interaction	$\Delta \mathrm{E}_{\text {bind }}$
HNHQKP	-69.1
HCHQKP	-46.2
EPVHN	-43.6
EPVHC	-32.7
ENVHHC	-20.8
ECVHHP	-20.2
ECVHN	6.6

Analysis revealed the four best interactions to use for solution phase calculations were HNHQKP, HCHQKP, EPVHC and ENVHHC; due to the presence of two internal bonding interactions in phosphoserine, EPVHN was ruled out as a possible selection since the true energy of interaction was most likely less favourable than indicated. Although EPVHC had one binding interaction outside the EVHHQK region, it was still deemed acceptable for use in solution phase calculations due to the fact that binding was occurring at two different amino acid side chains and the favourable energy of the interaction.

2.5.4.3 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1AML CONFORMER of β-Amyloid

There were twenty-four possible orientations for phosphoserine to be arranged in to interact with the 1 AML conformer of β-amyloid, the results of which are presented in Table 2.7.

Table 2.7: Gas phase results of phosphoserine interacting with the 1AML conformer of $\boldsymbol{\beta}$ amyloid

Initial Orientation						Final Orientation							$\Delta \mathrm{E}_{\text {bind }} \quad$ Internal (kcal/mol) H-Bonds	
Glu11	Val12	His13	His 14	Gln 15	Lys 16	Glu11	Val12	His13	His14	Gln15	Lys16	Other		
$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$							-51.8	1
$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{CO}_{2}{ }^{-\mathrm{a}}$	-30.0	1
$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$							$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{PO}_{3}{ }^{-\mathrm{b}}$	-20.7	1
$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$							$\mathrm{CO}_{2}{ }^{-}$			-14.2	1
$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$							$\mathrm{CO}_{2}{ }^{-}$			-48.6	3
$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$									$\mathrm{NH}_{3}{ }^{\text {a }}$	-36.0	1
$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{PO}_{3}{ }^{-}$		-32.6	1
$\mathrm{PO}_{3}{ }^{-}$					$\mathrm{NH}_{3}{ }^{+}$								19.3	1
$\mathrm{PO}_{3}{ }^{-}$					$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$		-37.7	1
$\mathrm{CO}_{2}{ }^{-}$					$\mathrm{PO}_{3}{ }^{-}$						$\mathrm{PO}_{3}{ }^{-}$		-24.6	1
$\mathrm{CO}_{2}{ }^{-}$					$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{CO}_{2}{ }^{-\mathrm{b}}$	6.2	1
$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{CO}_{2}{ }^{-}$		-41.0	1
		$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$						$\mathrm{PO}_{3}{ }^{-}$		-50.2	1
		$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{CO}_{2}{ }^{-}$		-46.0	2
		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$						$\mathrm{PO}_{3}{ }^{-}$		-32.5	1
		$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$		-34.3	1
		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{CO}_{2}{ }^{-}$		-36.0	3
		$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$		-11.6	1
		$\mathrm{PO}_{3}{ }^{-}$	NH_{3}^{+}					$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{PO}_{3}{ }^{-\mathrm{c}}$	-48.9	2
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{PO}_{3}{ }^{-}$										-6.8	1
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$					$\mathrm{CO}_{2}{ }^{-}$					-28.3	1
		$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$										-18.6	1
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{CO}_{2}{ }^{-}$										6.1	1
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$									$\mathrm{CO}_{2}{ }^{-\mathrm{c}}$	-16.3	2

Several of the arrangements resulted in binding interactions occurring between phosphoserine and regions outside the area of interest to this study.

Of these twenty-four initial arrangements, only six had binding interactions occurring at two or more sites on β-amyloid, and these are listed in Table 2.8.

Table 2.8: Potential interactions of phosphoserine and the 1AML conformer of A β for solvation

Interaction	$\Delta \mathrm{E}_{\text {bind }}$
HPHN	-48.9
ENVHHQKC	-41.0
ENVHHQKP	-32.6
EPVHHN	-30.0
EPVHHC	-20.7
ECVHHQKN	6.2

The first four, with the lowest binding energies, appear to be the most favourable interactions and were selected for solution phase calculations. Although the HPHN interaction had the lowest energy, it also had two internal bonding interactions that formed in phosphoserine, as opposed to only one for all the other interactions; despite this, the energy minus the extra hydrogen bond should still be more favourable than the two higher energy interactions and so it was selected for further calculations. The HPHN and EPVHHN systems were selected although there were binding interactions occurring outside the region of EVHHQK , as they were suitably favourable interactions meeting the requirement that binding occur at a minimum of two different side chains of $\mathrm{A} \beta$.

2.5.4.4 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1BA4 Conformer of β-Amyloid

Given that the 1BA4 conformer of $\mathrm{A} \beta$ has a hydrogen bond turn present, this resulted in the side chains being further apart or on opposite sides of the peptide chain than in a strictly α-helical chain structure. As a result there were only twelve orientations in which phosphoserine was capable of binding to β-amyloid, and the final results of the gas phase minimizations are summarized in Table 2.9.

There were more instances in which the final binding interactions involved amino acid side chains outside the EVHHQK region of interest. In particular, initial orientations where phosphoserine was positioned to interact with the Glu11 and Lys16 side chains resulted in several binding interactions occurring with the Asp1 residue; given that the terminal amino acid also has a charged amino group, it was capable of interacting with both the positively and negatively charged functional groups on phosphoserine.

There were only five final binding orientations where phosphoserine formed bonding interactions with $\mathrm{A} \beta$ at two or more sites, which are listed in Table 2.10. All of the selected interactions had only one internal hydrogen bond and therefore the four that were selected for further calculations in an aqueous environment were determined based on the binding energy alone.

Table 2.9: Gas phase results of phosphoserine interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation								$\begin{gathered} \Delta \mathrm{E}_{\text {bind }} \\ \text { (kcal/mol) } \end{gathered}$	Internal H-Bonds
Glu11	Val12	His13	His14	Gln15	Lys16	Asp1	Glu11	Val12	His13	His14	Gln15	Lys16	Other		
$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{CO}_{2}{ }^{-}$		0.7	1
$\mathrm{CO}_{2}{ }^{-}$					$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$	-21.8	1
$\mathrm{PO}_{3}{ }^{-}$					$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+} / \mathrm{CO}_{2}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+\mathrm{b}}$	-18.6	1
$\mathrm{CO}_{2}{ }^{-}$					$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$						$\mathrm{PO}_{3}{ }^{-}$		-9.6	1
$\mathrm{PO}_{3}{ }^{-}$					$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{NH}_{3}{ }^{+}$								-6.9	1
$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{NH}_{3}{ }^{+}$							0.1	0
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{CO}_{2}{ }^{-}$									$\mathrm{PO}_{3}{ }^{-}$		-25.8	2
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$											-15.9	2
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{PO}_{3}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$					-41.9	2
		$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{PO}_{3}{ }^{-}$					-46.7	2
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$				-25.5	1
		$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{PO}_{3}{ }^{-}$					-25.3	1

Table 2.10: Potential interactions of phosphoserine and the 1BA4 conformer of A β for solvation

Interaction	$\Delta \mathrm{E}_{\text {bind }}$
HCHP	-25.5
ECVHHQKN	-21.8
EPVHHQKC	-18.6
ECVHHQKP	-9.6
ENVHHQKC	0.7

The four binding interactions chosen were HCHP, ECVHHQKN, EPVHHQKC, and ECVHHQKP. While the former had binding interactions within the EVHHQK region, the latter three interactions bound more so to amino acid side chains found outside of this focused region. However, given the few number of interactions available for the 1BA4 β-amyloid conformer, they were determined to be acceptable for the solution phase calculations.

2.5.4.5 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1IYT CONFORMER OF β-AMYLOID

Due to the nature of the 1IYT conformer, in which a sharp hydrogen bonded turn is present that separates the two α-helical chains present in the structure, there were only eighteen available orientations in which phosphoserine could be placed for potential interaction. These orientations and the results of their minimization calculations in the gas phase are summarized in Table 2.11.

Of the resulting final binding orientations, only four had bonding interactions that bind phosphoserine to $\mathrm{A} \beta$ at two different sites, thus these four were selected for further analysis in the solution phase: HCHP, HNHQKP, HPHQKC and HCHQKP, all of which also had favourable binding energies.

Table 2.11: Gas phase results of phosphoserine interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation						$\begin{array}{cc}\Delta \mathrm{E}_{\text {bind }} & \text { Internal } \\ \text { (kcal/mol) } & \mathrm{H} \text {-Bonds }\end{array}$	
Glu11	Val12	His13	His14	Gln 15	Lys16	Glu11	Val12	His13	His14	$\mathrm{G} \ln 15$	Lys16		
$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$						-33.0	1
$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$									21.3	1
$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$						-25.1	0
$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$									-4.7	1
$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$									10.1	1
$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$									12.8	2
		$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$									-36.4	2
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{PO}_{3}{ }^{-}$									13.7	1
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{CO}_{2}{ }^{-}$									3.4	1
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{CO}_{2}{ }^{-}$				-11.2	1
		$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$			-23.8	1
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$					$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$			-26.0	1
		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$				-20.9	1
		$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$	-1.1	1
		$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	-61.0	2
		$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$				-10.1	1
		$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$	-48.2	1
		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	-43.8	1

2.5.4.6 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 2BP4 CONFORMER OF β-AMYLOID

There were twenty-four available orientations for phosphoserine being optimized interacting with the 2 BP 4 conformer of β-amyloid. Given that the 2 BP 4 conformer is the shortest of the conformers that was examined (ending at the Lys 16 residue that terminates the Glu11-Lys16 region of interest) it is possible that some of the resulting binding positions were not representative of those seen in the brain. With the longer forms of β amyloid there could be potential for more side chain interactions occurring in the brain with those amino acids following Lys16 in the peptide sequence of amino acids. Table 2.12 summarizes the results of the gas phase optimizations.

Of the twenty-four final binding orientations, fifteen had interactions form between phosphoserine at two or more side chains on $A \beta$. This higher number of
favourable binding interactions was most likely due to the fact that the terminal region of the peptide chain was more exposed to the empty space around it, resulting in more freedom of movement for the phosphoserine molecule such that it could find more, lower energy, stable structures. Table 2.13 lists these systems resulting in acceptable binding interactions ranked according to their binding energies. Three of the final binding orientations revealed that phosphoserine had formed interactions with the Tyr10 side chain of β-amyloid.

Table 2.12: Gas phase results of phosphoserine interacting with the 2BP4 conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation							$\Delta \mathrm{E}_{\text {bind }}$ Internal (kcal/mol) H -Bonds	
Glu11	Val12	His13	His14	Gln15	Lys16	Tyr10	Glu11	Val12	His13	His14	Gln 15	Lys16		
$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{CO}_{2}{ }^{-}$			-8.5	1
$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$										18.7	1
$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$			-41.9	1
$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$										39.2	1
$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$				$\mathrm{CO}_{2}{ }^{-}$			-30.4	2
$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$			-45.9	1
		$\mathrm{PO}_{3}{ }^{-}$	NH_{3}^{+}						$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	-22.9	1
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{PO}_{3}{ }^{-}$									$\mathrm{CO}_{2}{ }^{-}$	-56.9	1
		$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$				-40.9	4
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{NH}_{3}{ }^{+}$						$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-} / \mathrm{PO}_{3}{ }^{-}$	-42.5	1
		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$						$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$	-50.5	1
		$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$						$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	-59.3	1
		$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$				$\mathrm{PO}_{3}{ }^{-}$				-10.7	1
		$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{PO}_{3}{ }^{-}$							$\mathrm{PO}_{3}{ }^{-}$	-29.2	1
		$\mathrm{NH}_{3}{ }^{+}$			$\mathrm{CO}_{2}{ }^{-}$							$\mathrm{CO}_{2}{ }^{-}$	-44.0	3
		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{NH}_{3}{ }^{+}$							$\mathrm{CO}_{2}{ }^{-}$	-50.1	3
		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{PO}_{3}{ }^{-}$	-41.2	1
		$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$				$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{CO}_{2}{ }^{-}$	-50.8	1
			$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{CO}_{2}{ }^{-}$				$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$	-51.1	1
			$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	-51.3	1
			$\mathrm{NH}_{3}{ }^{+}$		$\mathrm{PO}_{3}{ }^{-}$					$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{PO}_{3}{ }^{-}$	-50.7	1
			$\mathrm{PO}_{3}{ }^{-}$		$\mathrm{NH}_{3}{ }^{+}$				$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	-32.5	1
			$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{NH}_{3}{ }^{+}$				$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$	-39.1	1
			$\mathrm{NH}_{3}{ }^{+}$		$\mathrm{CO}_{2}{ }^{-}$							$\mathrm{CO}_{2}{ }^{-}$	-43.5	3

Table 2.13: Potential interactions of phosphoserine and the 2BP4 conformer of A β for solvation

Interaction	$\Delta \mathrm{E}_{\text {bind }}$
HPHC	-59.3
HCQKP	-51.3
HPQKC	-51.1
HPHQKC	-50.8
HNQKP	-50.7
HCHP	-50.5
ENVHHC	-45.9
HCHN	-42.5
ENVHHP	-41.9
HCHQKP	-41.2
HCQKN	-39.1
HPQKN	-32.5
ECVHHN	-30.4
HPHN	-22.9
EPVHHC	-8.5

Analysis of the initial orientations that resulted in favourable binding interactions revealed that the four lowest energy interactions were the best choice for calculations in the aqueous phase: HPHC, HCQKP, HPQKC, and HPHQKC all had very favourable binding energies, as well as only having one internal bonding interaction within the phosphoserine molecule, which made them all acceptable interactions for further analysis.

2.6 Solution Phase Calculations of Phosphoserine Interacting with $\boldsymbol{\beta}$-Amyloid

To appropriately model the interactions that could occur between phosphoserine and β-amyloid within the brain, solution phase calculations needed to be performed. In the brain, phosphoserine and $\mathrm{A} \beta$ are found in an aqueous environment at physiological pH . The presence of water molecules (among other species present in the brain) can therefore alter how these two charged species will interact with each other.

2.6.1 The Use of Explicit Solvation

To simulate the binding interactions that possibly occur in the brain between phosphoserine and β-amyloid, an explicit solvation method was used.

Given the biological nature of the system, having explicit water molecules present was best to mimic the aqueous environment of the brain. Implicit solvation involves the dielectric constant and although the dielectric constant could be modified to mimic the shielding effects water has on charged species, it was not the best method when looking at systems of this nature [42]. By having explicit water molecules present, the true interactions that could occur between the various species present in a system was better represented since the molecules and the peptide side chains could have interactions with water that would also affect how they interacted with each other, as well as geometric positioning.

The Cerius ${ }^{2}$ program that was used for the gas phase calculations of phosphoserine interacting with $\mathrm{A} \beta$ was determined to lack the appropriate tools for modelling solvated environments, so the QUANTA program was selected [45, 46]. The QUANTA program uses the CHARMM force field, and explicit solvation of water molecules uses the simple TIP3P water molecule [44, 46].

The TIP3P model of water is a rigid model that involves three electrostatic interaction sites; two positively charged hydrogen atoms that sum up to balance the negatively charged oxygen atom [42]. Van der Waals calculations of the water molecules involve only the oxygen atom and not the hydrogen atoms [42]. This model is most commonly used since it provides a fairly accurate model of the properties of water that
are suitable to the type of calculations being performed in this research, while also minimizing the computational cost that occurs when more complex water models are used [42].

2.6.2 Set-Up of the Solution Phase Calculations of Phosphoserine InTERACTING WITH $\boldsymbol{\beta}$-AMYLOID

The method used for modelling the potential binding interactions between phosphoserine and $\mathrm{A} \beta$ was selected to minimize computational cost. This was accomplished by selecting four of the resulting interactions of the gas phase calculations that met specific requirements and then solvating these systems. Only four interactions were selected due to the large computational cost associated with running minimization algorithms on solvated systems. Four calculations were determined to be an adequate number to establish whether the binding interactions would be significantly altered between the gas and solution phases. They should also be sufficient to determine favourable binding interactions in trends with a total of twenty-four results for solvated systems.

2.6.2.1 Solvating the System

If the gas phase interaction between phosphoserine and the various conformers of β-amyloid resulted in interactions occurring at two or more different amino acid side chains on the peptide, and had a favourable binding energy that was due to the interaction alone and not to the formation of multiple interactions within the phosphoserine molecule, it was selected as a viable option for solvation. The four lowest energy interactions that met these criteria were selected for solvation as this minimized the computational cost involved. By taking a binding interaction known to exist in the gas phase, it could then be
determined what action the presence of water molecules would exert on the system, whether to encourage the binding or to disrupt it. It would have been more computationally demanding to begin again with separated phosphoserine and β-amyloid models and run the same calculations in a solvated environment.

The selected interaction was then solvated, depending on the size of the system, with one or two $30 \AA \times 30 \AA \times 30 \AA$ boxes of water molecules. The QUANTA program only has two sizes of water boxes available, $15 \AA$ x $15 \AA$ x $15 \AA$ and $30 \AA$ x $30 \AA$ x $30 \AA$, neither of which was large enough to solvate the entire peptide except in the case of the 2BP4 conformer [46]. This problem was solved by writing a script that allowed for two $30 \AA \times 30 \AA \times 30 \AA$ water boxes to be united. The detailed method and scripts used can be found in Appendices 2-4.

For those systems requiring two $30 \AA$ boxes to be solvated, a program was started to capture the commands in QUANTA and a $30 \AA$ water box was positioned over an atom to solvate part of the system, and then the capture program was terminated [46]. This saved file contained information on the position of the atoms and the water molecules that were introduced to the system. Part of this information was selected, saved and read into the above mentioned script: a second atom from the peptide was selected to place a second water box upon and the file was saved. This saved file was then streamed into the QUANTA program and resulted in two water boxes being positioned on the β -amyloid-phosphoserine complex (a detailed methodology is given in Appendix 2) [46]. In most cases this positioning resulted in some overlap of the boxes which caused some of the water molecules to become merged together. These molecules were then separated where possible to regenerate single water molecules that would not be too close to the
other molecules, or they were deleted as some of the overlapping water molecules were quite mangled. All of these molecules were fixed or deleted as necessary before any other operation was performed on the system. Figure 2.11 shows one of the solvated interactions where two $30 \AA$ water boxes were united together for the system.

Figure 2.11: The interactions between phosphoserine and the 1AMB conformer of $\boldsymbol{\beta}$-amyloid in an aqueous environment

2.6.2.2 Periodic Boundary Conditions

Once the system was solvated, periodic boundary conditions were introduced. The boundary conditions were necessary to prevent the water molecules from expanding infinitely into space once minimization of the system was commenced. The boundary conditions were set to be equal to the size of the water boxes solvating the system and according to the spatial orientation of the boxes. For the $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{AML}$, and 1BA4 conformers the periodic boundary conditions were therefore set to be $60 \AA \times 30 \AA$ x $30 \AA$ (in the x, y, and z directions). 1IYT had a different spatial orientation of the water boxes and therefore the periodic boundaries were set for $30 \AA \times 30 \AA \times 60 \AA$. Given that
the 2BP4 conformer of β-amyloid was small enough to be solvated by one $30 \AA$ water box, the periodic boundaries were set to $30 \AA$ x $30 \AA$ x $30 \AA$.

2.6.2.3 Minimization of the Solvated Phosphoserine- β-Amyloid System

Once the interacting systems selected from the gas phase calculations were set up for the calculations, the energy minimization step was performed. Unlike the gas phase calculations, no constraints were placed upon the peptide backbone as the water molecules would help to shield the charged species from interacting with each other; those changes that did occur were more likely reflective of the positioning that could exist in a biological environment.

Given the large size of the system - a few hundred peptide and phosphoserine atoms plus several thousand atoms comprising the water molecules - a minimum on the potential energy surface was unlikely to be attained when using the steepest descent minimization algorithm; therefore the steepest descent energy minimization was used to bring the system close to an energy minimum on the PES until it took at least twenty-five iterative steps for the energy of the system to change by $1 \mathrm{kcal} / \mathrm{mol}$. Upon reaching this slow energy change, the minimization was halted and the conjugate gradient energy minimization algorithm was utilized to bring the system to an energy minimum.

2.6.2.4 Energy Calculations of the Solvated Aß-Phosphoserine Interactions

Once an energy minimum was attained, the total energy of the system was measured, ignoring the solvent contributions to the energy of the system, and then the electrostatic energy was measured while also ignoring solvent contributions. A third energy was measured while ignoring the solvent contributions and constraining the
protein backbone in order to determine the electrostatic energy based solely on the amino acid side chains and phosphoserine.

The three energies that were calculated for analytical purposes are therefore; the total binding energy of the system ignoring solvent contributions:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\mathrm{phos}} \tag{2.2}
\end{equation*}
$$

$\mathrm{E}_{\text {tot }}$ is the total energy of the phosphoserine- $\mathrm{A} \beta$ system, $\mathrm{E}_{\mathrm{A} \beta}$ is the total energy of the β amyloid conformer and $\mathrm{E}_{\text {phos }}$ is the total energy of phosphoserine, all of which were calculated after minimization in the solution phase, but ignoring the solvent contributions to the energy.

The electrostatic energy of the system, after minimization in the solution phase and also ignoring the solvent contributions was calculated by:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {elephos }} \tag{2.3}
\end{equation*}
$$

The electrostatic energy of the final phosphoserine- $\mathrm{A} \beta$ system is given by $\mathrm{E}_{\text {ele }}$ and subtracting the electrostatic energy of $A \beta, \mathrm{E}_{\text {ele } \mathrm{A} \beta}$, and phosphoserine, $\mathrm{E}_{\text {elephos }}$, gives the overall change in the electrostatic energy for that particular system.

The final energy calculation examined the electrostatic contributions based solely on the phosphoserine and amino acid side chain contributions, ignoring the backbone contributions to this energy (since the backbone atoms could interact electrostatically in maintaining or altering the conformation of the peptide). The equation used is identical to the previous one except that the electrostatic energy was calculated with a constrained protein backbone:

$$
\begin{equation*}
\Delta E_{\text {elecpb }}=E_{\text {elecpb }}-E_{\text {elecpbA } \beta}-E_{\text {elephos }} \tag{2.4}
\end{equation*}
$$

$\mathrm{E}_{\text {elecpb }}$ is the electrostatic energy of the interacting phosphoserine and β-amyloid system with a constrained protein backbone for the peptide involved, $\mathrm{E}_{\text {elecpbAß }}$ is the electrostatic energy of the β-amyloid conformer with the backbone constrained, and the $\mathrm{E}_{\text {elephos }}$ remains unconstrained since the molecule is not a protein.

2.6.2.5 Determination of Binding Interactions

To determine if binding interactions occurred as a result of the minimization of the solvated phosphoserine-A β systems, two methods were used. First the QUANTA program has an option to display hydrogen bonds present in the system. This feature was applied to the final optimized system once the solvent contributions were ignored for better visualization of the possible interactions [46].

It was discovered that MOE (Molecular Operating Environment) allowed for ligand interactions to be determined, including potential $\pi-\pi$ and cation $-\pi$ interactions, as well as electrostatic interactions [47]. The final binding orientations were then imported into the MOE environment to determine if any of the other possible types of binding interactions were present [47].

2.6.3 SOLUTION Phase Results of Phosphoserine Interacting With Six Different $\boldsymbol{\beta}$-Amyloid Conformers

The results of the minimizations of phosphoserine interacting with β-amyloid in an aqueous environment are summarized in tables according to the $\mathrm{A} \beta$ conformer being examined. The initial binding orientation that resulted from the gas phase calculations is given, followed by the final binding orientation that resulted from the optimized, solvated system. The calculated total energy, electrostatic energy, and electrostatic energy
involving a constrained protein backbone are given (solvent contributions to the system were not included when calculating these energies), as well as the differences in these energies calculated using the previously mentioned equations. Hydrogen bonding interactions are denoted by peach coloured cells, while electrostatic interactions are marked by blue coloured cells in the tables. The energies of the β-amyloid conformers and phosphoserine used to calculate the binding energies of the solution phase interactions are given in Table 2.14.

Table 2.14: Total energies of the six $\boldsymbol{\beta}$-amyloid conformers and phosphoserine calculated in a solvated environment

Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\text {elecpb }}$
1AMB	-314.52	-270.43	-55.10
1AMC	-314.53	-280.48	-66.97
1AML	-404.92	-346.18	-54.90
1BA4	-420.10	-369.83	-57.33
1IYT	-530.26	-404.59	-72.85
2BP4	-177.10	-153.70	-39.15
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	
Phosphoserine	-11.31	-12.76	

2.6.3.1 Results of the Solution Phase Interaction Between Phosphoserine and the 1AMB Conformer of β-Amyloid

The solution phase calculations resulted in fewer bonding interactions than in the gas phase, but this was understandable given the presence of water molecules in the system. In most cases the functional groups remained in similar orientations to the final result of the gas phase minimizations, with both hydrogen bonding and electrostatic interactions occurring. The results of the final orientations of the functional groups,
binding interactions and the calculated binding energies are tabulated in Table 2.15.
Electrostatic interactions are in blue, while hydrogen bonds are in peach.
Table 2.15: The solution phase results of phosphoserine interacting with the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

A)) Amino Acid	Glu1 1	Val12	His 13	His 14	Gln 15	Lys 16
Initial Orientation				$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$
Final Orientation				$\mathrm{CO}_{2}{ }^{-} / \mathrm{PO}_{3}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$
	$\mathrm{E}_{\text {tot }}$	-1382.31	$\mathrm{kcal} / \mathrm{mol}$				
	$\mathrm{E}_{\text {ele }}$	-1416.29	$\mathrm{kcal} / \mathrm{mol}$				
	$\mathrm{E}_{\text {elecpb }}$	-586.11	$\mathrm{kcal} / \mathrm{mol}$				
	$\Delta \mathrm{E}_{\text {tot }}$	-1056.48	$\mathrm{kcal} / \mathrm{mol}$				
	$\Delta \mathrm{E}_{\text {ele }}$	-1133.10	$\mathrm{kcal} / \mathrm{mol}$				
	$\Delta \mathrm{E}_{\text {elecpb }}$	-531.00	$\mathrm{kcal} / \mathrm{mol}$				
B)	Amino Acid	Glu1 1	Val12	His 13	His14	Gln 15	Lys 16
Initial Orientation				$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$		
Final Orientation				$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$		
	$\mathrm{E}_{\text {tot }}$	-327.32	$\mathrm{kcal} / \mathrm{mol}$				
	$\mathrm{E}_{\text {ele }}$	-284.97	$\mathrm{kcal} / \mathrm{mol}$				
	$\mathrm{E}_{\text {elecpb }}$	-69.12	$\mathrm{kcal} / \mathrm{mol}$				
	$\Delta \mathrm{E}_{\text {tot }}$	-1.49	$\mathrm{kcal} / \mathrm{mol}$				
	$\Delta \mathrm{E}_{\text {ele }}$	-1.78	$\mathrm{kcal} / \mathrm{mol}$				
	$\Delta \mathrm{E}_{\text {elecpb }}$	-14.02	$\mathrm{kcal} / \mathrm{mol}$				

C)	Amino Acid	Glu1 1	Val12	His13	His 14	4 Gln15	Lys16	Leu17
Initial Orientation				$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$	
Final Orientation				$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$
	$\mathrm{E}_{\text {tot }}$	-346.16	$\mathrm{kca} /$ mol					
	$\mathrm{E}_{\text {ele }}$	-295.17	$\mathrm{kca} /$ /mol					
	$\mathrm{E}_{\text {elecpb }}$	-77.42	$\mathrm{kcal} / \mathrm{mol}$					
	$\Delta \mathrm{E}_{\text {tot }}$	-20.33	$\mathrm{kcal} / \mathrm{mol}$					
	$\Delta \mathrm{E}_{\text {ele }}$	-11.99	$\mathrm{kcal} / \mathrm{mol}$					
	$\Delta \mathrm{E}_{\text {elecpb }}$	-22.32	$\mathrm{kcal} / \mathrm{mol}$					
D)	Amino Acid	Glu1 1	Val12	His 13		His 14	Gln 15	Lys 16
Initial Orientation		$\mathrm{NH}_{3}{ }^{+}$				$\mathrm{CO}_{2}{ }^{-}$		
Final Orientation		$\mathrm{NH}_{3}{ }^{+}$				$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$	
$\mathrm{E}_{\text {tot }}$		-1219.6	kcal/mol					
		-1268.4	$\mathrm{kcal} / \mathrm{mo}$					
$\mathrm{E}_{\text {elecpb }}$		-440.8	kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}$		-893.8	$4 \mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}$		-985.2	$\mathrm{kcal} / \mathrm{mo}$					
$\Delta \mathrm{E}_{\text {elecpb }}$		-385.76	kcal/mol					

Three of the four systems examined retained at least one of the initial hydrogen bonding interactions, while two systems also demonstrated electrostatic binding interactions. In some cases the groups were close enough to each other for potential binding interactions to have occurred, even if they were not recognized as such by the molecular modelling programs. Figure 2.12 shows one of the resulting binding interactions from the solution phase calculations (orientation C) with the water molecules
removed for clarity's sake - hydrogen bonds are represent by turquoise lines, while electrostatic interactions are represented by purple lines.

Figure 2.12: The binding interactions occurring between phosphoserine and the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid upon minimization in an aqueous environment. The hydrogen bond is in turquoise, while the electrostatic interaction is in purple.

There is significant variation in binding energies of the systems which is likely due at least in part to the initial set-up of the system: the positioning of the water boxes was not identical and therefore resulted in varying amounts of overlapping water molecules that needed to be removed in order for calculations to proceed. Given that the numbers hold no true value to real life situations, they were only being used for comparative purposes to determine the favourability of interacting phosphoserine- $\mathrm{A} \beta$ systems. The only general conclusion that could be made for all four systems is that the binding interactions were favourable given the low $\Delta \mathrm{E}_{\text {elecpb }}$ energies.

2.6.3.2 Results of the Solution Phase Interaction Between Phosphoserine and the 1AMC Conformer of β-Amyloid

The solution phase results of phosphoserine and the 1 AMC conformer of $A \beta$ showed fewer bonding interactions occurred than seen in the gas phase. Table 2.16 summarizes these results and it was seen that only two of the four selected systems retained hydrogen bonding interactions upon optimization in a solvated environment.

Table 2.16: The solution phase results of phosphoserine interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

| A) | Amino Acid | Glu11 | Vall2 | His13 | His14 | Gln15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Lys16

C) Amino Acid	Glu11 Val12	His 13		His14	Gln15	Lys16
Initial Orientation		$\mathrm{CO}_{2}{ }^{-}$				$\mathrm{PO}_{3}{ }^{-}$
Final Orientation		$\mathrm{CO}_{2}{ }^{-}$				$\mathrm{PO}_{3}{ }^{-}$
$\mathrm{E}_{\text {tot }}$	-330.66 kcal/mol					
$\mathrm{E}_{\text {ele }}$	-290.69 kcal/mol					
$\mathrm{E}_{\text {elecpb }}$	-78.22 kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}$	-4.82 kcal/mol					
$\Delta \mathrm{E}_{\text {ele }}$	$2.55 \mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {elecpb }}$	-11.25 kcal/mol					
D) Amino Acid	Glu1 1 Val12	His 13	His 14	4 Gln 15	5 Lys 16	Leu17
Initial Orientation		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	
Final Orientation		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$
$\mathrm{E}_{\text {tot }}$	-325.77 kcal/mol					
$\mathrm{E}_{\text {ele }}$	-287.44 kcal/mol					
$\mathrm{E}_{\text {elecpb }}$	-72.66 kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}$	$0.08 \mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}$	$5.80 \mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {elecpb }}$	-5.69 kcal/mol					

For the most part, the interactions retained the same orientation of phosphoserine functional groups towards the amino acid side chains they were bonded to in the gas phase. Interestingly, those systems where hydrogen bonding still occurred upon minimization in aqueous solution were higher in energy than those that did not result in bonding interactions. It is possible then that there may indeed have been some electrostatic-type interactions occurring in the EVHHQK region of interest for these lower energy systems, or it may have been that the side chains in these particular systems
had engaged in more electrostatic interactions than in those systems where hydrogen bonding occurred.

2.6.3.3 Results of the Solution Phase Interaction Between Phosphoserine and the 1AML CONFORMER OF β-AMYLOID

All four solution phase calculations involving phosphoserine and the 1AML conformer of β-amyloid resulted in at least one bonding interaction forming between the two. The results of these interactions are summarized in Table 2.17. The cell in green indicates where a hydrogen bond had formed as well as an electrostatic interaction occurring between the functional groups on phosphoserine and the backbone atoms of the amino acid residue. Peach coloured cells indicate hydrogen bonds. The pink cell represents an electrostatic interaction between the phosphoserine functional groups and atoms forming the peptide backbone.

Table 2.17: The solution phase results of phosphoserine interacting with the 1AML conformer of $\boldsymbol{\beta}$-amyloid

B)	Amino Acid	Ser8	Tyr10	Glu1 1	Val12	His 13	His14	Gln15	Lys16
	Initial Orientation	$\mathrm{CO}_{2}{ }^{-}$					$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$	
	Final Orientation	$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$				$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$	
							$\mathrm{CO}_{2}{ }^{-}$		
	$\mathrm{E}_{\text {tot }}$	-398.17	$\mathrm{kcal} / \mathrm{mo}$						
	$\mathrm{E}_{\text {ele }}$	-360.25	$\mathrm{kcal} / \mathrm{mo}$						
	$\mathrm{E}_{\text {elecpb }}$	-72.18	$\mathrm{kcal} / \mathrm{mo}$						
	$\Delta \mathrm{E}_{\text {tot }}$	18.05	$\mathrm{kcal} / \mathrm{mo}$						
	$\Delta \mathrm{E}_{\text {ele }}$	-1.31	$\mathrm{kcal} / \mathrm{mo}$						
	$\Delta \mathrm{E}_{\text {elecpb }}$	-17.28	$\mathrm{kcal} / \mathrm{mo}$						
C)	Amino Acid	Tyr10	\| Glu11	Vall 2	His13	His14	Gln15	Lys 16	Ile31
	Initial Orientation	$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$				
	Final Orientation				$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{CO}_{2}{ }^{-}$
	$\mathrm{E}_{\text {tot }}$	-426.12	$\mathrm{kcal} / \mathrm{mo}$						
	$\mathrm{E}_{\text {ele }}$	-360.03	$\mathrm{kcal} / \mathrm{mo}$						
	$\mathrm{E}_{\text {elecpb }}$	-63.23	$\mathrm{kcal} / \mathrm{mo}$						
	$\Delta \mathrm{E}_{\text {tot }}$	-9.89	$\mathrm{kcal} / \mathrm{mo}$						
	$\Delta \mathrm{E}_{\text {ele }}$	-1.10	$\mathrm{kcal} / \mathrm{mo}$						
	$\Delta \mathrm{E}_{\text {elecpb }}$	-8.33	$\mathrm{kcal} / \mathrm{mo}$						

D) Amino Acid	Glu11	Vall2	His 13	His 14	Gln15	Lys16
Initial Orientation	$\mathrm{NH}_{3}{ }^{+}$					$\mathrm{CO}_{2}{ }^{-}$
Final Orientation	$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{CO}_{2}{ }^{-}$
						$\mathrm{PO}_{3}{ }^{-}$
$\mathrm{E}_{\text {tot }}$	-413.13	$\mathrm{kcal} / \mathrm{mol}$				
$\mathrm{E}_{\text {ele }}$	-357.45	$\mathrm{kcal} / \mathrm{mol}$				
$\mathrm{E}_{\text {elecpb }}$	-62.14	$\mathrm{kcal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {tot }}$	3.09	$\mathrm{kcal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}$	1.49	$\mathrm{kcal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {elecpb }}$	-7.24	$\mathrm{kcal} / \mathrm{mol}$				

All of the solution phase results for phosphoserine interacting with the 1AML conformer of $A \beta$ resulted in the formation of at least one calculable binding interaction. All except one of the systems (orientation C) had functional groups close enough to the other amino acid side chains in the EVHHQK region of interest that electrostatic interactions might be possible. All of the final binding interactions exhibited similar, slightly favourable energies as well, indicating that the orientation of phosphoserine towards β-amyloid may have favourable results.

2.6.3.4 Results of the Solution Phase Interaction Between Phosphoserine and the 1BA4 Conformer of β-Amyloid

Three of the four solvated interactions of phosphoserine interacting with the 1BA4 conformer of β-amyloid resulted in calculable binding interactions, the results of which are summarized in Table 2.18. Hydrogen bonds are represented by peach coloured cells, and electrostatic interactions that occurred between the phosphoserine functional groups and the backbone atoms of the amino acids are given in pink.

Table 2.18: The solution phase results of phosphoserine interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

C)	Amino Acid	Asp 1	Glu11 Val12	His 13	His14 Gln 15	Lys16	Phe19	Glu22
	Initial Orientation	$\mathrm{PO}_{3}{ }^{-}$				$\mathrm{PO}_{3}{ }^{-}$		
	Final Orientation	$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$
	$\mathrm{E}_{\text {tot }}$	-417.99	$\mathrm{kcal} / \mathrm{mol}$					
	$\mathrm{E}_{\text {ele }}$	-372.88	$\mathrm{kcal} / \mathrm{mol}$					
	$\mathrm{E}_{\text {elecpb }}$	-68.85	$\mathrm{kcal} / \mathrm{mol}$					
	$\Delta \mathrm{E}_{\text {tot }}$	13.42	$\mathrm{kcal} / \mathrm{mol}$					
	$\Delta \mathrm{E}_{\text {ele }}$	9.71	$\mathrm{kcal} / \mathrm{mol}$					
	$\Delta \mathrm{E}_{\text {elecpb }}$	-11.52	$\mathrm{kcal} / \mathrm{mol}$					
D)) Amino Acid	Glu11	Vall2	His 13	His 14	Gln15	Lys 16	
	Initial Orientation			$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$			
	Final Orientation			$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$			
	$\mathrm{E}_{\text {tot }}$	-417.9	$94 \mathrm{kcal} / \mathrm{mol}$					
	$\mathrm{E}_{\text {ele }}$	-374.3	$37 \mathrm{kcal} / \mathrm{mol}$					
	$\mathrm{E}_{\text {elecpb }}$	-70.4	. $41 \mathrm{kcal} / \mathrm{mol}$					
	$\Delta \mathrm{E}_{\text {tot }}$	13.4	$46 \mathrm{kcal} / \mathrm{mol}$					
	$\Delta \mathrm{E}_{\text {ele }}$		22 kcal/mol					
	$\Delta \mathrm{E}_{\text {elecpb }}$	-13.08	. $08 \mathrm{kcal} / \mathrm{mol}$					

The highest energy interaction had no computable hydrogen bonds or electrostatic interactions, although it is very possible that there were some electrostatic interactions occurring between phosphoserine and β-amyloid. The remaining interactions formed hydrogen bonds, as well as possible electrostatic interactions in two cases, and all had similar, somewhat favourable energies, indicating potential binding orientations that may exist in the brain.

2.6.3.5 Results of the Solution Phase Interaction Between Phosphoserine and the 1IYT CONFORMER OF β-AMYLOID

The solution phase results of phosphoserine interacting with the 1IYT conformer of β-amyloid revealed that only two of the systems formed bonding interactions. Table 2.19 summarizes the final binding orientations and energies of interaction. Electrostatic interactions are represented by blue coloured cells, and hydrogen bonds by peach coloured cells.

Table 2.19: The solution phase results of phosphoserine interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

A) Amino Acid	Glu11 Val12	His 13	His 14	Gln15	Lys16
Initial Orientation		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$
Final Orientation		$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$
$\mathrm{E}_{\text {tot }}$	-578.21 kcal/mol				
$\mathrm{E}_{\text {ele }}$	-543.54 kcal/mol				
$\mathrm{E}_{\text {elecpb }}$	-220.07 kcal/mol				
$\Delta \mathrm{E}_{\text {tot }}$	-53.64 $\mathrm{kcal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}$	-126.20 kcal/mol				
$\Delta \mathrm{E}_{\text {elecpb }}$	-146.50 kcal/mol				

D) Amino Acid	Glu11	$\mathrm{Val12}$	His13	His14	Gln15	Lys16	Leu17
Initial Orientation		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$				
Final Orientation		$\mathrm{CO}_{2}{ }^{-}$	$\mathrm{PO}_{3}{ }^{-}$				
					$\mathrm{CO}_{2}{ }^{-}$		
$\mathrm{E}_{\text {tot }}$	$-595.40 \mathrm{kcal} / \mathrm{mol}$						
$\mathrm{E}_{\text {ele }}$	$-548.57 \mathrm{kcal} / \mathrm{mol}$						
$\mathrm{E}_{\text {elecpb }}$	$-219.92 \mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}$	$-70.83 \mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}$	$-131.23 \mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {elecpb }}$	$-146.34 \mathrm{kcal} / \mathrm{mol}$						

Those systems that resulted in binding interactions had lower, more favourable energies than those that did not. The favourable binding interactions also occurred within the EVHHQK region of interest, and those that did not still had relatively favourable energies, as well as being oriented towards side chains in the same focused region of $A \beta$.

2.6.3.6 Results of the Solution Phase Interaction Between Phosphoserine and the 2BP4 Conformer of β-AMYLOID

All four systems of phosphoserine and the 2 BP 4 conformer of $\mathrm{A} \beta$ optimized in an aqueous environment resulted in binding interactions. Hydrogen bonds are denoted by a peach colour, electrostatic interactions between phosphoserine and the amino acid side chains in blue, and electrostatic interactions between phosphoserine and the peptide backbone in pink. A cation- π interaction that formed is in periwinkle. The final orientations and energies are given in Table 2.20, note that orientation C also involved the formation of a hydrogen bond within the phosphoserine molecule.

Table 2.20: The solution phase results of phosphoserine interacting with the 2BP4 conformer of $\boldsymbol{\beta}$-amyloid

A)	Amino Acid	Glu11	Val12	His 13	His 14	Gln 15	Lys16
Initial Orientation				$\mathrm{CO}_{2}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$
	Final Orientation			$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{PO}_{3}{ }^{-}$
				$\mathrm{CO}_{2}{ }^{-}$			
	$\mathrm{E}_{\text {tot }}$	-400.6	$\mathrm{ccal} / \mathrm{mol}$				
	$\mathrm{E}_{\text {ele }}$	-377.8	$\mathrm{kcal} / \mathrm{mol}$				
	$\mathrm{E}_{\text {elecpb }}$	-274.2	cal/mol				
	$\Delta \mathrm{E}_{\text {tot }}$	-212.2	$\mathrm{ccal} / \mathrm{mol}$				
	$\Delta \mathrm{E}_{\text {ele }}$	-211.3	$\mathrm{kcal} / \mathrm{mol}$				
	$\Delta \mathrm{E}_{\text {elecpb }}$	-223.7	$\mathrm{kcal} / \mathrm{mol}$				
B)	Amino Acid	Glu1 1	Val12	His 13	His14	Gln 15	Lys16
	Initial Orientation			$\mathrm{PO}_{3}{ }^{-}$			$\mathrm{PO}_{3}{ }^{-}$
Final Orientation				$\mathrm{PO}_{3}{ }^{-}$	$\mathrm{CO}_{2}{ }^{-}$		$\mathrm{PO}_{3}{ }^{-}$
				$\mathrm{CO}_{2}{ }^{-}$			
	$\mathrm{E}_{\text {tot }}$	-381.9	$\mathrm{ccal} / \mathrm{mol}$				
	$\mathrm{E}_{\text {ele }}$	-357.6	kcal/mol				
	$\mathrm{E}_{\text {elecpb }}$	-254.7	ccal/mol				
	$\Delta \mathrm{E}_{\text {tot }}$	-193.5	ccal/mol				
	$\Delta \mathrm{E}_{\text {ele }}$	-191.2	ccal/mol				
	$\Delta \mathrm{E}_{\text {elecpb }}$	-204.2	kcal/mol				

All four interactions appeared to be favourable in terms of low energy as well as functional group orientation. Every one of the four interacting systems formed hydrogen bonds. There did not appear to be a significant correlation between the binding energies and the types of measureable binding interactions that formed; however, it was unknown what the other unmeasured interactions would also be contributing to these energies.

2.7 Biological Support of Phosphoserine Interacting with $\boldsymbol{\beta}$-Amyloid

The computational findings were supported through experimental means using thioflavin T (ThT), circular dichroism (CD) and transmission electron microscopy (TEM) in vitro assays (performed by Todd Galloway). The effect of phosphoserine in preventing both β-amyloid aggregation and β-amyloid conformational change (α-helix to β-sheet) was examined via these methods. The methods for these assays are given in Appendix 5.

First, the ThT assay showed that phosphoserine was able to reduce the aggregation of β-amyloid from monomers to oligomers (dimers, trimers \ldots dodecamers) by more than 60% in a dose dependent fashion at concentrations of $0.01-5 \mathrm{mM}$ (See Figure 2.13A). At the same dose range, CD studies showed that phosphoserine was able to inhibit the α-helix to β-sheet conformational change over a time period of 140 hrs . The ThT and CD studies were done with $\mathrm{A} \beta 40$. The TEM studies used $\mathrm{A} \beta 42$, which is more prone to aggregation than the $\mathrm{A} \beta 40$ variant [$8,10,15$]. Images were taken using freshly prepared $\mathrm{A} \beta 42$ in the presence of DMSO , the control sample, and in the presence of 1 mM phosphoserine. The TEM images in Figure 2.13B show the effects of the presence of phosphoserine on the aggregation of β-amyloid, after a twenty-four hour incubation period compared to the control sample. It is dramatically apparent from these images that phosphoserine inhibited the aggregation of β-amyloid when compared to the control sample, which shows marked clumping of the peptide.

Figure 2.13: (A) ThT assay of phosphoserine at different concentrations; (B) Transmission electron microscopy images of Aß42 incubated with DMSO (left) and $1 \mathbf{m M}$ phosphoserine (right) for a twenty-four hour period.

2.8 Phosphoserine Interacting with BBXB

Additional selected gas phase optimizations were performed looking at whether phosphoserine demonstrates the capacity to bind to BBXB regions other than the $\mathbf{H H Q K}$ region of β-amyloid. Research by Meier-Stephenson et al has suggested that this $\mathbf{B B X B}$ motif is present on a variety of proteins affiliated with Alzheimer's disease; a "promiscuous drug" could be identified to bind to this common motif for a multifaceted approach to treating AD [41].

To this effect, six proteins identified as playing a role in Alzheimer's disease and having the BBXB motif were selected for optimization with phosphoserine: Interleukin-4, Interleukin-12, Interleukin-13, S100ß, RANTES, and ICAM-1[75, 76, 77, 78, 79, 80].

2.8.1 SET-UP OF BBXB OpTIMIZATIONS

Each of the six proteins was optimized in the gas phase for physiological pH conditions. Structures of each of the proteins were first obtained from the RCSB protein data bank and are identified as follows: Interleukin-4-2B8U, Interleukin-12-1F45, Interleukin-13 - 3BPO, S100 -1 - 1 WW0, RANTES - 1HRJ, and ICAM-1 - 1IAM [67, 75-80]. Each protein then underwent specific preparations to be in the correct state for optimization in the QUANTA environment [46].

2.8.1.1 Interleukin-4

Interleukin-4 (IL-4) is a pleiotropic cytokine that plays a key signalling role in the immune system as well as provoking allergic response that can lead to hypersensitivity [75]. This protein plays a role in immune response and expresses the $\mathbf{B B X B}$ motif in two
places: as histidine-histidine-glutamic acid-lysine and as histidine-arginine-histidinelysine [41].

The protein structure of interleukin- 4 was downloaded from the RSCB website and first edited in MOE [51]. Hydrogen atoms were added to the structure, and extraneous molecules and any solvent atoms present were deleted from the system. The histidine residues present in the protein were protonated and the file format of the structure was then converted and imported into QUANTA [46]. Atoms were retyped as necessary and the system was then optimized via steepest descents with a constrained protein backbone. The optimized structure was then saved for use in further calculations.

2.8.1.2 InterLeukin-12

Interleukin-12 (IL-12) is another cytokine with an immunomodulatory role [76]. This protein is involved in enhancing the cytotoxic activity of natural killer and cytotoxic T-cells, as well as inducing the production of interferon- γ (IFN- γ), another inflammatory protein [76]. The $\mathbf{B B X B}$ motif found in the interleukin-12 amino acid sequence is histidine-lysine-leucine-lysine [41].

The same procedure as in section 2.6.1.1 was followed for the interleukin-12 protein with two exceptions. Before optimization of the system could occur, there were some carboxylate groups that were incorrectly represented as aldehydes, and thus needed to be corrected, and some of the asparagine side chains were missing a proton. Once these adjustments were made, the protein backbone was constrained and then the minimization calculation was run.

2.8.1.3 InterLeukin-13

Interleukin-13 (IL-13) is an inflammatory cytokine with a similar function to IL4, and presents a BBXB motif of histidine-leucine-lysine-lysine [41, 77].

The structure of interleukin-13 was downloaded from the protein data bank into MOE, where hydrogen atoms were added, solvent molecules and other unrelated species were deleted, and the histidine residues were protonated [51]. The PDB structure contained more than just the interleukin-13 chain, so the unnecessary chains were deleted from the system, whereupon the file format was converted and then imported into QUANTA [5]. Optimization then proceeded upon atom retyping and the constraint of the protein backbone.

2.8.1.4 S100 β

$\mathrm{S} 100 \beta$ is a calcium binding protein that is found primarily in the cytoplasm of glial cells and plays a role in regulating cellular architecture [78]. Microglia cells are known to cluster at the sites of amyloid deposits in the AD brain, and an increased expression of $\mathrm{S} 100 \beta$ is seen in these areas [71, 74]. It is postulated that $\mathrm{S} 100 \beta$ may therefore play a role in the neuropathology of Alzheimer's disease, and it expresses the common BBXB motif in the form of histidine-lysine-leucine-lysine, and lysine-leucine-lysine-lysine [41].

The structure of S100 β was imported directly into QUANTA, whereupon the histidine residues were protonated and some binding situations that were highly unlikely were deleted [46]. The protein backbone was constrained and minimization of the system occurred via steepest descents.

2.8.1.5 RANTES

RANTES (regulated on activation, normal T-cell expressed and secreted) is a member of the interleukin superfamily of proteins, and is an inflammatory cytokine [79]. In its role it can activate leukocytes and incite their accumulation [79]. It appears that in its natural form, RANTES exists as a dimer; this presents two identical $\mathbf{B B X B}$ receptors as targets for interaction in the form of arginine-lysine-asparagine-arginine [41].

The RANTES protein was imported into MOE where the two histidine residues present were protonated, and the file format was then converted for QUANTA [46, 51]. The backbone was constrained the system was optimized using the steepest descents algorithm.

2.8.1.6 ICAM-1

ICAM-1, or intracellular adhesion molecule-1, is a protein that can play two roles in the human body; it can help provide adhesion between white blood cells and endothelial cells to allow the passage of white blood cells to the site of injury or stress, or it can act as a receptor for human rhinovirus [22, 80]. ICAM-1 could therefore play a detrimental role in AD in that it allows for increased inflammation, which can cause further damage to the neurons. The $\mathbf{B B X B}$ motif presents itself twice in ICAM-1 as arginine-arginine-aspartic acid-histidine and as arginine-aspartic acid-histidine-histidine [41].

The protein structure required minimal adjustments with only histidine residues being protonated before the structure was converted to an appropriate format and imported into QUANTA [46]. It was discovered that some of the asparagine residues
were missing hydrogen atoms, so these corrections were made before the system was optimized via steepest descents with a constrained protein backbone.

2.8.1.7 Optimization Methods

Gas phase optimizations were performed to see if potential interactions could occur between phosphoserine and other proteins involved in AD bearing the common BBXB motif. These optimizations were performed in the gas phase in the QUANTA program using the CHARMM22 force field [46].

For each simulation, the phosphoserine molecule was set at a distance of $3.0 \AA$ away from the $\mathbf{B B} \mathbf{X B}$ region on the protein such that two of the charged functional groups were oriented towards two of the charged amino acid side chains. The protein backbone was constrained and the system was optimized using the steepest descents algorithm. The final optimized systems were imported into MOE to determine what interactions could occur between the phosphoserine molecule and the proteins [51]. The total energy of the system was calculated using the following equation:

$$
\begin{equation*}
\mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {ABprot }}-\mathrm{E}_{\text {prot }}-\mathrm{E}_{\text {phos }} \tag{2.5}
\end{equation*}
$$

$\mathrm{E}_{\text {Aßprot }}$ represents the total energy of the optimized phosphoserine-protein system, $E_{\text {prot }}$ the energy of the protein optimized by itself, and $E_{\text {phos }}$ the energy of the optimized phosphoserine molecule. Similarly, the van der Waals energy was calculated using the following equation:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{VdW}}=\mathrm{E}_{\mathrm{A} \beta \mathrm{prot} \mathrm{VdW}}-\mathrm{E}_{\text {protVdW }}-\mathrm{E}_{\text {phosVdW }} \tag{2.6}
\end{equation*}
$$

The overall van der Waals energy of the system, $\mathrm{E}_{\mathrm{VdW}}$, is calculated by subtracting the individual van der Waals energies from the protein, $\mathrm{E}_{\text {protVdW }}$, and phosphoserine,
$\mathrm{E}_{\text {phosVdW }}$, from the van der Waals energy of the optimized phosphoserine-protein system, $\mathrm{E}_{\mathrm{A} \beta \mathrm{protVdW}}$. The electrostatic energy of the binding interactions occurring between phosphoserine and the protein was calculated using equation 2.7.

$$
\begin{equation*}
\mathrm{E}_{\text {Ele }}=\mathrm{E}_{\mathrm{A} \beta \text { protEle }}-\mathrm{E}_{\text {protEle }}-\mathrm{E}_{\text {phosEle }} \tag{2.7}
\end{equation*}
$$

The calculated electrostatic energies of the individual protein, $\mathrm{E}_{\text {protEle }}$, and phosphoserine, $\mathrm{E}_{\text {phosEle }}$, were subtracted from the electrostatic energy of the optimized system, $\mathrm{E}_{\text {AßprotEle }}$, to determine the electrostatic energy of interaction.

2.8.2 Results of the Optimization of Phosphoserine with Selected Proteins Containing BBXB

The results of these optimizations are summarized in Table 2.21. Hydrogen bonds that formed between phosphoserine and the protein are indicated by the orange coloured cells; the darker the colour, the more hydrogen bonding interactions that are occurring.

Table 2.21: Gas phase optimization of phosphoserine interacting with the BBXB motif on various proteins implicated in Alzheimer's disease

Although only a sample of some of the proteins involved in Alzheimer's disease containing the $\mathbf{B B X B}$ motif were examined, the results indicate phosphoserine has the potential to bind to the $\mathbf{B B X B}$ motif on more proteins than just $\mathrm{A} \beta$. A more detailed study would allow for trends to be determined; however, the results do indicate binding between phosphoserine and multiple sites within the BBXB region on five of the six proteins examined.

Energetically speaking, the interactions between phosphoserine and the proteins are favourable. Some of the interactions resulted in a more collapsed phosphoserine molecule where the phosphate and amino groups were interacting within itself. Despite these self interactions, the energies still appear to be more favourable than those between phosphoserine and β-amyloid.

These results indicate that phosphoserine is capable of binding not only to HHQK as seen in earlier sections of this chapter, but to other $\mathbf{B B X B}$ motifs as well in a gas phase environment. This indicates that an endogenous molecule such as phosphoserine could bind to multiple proteins involved in the disease process of AD .

2.9 Conclusions

Overall results of the gas phase calculations showed that phosphoserine is capable of binding to β-amyloid in such a manner as to interact with two different amino acids in the Glu11-Val12-His13-His14-Gln15-Lys16 region. Sufficient interactions resulted from the gas phase minimizations for the four most energetically favourable systems, where binding occurred at two or more sites, to be selected and optimized in a solvated environment.

The solution phase calculations resulted in fewer bonding interactions forming between the charged amino acid side chains and the functional groups on phosphoserine, but this was not surprising given the presence of water molecules in the systems which could have altered the sterics of the interactions, as well as modifying conformations depending on the hydrophobicity or hydrophilicity of the amino acids.

Examination of the results of the solution phase calculations revealed that there are three main binding sites within the EVHHQK region of β-amyloid: His 13, His14 and Lys16. Sixteen of the twenty-four interactions had potential binding interactions with His 13, in the form of hydrogen bonding, and possible electrostatic interactions. The carboxylate and phosphate functional groups on phosphoserine seemed to interact almost equally with the His13 residue. Potential binding interactions also occurred at the Lys16 residue in sixteen of the twenty-four possible cases. There were a significant number of hydrogen bonds that formed at this site (eleven) and there was also the potential for nonhydrogen bonding, electrostatic-type interactions to occur. Lys 16 favoured binding interactions with the phosphate group slightly more than the carboxylate group of phosphoserine. Binding interactions at the His14 residue involved some hydrogen bonding, as well as possible electrostatic interactions, although they only occurred in eleven of the twenty-four minimized systems. There were an equal number of interactions occurring at the His 14 side chain with the phosphate and carboxylate functional groups. Overall, it appeared that there was no significant difference between which of the negative functional groups was interacting with these three residues. The Glu11 amino acid residue was also involved in seven potential binding interactions, mainly occurring with the amino and phosphate groups of phosphoserine. The remaining phosphoserine-
$A \beta$ interactions all involved amino acids outside of the four charged amino acids of interest in the EVHHQK region of the peptide.

Closer examination of the results showed that nearly half of the solvated systems had potential binding interactions occurring at both the His13 and Lys16 residues. These interactions favoured carboxylate interactions occurring at the His13 residue and phosphate interactions occurring at the Lys 16 residue in a two-to-one ratio over the opposite orientation. Four of these eleven interactions also had the capacity to bind to or interact with the His14 residue. There were another four cases where His13 and His 14 were both involved in binding interactions not including Lys16. These interactions involving both histidine and lysine residues appeared to be the most favoured binding interactions, where binding occurs at two or more sites on the peptide, particularly in the EVHHQK region.

2.10 InTERPRETATION

It could be suggested based on these observed results, that phosphoserine not only will bind to and interact with β-amyloid in vacuo, but also in a solvated environment (such as would exist in the brain). The His13-Lys16 binding interactions are particularly favourable, since it is possible that in binding to these two amino acid side chains, phosphoserine would prevent them from interacting with other proteins or lipid bilayers and thus prevent conformational conversions. Prevention of conversion from α-helical and random coil to β-sheet conformations should prevent the toxic form of β-amyloid from forming so that no soluble aggregates will be available to inflict neurodegeneration and neurotoxicity.

Biological evidence further supports the computational findings that phosphoserine can interact with β-amyloid to prevent aggregation from occurring. It can be seen from the in vitro assays that phosphoserine clearly inhibits the aggregation of $A \beta$, which would indicate a potential neuroprotective role.

Furthermore, there is computational evidence that phosphoserine could also interact with other proteins involved in the AD process. Phosphoserine therefore represents an endogenous molecule of the brain that may play a multi-faceted role in the prevention of Alzheimer's disease. These results also support the idea that a single drug molecule could target multiple receptors involved in a disease in a way that would allow for better success at treating the disease rather than targeting a single receptor alone.

Phosphoserine represents a viable endogenous molecule of the brain that can be exploited in designing a drug to prevent β-amyloid conformational conversions. Given the lowered concentrations in the Alzheimer's brain according to Molina et al, and its potential role as the brain's response to amyloid aggregation due to high local concentrations in regions free from plaques, phosphoserine may play a protective role in the brain. It may therefore be possible to develop a drug molecule targeting the enzymatic pathways involved in the synthesis and metabolism of phosphoserine that will increase the levels of phosphoserine in order to prevent β-amyloid aggregation.

If levels of phosphoserine are instead elevated in the brain as Klunk et al have observed, then drugs that target the catabolism of phosphoserine may be of use to maintain these higher levels. Alternatively, if levels were to remain sufficiently high as part of the brain's natural response to $\mathrm{A} \beta$ aggregation, serine racemase could be targeted
to prevent increased levels of D-serine from forming (as a result of the increased levels of phosphoserine).

Looking at the favourable solution phase results, supported by the biological data, it is therefore likely that increased phosphoserine levels in the brain will allow more phosphoserine to interact with and bind to the stable, non-toxic forms of $A \beta$ and prevent it from taking on neurotoxic properties, and potentially other proteins involved in the disease as well. Phosphoserine therefore presents itself as a possible drug molecule for at least delaying the onset of Alzheimer's disease or at best preventing the disease from commencing.

CHAPTER 3: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING HHQK

The previous chapter dealt with the potential interactions between a small endogenous molecule of the brain and the HHQK region of β-amyloid. Additional endogenous molecules of the brain were also identified as potential targets for this region.

3.1 THE HHQK and LVFF REGIONS OF $\boldsymbol{\beta}$-Amyloid as Binding Targets

Two regions of β-amyloid play an important role in the misfolding of the protein; the region containing residues His13-His14-Gln15-Lys16 (HHQK) and the region containing residues Leu17-Val18-Phe19-Phe20 (LVFF).

The highly positively charged region of $\mathbf{H H Q K}$ is postulated to be a key component in the interactions that lead to the misfolding of $\mathrm{A} \beta$ and also fits the $\mathbf{B B X B}$ motif identified as being present in various proteins involved in Alzheimer's disease [41]. Molecules that contain negatively charged functional groups or aromatic rings should be able to interact with this charged region through various binding interactions to block unwanted interactions with membrane surfaces from occurring.

Situated immediately next to the HHQK region of $A \beta$ is the LVFF region, which also has been identified as another potential region for small molecules to bind to in order to prevent protein misfolding [82]. This represents more of an AAXA motif, where A is an aliphatic or aromatic amino acid and X is any other amino acid residue. Systems can be visually examined to determine if aliphatic interactions with these side chains may be
occurring, and aromatic-aromatic interactions are capable of being identified within the MOE program [47]. In this chapter, some of the small molecules be examined will also be analyzed for their potential to bind to both the HHQK and LVFF regions of β amyloid.

3.2 Identification of Amino Acids and Their Metabolites as Target Molecules

As stated in Chapter 2, Section 2.2, a library of endogenous compounds of the brain was searched for potential drug targets capable of interacting with the $\mathbf{B B X B}$ motif. Several small molecules were identified in this process including the amino acids tryptophan, phenylalanine and their metabolites. These molecules were examined through in silico methods for their potential to bind to both the HHQK and LVFF regions of β amyloid.

3.3 Phenylalanine and $\boldsymbol{\beta}$-Amyloid

The library of endogenous molecules of the brain, when screened against the identified BBXB motif, identified phenylalanine (Figure 3.1) as one of the endogenous molecules which possessed the necessary features to interact with this region. The structure of phenylalanine also presents regions capable of interacting with the LVFF region of $A \beta$ as well.

Figure 3.1: Phenylalanine as charged for physiological pH

A geometry optimized phenylalanine structure was built for the following calculations, whereupon a grid scan was performed on the molecule over three possible torsional angles in a stepwise fashion of 30° increments from 0° to 330°. The lowest energy conformation resulting from this search was selected and then minimized via steepest descent followed by conjugate gradient minimization. The resulting structure was considered geometry optimized and used in setting up the systems for energy minimization in the gas phase; the energy is given in Table 3.1.

Table 3.1: Gas phase energy of phenylalanine

Total Energy $(\mathrm{kcal} / \mathrm{mol})$	
Phenylalanine	3.20

Both gas phase and solution phase calculations were performed examining the potential binding interactions between phenylalanine and the HHQK and LVFF regions of the β-amyloid peptide and both sets of calculations were performed in QUANTA using the CHARMM force field $[46,48,50]$. Solution phase geometry optimizations were performed to determine if interactions that occurred between phenylalanine and $A \beta$ would still occur in an environment more representative of the brain.

As there are no crystal structures available of β-amyloid to give its exact conformation, six NMR based structures were selected for interacting with the phenylalanine molecule - these six different structures allow for determination of the potential binding interactions with small molecules like phenylalanine in a variety of $\mathrm{A} \beta$ conformations. The structures were obtained from the RCSB Protein Data Bank (PDB) and range in length from 28 to 42 amino acids and encapsulate both the $\mathbf{H H Q K}$ and

LVFF regions of interest. The six selected conformers, given by their PDB identifications, were as follows: $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{AML}, \mathrm{IBA} 4,1 \mathrm{YYT}$, and $1 \mathrm{Z} 0 \mathrm{Q}[67,68$, $69,70,71,72,83]$. While the phosphoserine optimizations looked at the 2BP4 conformer, it was not long enough to be used for these optimizations as LVFF was of interest too and the terminal end was residue 16 [73]. The 1 ZOQ conformer was selected as it is composed of residues 1-42 [83]. These structures were imported into QUANTA, charged appropriately for physiological pH and then optimized with a constrained protein backbone to find the lowest energy gas phase conformation [46]. The energies of the proteins can be found in Appendix 6.

3.3.1 GAS Phase Interactions Between Phenylalanine and $\boldsymbol{\beta}$-Amyloid

Gas phase optimizations were performed to determine if phenylalanine was capable of binding to the $\mathbf{H H Q K}$ and LVFF regions of β-amyloid. If interactions did occur, selected favourable interactions would be further examined via solution phase calculations to better determine if such interactions would occur in vivo.

3.3.1.1 Selection of Initial Orientations for Optimization

Previous research by the author has indicated that separating the phenylalanine molecule from the desired peptide region of β-amyloid by a distance of $3.0 \AA$ is the most effective for determining whether favourable or unfavourable interactions will occur. Systems were set up such that two of the amino, carboxylate or aromatic functional groups of phenylalanine could interact with two of the HHQK or LVFF side chains of interest. Some interactions could not be tested as the amino acid side chains were either too far apart for the small phenylalanine molecule to interact with, or were on opposite sides of the peptide.

3.3.1.2 Optimization of the Gas Phase Systems

Each of the potential binding interactions was modelled in the QUANTA program using the CHARMM force field $[46,48,50]$. The phenylalanine molecule was oriented towards the peptide at the appropriate distance and then the backbone of the protein conformation was constrained before the system was optimized. Given the nature of gas phase optimizations, constraining the protein backbone prevents collapse of the protein structure due to intramolecular interactions in the gas phase. Minimization was first performed using the steepest descent algorithm followed by conjugate gradient to ensure a minimum point was reached on the PES. The optimized system was then examined for potential binding interactions. The final interactions were next examined in the Molecular Operating Environment for other possible interactions such as cation $-\pi$ and $\pi-\pi$ interactions [47].

To determine the relative favourability of the optimized systems, the binding energy was determined using the following formula:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {bind }}=\mathrm{E}_{\mathrm{A} \beta \mathrm{phen}}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\mathrm{phen}} \tag{3.1}
\end{equation*}
$$

Where the total binding energy is equal to the energy of the optimized phenylalanine- β amyloid system, $\mathrm{E}_{\text {Aßphen, }}$ minus the individual contributions of separately optimized phenylalanine, $\mathrm{E}_{\mathrm{A} \beta \text { phen, }}$ and β-amyloid, $\mathrm{E}_{\mathrm{A} \beta}$.

3.3.2 Gas Phase Results of Phenylalanine Interacting with $\boldsymbol{\beta}$-Amyloid

The main results of the gas phase optimizations of phenylalanine interacting with different conformations of $A \beta$ are summarized in the following tables according to the
selected β-amyloid conformer and contain information of the initial and final phenylalanine orientations.

The tables also contain the calculated binding energies (in $\mathrm{kcal} / \mathrm{mol}$) and the number of measureable binding interactions that have occurred. The amino acid side chains are represented by single letter notations and their position on the peptide chain. The functional groups are also represented by abbreviations where C represents the $\mathrm{CO}_{2}{ }^{-}$ functional group, N the $\mathrm{NH}_{3}{ }^{+}$functional group and Ar represents the aromatic ring present in phenylalanine.

Tables 3.2 through 3.7 summarize the results of the gas phase minimizations of phenylalanine with each of the six $\mathrm{A} \beta$ conformers: $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{AML}, 1 \mathrm{BA} 4,1 \mathrm{IYT}$, and 1Z0Q respectively. Interactions covered HHQK and LVFF, as well as overlapping possibilities between the two regions. The number of measureable bonds occurring for each system was, respectively, eleven, thirteen, nine, four, ten and ten.

Although interactions between the amino functional group and the lysine side chain are likely to be repulsive, these orientations were still included for comparison of what potential binding interactions could occur, or if rearrangements would happen.

For each of the β-amyloid conformers examined for potential interactions with phenylalanine, the overall binding energies, as well as the electrostatic and van der Waals energies were compared to determine which interactions were most favourable. It was determined that by selecting the overall most energetically favourable binding interactions (where potential binding could occur at two or more sites) would reflect a range of favourable van der Waals interactions, electrostatic interactions and overall
energetically favourable systems. Therefore, for each $A \beta$ conformation, the six systems selected for optimization in the solution phase exhibited the most favourable binding energies and involved phenylalanine interacting with β-amyloid at two or more amino acid side-chains.

Table 3.2: Gas phase results of phenylalanine interacting with the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation								Final Orientation									$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
C	Ar							C	Ar								-12.99	1
Ar	C							Ar	C								-13.66	0
N	Ar								Ar							C/Ar	-10.98	2
Ar	N							Ar	N							Ar	-12.25	0
Ar			C					Ar			C						-8.28	2
C			Ar					C/Ar			Ar					Ar	-10.53	1
Ar			N					N/Ar			N					Ar	-9.15	1
N			Ar					N			Ar						-8.09	1
				Ar			N					Ar			N	N	-10.31	0
					Ar	N							Ar	N		Ar	-13.55	0
						Ar	N							Ar	N	Ar	-11.47	0
						N	Ar							N	Ar		-8.79	0
			C	Ar				C			C	Ar					-9.31	2
			N	Ar							Ar	Ar / N			Ar		-10.48	0
C				Ar				C				Ar / C					-10.16	2
N				Ar				Ar				Ar					-9.15	0
	N				Ar				Ar				Ar				-8.24	0
	C				Ar				C				Ar				-9.70	0
	C			Ar					C			Ar	Ar				-10.87	0
	N			Ar					N			Ar	Ar				-11.36	1
			Ar				N					Ar	Ar	N			-12.80	2
			C				Ar				C	N			Ar		-13.38	2
			N				Ar					N/Ar			Ar		-13.01	0

Table 3.3: Gas phase results of phenylalanine interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation								Final Orientation									$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kca} / \mathrm{mol}) \end{gathered}$	Measureable Bonds
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
Ar	N							Ar	N							$\mathrm{Ar} / \mathrm{C} / \mathrm{N}$	-14.07	2
N	Ar							N	Ar							C/Ar	-12.20	2
Ar	C							Ar	C							Ar	-13.88	0
C	Ar							C	Ar							Ar	-14.93	1
Ar			N					Ar / N			N					Ar	-11.30	1
N			Ar					Ar			C	Ar					-10.12	2
Ar			C					Ar			C	Ar					-9.19	1
C			Ar					C			Ar						-6.84	1
				Ar			N					Ar			N		-8.67	0
					Ar	N							Ar	N		Ar	-9.72	0
										Ar	Ar			Ar / N		Ar	-13.19	1
							N							Ar	N	N	-11.22	0
N				Ar				N/Ar				Ar					-10.90	1
	N				Ar				N				Ar				-9.89	0
	C				Ar				C				Ar				-10.91	0
C				Ar				C				Ar					-12.27	1
			C	Ar				C			C	Ar					-8.89	0
				Ar								Ar / N			Ar		-10.42	0
			Ar				N				Ar				N		-12.69	2
			C				Ar	C			C	Ar					-8.88	1
			N				Ar				Ar	Ar			Ar		-9.65	1

Table 3.4: Gas phase results of phenylalanine interacting with the 1AML conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation								Final Orientation									$\begin{gathered} \Delta \mathrm{E}_{\text {bind }} \\ (\mathrm{kca} / \mathrm{mol}) \end{gathered}$	Measureable Bonds
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
Ar	C							Ar	C							Ar / C	-20.27	1
C	Ar							C	Ar							Ar/N	-12.71	0
N	Ar							N	Ar							$\mathrm{Ar} / \mathrm{C} / \mathrm{N}$	-17.54	0
Ar	N							Ar / N	N							N / Ar	-15.63	1
Ar			C					Ar			C						-5.70	0
C			Ar					C			Ar						-11.71	0
N			Ar					Ar			Ar						-6.63	0
Ar			N					Ar			N					Ar	-6.72	0
				Ar			N	Ar				Ar			N	N/Ar	-14.02	2
					Ar	N				N				N		Ar/N/C	-18.37	0
						N	Ar							Ar	Ar		-10.43	0
						Ar	N							Ar	N		-8.79	0
	C				Ar				C							N/Ar	-18.57	1
	N				Ar											C	-14.05	1
			Ar			N					Ar			N			-10.96	1
			C			Ar					C			Ar			-6.87	1
			N			Ar								Ar			-7.76	0
Ar							N	Ar							N	N	-14.02	2
C							Ar	C							Ar		-16.01	1
N							Ar								Ar	Ar	-12.92	0

Table 3.5: Gas phase results of phenylalanine interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation								Final Orientation									$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
Ar	N							Ar	N								-10.84	0
N	Ar							N/Ar	Ar								-9.69	2
C	Ar							C	Ar								-10.88	2
Ar	C							Ar	Ar / C								-11.99	1
				Ar			N					Ar			N		-6.22	0
					Ar	N				Ar			Ar	N			-8.43	0
	C			Ar					C			Ar					-6.60	0
	N			Ar								Ar / N					-9.34	0
			Ar			N								N		Ar	-15.77	1
	N				Ar				N	Ar		Ar	Ar				-12.04	0
	C				Ar				C	Ar		Ar	Ar				-11.85	0

Table 3.6: Gas phase results of phenylalanine interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation								Final Orientation									$\begin{gathered} \Delta \mathrm{E}_{\text {bind }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
Ar	C							Ar									-11.81	1
C	Ar							C	Ar			Ar					-13.07	0
N	Ar							N/Ar	Ar								-11.39	2
Ar	N							Ar				Ar					-8.61	1
N			Ar								Ar				Ar		-8.50	0
Ar			N					Ar			N						-8.84	0
C			Ar					C			Ar				Ar		-11.98	1
Ar			C					Ar			C					Ar	-10.53	1
				Ar			N					Ar			N/Ar		-8.34	1
					Ar	N							Ar	N			-10.74	0
						Ar	N				Ar			Ar	N		-8.27	0
						N	Ar							Ar	Ar	Ar	-13.15	0
C				Ar				C				Ar					-11.52	0
N				Ar				N				Ar					-8.86	1
	C			Ar					C			Ar					-7.14	0
	N			Ar					N			Ar	Ar				-12.15	1
			C				Ar				C			Ar	Ar/C		-9.81	0
			Ar				N				Ar			Ar			-8.05	1
			N				Ar							Ar	Ar		-8.83	0
			C			Ar					C			Ar/C			-8.95	2
			Ar			N					Ar			N/Ar			-7.92	0
			N			Ar								Ar/N			-9.65	0

Table 3.7: Gas phase results of phenylalanine interacting with the 1Z0Q conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation								Final Orientation									$\begin{gathered} \Delta \mathrm{E}_{\text {bind }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
N	Ar							N	Ar							Ar	-13.65	2
Ar	N							Ar									-7.82	0
C	Ar							C	Ar		C						-14.05	1
Ar	C							Ar	C		Ar						-16.10	3
N			Ar					Ar			Ar						-6.49	0
Ar			N					Ar			Ar						-9.62	1
Ar			C					Ar / C			C						-11.24	2
C			Ar					C			Ar						-7.89	1
				Ar			N					Ar			N/C		-13.68	1
				Ar		N						Ar		Ar	Ar		-9.03	0
						N	Ar								Ar		-7.97	0
						Ar	N							Ar			-3.42	0
	N				Ar				Ar				Ar				-10.75	0
	C				Ar				C / Ar				Ar				-14.77	0
	N			Ar					Ar								-14.33	1
	C			Ar					N			C/Ar					-15.88	1
			C			Ar					C			Ar			-13.94	2
			N			Ar					N/Ar			Ar			-13.87	0
			Ar			N					Ar			C			-13.75	0

The interactions that were chosen as the most favourable, with binding occurring at two or more sites for each of the conformers can be summarized in the following table. The amino acid side chains are represented by their single letter abbreviations, and the functional groups of phenylalanine interacting with those side chains are highlighted in purple.

Table 3.8: Selected interactions for optimization of phenylalanine with $\boldsymbol{\beta}$-amyloid in the solution phase

Interaction	Binding Energy (kcal/mol)	Interaction Binding Energy (kcal/mol)	
1AMB		1BA4	
HArHC	-13.66	HNQKLVAr	-12.04
VArFN	-13.55	HArHC	-11.99
KCLVFFAr	-13.38	HCQKLVAr	-11.85
HCHAr	-12.99	HCHAr	-10.88
KArLVFFN	-12.80	HArHN	-10.84
HArHN	-12.25	HNHAr	-9.69
1AMC		1IYT	
HCHAr	-14.93	HCHAr	-13.07
HArHN	-14.07	HNQKLAr	-12.15
HArHC	-13.88	HCHOKAr	-11.98
FNFAr	-13.19	HCHQKLAr	-11.52
KArLVFFN	-12.69	HNHAr	-11.39
HCHQKLAr	-12.27	VArFN	-10.74
1AML		1Z0Q	
HArHC	-20.27	HArHC	-16.10
VArFN	-18.37	HCQKLVAr	-14.77
HNHAr	-17.54	HCHAr	-14.05
HCHQKLVFFAr	-16.01	LArVFFN	-13.68
HArHN	-15.63	HNHAR	-13.65
LArVFFN	-14.02	KCLVFAr	-13.94

3.3.3 SOLUTION PHASE OPTIMIZATION OF PHENYLALANINE INTERACTING WITH $\boldsymbol{\beta}$ Amyloid

Upon completion of the gas phase optimizations, six of the resulting energetically favourable interactions were selected from each $A \beta$ conformer for solution phase minimizations. Using these initial gas phase optimized systems allowed for more efficient solution phase calculations. The solution phase optimizations were also performed in QUANTA using the CHARMM force field [45, 47, 49].

3.3.3.1 Solvation and Minimization Set-Up for Phenylalanine and β-Amyloid

Solution phase calculations were performed using explicit solvation. As discussed in Chapter 2, Section 2.6.1, given the biological nature of the systems being examined, having explicit water molecules present was optimal to mimic the aqueous environment of the brain. The procedure for solvating the systems followed that which was outlined in Chapter 2, Sections 2.6.2.1-2.6.2.3.

The binding energies of the minimized solution phase interactions between phenylalanine and β-amyloid were calculated using three different equations:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {phen }} \tag{3.2}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {elephen }} \tag{3.3}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdwphen}} \tag{3.4}
\end{align*}
$$

The measured energies were the total binding energy, $\Delta \mathrm{E}_{\text {tot }}$, the total electrostatic binding energy, $\Delta \mathrm{E}_{\text {ele }}$, and the total van der Waals binding energy, $\Delta \mathrm{E}_{\mathrm{vdw}}$. All followed the same type of calculation where the energy contributions of the peptide conformer and the phenylalanine molecule were subtracted from the energy of the final minimized phenylalanine-A β system as calculated via solution phase optimization and all energies were computed ignoring the energy contributions of the water molecules present in the system. The resulting optimized phenylalanine- $\mathrm{A} \beta$ systems were examined for measurable binding interactions in both the QUANTA and MOE programs [46, 47].

The types of measurable binding interactions that occurred in these systems comprised hydrogen bonding, cation $-\pi$ interactions and $\pi-\pi$ interactions. Other interactions such as aliphatic-aromatic interactions may have been occurring as well; the
presence of these types of interactions was usually reflected in the system when functional groups remained in their initial orientations and were not displaced by interactions with water molecules.

3.3.4 Solution Phase Results of Phenylalanine Interacting with Six DIFFERENT CONFORMATIONS OF $\boldsymbol{\beta}$-AMYLOID

The results of the solution phase optimizations of the phenylalanine- β-amyloid systems have been summarized in tables for each conformation of β-amyloid. Initial and final binding orientations are given; the three calculated energies and any measureable binding interactions that occurred are indicated according to the following colour scheme: hydrogen-bonds are coloured orange, cation $-\pi$ interactions are green and $\pi-\pi$ interactions are blue. Interactions occurring outside the $\mathbf{H H Q K}$ and LVFF regions of interest are also indicated. As in the gas phase calculations, the amino acids are represented in single letter notation with the respective site number on the peptide chain and the phenylalanine functional groups are represented by C, N, and Ar for the carboxylate, amino, and aromatic groups, respectively.

The final energies for the binding interactions were calculated using the following energies for phenylalanine in Table 3.9. The energies of the solvated proteins are given in Appendix 6.

Table 3.9: Total energies of phenylalanine in the solution phase

	Energy $(\mathrm{kcal} / \mathrm{mol})$		
Phenylalanine	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
	4.32	2.76	-0.12

The results of the solution phase optimizations between phenylalanine and the 1 AMB conformer of $\mathrm{A} \beta$ are indicated in Table 3.10. Of the six interactions selected for solution phase optimization, four had measureable binding interactions. Three of the six systems also demonstrated potential binding interactions at His13 and His14. Overall the binding energies are very favourable.

Table 3.11 indicates the results of the solution phase optimization of potential interactions between phenylalanine and the 1AMC conformer of β-amyloid. Each of the six systems had measureable binding interactions when optimized and three of the six also exhibited possible binding at His13 and His14. One of the systems, despite demonstrating multiple binding interactions, had extremely unfavourable binding energies. With this one exception, the rest of the interactions demonstrated both favourable overall binding energies as well as favourable van der Waals energies.

The results of the solution phase interactions between phenylalanine and the 1AML $\mathrm{A} \beta$ conformation are given in Table 3.12. Four of the six optimized systems resulted in measureable binding interactions and three of the six also demonstrated potential interactions at His13 and His14. There is no correlation between the number of measured binding interactions and the overall favourability of the total binding energies, which are all relatively favourable. Systems demonstrated a preference for van der Waals interactions over electrostatic interactions as seen in the calculated energies.

Table 3.13 denotes the results of the solution phase minimizations of the phenylalanine and the 1BA4 β-amyloid systems. All of the systems had measureable binding interactions, and four of these also exhibited potential binding at the His 13 and

His 14 residues. The binding energies are favourable and the van der Waals energies are significantly more favourable than the electrostatic energies.

Table 3.10: The solution phase results of phenylalanine interacting with the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

					Ami	o Acid					$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {cle }}$	$\mathrm{E}_{\text {vdw }}$	$\Delta \mathrm{E}_{\text {tot }}$	$\Delta \mathrm{E}_{\text {ele }}$	$\Delta \mathrm{E}_{\mathrm{vdw}}$
	Y10	H13	H14	Q15	K16	L17	V18	F19	F20	E22	$\mathrm{kca} / \mathrm{mol}$	$\mathrm{kca} / \mathrm{mol}$	$\mathrm{kca} / \mathrm{mol}$	kcal/mol	$\mathrm{kcal} / \mathrm{mol}$	$\mathrm{kcal} / \mathrm{mol}$
Initial Orientation	Ar	Ar	C													
Final Orientation	Ar	Ar	C								-365.38	-278.30	-179.14	-55.18	-10.63	-16.74
Initial Orientation				Ar			Ar	Ar / N		Ar						
Final Orientation						Ar	Ar	Ar / N		Ar	-374.49	-279.50	-185.87	-64.28	-11.83	-23.47
Initial Orientation					C	N			Ar							
Final Orientation					C	$\mathrm{C} / \mathrm{Ar} / \mathrm{N}$			Ar		-375.09	-277.51	-184.14	-64.89	-9.83	-21.75
Initial Orientation	Ar	C	Ar													
Final Orientation	Ar / C	C	Ar								-374.48	-281.38	-185.68	-64.27	-13.71	-23.29
Initial Orientation					Ar	N			N							
Final Orientation					Ar	N			N		-374.06	-281.73	-180.25	-63.86	-14.06	-17.86
Initial Orientation	Ar	Ar	N													
Final Orientation	Ar	Ar	$\mathrm{Ar}^{*} / \mathrm{N}$		Ar						-374.31	-281.28	-183.45	-64.11	-13.61	-21.06

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.11: The solution phase results of phenylalanine interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

							Amin	no Ac									$\Delta \mathrm{E}_{\mathrm{vdw}}$
	Y10	E11	V12	H13	H14	Q15	K16	L17	V18	F19	F20	$\mathrm{kcal} / \mathrm{mol}$	$\mathrm{kcal} / \mathrm{mol}$	$\mathrm{kcal} / \mathrm{mol}$	$\mathrm{kcal} / \mathrm{mol}$	$\mathrm{kca} / \mathrm{mol}$	$\mathrm{kcal} / \mathrm{mol}$
Initial Orientation	Ar			C	Ar												
Final Orientation	Ar			C	Ar			C				-378.22	-284.71	-182.41	-68.01	-6.99	-21.62
Initial Orientation	$\mathrm{C}^{*} / \mathrm{Ar}$	N		Ar	N				Ar	Ar / N							
Final Orientation	$\mathrm{C}^{*} / \mathrm{Ar}$	N		Ar	N				Ar	Ar / N		-381.60	-283.16	-185.76	-71.38	-5.44	-24.97
Initial Orientation	Ar				C												
Final Orientation	Ar			$\begin{aligned} & \mathrm{Ar} \\ & \mathrm{C} \end{aligned}$								-317.10	-273.30	-166.17	-6.89	4.42	-5.38
Initial Orientation			Ar			Ar	Ar			N / Ar							
Final Orientation			Ar			Ar	Ar			N*/Ar		-373.62	-291.48	-177.56	-67.13	-7.20	-22.28
Initial Orientation							Ar				N						
Final Orientation				Ar			Ar	Ar			N*/C	-377.35	-284.93	-183.07	-63.86	-14.06	-17.86
Initial Orientation				C				Ar									
Final Orientation				C				Ar				-377.93	-279.24	-188.35	-67.71	-1.52	-27.56

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.12: The solution phase results of phenylalanine interacting with the 1AML conformer of $\boldsymbol{\beta}$-amyloid

	F4	R5	H6	Y10	H13	H14	$\begin{array}{r} \mathrm{Am} \\ \text { Q15 } \\ \hline \end{array}$	Kino A	Acid		F19	F20	E22	G29	A30	I31	$\begin{gathered} \mathrm{E}_{\mathrm{tot}} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{ele}} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{vdw}} \\ \mathrm{kcal} / \mathrm{mol} \\ \hline \end{gathered}$	$\Delta \mathrm{E}_{\text {tot }}$ $\mathrm{kca} / \mathrm{mol}$	$\begin{gathered} \Delta \mathrm{E}_{\text {ele }} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{vdw}} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$
Initial Orientation				C/Ar	Ar	C										C/Ar						
Final Orientation				C/Ar	Ar	C										C/Ar	-476.07	-357.78	-243.39	-75.47	-14.36	-30.78
Initial Orientation					Ar				Ar			N		N	Ar							
Final Orientation					Ar							N			Ar		-456.08	-349.37	-233.34	-55.48	-5.95	-20.73
Initial Orientation							N				N		N*/Ar									
Final Orientation							N			Ar	N		Ar				-481.81	-356.96	-246.83	-81.21	-13.54	-34.22
Initial Orientation				Ar	N	Ar										N/C						
Final Orientation				Ar	N	Ar			N							C	-474.09	-355.78	-242.46	-73.49	-12.36	-29.85
Initial Orientation					C							Ar										
Final Orientation					C				Ar			Ar		Ar	Ar/C		-472.44	-350.94	-238.93	-71.84	-7.51	-26.31
Initial Orientation				N/Ar	N/Ar*	N										Ar						
Final Orientation				N	N/Ar*	N/C										Ar	-462.18	-346.17	-234.68	-61.58	-2.75	-22.06

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.13: The solution phase results of phenylalanine interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	V12	H13	H14	$\begin{array}{r} \text { Amino } \\ \text { Q15 K16 } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { Acid } \\ \text { L17 } \\ \hline \end{array}$	V18 F19 F20	$\overline{\mathrm{E}_{\mathrm{tot}}}$ $\mathrm{kca} / \mathrm{mol}$	$\mathrm{E}_{\text {ele }}$ $\mathrm{kca} / \mathrm{mol}$	$\overline{\mathrm{E}_{\mathrm{vdw}}}$ $\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {tot }}$ $\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {ele }}$ $\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{vdw}}$ $\mathrm{kca} / \mathrm{mol}$
Initial Orientation												
Final Orientation		Ar	$\mathrm{Ar}^{*} / \mathrm{C}$	Ar	C		-493.11	-369.69	-247.71	-77.34	-2.61	-41.42
Initial Orientation		C	Ar									
Final Orientation							-489.66	-374.64	-239.99	-73.88	-7.57	-33.70
Initial Orientation		Ar	N									
Final Orientation	Ar	Ar	N	Ar			-484.59	-369.77	-244.80	-68.82	-2.70	-38.51
Initial Orientation			Ar									
Final Orientation		N/Ar		Ar			-487.59	-367.77	-241.49	-71.82	-0.70	-35.20
Initial Orientation			N	Ar	Ar	Ar						
Final Orientation			N	Ar	Ar	Ar	-492.69	-373.03	-244.93	-76.91	-6.01	-38.64
Initial Orientation			C	Ar	Ar	Ar						
Final Orientation			C	Ar	Ar	Ar	-492.58	-372.52	-243.88	-76.80	-5.45	-37.60

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.14: The solution phase results of phenylalanine interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.15: The solution phase results of phenylalanine interacting with the $1 \mathrm{Z0Q}$ conformer of $\boldsymbol{\beta}$-amyloid

	G9 V12	H13	H14	Q15	Amino $5 \mathrm{~K} 16$	$\begin{aligned} & \text { Acid } \\ & \text { L17 } \\ & \hline \end{aligned}$			F20	A21	$\mathrm{E}_{\text {tot }}$ kcal/mol	$\mathrm{E}_{\text {ele }}$ $\mathrm{kca} / \mathrm{mol}$		$\begin{array}{\|c\|} \hline \Delta \mathrm{E}_{\text {tot }} \\ \mathrm{kca} / \mathrm{mol} \end{array}$		
Initial Orientation		Ar			Ar											
Final Orientation		Ar	C		Ar						-469.07	-370.87	-253.87	-24.72	-6.70	-16.67
Initial Orientation			C/Ar				Ar									
Final Orientation			C			Ar				Ar	-462.11	-363.42	-254.05	-17.75	0.75	-16.85
Initial Orientation		C	Ar		C											
Final Orientation		C			C						-458.21	-365.91	-248.30	-13.86	-1.74	-11.10
Initial Orientation					Ar			N/C								
Final Orientation								N		Ar	-473.22	-372.23	-248.29	-28.87	-8.06	-11.09
Initial Orientation	N	N	Ar													
Final Orientation											-470.81	-367.01	-250.96	-26.46	-2.84	-13.76
Initial Orientation					C			Ar								
Final Orientation	Ar			Ar	C			Ar			-474.07	-373.55	-251.84	-29.72	-9.38	-14.63

The results of the optimization of phenylalanine with the 1IYT conformer of β amyloid in a solvated environment are given in Table 3.14. Half of the systems resulted in measureable binding interactions, and only two exhibited potential binding interactions
at the His13 and His14 residues. The overall binding energies are significantly lower than the previously calculated interactions with other $A \beta$ conformations, and the van der Waals and electrostatic energies are very similar in range.

Phenylalanine and the 1 Z 0 Q conformer of $\mathrm{A} \beta$ were optimized in the solution phase and the results are indicated in Table 3.15. Four of the systems exhibited measureable binding interactions when optimized, and three of these also demonstrated the potential to interact with the His13 and His14 residues of β-amyloid. The total binding energies are moderately favourable compared to the others. Van der Waals energies are again slightly more favourable than the electrostatic binding energies.

3.3.5 Conclusions of Phenylalanine Interacting With $\boldsymbol{\beta}$-Amyloid.

Overall, the results of the solution phase optimizations of phenylalanine and six different β-amyloid conformers indicate that potential binding interactions can occur. Cation- π interactions tend to be somewhat favoured over hydrogen bonding, with only a few $\pi-\pi$ interactions, and most of these measureable interactions occur at the His13 and His 14 residues of the peptide. Examining systems for potential binding at two or more sites reveals His13-His14 as the preferred interaction, with a few at His13-Leu17 and His14-Leu17. Overall, interactions occurring strictly within the LVFF region were not as favoured, even though phenylalanine should be capable of forming aromatic-aromatic interactions with the phenyl rings of Phe19 and Phe20.

In general, the measured binding energies did not exhibit a direct correlation to the number of measureable binding interactions; therefore it is possible that there are also
aliphatic-aromatic interactions occurring among other types of interactions that cannot be directly measured and/or visualized in the modelling programs.

3.4 Dopamine and $\boldsymbol{\beta}$-Amyloid

One of the amino acid metabolites identified by screening the library of endogenous compounds is dopamine (Figure 3.2) which is one of the products in the metabolic pathway of phenylalanine [39].

Figure 3.2: Dopamine as charged for physiological $\mathbf{p H}$
Dopamine is a naturally occurring small molecule found in the human brain that plays a role as a neurotransmitter [39]. Although dopamine is often mentioned in relationship to Parkinson's disease, it also has altered levels in the brains of Alzheimer's patients. Research indicates that levels of dopamine in plasma are significantly lower in Alzheimer's patients when compared to controls [84]. It is suggested that while there is no loss of dopaminergic neurons as a result of AD , the enzymes involved in stimulating the release of dopamine from neurons are not as active or are decreased in concentration [84, 85]. As dopamine is a small molecule endogenous to the brain and L-DOPA can be given to patients to generate more dopamine in the brain, studies were performed to see if dopamine was capable of binding to the β-amyloid peptide, specifically at the HHQK and LVFF regions.

The neutral dopamine molecule was subjected to a grid search from 0° to 330° in 30° steps, for each of the two torsional angles. The lowest energy structure generated from this search was first charged for physiological pH and was then minimized via steepest descent and conjugate gradient algorithms to find the lowest energy structure in the QUANTA program [46]. The energy of the optimized structure is given in Table 3.16.

Table 3.16: Gas phase energy of dopamine

	Total Energy $(\mathrm{kcal} / \mathrm{mol})$
Dopamine	-3.32

The potential binding interactions between dopamine and the specified regions of the $\mathrm{A} \beta$ peptide were examined in both gas and solution phase environments. These optimizations were performed in QUANTA using the CHARMM force field [46, 48, 50]. The same six conformations of β-amyloid selected for use in the phenylalanine calculations were also used to perform these system optimizations.

3.4.1 GAS PHASE INTERACTIONS BETWEEN DOPAMINE AND DIFFERENT CONFORMERS OF $\boldsymbol{\beta}$-AMYLOID

Gas phase minimizations were performed to see if dopamine was capable of forming binding interactions with the amino acid side chains in the HHQK and LVFF regions of the β-amyloid peptide.

3.4.1.1 Selection of Initial Orientations for Optimization

Results from previous research have indicated that the optimal initial distance to separate a molecule of interest from the β-amyloid peptide is $3.0 \AA$: this distance is close enough that both attractive forces and repulsive forces can be exerted by the protein on
the molecule, which may not occur if they are separated by larger distances. The number of systems minimized depended on the location of the amino acids side chains in the HHQK and LVFF regions of interest; some of these were too far apart for dopamine to interact with. The systems were set up such that any two of the three functional groups on dopamine were oriented in a way where they could interact with two different amino acid side chains in the selected $A \beta$ regions.

3.4.1.2 Optimization of the Gas Phase Systems

The potential binding systems were all modelled in the QUANTA program using the CHARMM force field [47, 48, 50]. Systems were set up following the above procedure, the protein backbone was constrained to prevent self interactions, and then the systems were subjected to minimization first via the steepest descent algorithm and then the conjugate gradient algorithm. These optimized systems were saved for future reference and then examined for measureable binding interactions that may have occurred between dopamine and the β-amyloid peptide. The systems were also imported into MOE to determine if aromatic type interactions were occurring [47].

The relative favourability was determined by calculating the binding energy of each system using the following formula:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {bind }}=\mathrm{E}_{\mathrm{A} \text { Bdopa }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\mathrm{dopa}} \tag{3.5}
\end{equation*}
$$

Where the total binding energy is equal to the energy of the optimized β-amyloiddopamine system, $\mathrm{E}_{\mathrm{A} \text { dopa, }}$, minus the individual contributions of separately optimized dopamine, $\mathrm{E}_{\mathrm{dopa}}$, and β-amyloid, $\mathrm{E}_{\mathrm{A} \beta}$. The protein energies are given in Appendix 6.

3.4.2 GAS Phase Results of Dopamine Interacting with $\boldsymbol{\beta}$-Amyloid

The main results of the gas phase optimizations of dopamine interacting with different conformations of β-amyloid are summarized in the following tables according to the β-amyloid conformer. The initial and final binding orientations of the systems are given, with the amino acid side chains represented by their single letter abbreviation and the location in the peptide sequence. The dopamine functional groups are represented by Ar for the aromatic ring, N for the $\mathrm{NH}_{3}{ }^{+}$group, and the two OH groups are represented by O^{1} and O^{2} where O^{1} is meta to the ethylamine (Figure 3.3).

Figure 3.3: Identification of the functional groups on dopamine
The results for each $A \beta$ conformer minimized with dopamine in the gas phase are given in Tables 3.17-3.22. Interactions in the HHQK and LVFF regions as well as overlapping possibilities between the two are shown for each system. The number of measureable bonds varied for each system with eight for the 1 AMB conformer, eight for 1AMC, eight for 1AML, six systems for 1BA4, ten for 1IYT and six for the 1Z0Q A β conformer.

Systems where measureable bonds were present did not always correlate to have the most energetically favourable interactions, therefore the selection of which of these systems would be subjected to solution phase optimization was based on different criteria. For each of the $A \beta$ conformers that were optimized with dopamine, six systems
were selected for minimization in a solvated environment. These six systems had the lowest overall binding energies and the potential to interact with two different amino acid side chains within the specified regions of β-amyloid.

Table 3.17: Gas phase results of dopamine interacting with the 1 AMB conformer of β-amyloid

Table 3.18: Gas phase results of dopamine interacting with the 1AMC conformer of β-amyloid

Initial Orientation								Final Orientation									$\Delta \mathrm{E}_{\text {bind }}$ Measureable $(\mathrm{kcal} / \mathrm{mol})$ Bonds	
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
Ar	N							$\mathrm{O}^{1} / \mathrm{O}^{2}$	N			O^{1}				Ar	-14.99	1
N	Ar							N	O^{2}							$\mathrm{Ar} / \mathrm{O}^{1}$	-16.06	2
N			Ar					N / Ar			$\mathrm{Ar} / \mathrm{O}^{1}$						-9.10	3
Ar			N					Ar / N								O^{2}	-13.32	1
				N			Ar					N			$\mathrm{Ar} / \mathrm{O}^{1}$		-9.13	0
				Ar			N					$\mathrm{Ar} / \mathrm{O}^{1}$			N		-8.30	0
						N	Ar							N	O^{2}		-6.95	0
						Ar	N								N		-5.58	0
Ar				N				Ar				N					-6.93	1
N				Ar				N/Ar				$\mathrm{Ar} / \mathrm{O}^{1} / \mathrm{O}^{2}$					-11.03	2
				N				O^{2}			$\mathrm{Ar} / \mathrm{O}^{2}$	N / Ar					-8.95	1
				Ar				O^{1}			N	$\mathrm{Ar} / \mathrm{O}^{1} / \mathrm{O}^{2}$					-9.59	0
			N				Ar				N				$\mathrm{O}^{1} / \mathrm{O}^{2}$		-5.38	0
			Ar				N				$\mathrm{Ar} / \mathrm{O}^{2}$	Ar			N / Ar		-9.28	2

Table 3.19: Gas phase results of dopamine interacting with the 1AML conformer of β-amyloid

Initial Orientation								Final Orientation									$\Delta \mathrm{E}_{\text {bind }}$ Measureable $(\mathrm{kca} / \mathrm{mol})$ Bonds	
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
N								N	O^{1}			O^{1}				Ar	-17.73	2
								O^{2}	N							$\mathrm{Ar} / \mathrm{O}^{1}$	-14.37	0
Ar			N					$\mathrm{O}^{1} / \mathrm{O}^{2}$			N						-9.45	0
N			Ar					N			$\mathrm{O}^{1} / \mathrm{O}^{2}$						-6.89	1
				Ar			N				O^{1}	O^{2}			Ar/N	O^{2}	-21.04	2
				N			Ar					N			$\mathrm{O}^{1} / \mathrm{O}^{2}$		-8.09	0
						N	Ar							N	$\mathrm{O}^{1} / \mathrm{O}^{2}$	N	-7.60	0
						Ar	N							$\mathrm{O}^{1} / \mathrm{O}^{2}$	N		-4.95	0
			N			Ar					N			$\mathrm{O}^{1} / \mathrm{O}^{2}$			-4.90	0
			Ar			N					O^{1}			N			-4.93	1
			Ar				N				$\mathrm{O}^{1} / \mathrm{O}^{2}$	N		Ar	N		-10.72	1
			N				Ar				$\mathrm{N} / \mathrm{Ar} / \mathrm{O}^{1}$			Ar	$\mathrm{O}^{1} / \mathrm{O}^{2}$		-14.84	2
N							Ar	N			O^{1}				O^{2}	Ar	-17.64	1
Ar							N	$\mathrm{O}^{1} / \mathrm{O}^{2}$							N	Ar	-12.22	1

Table 3.20: Gas phase results of dopamine interacting with the 1BA4 conformer of β-amyloid

Table 3.21: Gas phase results of dopamine interacting with the 1IYT conformer of β-amyloid

Table 3.22: Gas phase results of dopamine interacting with the 1Z0Q conformer of β-amyloid

Initial Orientation								Final Orientation									$\begin{gathered} \Delta \mathrm{E}_{\text {bind }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds
H13	H14	Q15	K16	L17	V18	F19	F20	H13	H14	Q15	K16	L17	V18	F19	F20	X		
NA	Ar							N	$\mathrm{O}^{1} / \mathrm{O}^{2}$							N	-11.55	2
	N							$\mathrm{Ar} / \mathrm{O}^{2}$	N			$\mathrm{O}^{1} / \mathrm{O}^{2}$				N	-16.98	0
	Ar		N					Ar	$\mathrm{O}^{1} / \mathrm{O}^{2}$		N						-14.44	0
	N		Ar						N		$\mathrm{O}^{1} / \mathrm{O}^{2}$	O^{2}					-5.94	0
ArN			N					$\mathrm{Ar} / \mathrm{O}^{1} / \mathrm{O}^{2}$			N					O^{2}	-10.75	2
			Ar					N / Ar			$\mathrm{Ar} / \mathrm{O}^{1} / \mathrm{O}^{2}$						-11.46	3
				Ar		N						$\mathrm{Ar} / \mathrm{O}^{1} / \mathrm{O}^{2}$		N	N		-12.69	0
				N		Ar						N		$\mathrm{Ar} / \mathrm{O}^{1} / \mathrm{O}^{2}$	$\mathrm{Ar} / \mathrm{O}^{1}$		-7.65	0
				N			Ar								$\mathrm{O}^{1} / \mathrm{O}^{2}$		-5.28	0
				Ar			N					$\mathrm{Ar} / \mathrm{O}^{1} / \mathrm{O}^{2}$			N		-9.77	1
						Ar	N							$\mathrm{Ar} / \mathrm{O}^{1} / \mathrm{O}^{2}$	N		-8.65	0
						N	Ar							N	$\mathrm{Ar} / \mathrm{N} / \mathrm{O}^{1} / \mathrm{O}^{2}$		-7.72	0
				N							$\mathrm{O}^{1} / \mathrm{O}^{2}$	N/Ar					-8.57	1
				Ar								$\mathrm{O}^{1} / \mathrm{O}^{2}$					-5.89	0
			Ar			N				N	$\mathrm{N} / \mathrm{O}^{1} / \mathrm{O}^{2}$			N		Ar	-18.50	5
			N			Ar								$\mathrm{O}^{1} / \mathrm{O}^{2}$			-12.35	0
	N			Ar					N			$\mathrm{O}^{1} / \mathrm{O}^{2}$					-8.51	0
	Ar			N					$\mathrm{O}^{1} / \mathrm{O}^{2}$								-9.48	0

The six selected systems from each conformer selected for optimization in a solvated environment are summarized in Table 3.23.

Table 3.23: Selected interactions of dopamine interacting with $\boldsymbol{\beta}$-amyloid for optimization in the solution phase

Interaction	Binding Energy (kcal/mol)	Interaction	Binding Energy (kcal/mol)
1AMB		1BA4	
HArHQKLN	-11.44	KNLVFAr	-17.51
HNHAr	-11.20	HArQKLN	-13.43
HArHN	-11.12	KArLVFN	-13.36
KNLAr	-10.71	LArVFFN	-12.70
LArVFFN	-10.42	HNHAr	-12.16
HArHQKN	-10.34	LNVFFAr	-11.31
1AMC		1IYT	
HNHAr	-16.06	HArHQKLVFFN	-11.94
HArHN	-14.99	HNHQKAr	-11.38
HNHQKLAr	-11.03	HArHQKN	-11.23
KArLVFFN	-9.28	HNHAr	-10.88
LNVFFAr	-9.13	HArHN	-10.78
HNHQKAr	-9.10	HArHQKLN	-6.46
1AML		1Z0Q	
HNHAr	-17.73	KArLVFN	-18.50
HNHQKLVFFAr	-17.64	HArHN	-16.98
KNLVFFAr	-14.84	HARQKN	-14.44
HArHN	-14.37	LArVFN	-12.69
HArHQKLVFFN	-12.22	HNHAR	-11.55
KArLVFFN	-10.72	HNHQKAr	-11.46

3.4.3 Solution Phase Results for Dopamine Interacting with $\boldsymbol{\beta}$-Amyloid

Upon completion of the gas phase optimizations, six of the resulting energetically favourable interactions between dopamine and β-amyloid were selected from each $\mathrm{A} \beta$ conformer for solution phase minimizations. Using these initial gas phase optimized systems allowed for more efficient solution phase calculations. The solution phase optimizations were also performed in QUANTA using the CHARMM force field [46, 48, 50]. The same procedure as described in section 3.3.3.1 was used for the solution phase optimization of dopamine and β-amyloid systems.

The final energies for the binding interactions were calculated using the energies listed in Table 3.24 and Appendix 6 via the following equations:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\mathrm{dopa}} \tag{3.6}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {eledopa }} \tag{3.7}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdw} A \beta}-\mathrm{E}_{\mathrm{vdwdopa}} \tag{3.8}
\end{align*}
$$

where the energies of the solution phase optimized β-amyloid conformers and the dopamine molecule were subtracted from the total energies of the optimized system for each of the overall total energy, the electrostatic energy and the van der Waals energy of the systems. The energies were measured with the solvent contributions ignored.

Table 3.24: Total energies of dopamine in the solution phase

All of the resulting minimized systems were examined in MOE after optimization in QUANTA to determine where, if any, cation $-\pi$ or $\pi-\pi$ interactions are occurring [46, 47].

The results of the solution phase optimizations of the dopamine-A β systems have been summarized in tables for each conformation of β-amyloid. Initial and final binding orientations are given along with the three calculated energies: the total binding energy, electrostatic binding energy and van der Waals binding energy. Any measureable binding interactions that occurred are indicated according to the following colour scheme: hydrogen-bonds are coloured orange, cation $-\pi$ interactions are green and $\pi-\pi$ interactions
are blue. Interactions occurring outside the HHQK and LVFF regions of interest are also indicated according to the amino acid side chain with which binding may be occurring. As in the gas phase calculations, the amino acids are represented in single letter notation with the respective site number on the peptide chain and the dopamine functional groups are represented by $\mathrm{N}, \mathrm{Ar}, \mathrm{O}^{1}$ and O^{2} for the amino group, the aromatic ring, the OH meta to the ethylamine chain and the OH para to the ethylamine chain, respectively.

The results of the solution phase optimizations between dopamine and the 1AMB conformer of A β are indicated in Table 3.25. All six optimized systems had measureable bonds and favourable binding energies, with the electrostatic and van der Waals energies being very similar in range. Two of the systems had potential binding interactions at His13 and His14. The other two systems exhibited potential binding interactions at both Lys16 and Phe20, one of which can also interact at Leu17 and Phe20.

The results of the solution phase minimized systems of dopamine and the 1AMC conformer of β-amyloid are given in Table 3.26. Five of the six systems demonstrated measureable binding interactions and two had potential interactions at His13 and His14 while one had potential interactions at Lys16 and Phe20 as well as two at Leu17 and Phe20. The total binding energies are favourable; however, the van der Waals energies are significantly lower than the electrostatic energies.

Table 3.27 summarizes the results of the optimization of dopamine and the 1AML conformer of $A \beta$ in a solvated environment. Four of the final systems contained measureable binding interactions. Overall the binding energies are very favourable with the exception of one system, with the electrostatic binding energies being much weaker
than the van der Waals binding energies. Two systems have potential interactions at His13 and His14, two at Leu17 and Phe20, and one at Lys16 and Phe20.

The results of the solution phase optimization of dopamine with the 1BA4 conformer are detailed in Table 3.28. While four of the six systems have measureable bonds forming, the binding energies are very unfavourable; however, the van der Waals energies are still significantly lower than the electrostatic energies. There are two systems presenting possible binding at both Leu17 and Phe20 and one at His13 and His14.

Table 3.25: The solution phase results of dopamine interacting with the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.26: The solution phase results of dopamine interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

	Y10 E11	H13	H14	Q15	$\begin{gathered} \text { Amin } \\ \text { K16 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Acid } \\ & \text { L17 } \end{aligned}$	V18	F19	F20	$\mathrm{E}_{\text {tot }}$ $\mathrm{kca} / \mathrm{mol}$	$\mathrm{E}_{\text {ele }}$ $\mathrm{kca} / \mathrm{mol}$	$\mathrm{E}_{\mathrm{vdw}}$ $\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {tot }}$ $\mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {ele }}$ $\mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{vdw}}$ $\mathrm{kca} / \mathrm{mol}$
Initial Orientation	$\mathrm{Ar} \mathrm{O}^{1}$	N	O^{1}												
Final Orientation	$\mathrm{Ar} \mathrm{O}^{1}$	N	Ar			N				-390.48	-290.97	-192.20	-77.83	-9.09	-31.21
Initial Orientation	Ar	$\mathrm{O}^{1} / \mathrm{O}^{2}$	N												
Final Orientation	Ar	$\mathrm{O}^{1} / \mathrm{O}^{2}$	N			O^{1}				-389.77	-290.15	-193.28	-77.12	-8.26	-32.29
Initial Orientation		N/Ar				r/O ${ }^{1} / \mathrm{O}^{2}$									
Final Orientation		N/Ar				/ $\mathrm{O}^{1} / \mathrm{O}^{2}$				-378.27	-292.41	-179.05	-65.62	-10.53	-18.06
Initial Orientation					$\mathrm{Ar} / \mathrm{O}^{2} *$	Ar			N/Ar*						
Final Orientation					$\mathrm{Ar} / \mathrm{O}^{2} *$	Ar			$\mathrm{N} / \mathrm{Ar}^{*}$	-376.01	-286.72	-180.12	-63.36	-4.84	-19.13
Initial Orientation						N			$\mathrm{Ar} / \mathrm{O}^{1}$						
Final Orientation						N			$\mathrm{Ar} / \mathrm{O}^{1}$	-377.56	-294.82	-174.90	-64.91	-12.93	-13.91
Initial Orientation		N/Ar			$\mathrm{Ar} / \mathrm{O}^{2} *$										
Final Orientation		N/Ar			$\mathrm{Ar} / \mathrm{O}^{2}$					-376.80	-286.06	-181.15	-64.15	-4.18	-20.17

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.27: The solution phase results of dopamine interacting with the 1AML conformer of $\boldsymbol{\beta}$-amyloid

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.28: The solution phase results of dopamine interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.29: The solution phase results of dopamine interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

[^0]Table 3.30: The solution phase results of dopamine interacting with the 1Z0Q conformer of $\boldsymbol{\beta}$-amyloid

*Indicates the functional group involved in the specified interaction that is occurring

Table 3.29 gives the results of the solution phase optimization of the 1IYT conformer of β-amyloid interacting with dopamine. Four of the six systems have measureable binding interactions. Three have binding occurring at both Lys16 and Phe20 and two at His13 and His14. The binding energies are only slightly favourable, and the electrostatic energies are very similar to the van der Waals energies.

The results of the solution phase minimizations of dopamine interacting with the 1Z0Q conformer of $A \beta$ are listed in Table 3.30. Only two of the six systems had measureable binding interactions, and both also had the least favourable binding energies of them. Van der Waals energies are more favourable than electrostatic energies, and two systems had potential interactions at both His13 and His14. There is also one system that presents potential binding at Leu17 and Phe20. The overall binding energies were only moderately favourable relative to the other systems.

3.4.4 CONCLUSIONS OF DOPAMINE INTERACTING WITH $\boldsymbol{\beta}$-AMYLOID.

Overall the solution phase optimization of dopamine interacting with various conformations of β-amyloid indicates that binding interactions can occur. Some conformations showed less favourable energies of interactions than others, but measureable binding interactions were still formed. Cation- π interactions are slightly more prevalent than hydrogen bonding interactions, with very few $\pi-\pi$ interactions formed. Potential interactions occur most often at both the His13 and His14 side chains in the HHQK region, in eleven of the systems in total. Interactions at both Leu17 and Phe20 are most common in the LVFF region with nine of the twenty-four final systems demonstrating potential binding at these sites. Interactions can also occur at Lys16 and Phe20 overlapping both HHQK and LVFF regions, as demonstrated in eight of the final systems.

As seen in the phenylalanine results, there does not appear to be a direct correlation between the number of measureable binding interactions and the energetic favourability of the systems. Despite this lack of correlation, these results suggest dopamine is capable of binding to and interacting with the β-amyloid peptide in both regions of interest. This implies that if dopamine levels are prevented from decreasing as part of the disease process, these higher dopamine concentrations could potentially prevent β-amyloid aggregation from occurring.

3.5 TRyPTOPhAN AND $\boldsymbol{\beta}$-AMYLOID

Another amino acid identified in the virtual library for having the potential to interact with the $\mathbf{B B X B}$ region of $\mathrm{A} \beta$ is tryptophan. Tryptophan (Figure 3.4) is one of the
amino acids involved in protein synthesis and is only obtained through diet and not synthesized in the body [86]. Tryptophan can exert an effect on neurotransmitters such as dopamine (increased tryptophan levels result in increased dopamine levels) and its metabolites can also affect the activity of neurotransmitters [86].

Figure 3.4 Tryptophan charged for physiological pH
Both L-tryptophan and D-tryptophan (Figure 3.5) were studied for their potential to interact with the HHQK region of β-amyloid. In silico studies examined potential binding in both gas phase and solution phase environments using MOE [87].

L-Tryptophan

D-Tryptophan

Figure 3.5: L-tryptophan and D-tryptophan

3.5.1 PREPARATION OF THE $\boldsymbol{\beta}$-AMYLOID CONFORMERS FOR OPTIMIZATION

The protein structures were reoptimized as the optimizations being performed were taking place in the Molecular Operating Environment instead of QUANTA like the previous calculations, as MOE provided a more complete program environment for the studies $[46,87]$. For each of the $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{AML}$, and 1BA4 conformations, the histidine residues were protonated, the charges of the system were corrected, the backbone was constrained and the system was minimized [68, 69, 70, 71]. For the 1IYT conformer, the carboxylate groups needed to be deprotonated, then the system charges were corrected, the protein backbone constrained and minimization was performed [72]. For the 1 Z 0 Q conformer, hydrogen atoms needed to be added to the whole system, and the terminal carboxylate residue needed to be fixed; system charges were fixed for the force field and then the protein backbone was constrained before optimization occurred [75]. The total energy for each conformation with the constrained protein backbone is summarized in Appendix 6 and these optimizations were performed in the gas phase.

3.5.2 Gas Phase Interactions Between D-and L-Tryptophan and $\boldsymbol{\beta}$-Amyloid

D- and L-tryptophan were examined for their potential to bind to the HHQK region of $\mathrm{A} \beta$ in the gas phase using the CHARMM22 force field [44, 47]. Initially optimizations were performed between the tryptophan stereoisomers and an isolated VHHQKL segment of $A \beta$; however, these results were inconclusive. It seems likely that the lack of surrounding amino acids left the HHQK region too exposed and provided less stability for interactions to occur. It was determined that the whole protein would therefore be best for the calculations.

3.5.2.1 Preparation of D-and L-Tryptophan for Optimization

D-Tryptophan and L-tryptophan were first constructed in a neutrally charged form in a gas phase environment. Each structure was then subjected to a systematic conformational search based on torsional rotations. The lowest energy conformer was selected for each stereoisomer and then charged for physiological pH before minimization. The overall energies for these molecules are summarized in Table 3.31. The total energies of these systems were identical, with very slight variations in the electrostatic and van der Waals energies.

Table 3.31: Gas phase energies of D - and L-tryptophan

	Total Energy (kcal/mol)
D-tryptophan	8.05
L-tryptophan	8.05

3.5.2.2 Selection of Initial Orientations for Optimization of Tryptophan and β Amyloid

There are three regions on tryptophan capable of interacting with the charged region of $\mathbf{H H Q K}$ on $A \beta$: The indole group, the positively charged amino group and the negatively charged carboxylate group. Each system was set up such that either the carboxylate group and the indole, or the amino group and the indole were situated approximately $3.0 \AA$ from two of the positively charged amino acids in HHQK. Every possible initial orientation was determined, but there are spatial limitations for some of the protein conformations that prevented their usage.

3.5.2.3 Optimization of the Gas Phase Systems

In these gas phase optimizations the protein backbone was constrained for the systems to prevent structural collapse from occurring. Minimization in MOE follows the pattern detailed in Section 1.1.4.3. The final energies for each optimized system were noted as well as any binding interactions that were occurring. The total binding energy for each system was calculated using the following equation:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {bind }}=\mathrm{E}_{\mathrm{trpA} \beta}-\mathrm{E}_{\mathrm{trp}}-\mathrm{E}_{\mathrm{A} \beta} \tag{3.9}
\end{equation*}
$$

Here the overall binding energy, $\Delta \mathrm{E}_{\text {bind, }}$, is the result of subtracting the individual energies of the optimized $A \beta$ protein, $E_{A \beta}$, and tryptophan, $E_{\text {trp }}$, from the energy of the optimized system.

3.5.3 GAS PHASE RESULTS OF THE OPTIMIZATION OF D-TRYPTOPHAN AND LTRYPTOPHAN WITH $\boldsymbol{\beta}$-AMYLOID

The results of the gas phase optimizations of D- and L-tryptophan with $A \beta$ are summarized in the following tables. For the sake of clarity, the indole group has been abbreviated to In, the amino group to N and the carboxylate group to C. Each table denotes the initial orientation in which the functional groups were located, the final orientation, the overall binding energy, and the number of measurable bonds that formed. The measured bonds have been split into hydrogen bonds, and aromatic type interactions: cation π, and $\pi-\pi$. The amino acids are identified by their three letter abbreviation, and any interaction occurring outside of the HHQK region is listed as "other".

Table 3.32 summarizes the results of the tryptophan stereoisomers with the 1 AMB conformer of $\mathrm{A} \beta$. L-tryptophan was capable of binding to HHQK in more
situations than D-tryptophan. Measurable bonds formed in nine of the sixteen systems.
The four systems where binding occurred at two or more of the HHQK side chains were selected for optimization in the solution phase.

Table 3.33 summarizes the results of D- and L-tryptophan interacting with the 1 AMC conformer of β-amyloid. Measurable bonds have formed in seven of the sixteen systems, and both D- and L-tryptophan are capable of binding to/interacting with multiple sites within the HHQK region. Therefore, the four systems with the lowest energy and multiple binding interactions were selected for solution phase optimizations.

Table 3.32: The gas phase results of D - and L-tryptophan interacting with the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

	Initial Orientation			Final Orientation					$\begin{gathered} \Delta \mathrm{E}_{\text {bind }} \\ (\mathrm{kca} / \mathrm{mol}) \end{gathered}$	Measureable Bonds	
	His13			His13			Lys16	Other			
D-Tryptophan	In	C			C				-36.63	0	0
	C	In		C	In			In	-45.63	0	1
	In	N			N			In	-35.54	0	1
	N	In			In				-21.92	0	0
	C		In	In					-31.93	0	0
	In		C				C		-31.51	1	0
	N		In	C					-32.58	0	0
	In		N				C		-26.35	1	0
L-Tryptophan	In	C			C			In	-25.14	0	0
	C	In		C	In				-38.13	0	0
	In	N		N					-51.62	0	1
	N	In			In				-33.78	0	2
	C		In	C			In		-32.51	0	1
	In		C	In			C	C	-33.67	1	0
	N		In	-	-	-	-	-	-26.12	0	0
	In		N				C	In	-23.85	0	0

Table 3.33: The gas phase results of D - and L-tryptophan interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

	Initial Orientation			Final Orientation					$\begin{gathered} \Delta \mathrm{E}_{\text {bind }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds	
	His13	His14	Gln15 Lys16	His13	His14	Gln 15	Lys16	Other		H-Bond	$+-\pi$
D-Tryptophan	N	In			In			N	-51.86	0	0
	In	N			N			C	-41.11	1	0
	C	In		C	In			In/C	-42.66	0	1
	In	C			C			In/C	-38.22	0	0
	N		In	-	-	-	-	-	-33.98	0	0
	In		N				C	In	-46.20	1	0
	C		In	C			In		-30.99	0	1
	In		C	In			C		-32.50	2	0
L-Tryptophan	N	In			In			C	-33.69	1	0
	In	N					N	In	-36.84	0	0
	C	In		C	In				-36.09	0	0
	In	C			C			In	-28.38	0	0
	N		In	C			In	In	-38.33	0	0
	In		N	-	-	-	-	-	-32.19	0	0
	C		In	C					-36.01	0	0
	In		C	In			C	C	-34.80	1	0

Table 3.34: The gas phase results of D - and L-tryptophan interacting with the 1AML conformer of $\boldsymbol{\beta}$-amyloid

	Initial Orientation			Final Orientation					$\begin{array}{\|c\|} \hline \Delta \mathrm{E}_{\text {bind }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{array}$	Measureable Bonds H-Bond $\pi-\pi$	
			Gln15 Lys16	His13		$\mathrm{Gln} 15$	Lys16	Other			
D-Tryptophan	In	N		C				In	-42.15	0	0
	N	In		C				N	-43.21	0	0
	C	In		C				In / C	-40.08	0	0
	In	C			C			In / C	-45.90	0	0
	N		In	C					-25.35	0	0
	In		N				C		-21.77	1	0
	C		In	C					-29.18	1	0
	In		C	In			C		-33.84	0	0
L-Tryptophan	In	N		-	-	-	-	-	-28.59	0	0
	N	In		C				In	-44.01	0	2
	C	In		C				In	-44.62	0	2
	In	C		In	C			C	-50.11	0	0
	N		In	C					-22.99	0	0
	In		N	In					-12.44	0	0
	C		In	C			In		-32.24	0	0
	In		C				C		-30.62	1	0

Table 3.35: The gas phase results of D - and L-tryptophan interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	Initial Orientation His13 His14 Gln15 Lys16			Final Orientation				$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds H-Bond $\quad+-\pi$	
				His13	His14	Gln 15	Lys16			
D-Tryptophan	In	C			C			-21.32	0	0
	C	In		C	In			-29.10	0	0
	In	N		In	C			-27.24	0	1
	N	In		N	In			-23.94	0	2
L-Tryptophan	In	C		In			C	-36.06	1	0
	C	In			In			-30.62	0	0
	In	N		In				-24.94	0	0
	N	In			In			-24.10	0	0

Table 3.36: The gas phase results of D - and L-tryptophan interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Initial Orientation His13 His14 Gln15 Lys16			His 13	Final Orientation				$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds H-Bond $\quad+-\pi$	
D-Tryptophan	N	In		N	In			In	-23.57	0	2
	In	N		In					-19.12	0	0
	In	C		In					-28.52	0	0
	C	In		C	In				-31.07	0	0
	In		N	In				In	-25.89	0	0
	N		In				In		-12.77	0	0
	In		C	In			C		-30.26	1	0
	C		In	C					-30.04	0	0
L-Tryptophan	N	In		N	In			In	-25.20	0	1
	In	N		In					-38.01	0	0
	C	In		In				In	-43.10	0	0
	In	C		C					-24.82	0	0
	In		N	In			C		-32.00	0	0
	N		In	C			In		-27.06	1	1
	In		C				C	N	-38.01	0	0
	C		In	C			In		-29.87	0	0

Table 3.37: The gas phase results of D - and L-tryptophan interacting with the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid

	Initial Orientation				Final Orientation					$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measureable Bonds$\text { H-Bond } \quad+-\pi$	
	His 13	His14	Gln 15	Lys16	His13	His 14	Gln15	Lys16	Other			
D-Tryptophan	In	N			In				In	-26.71	0	0
	N	In			-	-	-	-	-	-21.14	0	0
	In	C				C				-29.97	0	0
	C	In			-	-	-	-	-	-31.37	0	0
	In			N	In					-21.36	0	0
	N			In	-	-	-	-	-	-22.68	0	0
	In			C	In			C		-26.10	2	0
	C			In	C			In		-27.00	0	0
L-Tryptophan	In	N			In			In		-27.66	0	0
	N	In			C			In		-36.78	0	0
	In	C				C				-32.04	0	0
	C	In			C	In				-32.76	1	0
	In			N	In			C		-25.05	1	0
	N			In	C/In					-23.32	0	0
	In			C	In			C		-25.53	1	0
	C			In	C					-30.36	0	0

The results in Table 3.34 summarize the results of tryptophan interacting with the 1AML conformer of $A \beta$. Measurable interactions only formed in five of the sixteen systems, and binding at two or more sites in HHQK only occurred in three systems; these three plus one more system with the lowest overall energy were selected for solution phase optimization.

The interactions of tryptophan with the 1BA4 conformer of β-amyloid are summarized in Table 3.35 and show measured interactions in three of the eight systems. Multiple binding interactions at $\mathbf{H H Q K}$ were noted, particularly for D-tryptophan. The four systems with the most favourable energy as well as binding at two sites within HHQK were selected for optimization in a solvated environment.

Table 3.36 demonstrates that when D- and L-tryptophan interact with the 1IYT conformer of $A \beta$, measured interactions only form in four of the sixteen systems. Both Dtryptophan and L-tryptophan demonstrated the capacity to bind to more than one residue in HHQK, and from these the four with the lowest energies were selected for solution phase calculations.

The results of the gas phase optimizations of D-tryptophan and L-tryptophan with the 1Z0Q conformer are given in Table 3.37. Only four systems had measured interactions but seven systems demonstrated binding at two sites in HHQK. L-tryptophan interacted more favourably with $\mathbf{H H Q K}$ than D-tryptophan, but both were capable of binding to the region. The four systems with multiple binding interactions and the lowest overall energies were selected for optimization. These selected configurations are summarized in Table 3.38

Table 3.38: Selected systems of D - and L-tryptophan for solution phase optimization

Interaction	Binding Energy (kcal/mol)	Interaction	Binding Energy (kcal/mol)
1AMB		1BA4	
D-HCHIn	-45.63	L-HInHC	-36.06
L-HCHIn	-38.13	L-HCHIn	-30.62
L-HInHQKC	-33.67	D-HCHIn	-29.10
L-HCHQKIn	-32.51	D-HInHN	-27.24
1AMC		1IYT	
D-HCHIn	-42.66	L-HInHQKN	-32.00
L-HNHQKIn	-38.33	D-HCHIn	-31.07
L-HCHIn	-36.09	D-HInHQKC	-30.26
L-HInHQKC	-34.79	L-HCHQKIn	-29.87
1AML		1Z0Q	
L-HInHC	-50.11	L-HNHIn	-36.78
D-HInHC	-45.90	L-HInHN	-32.76
D-HInHQKC	-33.84	L-HCHIn	-27.66
L-HCHOKIn	-32.24	D-HCHQKIn	-27.00

3.5.4 SOLUTION PhASE OPTIMIZATION OF D-TRYPTOPHAN AND L-TRYPTOPHAN WITH $\boldsymbol{\beta}$-AMYLOID

From the optimized gas phase results of D-tryptophan and L-tryptophan with β amyloid, four systems from each $A \beta$ conformer were selected for solution phase optimization. Solution phase optimizations were performed in MOE using the CHARMM22 force field [48, 87].

3.5.4.1 Solvation and Minimization Set-Up for D-and L-Tryptophan and β-Amyloid

Each of the selected gas phase systems was used as the starting configuration for the solution phase optimizations. In MOE, there are several different solvation methods available to the user [87]. For these optimizations, explicit solvation was selected to surround the entire system in a box of water molecules. The size of the box varied for each system and could be adjusted as necessary to ensure that the system was completely surrounded by water, and periodic boundary conditions were placed on the box to prevent expansion of the system. Given the presence of water molecules, the protein backbone did not need to be constrained for these calculations. Before optimization of the solvated system, verification was made that the charges for the system were calculated appropriately for the force field.

The individual $\mathrm{A} \beta$ proteins conformations, D-tryptophan, and L-tryptophan were also optimized in a solvated environment to provide the energies necessary for calculating the binding energies occurring in the optimized systems. The tryptophan energies are summarized in Table 3.39, and the protein energies are given in Appendix 6.

Table 3.39: Energies of solvated D-tryptophan and L-tryptophan

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
D-Tryptophan	13.48	11.07	-4.52
L-Tryptophan	12.95	9.29	-4.78

3.5.5 SOLUTION PHASE RESULTS OF D-TRYPTOPHAN AND L-TRYPTOPHAN InTERACTING WITH $\boldsymbol{\beta}$-AMYLOID

The results of the solution phase optimizations of the optimized D-tryptophan-A β and L-tryptophan- $\mathrm{A} \beta$ systems have been summarized in tables for each conformation of β-amyloid. The tables summarize the results by including which conformation of tryptophan was involved in the interaction as well as giving the initial and final binding orientations. The energies of the optimized systems are listed and following are the three calculated energies: the total binding energy, electrostatic binding energy and van der Waals binding energy.

Any measureable interactions that occurred as a result of the optimization are indicated according to the following colour scheme: hydrogen bonds are coloured orange and cation- π interactions are green. Interaction occurring between tryptophan and the CH_{2} - region of the amino acids (as opposed to the charged side chain) are shown in indigo. Interactions occurring outside the HHQK region of interest are also indicated according to the amino acid side chain where binding may be occurring. The amino acids are represented in single letter notation with the respective site number on the protein chain and the tryptophan functional groups are represented by N, C, and In for the amino group, the carboxylate group, and the indole ring.

The final energies for the binding interactions were calculated using the energies listed in Table 3.39 via the following equations:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {trp }} \tag{3.10}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {eletrp }} \tag{3.11}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdwtrp}} \tag{3.12}
\end{align*}
$$

where the energies of the solution phase optimized β-amyloid conformers and the tryptophan molecule were subtracted from the total energies of the optimized system for each of the overall total energy, the electrostatic energy and the van der Waals energy of the systems. These energies were calculated for the systems once the solvent had been removed and the protein backbone was constrained to better show the relationship between tryptophan and β-amyloid. Depending on the nature of the system being examined, the energies for D-tryptophan or L-tryptophan were used as required.

Each system was also examined for the bonding interactions that may have occurred between tryptophan and $\mathrm{A} \beta$ following optimization in the solution phase.

Tables 3.40 through 3.45 summarize the results of the solution phase optimization of D-tryptophan and L-tryptophan with the different conformers of β-amyloid.

Table 3.40: The solution phase results of D - and L-tryptophan interacting with the $\mathbf{1 A M B}$ conformer of $\boldsymbol{\beta}$-amyloid

D- or L-
Tyr10 His13 His14 Gln15 Lys16 Leu17
Tryptophan
D

| Initial Orientation | In | C | In |
| :--- | :--- | :--- | :--- | :--- |
| Final Orientation | | C | In |

Total Energy $=\quad-24.63 \mathrm{kca} / \mathrm{mol}$
van der Waals $=\quad 56.19 \mathrm{kcal} / \mathrm{mol}$
electrostatic $=\quad-236.28 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{tot}}=\quad-36.46 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-1.65 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-33.76 \mathrm{kca} / \mathrm{mol}$

L

Initial Orientation		C	In
Final Orientation	C	C	In

Total Energy $=\quad-26.54 \mathrm{kca} / \mathrm{mol}$ van der Waals $=\quad 47.49 \mathrm{kcal} / \mathrm{mol}$ electrostatic $=\quad-238.70 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad-37.84 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-8.57 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-35.93 \mathrm{kcal} / \mathrm{mol}$
L
Initial Orientation
Final Orientation
C
C

In
In

Total Energy $=\quad-31.64 \mathrm{kca} / \mathrm{mol}$
van der Waals $=\quad 50.74 \mathrm{kcal} / \mathrm{mol}$
electrostatic $=\quad-229.32 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{tot}}=\quad-42.94 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-5.32 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-26.55 \mathrm{kcal} / \mathrm{mol}$

L

Initial Orientation	In
Final Orientation	In

Total Energy $=$	$-1.82 \mathrm{kcal} / \mathrm{mol}$
van der Waals $=$	$57.45 \mathrm{kcal} / \mathrm{mol}$
electrostatic $=$	$-221.64 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=$	$-13.12 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {vdw }}=$	$1.39 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=$	$-18.87 \mathrm{kcal} / \mathrm{mol}$

Table 3.41: The solution phase results of D - and L-tryptophan interacting with the $\mathbf{1 A M C}$ conformer of $\boldsymbol{\beta}$-amyloid

D- or L-
$\begin{array}{ccc}\text { Tyr10 } & \text { His13 } & \text { His14 Gln15 Lys16 Leu17 Phe20 }\end{array}$
Tryptophan
$\begin{array}{ll}\text { L } & \text { Initial Orientation } \\ & \text { Final Orientation }\end{array}$

C	In	In	In
C	In	In	In

$$
\begin{array}{lr}
\text { Total Energy }= & -39.29 \mathrm{kcal} / \mathrm{mol} \\
\text { van der Waals }= & 56.91 \mathrm{kcal} / \mathrm{mol} \\
\text { electrostatic }= & -263.30 \mathrm{kcal} / \mathrm{mol} \\
& \\
\Delta \mathrm{E}_{\text {tot }}= & -25.02 \mathrm{kcal} / \mathrm{mol} \\
\Delta \mathrm{E}_{\mathrm{vdw}}= & 2.34 \mathrm{kcal} / \mathrm{mol} \\
\Delta \mathrm{E}_{\text {ele }}= & -38.03 \mathrm{kcal} / \mathrm{mol}
\end{array}
$$

L Initial Orientation
Final Orientation $\mathrm{N} \quad \mathrm{C} \quad \mathrm{C}$

Total Energy $=$	$-4.90 \mathrm{kcal} / \mathrm{mol}$	
van der Waals $=$	$58.35 \mathrm{kcal} / \mathrm{mol}$	
electrostatic $=$	$-233.26 \mathrm{kcal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\text {tot }}=$	$9.37 \mathrm{kcal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$3.79 \mathrm{kcal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\text {ele }}=$	$-7.98 \mathrm{kcal} / \mathrm{mol}$	
Initial Orientation	$\mathrm{In} / \mathrm{C} \quad \mathrm{C}$	In
Final Orientation	In / C	

Total Energy $=\quad-63.77 \mathrm{kca} / \mathrm{mol}$
van der Waals $=\quad 52.22 \mathrm{kca} / \mathrm{mol}$
electrostatic $=\quad-266.21 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad-50.03 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-4.13 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-41.20 \mathrm{kcal} / \mathrm{mol}$

L

Initial Orientation	In
Final Orientation	In

Total Energy = $\quad-13.59 \mathrm{kca} / \mathrm{mol}$
van der Waals $=\quad 57.59 \mathrm{kca} / \mathrm{mol}$
electrostatic $=\quad-247.56 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{tot}}=$
$0.68 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=$
$3.02 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=$
$-22.29 \mathrm{kca} / \mathrm{mol}$

Table 3.42: The solution phase results of D - and L-tryptophan interacting with the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

D- or L-
Tyr10 Val12
His13 His14 Gln15 Lys16 Leu17
Tryptophan
L
Initial Orientation
Final Orientation

Total Energy $=\quad 102.01 \mathrm{kca} / \mathrm{mol}$
van der Waals $=\quad 81.00 \mathrm{kca} / \mathrm{mol}$
electrostatic $=\quad-202.40 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad-37.24 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad 3.79 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-38.50 \mathrm{kca} / \mathrm{mol}$

D
Initial Orientation
Final Orientation
Total Energy $=\quad 93.72 \mathrm{kca} / \mathrm{mol}$
van der Waals $=\quad 79.61 \mathrm{kca} / / \mathrm{mol}$
electrostatic $=\quad-208.03 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad-46.05 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad 0.63 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-44.39 \mathrm{kca} / \mathrm{mol}$

D
Initial Orientation
Final Orientation
$\begin{array}{lr}\text { Total Energy }= & 92.08 \mathrm{kcal} / \mathrm{mol} \\ \text { van der Waals }= & 76.51 \mathrm{kcal} / \mathrm{mol} \\ \text { electrostatic }= & -198.97 \mathrm{kcal} / \mathrm{mol} \\ \Delta \mathrm{E}_{\text {tot }}= & -47.69 \mathrm{kcal} / \mathrm{mol} \\ \Delta \mathrm{E}_{\text {vdw }}= & -2.47 \mathrm{kcal} / \mathrm{mol} \\ \Delta \mathrm{E}_{\text {ele }}= & -35.32 \mathrm{kca} / \mathrm{mol}\end{array}$

L

Initial Orientation		C	In
Final Orientation	In	C	In

Total Energy $=\quad 109.42 \mathrm{kca} / \mathrm{mol}$
van der Waals $=\quad 84.74 \mathrm{kca} / \mathrm{mol}$
electrostatic $=\quad-190.30 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad-29.82 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad 7.53 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-26.39 \mathrm{kcal} / \mathrm{mol}$

C
C

Table 3.43: The solution phase results of D - and L-tryptophan interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

D- or L-
His13 His14 Gln15 Lys16

Tryptophan
L
Initial Orientation
Final Orientation

In

Total Energy $=\quad 102.66 \mathrm{kca} / / \mathrm{mol}$ van der Waals $=\quad 95.50 \mathrm{kcal} / \mathrm{mol}$ electrostatic $=\quad-202.78 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad-48.04 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad 8.46 \mathrm{kca} / / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-33.28 \mathrm{kca} / / \mathrm{mol}$
L Initial Orientation Final Orientation

C In C In

Total Energy $=\quad 108.75 \mathrm{kca} / \mathrm{mol}$ van der Waals $=\quad 76.18 \mathrm{kca} / \mathrm{mol}$ electrostatic $=$ - $195.24 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{tot}}=\quad-41.96 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-10.86 \mathrm{kca} / \mathrm{mol}$ $\Delta \mathrm{E}_{\text {ele }}=\quad-25.73 \mathrm{kca} / / \mathrm{mol}$

D Initial Orientation Final Orientation

Total Energy $=\quad 100.33 \mathrm{kca} / \mathrm{mol}$ van der Waals $=\quad 87.50 \mathrm{kcal} / \mathrm{mol}$ electrostatic $=\quad-200.57 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{tot}}=\quad-52.15 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad 0.21 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-31.06 \mathrm{kca} / / \mathrm{mol}$

D

Initial Orientation	In	C
Final Orientation	In	C

Total Energy $=$	$81.25 \mathrm{kca} / \mathrm{mol}$
van der Waals $=$	$80.64 \mathrm{kca} / \mathrm{mol}$
electrostatic $=$	$-218.37 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=$	$-71.23 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {vdw }}=$	$-6.66 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=$	$-48.86 \mathrm{kcal} / \mathrm{mol}$

Table 3.44: The solution phase results of D - and L-tryptophan interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

D- or L-
Val12 His13 His14 Gln15 Lys16 Leu17
Tryptophan
D

Initial Orientation	In
Final Orientation	In
Total Energy $=$	$101.36 \mathrm{kca} / \mathrm{mol}$
van der Waals $=$	$85.17 \mathrm{kca} / \mathrm{mol}$
electrostatic $=$	$-213.84 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=$	$11.26 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$-14.09 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=$	$7.23 \mathrm{kcal} / \mathrm{mol}$

L

Initial Orientation	In
Final Orientation	In

Total Energy $=\quad 95.63 \mathrm{kca} / \mathrm{mol}$
van der Waals $=\quad 84.52 \mathrm{kca} / / \mathrm{mol}$
electrostatic $=\quad-221.83 \mathrm{kca} / / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad 6.03 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-12.96 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-0.51 \mathrm{kca} / / \mathrm{mol}$
L

Initial Orientation	C
Final Orientation	In \quad C
Total Energy $=$	$75.74 \mathrm{kca} / \mathrm{mol}$
van der Waals $=$	$87.28 \mathrm{kca} / \mathrm{mol}$
electrostatic $=$	$-234.88 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=$	$-13.86 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$-10.20 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{ele}}=$	$-13.56 \mathrm{kca} / \mathrm{mol}$

D $\begin{aligned} & \text { Initial Orientation } \\ & \\ & \text { Final Orientation }\end{aligned}$

$$
\begin{array}{ll}
\mathrm{C} & \text { In } \\
\mathrm{C} &
\end{array}
$$

Total Energy $=$	$57.96 \mathrm{kca} / \mathrm{mol}$
van der Waals $=$	$79.94 \mathrm{kca} / \mathrm{mol}$
electrostatic $=$	$-248.45 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=$	$-32.17 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {vdw }}=$	$-19.32 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=$	$-27.38 \mathrm{kcal} / \mathrm{mol}$

Table 3.45: The solution phase results of D - and L-tryptophan interacting with the 1Z0Q conformer of $\boldsymbol{\beta}$-amyloid

D- or L-
Tryptophan
L
Initial Orientation

Total Energy =
$120.09 \mathrm{kcal} / \mathrm{mol}$
van der Waals $=\quad 76.61 \mathrm{kca} / / \mathrm{mol}$
electrostatic $=\quad-193.02 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad-14.64 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-5.16 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=$
$-2.87 \mathrm{kcal} / \mathrm{mol}$

Initial Orientation	C	In
Final Orientation	C	In

Total Energy $=\quad 119.14 \mathrm{kcal} / \mathrm{mol}$
van der Waals $=\quad 78.77 \mathrm{kca} / \mathrm{mol}$
electrostatic $=\quad-205.75 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=\quad-15.59 \mathrm{kca} / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-3.00 \mathrm{kca} / / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=\quad-15.61 \mathrm{kcal} / \mathrm{mol}$
L Initial Orientation
Final Orientation
In

Total Energy =
$119.57 \mathrm{kca} / \mathrm{mol}$
van der Waals =
$70.81 \mathrm{kcal} / \mathrm{mol}$ electrostatic $=$ -205.36 kcal/mol
$\Delta \mathrm{E}_{\text {tot }}=\quad-15.16 \mathrm{kca} / / \mathrm{mol}$
$\Delta \mathrm{E}_{\mathrm{vdw}}=\quad-10.96 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=$
$-15.22 \mathrm{kcal} / \mathrm{mol}$

D
Initial Orientation
Final Orientation

Total Energy $=$ van der Waals $=$	$150.45 \mathrm{kcal} / \mathrm{mol}$
electrostatic $=$	$82.82 \mathrm{kca} / \mathrm{mol}$
	$-198.13 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {tot }}=$	$15.19 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {vdw }}=$	$-0.72 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{E}_{\text {ele }}=$	$-8.24 \mathrm{kcal} / \mathrm{mol}$

Table 3.40 indicates in the solution phase both D- and L-tryptophan are capable of binding to multiple side chains within HHQK. Interactions at His13-His14 and His13Lys16 are favoured equally.

The results of the solution phase optimization of D-tryptophan and L-tryptophan with the 1 AMC conformer of $\mathrm{A} \beta$ in Table 3.41 show binding can occur between Ltryptophan and multiple sites of $\mathbf{H H Q K}$. The interaction with D-tryptophan only resulted in one interaction in $\mathbf{H H Q K}$.

The results of Table 3.42 show that three of the four systems demonstrate multiple binding interactions with $\mathbf{H H Q K}$, between both D-tryptophan and L-tryptophan with the 1AML conformer of β-amyloid. Interactions are favoured at His13-Lys 16.

Table 3.43 shows that, in the case of D - and L-tryptophan being optimized in the solution phase with the 1BA4 conformer of $\mathrm{A} \beta$, all four systems will bind to HHQK at His13-His14.

Three of the four systems shown in Table 3.44 indicated binding at two sites on HHQK between D- and L-tryptophan and the 1IYT conformer of β-amyloid. Binding preferentially favours interactions at His13-Lys 16.

From the results of the optimization of D- and L-tryptophan with the 1Z0Q conformer of $\mathrm{A} \beta$ in a solvated environment in Table 3.45 it can be seen that all four systems show multiple binding interactions at $\mathbf{H H Q K}$. The binding occurs equally at His13-His14 and His13-Lys16.

3.5.6 CONCLUSIONS OF D-AND L-TRYPTOPHAN INTERACTING WITH $\boldsymbol{\beta}$-AMYLOID

Overall it can be observed in a solution phase environment both D-tryptophan and L-tryptophan are capable of binding to and interacting with the HHQK region of β amyloid in its various conformations, but not nearly as well as observed for phenylalanine and dopamine.

In terms of binding site preference, it appears that interactions at His13-His14 and His13-Lys16 are favoured almost equally. Breaking this down into interactions occurring between each of the stereoisomers, interactions with L-tryptophan were favoured over Dtryptophan, but each interacted almost equally between His13-His14 and His13-Lys16. Hydrogen bond formation slightly exceeded the amount of cation- π interactions, but overall not many measureable bonds formed.

There are no discernable trends based on the binding energies of the systems for interactions with $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{BA} 4$ and 1IYT. In the case of interactions with the 1AML conformer, the energies of D-tryptophan interactions were more favourable, whereas the opposite was true in the case of the 1Z0Q conformer. The presence of measureable bonds does not impact the binding energies in a noticeable fashion: some systems with measured bonds had extremely favourable energies, whereas others had highly unfavourable energies. The electrostatic energies were more favourable than the van der Waals energies for the optimized systems.

Overall it can be concluded that both D- and L-tryptophan can bind to/interact with the highly charged $\mathbf{H H Q K}$ region of β-amyloid. L-Tryptophan is capable of forming more interactions than D-tryptophan, but both are significantly less efficacious at binding
relative to the earlier examined species. The in vitro assay of tryptophan also demonstrated its inability to inhibit β-amyloid aggregation.

3.6 TRyPTAMINE AND $\boldsymbol{\beta}$-AmYLOID

Tryptamine (Figure 3.6) is one of the metabolites produced in the catabolism of tryptophan and plays a role in the brain as both a neuromodulator and neurotransmitter [86]. It was also identified in the endogenous library as being capable of interacting with the HHQK region of β-amyloid.

Figure 3.6: Tryptamine at physiological pH
The tryptamine molecule contains only two regions with which it can interact with HHQK; the indole ring, and the amino group. Given the paucity of potential interactions with the HHQK region, and the lack of results in the gas phase, the calculations were expanded to the EVHHQK region as there is potential for interactions with the glutamic acid residue as well. Solution phase optimizations were also performed for all of the systems produced from the gas phase optimizations.

A model of tryptamine as charged for physiological pH was constructed and optimized in MOE after the charges were corrected for the CHARMM22 force field [48,

81]. The optimized energies of the six $A \beta$ conformers are given in Appendix 6 and the energies of tryptamine are summarized in Table 3.46. Energies of the protein conformers were measured with a constrained protein backbone.

Table 3.46: Gas phase energies of tryptamine

3.6.1 GAS Phase Interactions Between Tryptamine and $\boldsymbol{\beta}$-Amyloid

Gas phase optimizations of tryptamine and $\mathrm{A} \beta$ were performed in MOE using the CHARMM22 force field and examined for potential interactions that could occur with the EVHHQK region [48, 81].

3.6.1.1 Selection of Initial Orientations for Gas Phase Optimization

Each system was set up such that the indole ring and the amino group of tryptamine were oriented approximately $3.0 \AA$ away from two of the charged amino acid side chains in the EVHHQK region. Every possible arrangement was attempted; however, some interactions could not be tested as the amino acid side chains were either too far apart, or were on opposite sides of the protein chain.

3.6.1.2 Optimization of the Gas Phase Systems

For each system being optimized, the protein backbone was constrained to prevent self interactions, and the system was then subjected to minimization. These optimized systems were saved for the solution phase optimizations, the energies were calculated, and they were examined for measureable binding interactions that may have occurred between tryptamine and the β-amyloid protein.

The relative favourability was determined by calculating the binding energy of each system using the following formulas:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {tpm }} \tag{3.13}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdwtpm}} \tag{3.14}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } \mathrm{A} \beta}-\mathrm{E}_{\text {eletpm }} \tag{3.15}
\end{align*}
$$

The total binding energy, $\Delta \mathrm{E}_{\text {tot }}$, the van der Waal energy, $\Delta \mathrm{E}_{\mathrm{vdw}}$, and the electrostatic energy, $\Delta \mathrm{E}_{\text {ele }}$, were each calculated by subtracting the energies of the individually optimized $A \beta$ conformer and tryptamine from the energy of the optimized system.

3.6.2 Gas Phase Results of Tryptamine Interacting with $\boldsymbol{\beta}$-Amyloid

The results of the gas phase optimizations are summarized in the following table. The indole and amino groups are represented by In and N , respectively, and the initial and final orientations are given, with the amino acids identified by their single letter abbreviations. The calculated binding energies are also summarized for each interaction. The orange coloured squares represent hydrogen bond formation, and light blue indicates a $\pi-\pi$ interaction.

Table 3.47: The gas phase results of tryptamine interacting with $\boldsymbol{\beta}$-amyloid

* indicates interaction is occurring with the $-\mathrm{CH}_{2}$ - chain of the amino acid

The gas phase results showed only one interaction occurring within
HHQK, and eight within EVHHQK. As there were few discernable trends that would allow for identification of systems that should be optimized in the solution phase, all systems were selected to see the effect of the presence of solvent on these systems.

3.6.3 Solution Phase Results for Tryptamine Interacting with $\boldsymbol{\beta}$ Amyloid

Upon completion of the gas phase optimizations all of the gas phase systems were selected for solution phase minimizations. Each system was solvated with a box of water molecules large enough to completely surround the system with an $8.0 \AA$ margin.

Results of the solution phase optimizations of the tryptamine-A β systems have been summarized in tables for each conformation of β-amyloid. The initial and final binding orientations are given along with three calculated energies: the total binding energy, electrostatic binding energy and van der Waals binding energy. The amino acids are indicated by their three-letter abbreviations and any interactions that occurred between tryptamine and amino acids outside of EVHHQK are also identified. Single letter amino acid abbreviations were used in Table 3.51.

Any measureable binding interactions that occurred are indicated according to the following colour scheme: hydrogen bonds are coloured orange, $\pi-\pi$ interactions are light blue and $\pi-\mathrm{H}$ interactions are in pink. Interactions occurring between tryptamine and the $-\mathrm{CH}_{2}$ - region of the amino acid are indicated in indigo, while interactions with $\mathrm{C}=\mathrm{O}$ of the protein backbone are purple; lime green indicates interactions with the -CH - of the protein backbone and yellow interactions with -NH - of the protein backbone.

The final energies for the binding interactions were calculated using the energies listed in Table 3.48 and Appendix 6 using equations 3.13-3.15. The only difference being that the energies used are those of the solvated systems where the
solvent has been removed and the protein backbone has been constrained for β amyloid.

Table 3.48: Total energies of tryptamine calculated in a solvated environment

The results of the solution phase optimizations are summarized in Tables 3.49-3.54. The data shows only one system where binding at two sites (His13His14) occurs within the HHQK region upon solvation. When looking at binding occurring within EVHHQK, only six systems showed binding at two sites, Glu11-His14. Binding energies demonstrate no correlation to the number of measurable binding interactions.

Table 3.49: The solution phase results of tryptamine interacting with the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

Table 3.50: The solution phase results of tryptamine interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

	Tyr10	Glu1 1	Val12	His13	His14	Gln15	Lys16	Tyr10	Glu11 V	Val12	His13	His14	Gln15	Lys16	Leu17
Initial Orientation	In	In			In			N				In			
Final Orientation					In			N				In			
					In										
Total $=$	-56.16	$\mathrm{kca} / \mathrm{mol}$						-4.34	$\mathrm{kca} / \mathrm{mol}$						
van der Waals =	29.5	$\mathrm{kca} / \mathrm{mol}$						49.51	$\mathrm{kca} / \mathrm{mol}$						
Electrostatic $=$	-248.3	$\mathrm{kca} / \mathrm{mol}$						-211.76	kcal/mol						
$\Delta \mathrm{E}_{\text {tot }}=$	-53.6	$\mathrm{kca} / \mathrm{mol}$						-1.83	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-30.4	$\mathrm{kca} / \mathrm{mol}$						-10.53	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-27.1	$\mathrm{kca} / \mathrm{mol}$						9.43	kca/mol						
Initial Orientation	In											In			In
Final Orientation	In											In			In
Total $=$	-28.07	$\mathrm{kca} / \mathrm{mol}$						-3.74	$\mathrm{kca} / \mathrm{mol}$						
van der Waals =		$\mathrm{kca} / \mathrm{mol}$						55.06	$\mathrm{kca} / \mathrm{mol}$						
Electrostatic $=$	-236.8	$\mathrm{kca} / \mathrm{mol}$						-243.20	kcal/mol						
$\Delta \mathrm{E}_{\mathrm{tot}}=$	-25.56	$\mathrm{kca} / \mathrm{mol}$						-1.23	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-15.3	$\mathrm{kca} / \mathrm{mol}$						-4.98	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-15.6	$\mathrm{kca} / \mathrm{mol}$						-22.01	$\mathrm{kca} / \mathrm{mol}$						
Initial Orientation	In								N			In			
Final Orientation	In				N				N			In			
Total $=$	-1.11	$\mathrm{kca} / \mathrm{mol}$						-34.49	$\mathrm{kca} / \mathrm{mol}$						
van der Waals =	53.9	$\mathrm{kca} / \mathrm{mol}$						54.12	$\mathrm{kca} / \mathrm{mol}$						
Electrostatic $=$	-226.7	$\mathrm{kca} / \mathrm{mol}$						-253.09	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$		$\mathrm{kca} / \mathrm{mol}$						-31.98	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-6.1	$\mathrm{kca} / \mathrm{mol}$						-5.92	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-5.5	$\mathrm{kca} / \mathrm{mol}$						-31.89	$\mathrm{kca} / \mathrm{mol}$						

Table 3.51: The solution phase results of tryptamine interacting with the 1AML conformer of $\boldsymbol{\beta}$-amyloid

Table 3.52: The solution phase results of tryptamine interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

Table 3.53: The solution phase results of tryptamine interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

Table 3.54: The solution phase results of tryptamine interacting with the 1IZ0Q conformer of $\boldsymbol{\beta}$-amyloid

3.6.4 CONCLUSIONS OF TRYPTAMINE INTERACTING WITH $\boldsymbol{\beta}$-AMYLOID

The results of the optimization of tryptamine and β-amyloid in the gas phase and solution phase indicated very few interactions within the region of $A \beta$ associated with misfolding. Roughly one quarter of the systems demonstrated binding at two sites within EVHHQK, which when compared to the binding seen with the other molecules studied so far, is not a lot. While tryptamine demonstrates a small potential to interact with β amyloid to prevent misfolding, it is not as desirable a target as the other endogenous molecules examined thus far. As well, the results of in vitro assays further suggest that tryptamine has no effect to prevent $\mathrm{A} \beta$ aggregation from progressing.

3.7 3-Hydroxyanthranilic Acid and $\boldsymbol{\beta}$-Amyloid

Another tryptophan metabolite identified in the search for an endogenous molecule capable of interacting with $\mathbf{H H Q K}$ is 3-hydroxyanthranilic acid (3HAA).

Figure 3.7: 3-hydroxyanthranilic acid at physiological pH
3-hydroxyanthranilic acid has demonstrated activity in suppressing glial cytokine and chemokine expression, resulting in anti-inflammatory effects as well as reducing the amount of neuronal death caused by these cytokines [89]. It was also discovered that 3HAA can stimulate the production of an anti-oxidant enzyme, hemeoxygenase-1, that also has anti-inflammatory and cytoprotective properties [89]. This molecule therefore
presents itself as a molecule of interest in preventing A β-aggregation, given it already exhibits other neuroprotective effects on the brain.

3.7.1 GAS PHASE INTERACTIONS BETWEEN 3-HYDROXYANTHRANILIC ACID AND $\boldsymbol{\beta}$ Amyloid

Gas phase optimizations of 3HAA and β-amyloid covered three regions of β amyloid. First, the potential interactions between the acid and the HHQK region of $\mathrm{A} \beta$ were examined, which was then expanded to include EVHHQK, followed by the LVFF region. The functional groups present on 3-hydroxyanthranilic acid give it the potential to be able to interact with all of these regions of β-amyloid. These optimizations were all performed in MOE using the CHARMM22 force field [48, 87].

3.7.1.1 Preparation of 3-hydroxyanthranilic acid for Optimization

The neutral structure of 3HAA was subjected to a systematic conformational search in MOE, whereupon the lowest energy structure obtained was charged for physiological pH and minimized. The energy of the system is given in Table 3.55 with the $\mathrm{A} \beta$ energies for the structures used being the same as those listed in Appendix 6.

Table 3.55: Gas phase energy of 3-hydroxyanthranilic acid

Total Energy
$(\mathrm{kcal} / \mathrm{mol})$

-4.71

3.7.1.2 Selection of Initial Orientations for Optimization of 3HAA and β-Amyloid

Every possible orientation of 3HAA interacting with two of the amino acid side chains in HHQK, LVFF or EVHHQK was attempted. Some interactions were not
possible based on the small size of the acid, as well as the fact that some of the side chains were on opposite sides of the protein. The regions of 3HAA available for interaction are the aromatic ring, the positively charged amino group, the negatively charged carboxylate group, and the hydroxyl group.

3.7.1.3 Optimization of the Gas Phase Systems

Each of the functional groups of 3-hydroxyanthranilic acid was situated in every available combination at a distance of $3.0 \AA$ from the amino acid side chains and optimized with the protein backbone constrained to prevent system collapse. The total binding energy for each system was calculated using the following equation:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {bind }}=\mathrm{E}_{3 \mathrm{HAAAB}}-\mathrm{E}_{3 \mathrm{HAA}}-\mathrm{E}_{\mathrm{A} \beta} \tag{3.16}
\end{equation*}
$$

The overall binding energy of the system, $\Delta \mathrm{E}_{\text {bind, }}$, is the result of subtracting the contributions of the individual 3HAA molecule, $\mathrm{E}_{3 \mathrm{HAA}}$, and $\mathrm{A} \beta$ conformer, $\mathrm{E}_{\mathrm{A} \beta}$, from the overall binding energy of the system, $\mathrm{E}_{3 \text { HAAA }}$. For these calculations, the energies used were calculated with a constrained protein backbone to focus solely on contributions from the interactions between 3HAA and $\mathrm{A} \beta$.

3.7.2 GAS PhASE RESULTS OF THE OPTIMIZATION OF 3-HYDROXYANTHRANILIC ACID WITH $\boldsymbol{\beta}$-AMYLOID

The following tables summarize the gas phase results of 3-hydroxyanthranilic acid interacting with three regions of β-amyloid, first HHQK, then EVHHQK, and finally LVFF. Each table summarizes the initial orientation of 3HAA and the final binding orientations with Ar representing the aromatic ring, N the positively charged amino group, C the negatively charged carboxylate group, and O the hydroxyl group. The
amino acid residues are given in their single letter abbreviations, and interactions outside the area of interest are listed under the column X . The binding energy of the system, as well as any measureable bonds that formed, are also given.

Table 3.56: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation				Final Orientation					$\Delta \mathrm{E}_{\text {bind }}$	Measured
H13	H14	Q15	K16	H13	H14	Q15	K16	X	($\mathrm{kcal} / \mathrm{mol}$)	Bonds
C	N			C	N			N	-48.41	1
N	C			C				C	-50.37	0
N	O			C	Ar			N	-43.29	2
O	N			O / Ar	N			N	-26.34	1
C	O			C	Ar			Ar	-49.23	2
O	C			O / Ar	C / Ar			N	-41.09	0
Ar	C				C			Ar	-26.14	0
C	Ar			C	Ar			Ar	-38.18	0
Ar	O				Ar			Ar	-43.02	0
O	Ar				Ar			O	-15.62	0
Ar	N			C	C/N			Ar	-47.17	0
N	Ar			C	Ar			N	-56.83	0
N			O	-	-	-	-	-	-41.54	0
O			N	-	-	-	-	-	-26.38	0
C			N	C			C		-29.14	1
N			C	N/C			C		-24.94	1
C			O	C					-22.46	0
O			C				C	C / Ar	-39.15	2
C			Ar	C			Ar		-16.96	0
Ar			C	Ar			C	C	-25.29	2
Ar			O	C / Ar					-44.39	0
O			Ar				C	Ar	-44.45	0
N			Ar	C					-38.67	0
Ar			N	C / Ar			C	C / Ar	-48.68	1

Table 3.57: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMC conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation				Final Orientation					$\Delta \mathrm{E}_{\text {bind }}$	Measured
H13	H14	Q15	K16	H13	H14	Q15	K16	X	($\mathrm{kcal} / \mathrm{mol}$)	Bonds
N	C			C	C			N	-42.19	1
C	N			C	Ar			N	-41.70	1
N	O			C	Ar			N/O	-30.72	0
O	N			N				O	-25.01	0
O	C				C				-20.40	0
C	O			C	Ar			Ar	-39.28	1
Ar	C			C				Ar	-52.68	0
C	Ar				C/N			$\mathrm{C} / \mathrm{O} / \mathrm{Ar}$	-42.59	0
O	Ar				Ar			O / Ar	-16.91	0
Ar	O							O	-22.23	0
N	Ar				Ar			$\mathrm{C} / \mathrm{O} / \mathrm{N} / \mathrm{Ar}$	-34.50	0
Ar	N				Ar			C / Ar	-39.14	1
C			N	C			C		-28.94	1
N			C	C			C	C	-26.73	1
N			O	-	-	-	-	-	-27.58	0
O			N	-	-	-	-	-	9.52	0
C			O	C					-36.34	0
O			C	O / Ar			C	C	-31.99	2
C			Ar	C					-36.51	0
Ar			C	Ar			C		-24.55	1
Ar			O	C			C		-33.14	1
O			Ar				C		-30.19	1
N			Ar				C / Ar		-27.52	1
Ar			N	C / Ar			C	C / Ar	-31.15	1

Table 3.58: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation			Final Orientation				$\Delta \mathrm{E}_{\text {bind }}$	Measured		
H 13	H 14	Q 15	K 16	H 13	H 14	Q 15	K 16	X	$(\mathrm{kcal} / \mathrm{mol})$	Bonds
O	N		-	-	-	-	-	-3.63	0	
N	O						C / Ar	-10.10	0	
N	C		Ar					-45.58	0	
C	N		C				Ar	-37.42	0	
C	O		C	Ar			C / Ar	-39.23	0	
O	C		O	C / Ar			C / Ar	-20.31	0	
C	Ar		C					-41.98	0	
Ar	C		-	-	-	-	-	-32.83	0	
Ar	O			Ar			Ar	-17.02	0	
O	Ar		-	-	-	-	-	-7.82	0	
N	Ar			Ar			C / Ar	-13.08	0	
Ar	N						O / Ar	-0.59	0	
O		N				C	O / Ar	-26.16	0	
N		O	C				C / N	-35.39	2	
N		C	O / N			C		-8.90	0	
C		N	C				C / Ar	-36.25	0	
O		C				C		-17.15	0	
C		O	C			Ar	Ar	-27.26	2	
Ar		O					Ar	-16.73	0	
O		Ar	O			C		-16.38	0	
Ar		N			C		-36.08	0		
N		Ar	C					-30.67	0	
Ar		C				C		-20.41	1	
C		Ar	C				-30.85	0		

Table 3.59: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation			Final Orientation				$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kca} / \mathrm{mol}) \end{gathered}$	Measured Bonds
H13	H14	Q15 K16	H13	H14	Q15	K16		
O	C		Ar	C			-30.56	0
C	O		C	Ar			-20.70	0
N	C		C / Ar				-30.48	0
C	N		C				-28.75	0
O	N			C			-30.32	0
N	O		-	-	-	-	-21.17	0
Ar	O		-	-	-	-	-27.32	0
O	Ar			C			-23.72	0
Ar	C		C / Ar				-29.97	0
C	Ar		C	Ar			-34.46	0
Ar	N			C			-29.30	0
N	Ar		C	C / Ar			-42.30	0

Table 3.60: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation				Final Orientation					$\Delta \mathrm{E}_{\text {bind }}$	Measured
H13	H14	Q15	K16	H13	H14	Q15	K16	X	($\mathrm{kcal} / \mathrm{mol}$)	Bonds
O	N							O	-22.98	0
N	O			C / Ar					-28.42	0
N	C			N					-15.33	1
C	N			C					-40.76	0
O	C			Ar	C			Ar	-26.76	2
C	O			C / Ar	O / Ar			Ar	-33.26	0
O	Ar			-	-	-	-	-	-21.46	0
Ar	O			Ar					-30.41	0
Ar	C			Ar					-22.06	0
C	Ar			C					-30.41	0
Ar	N			Ar				C/O	-33.55	2
N	Ar			Ar	Ar			Ar	-32.51	1
C			N	C					-22.39	0
N			C				C		-26.38	0
N			O	C / Ar			O		-26.83	0
O			N				N	N	-17.11	1
C			O	C					-32.56	0
O			C	Ar			C		-27.42	0
N			Ar	C					-24.64	0
Ar			N	-	-	-	-	-	-29.02	0
Ar			C	Ar			C		-25.89	0
C			Ar	C			Ar		-27.29	0
Ar			O	C					-28.50	0
O			Ar	Ar			C		-24.93	1

Table 3.61: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation				Final Orientation					$\Delta \mathrm{E}_{\text {bind }}$	Measured
H13	H14	Q15	K16	H13	H14	Q15	K16	X	(kcal/mol)	Bonds
O	N			O	N			O	-9.38	0
N	O			C/N	Ar			N/O	-31.74	0
C	N			C					-29.86	0
N	C			N	C			C	-12.32	0
C	O			C	O / Ar			Ar	-25.91	0
O	C				C			Ar	-29.38	0
Ar	O			Ar					-18.23	0
O	Ar			-	-	-	-	-	-10.60	0
Ar	C			Ar	C			C	-27.26	0
C	Ar			C	Ar			Ar	-25.93	0
Ar	N			Ar	N/C			O	-25.84	0
N	Ar			C/N	Ar			O	-31.66	0
O			N				C		-15.44	0
N			O	C					-24.48	0
N			C				C		-18.69	2
C			N	C					-15.17	1
O			C				C		-15.15	1
C			O	C			Ar		-17.09	1
O			Ar	Ar			C		-14.40	2
Ar			O	C / Ar			Ar		-14.07	2
N			Ar	-	-	-	-	-	-21.74	0
Ar			N				C		-28.56	1
Ar			C				C		-25.26	1
C			Ar	C					-25.54	0

Six conformations were selected for solution phase optimization from the results of the gas phase interactions of 3-hydroxyanthranilic acid with the HHQK region of $\mathrm{A} \beta$, summarized in Tables 3.56-3.61. These selections were based on the requirement of having the lowest overall binding energy, as well as binding at two or more sites on the β amyloid protein. In the case of the 1BA4 conformer of A β, only four systems met these
criteria, so only four solution phase optimizations were performed. Overall 3HAA was capable of binding at His13-His14, and His13-Lys16, with the former being slightly more favoured. The selected systems are summarized in Table 3.62

Table 3.62: Selected systems of 3-hydroxyanthranilic acid and the HHQK region of A $\boldsymbol{\beta}$ for solvation

Interaction	Binding Energy (kcal/mol)	Interaction	Binding Energy (kcal/mol)
1 AMB		1BA4	
HNHAr	-56.83	HNHAr	-42.30
HNHC	-50.37	HCHAr	-34.46
HCHO	-49.23	HOHC	-30.56
HCHN	-48.41	HCHO	-20.70
HArHN	-47.17		1IYT
HOHQKAr	-44.45	HArHN	-33.55
1AMC		HCHO	-33.26
HArHC	-52.68	HNHAr	-32.51
HCHAr	-42.59	HOHQKC	-27.42
HNHC	-42.20	HCHQKAr	-27.29
HCHN	-41.70	HNHQKO	-26.83
HCHO	-39.28		1Z0Q
HArHN	-39.14	HNHO	-31.74
1AML		HNHAr	-31.66
HCHO	-39.23	HArHC	-27.26
HCHN	-37.42	HCHAr	-25.93
HCHQKN	-36.25	HCHO	-25.91
HNHQKO	-35.39	HArHN	-25.84
HCHQKO	-27.26		
HOHQKN	-26.16		

The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of $A \beta$ are summarized in Tables 3.63-68.

Table 3.63: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation						$\Delta \mathrm{E}_{\text {bind }}$	Measured
E11	V12	H13	H14	Q15	K16	E11	V12	H13	H14	Q15	K16	(kcal/mol)	Bonds
N			C			N/C						-31.73	0
C			N			-	-	-	-	-	-	-17.96	0
N			O			N/O			O			-8.82	0
O			N			-	-	-	-	-	-	-15.43	0
C			O			O/N/Ar			C/Ar			-37.93	2
O			C			O / Ar			C/Ar			-28.17	1
C			Ar			-	-	-	-	-	-	-12.69	0
Ar			C			Ar			C			-23.33	0
N			Ar			N / Ar			C/Ar	O		-26.03	1
Ar			N			Ar			C			-30.65	0
O			Ar			-	-	-	-	-	-	-14.67	0
Ar			O			-	-	-	-	-	-	-22.20	0

Table 3.64: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AMC conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation						$\Delta \mathrm{E}_{\text {bind }}$	Measured
E11	V12	H13	H14	Q15	K16	E11	V12	H13	H14	Q15	K16	($\mathrm{kca} / \mathrm{mol}$)	Bonds
N			O			N						-17.29	0
O			N			N						-29.87	0
C			N			C/N						-29.60	1
N			C			N			C			-33.82	1
C			O			N/C/Ar						-20.72	0
O			C			N/O/Ar			C			-37.14	0
N			Ar			N/Ar			Ar			-34.55	0
Ar			N			N/Ar						-28.82	0
O			Ar			N/O/Ar			Ar			-34.89	1
Ar			O			O / Ar						-21.77	1
C			Ar			C			C/Ar	O / Ar		-21.37	1
Ar			C			Ar			C			-23.42	1

Table 3.65: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation							$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measured Bonds
E11	V12	H13	H14	Q15	K16	E11	V12	H13	H14	Q15	K16	X		
C			N			C			N			Ar	-22.54	0
N			C			N			C			N/O/Ar	-40.71	0
O			N			O			N				-12.63	1
N			O			N			N/O			C/N/Ar	-16.19	1
N			Ar			$\mathrm{N} / \mathrm{O} / \mathrm{Ar}$			C/Ar			N/O/Ar	-42.99	3
Ar			N						Ar			Ar	-23.43	2
C			Ar									C/N/Ar	-40.33	1
Ar			C			Ar			C			Ar	-31.95	0
Ar			O			Ar						C/N/Ar	-18.97	0
O			Ar									$\mathrm{C} / \mathrm{O} / \mathrm{N} / \mathrm{Ar}$	-40.26	0
O			C			O / Ar			C / Ar			O	-21.89	2
C			O			C / Ar			O / Ar	C		C/Ar	-20.06	2

Table 3.66: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation							$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measured Bonds
E11	V12	H13	H14	Q15	K16	E11	V12	H13	H14	Q15	K16	X		
C					N	C						C/O/N	-33.24	1
N					C	C / N					C	C / N	-17.53	1
O					N							$\mathrm{N} / \mathrm{O} / \mathrm{Ar}$	-39.63	0
N					O	N						N/O	-47.19	1
O					Ar							N/O/Ar	-29.15	1
Ar					O	-	-	-	-	-	-	-	-47.04	0
Ar					C	C / Ar					C	$\mathrm{C} / \mathrm{O} / \mathrm{N} / \mathrm{Ar}$	-26.92	1
C					Ar	C / Ar					Ar	C / Ar	-35.59	0

Table 3.67: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation				Final Orientation						$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kca} / \mathrm{mol}) \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Measured } \\ \text { Bonds } \\ \hline \end{array}$
E11	V12 H13	H14 Q15	K16	E11	V12 H13	H14	Q15	K16	X			
N		O		N/O/Ar		O					-30.23	2
O		N		N							-24.50	0
C		N		C		N/C					-4.41	1
N		C		N							-24.22	0
O		Ar				Ar					-19.22	0
Ar		O		-	- -	-	-	-	-		-16.91	0
N		Ar		N/Ar		C/Ar					-37.68	1
Ar		N		O / Ar					C		-23.32	0
Ar		C		Ar							-29.18	0
C		Ar				C					-27.03	0

Table 3.68: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid

Initial Orientation						Final Orientation						$\Delta \mathrm{E}_{\text {bind }}$	Measured
E11	V12	H13	H14	Q15	K16	E11	V12 H13	H14	Q15	K16	X	(kcal/mol)	Bonds
N			O			N						-15.82	0
O			N					C/Ar			Ar	-56.65	1
C			N			C						-1.29	0
N			C			$\mathrm{C} / \mathrm{N} / \mathrm{Ar}$		C				-57.78	0
O			C			O		C			Ar	-42.01	0
C			O			Ar						-33.36	0
C			Ar			C						-11.39	0
Ar			C			Ar		C				-43.92	0
O			Ar			O / Ar						-25.30	0
Ar			O			-	- -	-	-	-	-	-18.67	0
N			Ar			N/O						-30.09	1
Ar			N			Ar		Ar				-53.38	0

The results of the gas phase interactions occurring between 3-hydroxyanthranilic acid and the EVHHQK region of β-amyloid indicate binding can occur in this region of interest. From each conformer of $\mathrm{A} \beta$ four systems were selected for optimization in the solution phase; these had to have the lowest energy and binding interactions at two or more of the amino acid side chains. The systems targeted for solution phase optimizations are summarized in Table 3.69.

Table 3.69: Selected systems of 3-hydroxyanthranilic acid and the EVHHQK region of $\mathbf{A} \boldsymbol{\beta}$ for solvation

The results of the gas phase interactions between 3HAA and the LVFF region of β-amyloid are summarized in Table 3.70. As there are very few interactions occurring in this region, it was determined that half of the systems for each conformer of $A \beta$ would undergo solution phase optimization. These systems had to have low energies and binding interactions at two or more sites with $\mathrm{A} \beta$; in the case of the 1BA4 conformer there were no viable systems for solution phase optimization.

The systems selected for optimization in the solution phase are summarized in Table 3.71.

Table 3.70: The gas phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of $\boldsymbol{\beta}$-amyloid

Conformer	Initial Orientation				Final Orientation					$\begin{gathered} \Delta \mathrm{E}_{\mathrm{bind}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	MeasuredBonds
	L17	V18	F19	F20	L17	V18	F19	F20	X		
1AMB	Ar			N	Ar			C		-13.24	0
	Ar			O	Ar					-6.42	0
			Ar	N			Ar		C	-9.73	0
			N	Ar			N/C/Ar	Ar	$\mathrm{C} / \mathrm{O} / \mathrm{Ar}$	-73.45	0
			O	Ar			O		Ar	-37.48	0
			Ar	O			Ar	Ar	C/O	-55.42	1
		Ar	N				C		Ar	-23.66	0
		Ar	O			Ar				-27.43	1
1AMC	Ar			N	Ar					-16.51	0
	Ar			O	C/Ar				C	-24.23	0
			Ar	N			Ar		O / Ar	-41.55	0
			N	Ar			N			-18.80	1
			Ar	O	-	-	-	-	-	-13.19	0
			O	Ar			O		Ar	-28.81	0
		Ar	N			Ar	N		$\mathrm{C} / \mathrm{O} / \mathrm{Ar}$	-28.59	1
		Ar	O		-	-	-	-	-	-15.06	0
1AML	Ar			O				O	Ar	-18.92	0
	Ar			N				C/Ar	O / Ar	-31.34	0
			Ar	O	-	-	-	-	-	-20.49	0
			O	Ar				Ar	O	-30.51	0
			Ar	N	-	-	-	-	-	-21.30	0
			N	Ar				O	N	-28.17	0
1BA4	Ar			N	Ar					-21.27	0
	Ar			O				Ar		-16.97	0
		Ar	O						O	-22.68	1
1IYT	Ar			N	Ar					-11.93	0
	Ar			O					Ar	-18.01	0
			O	Ar					N	-27.72	1
			Ar	O			Ar		C/O/Ar	-29.08	3
		Ar	O				O		Ar	-16.27	0
1Z0Q	Ar			N	Ar			N		-8.03	0
	Ar			O			Ar			-8.76	0
	Ar		N				Ar	O/Ar		-27.37	1
	Ar		O		-	-	-	-	-	-9.31	0
			Ar	N			Ar	O / Ar		-22.80	1
			N	Ar			O	Ar		-27.48	0
				O			Ar	C/O/N/Ar		-18.01	2
			O	Ar	-	-	-	-	-	-10.22	0

Table 3.71: Selected systems of 3-hydroxyanthranilic acid and the LVFF region of A β for solvation

Interactio	Binding Energy (kcal/mol)	Interaction	Binding Energy (kcal/mol)
1AMB			1IYT
FNFAr	-73.45	FArFO	-29.08
FArFO	-55.42	VArFO	-16.27
FOFAr	-37.48		1Z0Q
VArFO	-27.43	FNFAr	-27.48
1AMC		FArFN	-22.80
FArFN	-41.55	FArFO	-18.01
FOFAr	-28.81	LArVFFN	-8.03
VArFN	-28.59		
LArVFFO	-24.23		
1 AML			
LArVFFN	-31.34		
FOFAr	-30.51		
FNFAr	-28.17		
LArVFFO	-18.92		

3.7.3 SOLUTION PHASE RESULTS FOR 3-HYDROXYANTHRANILIC ACID INTERACTING WITH $\boldsymbol{\beta}$-AMYLOID

Solution phase optimizations were performed for each of the regions of β-amyloid interacting with 3HAA. These optimizations were performed in MOE following the procedure outlined in Section 3.5.4.1. The results of these calculations are summarized according to conformer and each region of $A \beta$ that was the focus for binding. The initial and final binding orientations are given, with 3 letter abbreviations for the amino acid residues. Identification of the functional groups of 3HAA follows the same pattern as outlined in the gas phase optimizations. The binding energies of each system were calculated via the following equations:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\mathrm{tot}}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\mathrm{HAA}} \tag{3.17}
\end{equation*}
$$

$$
\begin{align*}
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdw} 3 \mathrm{HAA}} \tag{3.18}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {ele } 3 \mathrm{HAA}} \tag{3.19}
\end{align*}
$$

These equations are identical to those used for previous solution phase optimizations, where the measured energies are calculated with a constrained protein backbone and the solvent removed from the system. The energies of the solvated $A \beta$ conformers are the same as those in Appendix 6 and the energy of the solution phase optimized 3hydroxyanthranilic acid is given in Table 3.72.

Table 3.72: The solution phase energy of 3-hydroxyanthranilic acid

	Energies (kcal/mol)			
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\text {vdw }}$	
3-hydroxyanthranilic acid	-3.16	17.45	-26.72	

Binding interactions that occurred in the solution phase are denoted by coloured squares: orange indicates a hydrogen bond, the darker the orange, the more hydrogen bonds have formed; green indicates cation- π interactions, the darker the green, the more cation- π interactions that are occurring at that site; light blue signifies $\pi-\pi$ interactions, as the shade becomes more intense, more interactions are occurring. There are also interactions occurring with regions other than the R group of the amino acids: indigo indicates interactions with the $-\mathrm{CH}_{2}$ - chain, whereas lime green is used for the $-\mathrm{CH}-$ of the protein backbone; light purple is used for interactions with the $\mathrm{C}=\mathrm{O}$ of the protein backbone; and finally yellow represents the -NH - of the protein backbone.

Tables 3.73-3.78 detail the results of the solution phase optimization of 3HAA and the HHQK region of β-amyloid.

Table 3.73: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

Table 3.73: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

Table 3.74: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMC conformer of $\boldsymbol{\beta}$-amyloid

Table 3.74: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AMC conformer of $\boldsymbol{\beta}$-amyloid

Table 3.75: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

	Tyr10	Val12	His13	His14	Gln 15	Lys16
Initial Orientation	C		C	Ar		
	Ar					
Final Orientation	C		C	Ar		
Total $=$ van der Waals = Electrostatic $=$	$67.90 \mathrm{kcal} / \mathrm{mol}$					
	$76.99 \mathrm{kcal} / \mathrm{mol}$					
	-230.00 kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-55.24 kcal/mol					
$\Delta \mathrm{E}_{\text {vdw }}=$	-8.37 kcal/mol					
$\Delta \mathrm{E}_{\text {ele }}=$	-44.15 kcal/mol					
Initial Orientation	Ar		C			
Final Orientation	C		C			
	Ar					
Total $=$	97.87	$\mathrm{cal} / \mathrm{mol}$				
van der Waals =	95.00	$\mathrm{cal} / \mathrm{mol}$				
Electrostatic $=$	-222.07	$\mathrm{cal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {tot }}=$	-25.26	$\mathrm{cal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	9.63	$\mathrm{cal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}=$	-36.22	$\mathrm{cal} / \mathrm{mol}$				
Initial Orientation		C	C			
		Ar				
Final Orientation		C	C			
Total $=$	104.27	$\mathrm{ca} / \mathrm{mol}$				
van der Waals =	86.6	$\mathrm{ca} / \mathrm{mol}$				
Electrostatic $=$	-212.92	cal/mol				
$\Delta \mathrm{E}_{\text {tot }}=$	-18.86	$\mathrm{cal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	1.28	$\mathrm{cal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}=$	-27.07	$\mathrm{cal} / \mathrm{mol}$				

Table 3.75: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

Table 3.76: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	His 13	His14	Gln15 Lys16
Initial Orientation	C	C	
		Ar	
Final Orientation	C	C	
		Ar	
```Total= van der Waals = Electrostatic =```	55.81	$\mathrm{cal} / \mathrm{mol}$	
	79.47	$\mathrm{cca} / \mathrm{mol}$	
	-242.03	$\mathrm{ccal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\text {tot }}=$	-82.45	$\mathrm{cal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-29.80	$\mathrm{ccal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\text {ele }}=$	-45.80	$\mathrm{cal} / \mathrm{mol}$	
Initial Orientation	C	Ar	
Final Orientation	C	C	
		Ar	
$\begin{aligned} & \text { Total = } \\ & \text { van der Waals = } \\ & \text { Electrostatic = } \end{aligned}$	88.52	$\mathrm{cal} / \mathrm{mol}$	
	95.75	$\mathrm{ccal} / \mathrm{mol}$	
	-225.32	$\mathrm{cca} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\text {tot }}=$	-49.73	$\mathrm{cal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-13.52	$\mathrm{cca} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\text {ele }}=$	-29.10	$\mathrm{kcal} / \mathrm{mol}$	
Initial Orientation	Ar	C	
Final Orientation	Ar	C	
$\begin{aligned} & \text { Total = } \\ & \text { van der Waals = } \\ & \text { Electrostatic = } \end{aligned}$	80.28	cal/mol	
	94.59	$\mathrm{ccal} / \mathrm{mol}$	
	-229.72	$\mathrm{ccal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\text {tot }}=$	-57.98	kcal/mol	
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-14.68	cal/mol	
$\Delta \mathrm{E}_{\text {ele }}=$	-33.49	$\mathrm{ccal} / \mathrm{mol}$	
Initial Orientation Final Orientation	C	Ar	
	N	Ar	
	C		
Total $=$	97.49	kcal/mol	
van der Waals =	89.20	kcal/mol	
Electrostatic =	-202.59	$\mathrm{ccal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\text {tot }}=$	-40.76	$\mathrm{kcal} / \mathrm{mol}$	
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-20.06	cal/mol	
$\Delta \mathrm{E}_{\text {ele }}=$	-6.36	kcal/mol	

Table 3.77: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Gly9	Tyr10	His 13	His 14	Gln15	Lys16	Leu17
Initial Orientation	O		Ar				C
			Ar				
Final Orientation	O		Ar				
			Ar				
Total $=$	32.3	$\mathrm{cal} / \mathrm{mol}$					
van der Waals =	88.7	$\mathrm{cal} / \mathrm{mol}$					
Electrostatic $=$	269.5	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-41.1	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-16.93	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-26.2	$\mathrm{ca} / \mathrm{mol}$					
Initial Orientation	Ar	Ar	C	O			
			Ar	Ar			
Final Orientation	Ar	Ar	C				
Total $=$	106.5	$\mathrm{cal} / \mathrm{mol}$					
van der Waals =	97.5	$\mathrm{cal} / \mathrm{mol}$					
Electrostatic $=$	-273.1	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	33.0	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-8.1	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-29.8	cal/mol					
Initial Orientation			Ar	Ar			Ar
Final Orientation			N	Ar			Ar
			C				
Total $=$	39.6	$\mathrm{cal} / \mathrm{mol}$					
van der Waals =	90.2	$\mathrm{cal} / \mathrm{mol}$					
Electrostatic $=$	-271.6	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-33.8	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-15.3	$\mathrm{cal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-28.4	$\mathrm{ca} / \mathrm{mol}$					

Table 3.77: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	His 13	His 14	Gln15	Lys16
Initial Orientation	Ar			C
Final Orientation	Ar			Ar
				C
Total $=$	$71.16 \mathrm{kcal} / \mathrm{mol}$			
van der Waals =	$98.15 \mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	-250.12 kcal/mol			
$\Delta \mathrm{E}_{\text {tot }}=$	-2.32 kcal/mol			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.49 kcal/mol			
$\Delta \mathrm{E}_{\text {ele }}=$	-6.85 kcal/mol			
Initial Orientation	C			Ar
Final Orientation	C			Ar
Total $=$	$49.04 \mathrm{kcal} / \mathrm{mol}$			
van der Waals =	$82.66 \mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	-258.21 kcal/mol			
$\Delta \mathrm{E}_{\text {tot }}=$	-24.44 $\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-22.97 kcal/mol			
$\Delta \mathrm{E}_{\text {ele }}=$	-14.94 kcal/mol			
Initial Orientation	C			O
	Ar			
Final Orientation	C			Ar
Total $=$	$78.99 \mathrm{kcal} / \mathrm{mol}$			
van der Waals =	$86.14 \mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	-273.59 kcal/mol			
$\Delta \mathrm{E}_{\text {tot }}=$	$5.51 \mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-19.50 $\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$	-30.32 $\mathrm{kcal} / \mathrm{mol}$			

Table 3.78: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid

	Tyr10	His 13	His14	Gln15	Lys16	
Initial Orientation	N	C	Ar			
	O	N				
Final Orientation	O	C	Ar			
Total $=$	$91.01 \mathrm{kcal} / \mathrm{mol}$   $87.14 \mathrm{kcal} / \mathrm{mol}$					
van der Waals =						
Electrostatic $=$	-249.02 kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-27.62 kcal/mol					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-2.79 kcal/mol					
$\Delta \mathrm{E}_{\text {ele }}=$	-36.93 kcal/mol					
Initial Orientation	O	N	Ar			
		C				
Final Orientation	O	C				
Total $=$	$101.32 \mathrm{kcal} / \mathrm{mol}$					
van der Waals =	$93.77 \mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-244.89 kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-17.31 kcal/mol					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$3.84 \mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-32.80 kcal/mol					
Initial Orientation	C	Ar	C			
Final Orientation	C	Ar	C			
Total $=$	81.04	$\mathrm{cal} / \mathrm{mol}$				
van der Waals =	81.59	$\mathrm{ccal} / \mathrm{mol}$				
Electrostatic $=$	-244.54	$\mathrm{cal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {tot }}=$	-37.58	cal/mol				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-8.32	$\mathrm{cal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}=$	-32.45	$\mathrm{ccal} / \mathrm{mol}$				

Table 3.78: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1Z0Q conformer of $\boldsymbol{\beta}$-amyloid

	Gly9	Tyr10	His13	His14	Gln15	Lys16
Initial Orientation		Ar	C	Ar		
Final Orientation	Ar	Ar	C			
Total $=$	112.9	$\mathrm{ccal} / \mathrm{mol}$				
van der Waals =	106.4	cal/mol				
Electrostatic $=$	-243.4	$\mathrm{ccal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {tot }}=$	-5.7	cal/mol				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	16.5	cal/mol				
$\Delta \mathrm{E}_{\text {ele }}=$	-31.3	cal/mol				
Initial Orientation		Ar	C	O		
				Ar		
Final Orientation		Ar	C			
Total $=$	118.8	$\mathrm{ccal} / \mathrm{mol}$				
van der Waals =	94.1	cal/mol				
Electrostatic $=$	-236.3	cal/mol				
$\Delta \mathrm{E}_{\text {tot }}=$		$\mathrm{ccal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		cal/mol				
$\Delta \mathrm{E}_{\text {ele }}=$	-24.2	$\mathrm{kcal} / \mathrm{mol}$				
Initial Orientation		O	Ar	N		
				C		
Final Orientation		O	Ar			
Total $=$	92.7	$\mathrm{ccal} / \mathrm{mol}$				
van der Waals =	88.0	$\mathrm{ccal} / \mathrm{mol}$				
Electrostatic $=$	-239.5	cal/mol				
$\Delta \mathrm{E}_{\text {tot }}=$	-25.8	$\mathrm{kcal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-1.8	$\mathrm{ccal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}=$	-27.4	$\mathrm{ccal} / \mathrm{mol}$				

These results indicate that 3 HAA is capable of binding to and interacting with the HHQK region of $\beta$-amyloid. Interactions occurring at His13-His14 are favoured 3:1 over those at His13-Lys16. There is a large variability in the energies of the systems, and the presence of measurable bonds does not always indicate favourable energetics. In general the electrostatic energies make more of a contribution to the overall binding than the van
der Waals energies. Cation- $\pi$ interactions were more prevalent than hydrogen bonds in these systems.

The results of the solution phase optimizations of 3-hydroxyanthranilic acid and the EVHHQK region of $\beta$-amyloid are summarized in Tables 3.79-3.84. In general, the results of these calculations show binding at Glu11-His14 to be preferred, with interactions occurring at these two amino acids in over half of the systems; all systems demonstrated at least one interaction occurring at multiple sites within EVHHQK. Both cation- $\pi$ and hydrogen bonds were present, and for most of the systems the electrostatic energies contribute more to the overall energy of the system than the van der Waals energy.

Table 3.79: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 3.80: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 3.81: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

	Asp7	Set8	Tyr10	Glu1 1	Val12	His13	His14	Gln15	Lys16
Initial Orientation		N	O	N			Ar		
	Ar			O			Ar		
				Ar			C		
Final Orientation		O	O	N			Ar		
	Ar			O			C		
				Ar			N		
$\begin{aligned} & \text { Total = } \\ & \text { van der Waals = } \\ & \text { Electrostatic = } \end{aligned}$	$99.59 \mathrm{kcal} / \mathrm{mol}$   $86.97 \mathrm{kcal} / \mathrm{mol}$								
	-219.22 kcal/mol								
$\Delta \mathrm{E}_{\text {tot }}=$	-23.55 kcal/mol								
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$1.63 \mathrm{kca} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {ele }}=$	-33.37 kcal/mol								
Initial Orientation	O	O		N			C		
		N							
Final Orientation		Ar							
	O	O		N			C		
		N							
		Ar							
Total $=$	$91.32 \mathrm{kca} / \mathrm{mol}$   $79.89 \mathrm{kcal} / \mathrm{mol}$								
van der Waals =									
Electrostatic $=$	-214.49 kcal/mol								
$\Delta \mathrm{E}_{\text {tot }}=$	-31.81 kcal/mol								
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-5.47 kcal/mol								
$\Delta \mathrm{E}_{\text {ele }}=$	-28.65 kcal/mol								
Initial Orientation		Ar		Ar			C		
Final Orientation				Ar			C		
Total $=$	$107.00 \mathrm{kca} / \mathrm{mol}$ $95.34 \mathrm{kcal} / \mathrm{mol}$								
van der Waals =									
Electrostatic $=$	-205.89 kcal/mol								
$\Delta \mathrm{E}_{\text {tot }}=$	-16.13 kcal/mol								
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$9.98 \mathrm{kcal} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {ele }}=$	-20.04 kcal/mol								
Initial Orientation	Ar						Ar		
							Ar		
Final Orientation							Ar		
Total $=$	113.	al/mol							
van der Waals =		al/mol							
Electrostatic $=$	-191.	al/mol							
$\Delta \mathrm{E}_{\text {tot }}=$		al/mol							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		al/mol							
$\Delta \mathrm{E}_{\text {ele }}=$		al/mol							

Table 3.82: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	Asp1	Glu3	Glu1 1	Val12	His13	His14	Gln15	Lys16	Phe19
Initial Orientation	O	N	C						C
Final Orientation		N	C						C
		Ar							
Total $=$	59.9	al/mol							
van der Waals	84.2	al/mol							
Electrostatic $=$	-245.63	al/mol							
$\Delta \mathrm{E}_{\text {tot }}=$	-78.3	al/mol							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-25.0	al/mol							
$\Delta \mathrm{E}_{\text {ele }}=$	-49.4	al/mol							
Initial Orientation			C					C	Ar
			Ar						O
									C
									N
Final Orientation		C	Ar					C	Ar
									C
									O
									N
Total $=$	107.5	al/mol							
van der Waals	88.8	$\mathrm{al} / \mathrm{mol}$							
Electrostatic $=$	-215.61	al/mol							
$\Delta \mathrm{E}_{\text {tot }}=$	-30.6	al/mol							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-20.4	al/mol							
$\Delta \mathrm{E}_{\text {ele }}=$	-19.3	al/mol							
Initial Orientation			N						N
									O
Final Orientation			N						N
									O
Total $=$	77.4	al/mol							
van der Waals	92.2	al/mol							
Electrostatic $=$	-236.07	al/mol							
$\Delta \mathrm{E}_{\text {tot }}=$	-60.8	al/mol							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-16.9	al/mol							
$\Delta \mathrm{E}_{\text {ele }}=$	-39.8	al/mol							
Initial Orientation		Ar	C					Ar	C
			Ar						Ar
Final Orientation		Ar	C						C
			Ar						Ar
Total $=$	80.	al/mol							
van der Waals	83.3	$\mathrm{al} / \mathrm{mol}$							
Electrostatic $=$	-216.04	al/mol							
$\Delta \mathrm{E}_{\text {tot }}=$	-57.8	al/mol							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-25.9	al/mol							
$\Delta \mathrm{E}_{\text {ele }}=$	-19.8	$\mathrm{al} / \mathrm{mol}$							

Table 3.83: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 3.84: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


The results of 3-hydroxyanthranilic acid interacting with the LVFF region of A $\beta$ in a solvated environment are summarized in Tables 3.85-3.89. There are no systems that were optimized in the solution phase for the 1BA4 conformer of A $\beta$. Very few binding interactions occurred within the LVFF region of $\beta$-amyloid, and those that did only occurred with the 1 AMB and 1 Z 0 Q conformations, and Phe19-Phe20 was preferred.

Table 3.85: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

	His14	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Asp23
Initial Orientation			C			N	Ar	O
						C		Ar
						Ar		
Final Orientation			C			N	Ar	O
						C		
						Ar		
Total $=$   van der Waals =   Electrostatic $=$	-74.43	$\mathrm{kcal} / \mathrm{mol}$						
	58.48	$\mathrm{kcal} / \mathrm{mol}$						
	-298.69	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-69.62	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-5.74	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-73.97	$\mathrm{kcal} / \mathrm{mol}$						
Initial Orientation Final Orientation			C			Ar	Ar	O
			C			Ar	Ar	O
Total $=$   van der Waals =   Electrostatic $=$	-69.27	$\mathrm{kcal} / \mathrm{mol}$						
	58.40	$\mathrm{kcal} / \mathrm{mol}$						
	-288.29	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-64.46	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-5.82	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-63.57	kcal/mol						
Initial Orientation			Ar			O		
Final Orientation			Ar			O		
Total $=$	-34.65	$\mathrm{kcal} / \mathrm{mol}$						
van der Waals =	70.18	kcal/mol						
Electrostatic $=$	-278.71	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-29.84	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	5.97	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-54.00	kcal/mol						
Initial Orientation	Ar				Ar			
Final Orientation	Ar	Ar			Ar	O		
Total $=$	-14.67	$\mathrm{kcal} / \mathrm{mol}$						
van der Waals =	63.03	$\mathrm{kcal} / \mathrm{mol}$						
Electrostatic $=$	-236.93	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-9.87	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-1.19	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-12.22	$\mathrm{kcal} / \mathrm{mol}$						

Table 3.86: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

	His13	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Glu22	Asp23
Initial Orientation						Ar			O
									Ar
Final Orientation						Ar			O
									Ar
Total $=$	-69.5	$\mathrm{ca} / \mathrm{mol}$							
van der Waals =	46.5	cal/mol							
Electrostatic =	-281.8	cal/mol							
$\Delta \mathrm{E}_{\text {tot }}=$	-39.1	cal/mol							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-16.2	cal/mol							
$\Delta \mathrm{E}_{\text {ele }}=$	-34.5	$\mathrm{ca} / \mathrm{mol}$							
Initial Orientation			Ar			O			
Final Orientation			Ar						
Total $=$		$\mathrm{cal} / \mathrm{mol}$							
van der Waals =		ca/mol							
Electrostatic $=$	-270.6	$\mathrm{ca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {tot }}=$	-16.1	$\mathrm{ca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-5.0	$\mathrm{cal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {ele }}=$	-23.4	cal/mol							
Initial Orientation	C		C						
			Ar						
Final Orientation			Ar						
Total $=$	-71.5	$\mathrm{ca} / \mathrm{mol}$							
van der Waals =	53.4	$\mathrm{ca} / \mathrm{mol}$							
Electrostatic $=$	-283.5	cal/mol							
$\Delta \mathrm{E}_{\text {tot }}=$	-41.2	cal/mol							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-9.3	$\mathrm{ca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {ele }}=$	-36.3	cal/mol							
Initial Orientation		O			Ar	N		O	
		Ar						Ar	
Final Orientation		O			Ar			O	
		Ar						Ar	
Total $=$   van der Waals =	$-57.7$	$\mathrm{ca} / \mathrm{mol}$ $\mathrm{ca} / \mathrm{mol}$							
Electrostatic $=$	-272.73	$\mathrm{ca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {tot }}=$	-27.3	$\mathrm{cal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		cal/mol							
$\Delta \mathrm{E}_{\text {ele }}=$	-25.5	cal/mol							

Table 3.87: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 3.88: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Asp23
Initial Orientation		Ar			Ar		O
		C					
Final Orientation		Ar			Ar		O
		C					Ar
Total $=$	35.19	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	90.13	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-278.29	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-38.30	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-15.51	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-35.03	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation	Ar				O		
Final Orientation	-	-	-	-	-	-	-
Total $=$	139.14	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	98.58	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-242.23	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	65.65	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.05	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	1.04	$\mathrm{kcal} / \mathrm{mol}$					

Table 3.89: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid

	Leu17 Val18	Phe19	Phe20	Asp23
Initial Orientation		O	Ar	
Final Orientation		O	Ar	
$\begin{aligned} & \text { Total = } \\ & \text { van der Waals = } \\ & \text { Electrostatic = } \end{aligned}$	$77.87 \mathrm{kcal} / \mathrm{mol}$   $84.92 \mathrm{kcal} / \mathrm{mol}$ $-247.19 \mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	-40.76 $\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-5.00 kcal/mol			
$\Delta \mathrm{E}_{\text {ele }}=$	-35.10 kcal/mol			
Initial Orientation		Ar	Ar	
			O	
Final Orientation		Ar	N	O
			Ar	
			O	
Total =	$86.52 \mathrm{kcal} / \mathrm{mol}$			
van der Waals =	$82.26 \mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	-242.68 kcal/mol			
$\Delta \mathrm{E}_{\text {tot }}=$	-32.11 kcal/mol			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.66 kcal/mol			
$\Delta \mathrm{E}_{\text {ele }}=$	-30.59 kcal/mol			
Initial Orientation		Ar	Ar	
			N	
			O	
			C	
Final Orientation		Ar	Ar	
Total $=$	$112.51 \mathrm{kcal} / \mathrm{mol}$			
van der Waals =	$92.53 \mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	-221.60 kcal/mol			
$\Delta \mathrm{E}_{\text {tot }}=$	-6.11 kcal/mol			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$2.60 \mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$	-9.51 kcal/mol			
Initial Orientation	Ar		N	
Final Orientation	Ar		O	
Total =	$108.56 \mathrm{kcal} / \mathrm{mol}$ $84.58 \mathrm{kcal} / \mathrm{mol}$			
van der Waals =	$84.58 \mathrm{kca} / \mathrm{mol}$			
Electrostatic $=$	-219.34 kcal/mol			
$\Delta \mathrm{E}_{\text {tot }}=$	-10.07 kcal/mol			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-5.35 kcal/mol			
$\Delta \mathrm{E}_{\text {ele }}=$	-7.25 kcal/mol			

### 3.7.4 CONCLUSIONS OF 3-HYDROXYANTHRANILIC ACID INTERACTING WITH $\boldsymbol{\beta}$ Amyloid In Silico

3-Hydroxyanthranilic acid demonstrates a capacity to bind to $\beta$-amyloid in both gas and solution phase environments. For the most part, the orientation of 3HAA tended to remain the same upon optimization in a solvated environment. An example of a binding interaction can be seen in Figure 3.8.


Figure 3.8: Binding interaction between 3HAA and $\boldsymbol{\beta}$-amyloid. Dashed green lines indicate cation- $\pi$ interactions and aromatic-aromatic stacking interactions. The dashed purple line indicates formation of a hydrogen bond.

The LVFF region demonstrated the least potential for binding to the acid. This is likely due in part to the small size of the target molecule. Given that the amino group is so close to the aromatic ring of 3HAA, there was likely not enough distance between the two to interact with two side chains at the same time in this region. The same could be said for the hydroxyl group and the aromatic ring.

EVHHQK and HHQK combined to form the most favourable target region of A $\beta$ for binding to 3-hydroxyanthranilic acid. The His13-His14 and Glu11-His14 side chains
were the most favoured orientations where binding occurred between the acid and $\mathrm{A} \beta$ at multiple sites. Interactions at His13 favoured the carboxylate group, while His14 interacted more so with the aromatic ring; in the case of interactions occurring at His 14 and Glu11, His14 bound almost equally to the carboxylate group and the aromatic ring. The Glu11 site was favoured for interactions with both the aromatic ring and the amino group of 3-hydroxyanthranilic acid. 3HAA therefore presents itself as a viable molecule for acting as an anti-aggregant.

### 3.8 BIological Support of 3-hydroxyanthranilic acid as a Lead Molecule

Given the results of screening the library of endogenous compounds, several compounds were selected for in vitro testing to determine whether they could indeed act as anti-aggregants. 3-hydroxyanthranilic acid was subjected to in vitro assays, and demonstrated a capacity to inhibit $A \beta$ aggregation. The results of TEM scans of $A \beta$ in presence and absence of 3HAA are shown in Figure 3.9 and were performed by Rose Chen. It can be seen that only diffuse aggregates of $A \beta$ form in the presence of the acid when compared to the control.


Figure 3.9: Transmission electron microscopy (TEM) of $\mathbf{A} \boldsymbol{\beta}_{40}(20 \mu \mathrm{M})$ in the absence (left) and presence (right) of 3-HAA ( $100 \mu \mathrm{M}$ ). A mixture of fibrillar and diffuse $A \beta$ aggregates can be seen on the left, while the incubation containing 3-HA contains only diffuse aggregates on the right. For both micrographs, scale bar represents $0.5 \mu \mathrm{~m}$.


Figure 3.10: Thioflavin-T assay of 3-hydroxyanthranilic acid at various concentrations interacting with $\mathbf{A} \beta$

Figure 3.10 shows the results of a thioflavin T (ThT) assay of 3HAA at various
concentrations, and its effect on the amount of aggregated $\beta$-amyloid. This method is also
used to calculate the $\mathrm{IC}_{50}$, which is the half maximal inhibitory concentration (the amount of compound needed to inhibit a biological process by half).

The thioflavin T assay measures fluorescence in regards to $\beta$-amyloid aggregation. ThT is a dye that fluoresces when it binds to aggregated $A \beta$, if there is less aggregation occurring, there will be less fluorescence observed. As the concentration of 3HAA increases, the amount of fluorescence occurring decreases; this indicates that binding is occurring to prevent aggregation. Dimethyl sulfoxide (DMSO) is used as a control as it does not affect the aggregation of $A \beta$. The methodology for this assay is given in Appendix 5. The thioflavin T assays were performed by Gordon Simms.

Thioflavin S is used in a similar fashion to thioflavin T but for examining tau aggregation. As tau is also an important factor in AD , a molecule that can inhibit aggregation in both $\beta$-amyloid and tau is desirable. The results of the thioflavin $S$ assay (performed by Rose Chen) of 3-hydroxyanthranilic acid are shown in Figure 3.11.


Figure 3.11: Thioflavin $S$ assay of 3-hydroxyanthranilic acid interacting with tau

3HAA also exhibits an inhibitory effect on tau aggregation. The positive results of the in silico and in vitro binding of 3-hydroxyanthranilic acid with $\beta$-amyloid lead to the selection of the compound as a lead molecule for further developing analogues in an attempt to improve its binding efficiency.

### 3.9 A Quantitative Structure-Activity Relationship Study of 3HYDROXYANTHRANILIC ACID AND ITS ANALOGUES

In collaboration with Gordon Simms, research was performed to develop a series of analogues based on 3-hydroxyanthranilic acid using a quantitative structure-activity relationship (QSAR) study. This QSAR was used to predict the activity of molecules to
determine which would be best to synthesize and test for anti-aggregant activity. A QSAR uses a variety of descriptors covering geometry, electronic features, physicochemical properties and topological indices to correlate biological activity [39].

### 3.9.1 Development of a Series of Analogues Based on 3-HYDROXYANTHRANILIC ACID

The first step in the QSAR process was to develop a series of analogues of 3HAA to be synthesized for in vitro testing to determine their $\mathrm{IC}_{50}$, which is the half maximal inhibitory concentration (the amount of compound needed to inhibit a biological process by half), and therefore the activity of the compounds. In collaboration, a series of fifty compounds was designed based on the use of bioisosteric substitution.

Bioisosteric substitution involves replacing functional groups on the molecule of interest with other groups having either similar charge distributions or size, for example. The purpose is to attempt to improve the biological activity of the compound by replacing certain functional groups with others that mimic the electronegativity, spatial arrangement or lipophilicity of that area [90]. If, for example, the spatial arrangement is maintained by replacing a hydrogen atom with fluorine, the effect of a greater electronegativity on the activity of the molecule can be seen [90,91]. Some bioisosteric substitutions can be made to improve stability and lipophilicity; replacing a carboxylate group with tetrazole matches the acidity, while allowing for more stability and lipophilicity that would allow penetration of the blood-brain barrier [91].

For these analogues, substitution could occur at any point on the ring, with the carboxylate, amino and hydroxyl groups having the most possibilities for substitution.

The list of analogues developed though these are detailed with their name, structure, and series identifier in Figures 3.12 and 3.13.

The activities measured for these compounds are given in Table 3.90.


GS-1006
o-phentidine


GS-1011
3-aminosalicylic acid


GS-1016
2-nitrophenol


GS-1021
4-aminophenol


GS-1002
2-aminophenol


GS-1007
o-phenoxyaniline


GS-1012
4-aminosalicylic acid


GS-1017
2-aminobenzoic alcohol


GS-1022
catechol




GS-1023
resorcinol

GS-1004
Anthranilic acid


GS-1009
2-bromoaniline


GS-1014
salicylic acid


GS-1019
2-aminophenethyl alcohol



GS-1024
hydroquinone


GS-1005 o-anisidine


GS-1010 2-ethylaniline


GS-1015
3-hydroxypicolinic
acid


GS-1020
3-aminophenol


GS-1025
1,2-phenylenediamine


Figure 3.12: 3HAA analogues 1-25

GS-1026
1,3-phenylenediamine


GS-1031
2-methoxyphenol


GS-1036
2-methoxy-N -methylaniline HCl


GS-1041
3-methoxy-N,N -dimethylaniline HCl


GS-1046
2-methoxy- $N$ -phenylaniline HCl


GS-1027
1,4-phenylenediamine


GS-1032
1,2-dimethyoxy -benzene


GS-1037
2-methoxy-N,N -dimethylaniline HCl


GS-1042
N-benzyl-3 -methoxyaniline HCl


GS-1047
2-(methylamino) phenol


GS-1028
2-hydroxy-6 -methylaniline


GS-1033
2-(benzyloxy) phenol


GS-1038
N-benzyl-2 -methoxyaniline HCl


GS-1043
N,N-dibenzyl-3 -methoxyaniline HCl


GS-1048
2-(dimethylamino) phenol


GS-1029
2-amino-p -cresol


GS-1034
1,2-bis(benzyloxy)
phenol


GS-1039
N,N-dibenzyl-2 -methoxyaniline HCl


GS-1044
$N$-(2-hydroxyphenyl) formamide


GS-1049
2-(benzylamino) phenol


GS-1040
3-methoxy-N -methylaniline HCl


GS-1045
2-(phenylamino) phenol HCl


GS-1050 4-(methylamino) phenol


Figure 3.13: 3HAA analogues 26-50

Table 3.90: 3HAA analogues and their calculated $\mathrm{IC}_{50} \mathrm{~S}$

Compound Identifier	Calculated   $\mathrm{IC}_{50}(\mu \mathrm{M})$
GS-1001	5.05
GS-1002	4.545
GS-1003	> 300
GS-1004	$>300$
GS-1005	> 300
GS-1006	> 300
GS-1007	297.95
GS-1008	> 300
GS-1009	> 300
GS-1010	> 300
GS-1011	> 300
GS-1012	> 300
GS-1013	9.999
GS-1014	> 300
GS-1015	> 300
GS-1016	> 300
GS-1017	> 300
GS-1018	> 300
GS-1019	> 300
GS-1020	> 300
GS-1021	2.323
GS-1022	8.2315
GS-1023	> 300
GS-1024	12.8775
GS-1025	> 300
GS-1026	> 300
GS-1027	1.818
GS-1028	2.424
GS-1029	21.816
GS-1030	14.3925
GS-1031	> 300
GS-1032	> 300
GS-1033	> 300
GS-1034	> 300
GS-1035	> 300
GS-1036	> 300
GS-1037	> 300
GS-1038	> 300
GS-1039	> 300
GS-1040	> 300
GS-1041	> 300
GS-1042	> 300
GS-1043	> 300
GS-1044	262.6
GS-1045	2.727
GS-1046	> 300
GS-1047	6.9185
GS-1048	8.888
GS-1049	2.5755
GS-1050	2.02

### 3.9.2 Development of a QSAR for Activity Prediction

Using the structural data and biological activities, the 3HAA analogues were divided into two sets: a training set, and a validation set. The training set is used to develop the QSAR equation for predicting activity, and the validation set is used to determine how accurate that equation truly is.

Initial attempts divided the fifty analogues into a training set of 33 compounds and a validation set of 17 compounds. The structures were optimized in MOE, and the $\mathrm{pIC}_{50}$ was calculated from each $\mathrm{IC}_{50}$ [87]. All descriptors available in MOE were calculated for the training set, and those with zero contribution were eliminated. The partial least squares (PLS) method was first used; however despite changes to the size and components of the training set, as well as the number of descriptors calculated, this method proved to be ineffective at predicting compound activity. It appears that the biological data does not provide enough range for the PLS method, as the compounds were all either highly active or very inactive.

### 3.9.3 DEVELOPMENT OF A BINARY QSAR To PREDICT 3HAA ANALOGUE Activity

A successful QSAR was developed in MOE using a binary method of relating descriptors to activity. For this method, compounds are considered to be either active or inactive, and each descriptor is tested to see if it is valid for both the active and inactive species. This proved to be a more suitable approach to the QSAR as the synthesized compounds exhibited either high activity or complete inactivity. The QSAR used a training set of 34 molecules, containing a mixture of active and inactive species, with attempts to include representations of the different molecular substitutions. The threshold
for activity was set for a $\mathrm{pIC}_{50}$ (the negative $\log$ of the $\mathrm{IC}_{50}$ ) of -2.0 , and all of the available descriptors in MOE were calculated. These descriptors were narrowed down by first eliminating those with values of zero, or identical values for all species. Once these descriptors were removed, the relative importance of the remaining descriptors as well as their effect on the predictive capacity was used to narrow the field. Descriptors were removed one at time, and their effect on the predictivity of the QSAR was examined, those whose removal resulted in increased predictivity were eliminated, while those whose removal resulted in a decreased predictivity were retained. Furthermore, descriptors having similar functions were also weeded down by seeing which had a more positive impact on the prediction; the MOE system contains a large variety of descriptors, some of which have identical functions but that are calculated by different means (e.g. the heat of formation can be calculated by AM1, PM3 or MNDO). Thus descriptors were gradually eliminated until a reasonable prediction of activity versus inactivity could be obtained using a small amount of descriptors (as the more descriptors present, the greater the risk of overfitting the data, which would result in a QSAR with poor predictivity for molecules outside the training set).

The final system is composed of 9 descriptors and a short summary of their function is summarized in Table 3.91.

Table 3.91: Descriptors used in the QSAR for 3HAA

Descriptor	Function				
PM3-HF	The heat of formation calculated using the   PM3 Hamiltonian				
SlogP_VSA5	Log of the octanol/water coefficient based on   the accessible van der Waals surface area				
SMR_VSA0   SMR_VSA1	Contributions to the molar refractivity based   on the accessible van der Waals surface area   SMR_VSA4   SMR_VSA5				
falling within a specific range		$	$	vdw_vol	Calculates the van der Waals volume
:---	:---				
vsa_don	Approximate sum of the van der Waals   surface areas of pure hydrogen bond donors				
vsurf_W2	Hydrophilic volume				

Using these nine descriptors, a total accuracy of 0.97 was obtained for the training set that can be broken down to 0.92 for the active molecules and 1.00 for the inactive analogues. The total accuracy on the actives is considered the sensitivity of the model, that is the measure of the number of actives that were correctly predicted, while the total accuracy on the inactives is considered the specificity, that is the measure of the number of inactives that were correctly predicted. Cross-validation statistics indicate a total accuracy of 0.91 for the model, which can be broken down to 0.83 for the active molecules and 0.95 for the inactive molecules. Cohen's kappa (a statistical measure of agreement for binary systems) was calculated to be 0.93 for the training set, which is an excellent value indicating good agreement between the observed and predicted values. The kappa value also takes into consideration the possibility of this agreement occurring by chance.

When the QSAR model was applied to the validation set, four false positives and one false negative were identified. The predicted activities were given as a scale from 0
(inactive) to 1 (active). Compounds were therefore judged to be active if the predicted value was above 0.5 . It should be noted that one of the molecules in the validation set that was incorrectly predicted as active had a prediction value of 0.5012 . The Cohen's kappa value for the validation set was 0.23 , which is a fair value, but not as good as seen in the training set; this number would increase to 0.35 if the compound with a prediction value of 0.5012 was assigned as inactive. The measured sensitivity and selectivity of the applied model are 0.67 and 0.77 , respectively. The results of this QSAR are summarized in Table 3.92.

Table 3.92: Predicted activities for the training and validations sets of 3HAA analogues 1-50

Training Set			Validation Set		
Compound ID	$\begin{aligned} & \mathrm{IC}_{50} \\ & (\mu \mathrm{M}) \end{aligned}$	Predicted Activity	Compound ID	$\begin{aligned} & \mathrm{IC}_{50} \\ & (\mu \mathrm{M}) \end{aligned}$	Predicted Activity
GS-1001	5.05	Active	GS-1007	297.95	Inactive
GS-1002	4.545	Active	GS-1008	300	Inactive
GS-1003	300	Inactive	GS-1013	9.999	Active
GS-1004	300	Inactive	GS-1016	300	Active
GS-1005	300	Inactive	GS-1017	300	Inactive
GS-1006	300	Inactive	GS-1019	300	Active
GS-1009	300	Inactive	GS-1021	2.323	Active
GS-1010	300	Inactive	GS-1023	300	Active
GS-1011	300	Inactive	GS-1032	300	Inactive
GS-1012	300	Inactive	GS-1034	300	Inactive
GS-1014	300	Inactive	GS-1037	300	Inactive
GS-1015	300	Inactive	GS-1038	300	Inactive
GS-1018	300	Inactive	GS-1040	300	Inactive
GS-1020	300	Inactive	GS-1042	300	Active
GS-1022	8.2315	Active	GS-1046	300	Inactive
GS-1024	12.8775	Active	GS-1048	8.888	Inactive
GS-1025	300	Inactive			
GS-1026	300	Inactive			
GS-1027	1.818	Inactive			
GS-1028	2.424	Active			
GS-1029	21.816	Active			
GS-1030	14.3925	Active			
GS-1031	300	Inactive			
GS-1033	300	Inactive			
GS-1035	300	Inactive			
GS-1036	300	Inactive			
GS-1039	300	Inactive			
GS-1041	300	Inactive			
GS-1043	300	Inactive			
GS-1044	262.6	Inactive			
GS-1045	2.727	Active			
GS-1047	6.9185	Active			
GS-1049	1.616	Active			
GS-1050	2.02	Active			

### 3.9.4 Prediction of Activity of a Series of Analogues Based on 3HYDROXYANTHRANILIC ACID

The binary QSAR demonstrated its potential to correctly predict the activity of the first series of 3-hydroxyanthranilic acid analogues to a moderate level; therefore, this combination of descriptors was deemed useful and was used to predict the activity of a second set of analogues composed of 86 new molecules. The full list of structures is given in Appendix 7, along with their predicted activity.

From the 86 analogues, 39 were predicted to be active. To date twenty-six analogues have been synthesized from this new series, containing a mixture of active and inactive compounds. Some inactive compounds were included to verify that the prediction was accurate enough for further use. The synthesized analogues are shown in Figure 3.14 , and are currently undergoing biological testing to determine the $\mathrm{IC}_{50}$ values. Initial data has been provided to determine if the compounds are active or inactive, and the results are compared to the predicted values in Table 3.93.


Figure 3.14: 3HAA analogues 51-76

Table 3.93: Predicted and observed activities of analogues 51-76 of 3HAA

Compound ID	Predicted Activity	Biological Activity
GS-1051	Inactive	Active
GS-1052	Inactive	Inactive
GS-1053	Active	Active
GS-1054	Active	Active
GS-1055	Active	Active
GS-1056	Active	Active
GS-1057	Active	Active
GS-1058	Active	Active
GS-1059	Active	Active
GS-1060	Active	Active
GS-1061	Active	Active
GS-1062	Active	Active
GS-1063	Active	Active
GS-1064	Active	Inactive
GS-1065	Inactive	Active
GS-1066	Active	Inactive
GS-1067	Active	Inactive
GS-1068	Inactive	Inactive
GS-1069	Inactive	Inactive
GS-1070	Inactive	Inactive
GS-1071	Inactive	Inactive
GS-1072	Active	Active
GS-1073	Inactive	Inactive
GS-1074	Active	Active
GS-1075	Active	Active
GS-1076	Active	Active

The results of the QSAR predictions are quite accurate. Of the twenty-six compounds synthesized to date, the biological activity was correctly predicted for twentyone of the system for an 81 percent accurate prediction. In total, three compounds were incorrectly predicted to be active, and two predicted to be inactive. The specificity is therefore calculated to be 0.75 , with a selectivity of 0.83 . Cohen's kappa indicates a correlation between the predicted and observed values of 0.56 , which can be considered a
moderately good result. Therefore the data can be used to determine if any more of the compounds in the series should be synthesized as well.

Once the $\mathrm{IC}_{50} \mathrm{~S}$ of these newly synthesized analogues are calculated, the data will be incorporated to make a new training set of compounds for the QSAR to better improve its predictive ability. The technique has so far proved useful and quite accurate in selecting novel compounds for synthesis. This is an iterative process, and will be repeated as many times as necessary in order to design the best lead molecule capable of binding to $\beta$-amyloid to prevent aggregation

### 3.10 Novel Bi-aromatic Compounds Targeting the BBXB Region of Proteins Involved in Alzheimer's Disease

As mentioned previously, there exists a common motif among several proteins involved in AD. The motif follows the pattern of $\mathbf{B B X B}$ where B is any basic amino acid, and X represents any other amino acid (and can include basic amino acids as well). Previous research by the Weaver group has identified twenty-seven proteins implicated in the Alzheimer's disease process that contain this $\mathbf{B B X B}$ motif [41].

We postulate that a single molecule can act as a promiscuous drug to target this common motif [41]. A single drug capable of acting on multiple targets involved in AD would allow for better treatment, not only inhibiting $\beta$-amyloid aggregation, but diffusing some of the negative effects caused by inflammatory responses in the region of $A \beta$ aggregation.

Four bi-aromatic molecules developed by the Weaver group were selected to test their capacity to act as promiscuous drug molecules targeting the $\mathbf{B B X B}$ region of these
proteins. The four compounds are NCE-0103, NCE-0112, NCE-0216 and NCE-0325 (Figure 3.15), where NCE stands for novel chemical entity.


Figure 3.15: NCE-0103, NCE-0112, NCE-0216, and NCE-0325
Of the twenty-seven identified proteins, several were not viable options for this study. Although tau plays a major role in AD , there are currently no structures available of the protein in the RCSB protein data bank and thus it could not be examined for potential interactions with these four compounds. Interleukin-1 receptor 1 and interleukin-10 were not studied, and interleukin-6, hemochromatosis protein and the class II major histocompatibility complex had $\mathbf{B B X B}$ regions that were inaccessible upon optimization in QUANTA [46]. The only structure of interleukin 3 available in the RCSB PDB contained mutations in the $\mathbf{B B X B}$ region and was not a viable option for study.

Gas phase optimizations were performed to determine if these lead compounds could interact with the $\mathbf{B B X B}$ region on each of the remaining proteins: $\mathrm{S} 100 \beta$, complement component 1 , $q$ subcomponent, A chain, (C1qA), interferon-gamma (IFN- $\gamma$ ), acetylcholinesterase (AChE), apolipoprotein $\varepsilon 4$ (Apo 4 ), interleukin- $1 \beta$ converting enzyme (IL-1 $\beta$ CE), interleukin 4 (IL-4), interleukin 12 (IL-12), interleukin 13 (IL-13), alpha-1-antichymotrypsin ( $\alpha_{1}$-ACT), betaine-homocysteine methyl transferase (BHMT), T lymphocyte activation antigen (B7-1), intercellular adhesion molecule 1 (ICAM-1), macrophage inflammatory protein-1 $\alpha$ (MIP-1 $\alpha$ ), macrophage inflammatory protein-1 $\beta$ (MIP-1 $\beta$ ), stromal cell-derived factor-1 (SDF-1), neprilysin (NEP), transferrin, and regulated upon activation, normal T-cell expressed, and secreted (RANTES).

The $\mathbf{B B X B}$ motif for each protein is detailed in Table 3.94, and some have more than one $\mathbf{B B X B}$ region available.

Table 3.94: Identification of the amino acids composing the BBXB motif

Protein	BBXB amino acids			
	B	B	X	B
$\alpha_{1}$-ACT	Lysine	Arginine	Tryptophan	Arginine
A $\beta$	Histidine	Histidine	Glutamine	Lysine
AChE	Arginine	Arginine	Phenylalanine	Arginine
Apos4	Lysine   Lysine   Arginine	Arginine   Arginine   Lysine	Leucine Leucine Leucine	Histidine   Lysine   Arginine
B7-1	Lysine	Arginine	Glutamic Acid	Histidine
BHMT	Lysine	Arginine	Alanine	Arginine
C1qA	Lysine	Lysine	Glycine	Histidine
ICAM-1	Arginine   Histidine	Arginine   Histidine	Aspartic Acid Aspartic Acid	Histidine   Arginine
IFN- $\gamma$	Lysine	Lysine	Lysine	Arginine
IL-1 $\beta$ CE	Lysine	Lysine	Alanine	Histidine
IL-4	Histidine Histidine	Histidine Arginine	Glutamic Acid Histidine	Lysine   Lysine
IL-12	Histidine	Lysine	Leucine	Lysine
IL-13	Lysine	Lysine	Leucine	Histidine
MIP-1 $\alpha$	Lysine	Arginine	Serine	Arginine
MIP-1 $\beta$	Lysine	Arginine	Serine	Lysine
Neprilysin	Lysine   Lysine	Arginine Lysine	Cysteine   Leucine	Histidine   Arginine
RANTES	Arginine	Lysine	Asparagine	Arginine
S100 $\beta$	Histidine Lysine	Lysine Lysine	Leucine   Leucine	Lysine Lysine
SDF-1	Lysine	Histidine	Leucine	Lysine
Transferrin	Lysine	Lysine	Glycine	Arginine

### 3.10.1 Preparation of the Lead Molecules and Proteins

Gas phase minimizations were performed to find the lowest energy systems for each of the four lead molecules and the proteins. For the four lead compounds, the molecules were constructed in QUANTA and subjected to systematic conformational
searches; each torsional angle was rotated from $0-330^{\circ}$ in $30^{\circ}$ increments, and the lowest energy structure resulting from this scan was selected [46]. The energies of these systems are given in Table 3.95.

## Table 3.95: Energies of the four NCE molecules

	Energy (kcal/mol)		
Compound	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
NCE-0103	45.51	5.65	-5.10
NCE-0112	56.04	4.96	23.45
NCE-0216	42.70	12.64	-0.90
NCE-0325	-22.50	3.06	-36.34

The proteins underwent different processing as necessary to prepare them for optimization in the QUANTA environment [46]. The details for interleukins 4, 12 and 13, ICAM-1, S100 $\beta$ and RANTES are given in Chapter 2, Sections 2.7.1.1-2.7.1.6. The remaining proteins were prepared as follows.

### 3.10.1.1 $\beta$-AMYLOID

The $\beta$-amyloid protein is believed to be the causative factor in Alzheimer's disease, initiating a cascade of neurotoxic events when it undergoes misfolding [8, 9]. The optimized structure of the 1IYT conformer of $\beta$-amyloid used in previous optimization with dopamine and phenylalanine was used for this project.

### 3.10.1.2 $\alpha_{1}-A C T$

Although the precise function of $\alpha_{1}$-ACT is unknown, it is believed to play an anti-inflammatory role [92]. This protein is found localized in the amyloid plaques in the brain [81]. The PDB structure, 1QMN, was downloaded into MOE, where hydrogen
atoms were added, the histidine residues protonated, and then the file was formatted for QUANTA [46, 47]. Upon importation, there was a carboxylate group incorrectly constructed as an aldehyde group that was retyped before the protein backbone was constrained and the system was minimized via steepest descents.

### 3.10.1.3 ACHE

Acetylcholinesterase is the enzyme involved in the metabolism of acetylcholine, and levels of the acetylcholine neurotransmitter decline with the progression of $\mathrm{AD}[6,7]$. The structure of AChE was downloaded from the PDB (as 2J3D) into MOE [47, 93]. Hydrogen atoms were added, solvent and other substances removed, and the histidine residues were protonated before being imported into QUANTA [46]. The structure was minimized using steepest descents with a constrained protein backbone.

### 3.10.1.4 APOE4

The apolipoprotein $\varepsilon 4$ is an isoform of the protein, which normally plays a role in maintaining and repairing neurons; the $\varepsilon 4$ isoform is linked to AD , and its mode of action remains to be determined [94]. The 1G39 entry of the PDB was downloaded, and in MOE actions were taken to remove solvent, add hydrogen atoms and protonate histidine [47, 95]. The structure was imported into QUANTA and underwent gas phase optimization using the steepest descents algorithm with a constrained protein backbone [46].

### 3.10.1.5 B7-1

The B7-1 protein is located on the surface of antigen-presenting cells, and plays a role in signalling immune response when binding to white blood cells [96]. The PDB structure, 1DR9, was protonated for physiological pH after extraneous molecules were
deleted and hydrogen atoms added to the structure [96]. The protein required some asparagine residues and carboxylate groups to be corrected as well; the system was then optimized with a constrained protein backbone via steepest descents.

### 3.10.1.6 BHMT

The betaine-homocysteine methyl transferase enzyme exerts a role in cellular and plasma levels of homocysteine [97]. It has been suggested that elevated levels of homocysteine may play a role in AD [97]. For this structure, identified by 1LT8, preparation involved adding hydrogen atoms, removing solvent, zinc, and an identical chain, and finally protonating the His residues before importation in QUANTA, and following the same optimization scheme as the other proteins [46, 97].

### 3.10.1.7 C1 QA

The C1q protein (PDB entry 2JG9) plays a role in clearing apoptotic cells by binding to the surface of these cells to signal phagocytes to engulf them, and plays a role in controlling the inflammatory process [98]. As in the case of the previous proteins, before minimization (with a constrained protein backbone) in QUANTA, the protein first needed hydrogen atoms added to the structure, solvent and extraneous molecules removed and the histidine residues protonated [46].

### 3.10.1.8. IFN- $\gamma$

Interferon- $\gamma$ is a cytokine that exerts immunomodulatory effects, and exists in a dimeric form [99]. IL-12 can increase the production of this inflammatory protein, which activates natural killer cells that lead to cell death [22, 69]. Solvent molecules were deleted, hydrogen atoms added and histidine residues protonated, with the C terminal
carboxylate corrected for the 1EKU structure of IFN- $\gamma$ before optimization in QUANTA [46, 99].

### 3.10.1.9 IL-1 $\beta$ CE

This enzyme plays a role in producing the inflammatory cytokine, interleukin-1 $\beta$ and may play a role in regulating the programmed cell death of neuronal cells [100]. The same process of preparing the protein was followed as in Section 3.2.8.1.3.

### 3.10.1.10 MIP-1 $\alpha$ AND MIP-1 $\beta$

These macrophage inflammatory proteins play a role as chemoattractants, initiating inflammatory responses [101]. They can play a role in activating white blood cells to bind to other cells for their removal [101]. Both 2X69 and 2X6L (MIP-1 $\alpha$ and MIP-1 $\beta$, respectively) were imported directly into QUANTA, where the protein backbone was constrained and minimization occurred via steepest descents.

### 3.10.1.11 NEP

Neutral endopeptidase, or neprilysin, is involved in the degradation of a peptide exhibiting vasodilatory and diuretic activities [102]. The structure, 2YB9, was prepared by adding hydrogen atoms, removing solvent and other molecules, and protonating the histidine residues [102]. Optimization in QUANTA followed the same method as the other proteins.

### 3.10.1.12 SDF-1

SDF-1 is another pro-inflammatory protein that acts as a chemoattractant for various types of white blood cells [103]. Its PDB structure, 2SDF, required only
protonation for physiological pH before it was imported into QUANTA and optimized [5, 103].

### 3.10.1.13 TRANSFERRIN

Transferrin, as its name implies, binds to iron and transports it throughout the body [104]. The release of iron is in part triggered by lower pH and iron is one of the metal ions found located in $\mathrm{A} \beta$ plaques, which tends towards lower $\mathrm{pH}[81,104]$. The transferrin protein, 3 S 9 N , was prepared by deleting extraneous chains, adding hydrogen atoms, and then correcting numerous side chains that were lacking the R group before ensuring the system was charged for physiological pH and imported into QUANTA [46].

### 3.10.2 GAS Phase Optimization of the NCE Compounds with BBXB

Optimizations of these compounds with the $\mathbf{B B X B}$ region of the various proteins was set up such that the functional groups/aromatic rings of the NCE compounds were approximately $3.0 \AA$ away from two of the basic amino acids in the $\mathbf{B B X B}$ region of the protein being examined. Each system was minimized with a constrained protein backbone via steepest descents.

The binding energies were calculated using the following equations:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\text {BBXB }}-\mathrm{E}_{\mathrm{NCE}}  \tag{3.20}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwBBXB}}-\mathrm{E}_{\mathrm{vdwNCE}}  \tag{3.21}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {eleBBXB }}-\mathrm{E}_{\text {eleNCE }} \tag{3.23}
\end{align*}
$$

The total, van der Waals and electrostatic interactions were calculated for each gas phase system, where the energy of the protein was calculated with a constrained protein backbone. The energies of the proteins are summarized in Appendix 8.

Each of the optimized systems was imported into MOE to better determine what interactions were occurring between the ligand and the protein [47].

### 3.10.3 Results of the Optimization of the NCE Compounds with BBXB

The results of the optimizations are summarized in Tables 3.96-3.119. Amino acid side chains are represented by their single letter abbreviation followed by their number on the chain. The NCE compounds are represented by the abbreviations shown in Figure 3.16. The initial and final binding orientations are given, and the calculated energies. Different types of binding interactions are represented by different colours, and the darker the shade of the colour, the more that type of interaction is occurring at that site. Cation- $\pi$ and $\pi-\pi$ interactions are represented by blue and green, while hydrogen bonds are orange. Interactions with the $-\mathrm{CH}_{2}$ - chain on the amino acids (particularly common with lysine) are coloured indigo, while light purple indicates potential interactions with the $\mathrm{C}=\mathrm{O}$ of the protein backbone; lime green represents those occurring with the -CH - of the backbone.

For IFN- $\gamma$, MIP- $1 \alpha$, MIP-1 $\beta$ and RANTES, there exist two identical BBXB motifs, either on the same chain, or on an identical chain. For these systems there are also tables summarizing systems optimized with two molecules of the NCE compounds, one at each site; the interactions are broken down in to (A) and (B) to show to which of the two identical motifs the molecule was binding.




Figure 3.16: Regions of NCE compounds identified for interactions with BBXB

Table 3.96: Results of the optimization of the lead molecules and $\alpha_{1}$-ACT


Table 3.97: Results of the optimization of the lead molecules and $A \beta$

A $\beta$	Initial Orientation				Final Orientation							Binding Energy (kcal/mol)					
	H13	H14	Q15	K16	Y10	H13	H14	Q15	K16	L17	F20	Total	$\frac{\mathrm{VdW}}{-11.54}$	Ele			
$\begin{aligned} & \text { NCE } \\ & 0103 \end{aligned}$	$\begin{aligned} & \text { CIn } \\ & \text { BIn } \\ & \text { BIn } \\ & \text { CIn } \end{aligned}$	$\begin{aligned} & \text { BIn } \\ & \text { CIn } \end{aligned}$	$\begin{aligned} & \text { CIn } \\ & \text { BIn } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { CIn } \\ & \text { BIn } \\ & \text { BIn } \\ & \text { BIn } \\ & \text { CIn } \end{aligned}$		BIn   CIn   CIn		AIn ${ }^{\text {CIn }}$		$\begin{aligned} & \text { CIn } \\ & \text { BIn } \\ & \hline \end{aligned}$	$-19.48$		$-10.60$			
					-19.60	-10.73					-11.95						
					-24.40	-8.03					-17.50						
					-24.68	-9.00					-17.71						
NCE	CIn	In						CIn	In				CIn		-7.75	-7.36	-5.02
0112	In	CIn						In	CIn				CIn		-5.03	-6.23	-3.65
	In			CIn				In				CIn		CIn	-12.76	-4.63	-13.21
	CIn			In				CIn							-3.36	-4.03	-3.53
NCE	NAr	CIn			CIn	NAr	CIn			CIn		-18.55	-11.32	-9.77			
0216	CIn	NAr			NAr	CIn	NAr			NAr		-25.61	-11.97	-16.85			
	Crn	NAr				CIn						-25.61	-11.97	-16.85			
	CIn			NAr		CIn			NAr			-19.66	-9.60	-12.56			
	NAr			CIn		NAr			CIn		CIn	-25.57	-9.69	-15.79			
	NAr			CIn					CIn			25.57	-9.69	-15.7			
NCE		RAr				LAr	RAr			CAr		-14.76	-8.96	-8.69			
0325										RAr		-14.76	-8.96	-8.69			
	RAr	LAr			LAr	RAr	LAr					-14.86	-6.33	-10.90			
	LAr			RAr		LAr			RAr		RAr	-14.38	-6.27	-9.39			
	RAr			LAr		RAR			LAr			-6.25	-2.65	-4.64			

Table 3.98: Results of the optimization of the lead molecules and AChE


Table 3.99: Results of the optimization of the lead molecules and Apos4


Table 3.100: Results of the optimization of the lead molecules and B7-1


Table 3.101: Results of the optimization of the lead molecules and BHMT


Table 3.102: Results of the optimization of the lead molecules and C1qA

C1qA	Initial Orientation				Final Orientation						Binding Energy (kcal/mol)		
	K200	K201	G202	H203	W147	E148	K200	K201	G202	H203	Total	VdW	Ele
$\begin{aligned} & \text { NCE } \\ & 0103 \end{aligned}$	$\begin{aligned} & \text { CIn } \\ & \text { BIn } \end{aligned}$	BIn   CIn   BIn   CIn					CIn				-129.94	-3.18	-134.99
							BIn	CIn			-129.77	-9.46	-127.56
				CIn		BIn				CIn	-100.84	-6.47	-99.64
				BIn		CIn	CIn	CIn			-114.44	-8.07	-114.67
	$\begin{aligned} & \text { BIn } \\ & \text { CIn } \end{aligned}$			CIn		CIn	BIn			CIn	-112.57	-10.51	-109.83
				BIn		BIn	CIn				-118.77	-8.78	-116.97
$\begin{aligned} & \text { NCE } \\ & 0112 \end{aligned}$	$\begin{gathered} \text { CIn } \\ \text { In } \end{gathered}$	InCInIn		$\begin{gathered} \text { CIn } \\ \text { In } \end{gathered}$			CIn				-109.91	-4.56	-113.10
								CIn			-142.02	-9.83	-140.07
						In				CIn	-92.21	-10.38	-84.04
		CIn				CIn	CIn	CIn		In	-115.23	-10.89	-119.52
							CIn				-115.23	-10.89	-119.52
	In			CIn	CIn		In			CIn	-76.44	-5.69	-78.29
	CIn			In			CIn				-114.94	-4.09	-117.65
$\begin{aligned} & \text { NCE } \\ & 0216 \end{aligned}$	$\begin{aligned} & \hline \text { NAr } \\ & \text { CIn } \end{aligned}$	$\begin{gathered} \text { CIn } \\ \text { NAr } \\ \text { CIn } \\ \text { NAr } \end{gathered}$		$\begin{gathered} \text { NAr } \\ \text { CIn } \\ \text { NAr } \\ \text { CIn } \\ \hline \end{gathered}$	CIn			CIn			-103.83	-4.55	-106.84
						NAr	CIn				-109.82	-0.62	-117.60
							CIn	CIn			-115.25	-6.30	-119.69
										CIn	-76.88	-6.45	-74.52
	$\begin{aligned} & \text { CIn } \\ & \text { NAr } \\ & \hline \end{aligned}$						CIn				-108.66	-3.83	-112.23
							NAr			CIn	-72.24	-2.94	-75.86
$\begin{aligned} & \text { NCE } \\ & 0325 \end{aligned}$	LAr   RAr	RAr   LAr			LAr	RAr	LAr	RAr			-54.53	-3.35	-53.48
						LAr	RAr	LAr			-54.09	-3.65	-55.02
	RAr	RAr		LAr		RAr	RAr				-52.28	-8.04	-45.19
							RAr						-45.19
		LAr		RAr		LAr	LAr			RAr	-38.92	-5.26	-35.69
	LAr			RAr			LAr				-52.06	-8.76	-50.83
	RAr			LAr			RAr				-45.23	-1.60	-46.56

Table 3.103: Results of the optimization of the lead molecules and ICAM-1


Table 3.104: Results of the optimization of the lead molecules and IFN- $\gamma$


Table 3.105: Results of the optimization of the lead molecules and IFN- $\gamma$ at two binding sites


Table 3.106: Results of the optimization of the lead molecules and IL-1ßCE


Table 3.107: Results of the optimization of the lead molecules and IL-4


Table 3.108: Results of the optimization of the lead molecules and IL-12


Table 3.109: Results of the optimization of the lead molecules and IL-13


Table 3.110: Results of the optimization of the lead molecules and MIP-1 $\alpha$


Table 3.111: Results of the optimization of the lead molecules and MIP-1 $\alpha$ at two binding sites


Table 3.112: Results of the optimization of the lead molecules and MIP-1 $\beta$


Table 3.113: Results of the optimization of the lead molecules and MIP-1 $\beta$ at two binding sites


Table 3.114: Results of the optimization of the lead molecules and NEP

NEP	Initial Orientation				Final Orientation									Binding Energy (kcal/mol)		
	K523	K524	L525	R526	E498	K520	K523	K524	L525	R526	E527	D530	R533	Total	VdW	Ele
NCE	BIn	CIn			BIn	CIn		CIn						106.68	-16.61	117.04
0103	CIn	BIn			-	-	-	-	-	-	-	-	-	72.18	-15.05	79.05
NCE	In	CIn						CIn						103.12	-17.33	112.21
0112	CIn	In			-	-	-	-	-	-	-	-	-	2.75	-14.27	17.09
NCE	LAr	RAr						RAr					RAr	-92.54	-9.94	-89.90
0325	RAr	LAr			RAr			LAr			LAr	LAr	LAr	-90.52	-14.87	-86.12
	H733	C734	R735	K736	E77	E730	H733	C734	R735	K736						
NCE	BIn			CIn	-	-	-	-	-	-				-7.22	-12.78	5.48
0103	CIn			BIn				BIn						-36.47	-17.65	-20.91
	BIn		CIn						CIn					-35.28	-5.28	-30.82
	CIn		BIn						BIn					-42.47	-11.58	-32.35
NCE	In			CIn				CIn		CIn				73.12	-11.12	88.03
0112	CIn			In						In				-56.46	-10.96	-47.10
	In		CIn		-	-	-	-	-	-				-29.35	-2.41	-29.06
	CIn		In		-	-	-	-	-	-				-121.30	2.00	-119.85
NCE	NAr		CIn		-	-	-	-	-	-				-39.80	-6.95	-29.63
0216	CIn		NAr		NAr									-67.06	-8.24	-64.23
	CIn			NAr				NAr		NAr				44.20	-20.46	-25.46
	NAr			CIn	-	-	-	-	-	-				-53.06	11.14	-47.19
NCE	LAr		RAr		RAr				RAr					-75.97	-4.33	-73.00
0325	RAr		LAr		LAr				LAr					-79.12	-3.00	-79.88
	LAr			RAr				RAr		RAr				-88.52	-18.18	-76.83
	RAr			LAr		LAr				LAr				-79.34	-9.00	-69.21

Table 3.115: Results of the optimization of the lead molecules and RANTES


Table 3.116: Results of the optimization of the lead molecules and RANTES at two binding sites


Table 3.117: Results of the optimization of the lead molecules and S100


Table 3.118: Results of the optimization of the lead molecules and SDF-1

SDF-1	Initial Orientation			Final Orientation				Binding Energy (kcal/mol)			
	K24	H25	L26	K27	K24	H25	L26	K27	Total	VdW	Ele
NCE	BIn	CIn		BIn	CIn			-70.30	-8.73	-59.62	
0103	CIn	BIn		CIn	BIn			-77.06	-9.90	-66.64	
NCE	CIn	In		In	In			-96.07	-7.80	-86.53	
0112	In	CIn			CIn	CIn			-57.05	-7.43	-45.14
NCE	NAr	CIn		NAr	CIn		-57.15	-7.89	-46.67		
0216	CIn	NAr	CIn	NAr			-75.83	-8.33	-65.56		
NCE	LAr	RAr		NAr							
0325	RAr	LAr		RAr	RAr			-39.42	-7.31	-33.49	
				RAr			-42.63	-7.82	-37.58		

Table 3.119: Results of the optimization of the lead molecules and Transferrin


Assigning the basic amino acids numbers from left to right as $\mathrm{B}^{1}-\mathrm{B}^{2}-\mathrm{X}-\mathrm{B}^{3}$, the number of interactions occurring at $B^{1} B^{2}, B^{1} B^{3}$, and $B^{2} B^{3}$ were examined for each of the above systems.

The NCEs were capable of interacting with multiple configurations of $B^{1} B^{2}, B^{1} B^{3}$, and $B^{2} B^{3}$ equally for some of the proteins: These included $A \beta, C 1 q A$, ICAM-1, IL-1 $\beta C E$, IL-4, IL-12, MIP-1 $\alpha$ (when binding at two sites), MIP-1 $\beta$ and RANTES. Figure 3.17 shows an example of binding between NCE-0325 and IL-1 $\beta$ CE.

The remaining proteins, AChE, BHMT, S100 $\beta$ and SDF-1 favoured interactions with the NCE molecules at $\mathrm{B}^{1} \mathrm{~B}^{2}$, while $\mathrm{B}^{1} \mathrm{~B}^{3}$ was the favoured orientation for Apo\&4, IFN- $\gamma$, and IL-13 with B7-1 and transferrin preferring $\mathrm{B}^{2} \mathrm{~B}^{3}$. None of the NCEs formed interactions at two sites within the $\mathbf{B B X B}$ region of neprilysin. The preferential binding at these sites was due to the spatial orientation of the amino acid side chains within the $\mathbf{B B X B}$ motif for each protein.


Figure 3.17: Example of NCE-0325 binding to IL-1 $\beta$ CE. Interactions between the compound and the BBXB region are highlighted.

### 3.10.4 Conclusions on the NCE Molecules Interacting With Proteins Containing BBXB

The results of the gas phase optimizations of NCE-0103, NCE-0112, NCE-0216 and NCE-0325 indicate that all four compounds are capable of binding to and interacting with the $\mathbf{B B X B}$ region of multiple proteins involved in AD. Hydrogen bonds and cation- $\pi$ interactions were the most commonly observed measureable interactions.

All four NCEs are capable of binding to the BBXB region of A $\beta$, C1qA, IFN- $\gamma$, IL-12, MIP-1 $\alpha$, MIP-1 $\beta$, RANTES, SDF-1 and transferrin. For all of these systems, each NCE is capable of forming at least one binding interaction with two of the basic amino acids in the $\mathbf{B B X B}$ motif of that protein.

For a few of the proteins where multiple $\mathbf{B B X B}$ regions were accessible, some of the NCEs were capable of binding to one or two of those receptors but not all of them; this occurred for Apoz4, ICAM-1, IL-4 and S100ß. Similar situations arose when binding was occurring at two BBXB regions simultaneously on MIP-1 $\alpha$ and MIP-1 $\beta$.

In some optimized systems, not all of the NCE molecules were capable of binding at two sites; these included AChE, B7-1 and IL-13, with which only the longer NCE0325 was capable of forming multiple interactions.

In the case of the BHMT protein, NCE-0112 was not capable of interacting with the side chains given their spatial orientation. In general NCE-0112 appeared to be the least successful at forming binding interactions with the $\mathbf{B B X B}$ region of multiple proteins. NCE-0216 was also slightly less favoured on occasion.

Overall, it appears that NCE-0325 and NCE-0103 are the most capable of binding to the $\mathbf{B B X B}$ region on multiple proteins affiliated with AD . The results of these optimizations are quite favourable for promoting the concept of a promiscuous drug. These synthetic entities are capable of interacting with multiple proteins, at a motif specific to those involved in AD pathology, as was also seen with phosphoserine. Given these positive results, a more promising NCE was also examined.

### 3.11 NCE-217 as a Drug Molecule Capable of Targeting BBXB

One of the most promising compounds developed by the Weaver group is NCE217 (Figure 3.18). This compound is currently being further advanced by the Weaver group to improve its efficacy. Given its promise, and knowing that it is capable of
inhibiting $\beta$-amyloid aggregation in vitro, the compound was selected for gas phase optimizations with some of the proteins examined in section 3.2.8.


Figure 3.18: NCE-0217
Gas phase optimizations were performed in QUANTA using the CHARMM22 force field [46, 48].

### 3.11.1 GAS Phase Optimization of NCE-0217 and Proteins Bearing BBXB

The NCE-0217 molecule was constructed in QUANTA and a systematic grid search was performed to find the lowest energy conformation to be used for the gas phase minimizations. The energy of the selected structure is given in Table 3.120.

Table 3.120: Gas phase energy of NCE-0217

	Energy (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
NCE-0217	34.64	11.84	-6.94

The proteins selected for study are $\mathrm{A} \beta$, C1qA, ICAM-1, IFN- $\gamma$, IL-4, IL-12-, IL13, MIP-1 $\alpha$, MIP-1 $\beta$, and RANTES. The energies of these proteins can be found in Appendix 8.

Each system was set up such that one of the aromatic rings (or its attached functional groups) was located roughly $3.0 \AA$ away from two of the basic amino acids in the $\mathbf{B B X B}$ motif for each protein. The same set up was used for proteins with two identical BBXB motifs. Before minimization, the protein backbone was constrained, and the steepest descents algorithm was used. The final systems were imported into MOE to determine what type of binding interactions may have occurred [47].

### 3.11.2 Gas Phase Results of the Optimization of NCE-0217 with Proteins Bearing BBXB

The results of the gas phase minimizations are summarized in the following tables. Binding interactions are coloured green for cation- $\pi$, light blue for $\pi-\pi$ and orange for hydrogen bonds: the darker the colour, the more interactions occurring. Binding with the $-\mathrm{CH}_{2}$ - chain is indicated in indigo, and with the $\mathrm{C}=\mathrm{O}$ of the protein backbone in light purple.

Table 3.121: The gas phase results of the optimization of NCE-0217 with A $\beta$, C1qA, ICAM-1, IFN- $\gamma$, IL-4, Il-12 and IL-13


Table 3.122: The gas phase results of the optimization of NCE-0217 with MIP-1 $\alpha$, MIP-1 $\beta$, and RANTES


The results of the optimization of NCE-0217 with the $\mathbf{B B X B}$ region are quite
favourable. For all of the proteins, with the exception of IFN- $\gamma$, the compound was
capable of binding to $\mathbf{B B X B}$ at multiple sites. Overall, hydrogen bonds were the preferred type of interaction, followed by cation- $\pi$ interactions; very few $\pi-\pi$ systems were observed.

For the interactions with $\beta$-amyloid, NCE- 0217 bound equally at $B^{1} B^{2}$ and $B^{1} B^{3}$, with numerous cation- $\pi$ interactions occurring. The electrostatic energy contributions are slightly more favourable than the van der Waals contributions.

In the optimizations with C1qA, only hydrogen bonds formed, with all possible combinations of $\mathbf{B B X B}$ interactions forming equally. The electrostatic energies are significantly lower than the van der Waals energies.

NCE-0217 was capable of binding to ICAM-1 at $B^{1} B^{2}$ and $B^{1} B^{3}$; however multiple binding orientations occurred at one of the BBXB regions preferentially. In general the electrostatic energies contributed more so to the overall binding energies. Both hydrogen bonds and cation- $\pi$ interactions were observed in almost equal numbers for these systems.

The results of the gas phase minimization of NCE-0217 with IFN- $\gamma$ demonstrated a lack of binding to multiple sites of $\mathbf{B B X B}$ when only one region was targeted. When two sites were interacting with the compound, binding favoured $\mathrm{B}^{1} \mathrm{~B}^{3}$, and there were more hydrogen bonds present in these systems. The overall energies were quite variable.

Binding interactions at $\mathrm{B}^{1} \mathrm{~B}^{2}$ were slightly more favoured than the other two arrangements for the optimization of IL-4 and NCE-0217. One BBXB target was capable of forming more bonds than the other, although there were no significant differences
between the energies observed at these different sites; both cation- $\pi$ and hydrogen bonds formed.

Interactions at multiple sites within the $\mathbf{B B X B}$ region of IL-12 were observed. The electrostatic energies were lower, and only hydrogen bonds formed in these systems.

In the case of the IL-13 protein, the energies were the least favourable of all the minimizations, although binding still occurred at two sites within the $\mathbf{B B X B}$ region.

When both the single site and multiple site results of NCE-0217 optimized with MIP- $1 \alpha$ are examined, it can be observed that mostly hydrogen bonds have formed, $\mathrm{B}^{1} \mathrm{~B}^{3}$ and $\mathrm{B}^{2} \mathrm{~B}^{3}$ are the favoured binding orientations at multiple sites, and the electrostatic energies tend to be more favourable.

The $\mathrm{B}^{2} \mathrm{~B}^{3}$ orientation is slightly more preferred for NCE- 0217 binding to MIP-1 $\beta$. Measured bonds consist of both hydrogen bonds and cation $-\pi$ interactions, and energies are variable.

The gas phase minimizations of NCE-0217 with RANTES are quite favourable; interactions occurred at multiple sites within $\mathbf{B B X B}$, almost all of the systems had formed hydrogen bonds, and the energies are very low, with the electrostatic contributions outweighing the van der Waals energies. An example of one of these favourable interactions can be seen in Figure 3.19.


Figure 3.19: Interaction between NCE-0217 and RANTES. Binding sites between the molecule and the $B B X B$ region are highlighted.

### 3.11.3 Conclusions of NCE-0217 OPTIMIzED WITH Proteins BEARING BBXB

The results of the minimizations of NCE-0217 and multiple proteins indicated in Alzheimer's disease suggest this is a potential lead molecule. The compound was capable of binding to multiple sites within the $\mathbf{B B X B}$ region for all of the proteins examined and the energies are favourable.

Overall the energy contributions were more strongly affected by the electrostatic contributions, with hydrogen bonds and cation- $\pi$ interactions being the most prevalent of the measured interactions.

This molecule has also been tested in vitro and has shown itself capable of preventing $\mathrm{A} \beta$ aggregation. A series of analogues of NCE-0217 was thus developed by
the Weaver group for furthering the advancement of the active properties of this molecule.

### 3.11.4 DEVELOPMENT OF A QSAR FOR ANALOGUES OF NCE-0217

Recognizing the potential of NCE-0217 as an anti-aggregant for AD and as a potential "promiscuous" drug has led to the design of a series of analogues of this compound. These analogues were used to develop a QSAR to determine which compounds would be suitable for synthesis. A series of 77 analogues was used to develop a suitable model.

### 3.11.4.1 Development of the QSAR model of NCE-0217

There were 77 analogues of NCE-0217 that were suitable for use in developing a QSAR. Only a few of the compounds had measured $\mathrm{IC}_{50}$ values, so the rest of the compounds were assigned values based on their relative activity. Several attempts were made before a suitable model could be developed.

Initial attempts to use the PLS method for the QSAR were unsuccessful despite manipulation of the training and validation set sizes and compositions. Given the presence of boron in some of the analogues it was determined that the MMFF94x force field would best be able to model all of the series. Finally the binary method was used to determine whether compounds were active or inactive.

The training set was composed of 56 molecules, and attempts were made to ensure every type of molecule was included and that a range of activities was covered. The remaining 21 molecules formed the validation set. The $\mathrm{pIC}_{50}$ value was calculated
from the $\mathrm{IC}_{50} \mathrm{~S}$ and used as the activity for determining which descriptors would be relevant. The threshold for activity was set at -2.65 .

All of the available descriptors in MOE were calculated for this QSAR, and were eliminated one by one based on their relative importance to the prediction [88]. This followed the same procedure as in Section 3.9. Thirteen descriptors were selected as the final amount necessary to predict activity or inactivity to a reasonable level and they are defined in Table 3.123.

The overall accuracy of the model for the training set was 0.95 (with a sensitivity of 0.95 and a selectivity of 0.95 ) with a cross-validated accuracy of $0.89(0.86$ for the sensitivity and 0.95 for the selectivity). This model predicted one false positive and three false negatives in the training set. The Cohen's kappa value for the model was calculated to be 0.84 , which indicates excellent agreement between the observed and predicted activities. Two false positives and four false negatives were predicted in the validation set, resulting in a sensitivity of 0.78 and a selectivity of 0.57 . The calculated Cohen's kappa is 0.36 , which is a fair value but could be improved upon. The predictions are summarized in Table 3.124, and full structures of the analogues are listed in Appendix 9.

Table 3.123: Descriptors used for the QSAR of NCE-0217 analogues

Descriptor	Function				
ASA+	The water accessible surface area for atoms with   a positive partial charge				
b_triple	Number of triple bonds				
CASA-	Negative charge weighted surface area				
E	The potential energy				
E_nb	The value of the potential energy with all bonded   terms disabled				
PEOE_VSA-3	Partial equilization of orbital electronegativities   used to calculate atomic partial charges over the   van der Waals surface area and the hydrophobic   PEOE_VSA+1				
PEOE_VSA_HYD					
van der Waals surface area		$	$	SlogP_VSA3	Log of the octanol/water coefficient based on the   accessible van der Waals surface area
:---	:---				
SlogP_VSA9	Contributions to the molar refractivity based on   the accessible van der Waals surface area falling   within a specific range				
SMR_VSA0	Hydrogen bond donor capacity   Hydrophilic volume				
vsurf_HB7					
vsurf_W6					

Table 3.124: Predicted activities for the training and validation sets of the NCE0217 analogues

Compound ID	$\mathrm{IC}_{50}$	Predicted Activity	Compound ID	$\mathrm{IC}_{50}$	Predicted Activity
Training set			Training set		
103	15.6	Active	238	20.9	Active
104	500	Active	239	1000	Inactive
105	50.4	Active	240	12	Active
108	60	Active	241	1000	Inactive
109	6.5	Active	252	100	Active
110	10	Active	253	11.8	Active
111	60	Active	254	60	Active
112	34.4	Active	289	500	Inactive
116	1000	Inactive	295	10	Active
117	10	Active	309	60	Inactive
120	60	Active	332	60	Active
122	60	Active	335	18.7	Active
123	500	Inactive	336	2.9	Active
125	1000	Inactive	342	6.7	Active
133	60	Active	343	6.9	Active
135	60	Inactive	353	6.2	Active
137	500	Inactive	354	20	Active
155	60	Inactive	Validation set		
156	500	Inactive	106	24.7	Active
157	500	Inactive	107	500	Inactive
161	60	Active	115	500	Inactive
169	500	Inactive	121	60	Active
170	500	Inactive	124	500	Active
172	10	Active	132	60	Active
173	1000	Inactive	134	60	Active
175	100	Active	136	500	Inactive
176	1.99	Active	163	500	Active
177	1000	Inactive	168	500	Active
179	60	Active	171	5.8	Active
182	1000	Inactive	174	1000	Inactive
185	12.5	Active	181	100	Active
190	60	Active	236	60	Inactive
191	500	Inactive	251	10	Active
200	500	Inactive	276	16.5	Inactive
201	500	Inactive	300	1.7	Active
213	100	Active	303	21	Active
218	100	Active	327	10.3	Active
230	60	Active	329	13	Active
235	1000	Inactive	334	8.3	Inactive

### 3.11.4.2 Results of the NCE-0217 QSAR

The model QSAR that was developed was used to predict the activity of a series of 63 new analogues of NCE-0217 with unknown activities. These predictions were used to determine which molecules would be best suited for synthesis and in vitro testing. The results of the predictions are detailed in Appendix 9.

From the series, forty-one of the molecules were predicted to be active, with one more compound that was borderline inactive. The downside to the binary QSAR is that it only predicts active or inactive; it is difficult to tell which of these compounds would be most active. It is hoped that once more analogues are synthesized and $\mathrm{IC}_{50}$ values are obtained that the QSAR model can be improved to better predict activity.

### 3.12 Conclusions

The results of the optimizations of various small molecules endogenous to the brain with the HHQK region of $\beta$-amyloid with Alzheimer's disease indicate their potential as amyloid-antiaggregants. Both active and inactive molecules are found within the endogenous species examined, allowing for identification of the more viable routes to pursue.

Synthetic bi-aromatic molecules have also exhibited potential to act as promiscuous drug molecules by binding to the $\mathbf{B B X B}$ motif present on many proteins implicated in AD. Furthermore, the use of QSAR studies can help develop these molecules into even better targets.

Examination of the data has revealed that "physinformatics" may be a useful tool in the drug design process. While cheminformatics deals with large scale data mining such as screening virtual libraries, and docking simulations, there are details at the submolecular level that are also relevant. The atomic features that allow for bond formation and various types of interactions to occur are useful in designing drugs when the target region is known. In the case of this study, ideally the drug molecule should be capable of forming aromatic-aromatic interactions, aromatic-cationic interactions or hydrogen bonds. Physinformatics deals with searching libraries of data for specific functional groups and specific electronic arrangements of these functional groups such that molecules could be identified that bear these desired features. If the relative spatial arrangement and chemical features of the target are known (such as the $\mathbf{B B X B}$ region), the use of physinformatics allows for identification of lead molecules that will interact with more specificity. The positive results of the use of physinformatics can be seen in this chapter, as the screening of endogenous molecules looked at specific charged and aromatic regions at certain distances; most of the identified species were very capable of binding to the charged region of interest and lend themselves to further development.

### 3.13 Interpretation

The results of the in silico optimizations of phenylalanine, dopamine, D- and Ltryptophan, tryptamine and 3-hydroxyanthranilic acid demonstrate that not all endogenous small molecules are capable of binding to $\beta$-amyloid to prevent its aggregation.

Of the molecules systematically examined from the indoleamine metabolic pathway, only one demonstrated noticeable activity towards $\beta$-amyloid. Both tryptophan and tryptamine demonstrated only a few interactions with the HHQK region of A $\beta$. When the measured binding energies of these systems were compared to the other species presented in this chapter, they were much less favourable. Combining both the number of interactions with the measured binding energies, it can be concluded that both D - and L tryptophan and tryptamine are inactive molecules; this is further supported by in vitro results indicating a lack of effect in $\mathrm{A} \beta$ aggregation inhibition. Relative to these two species, 3HAA demonstrates considerably more activity, both in silico and in vitro. The in silico studies on 3HAA demonstrate a capacity to bind to both the HHQK and EVHHQK regions of A $\beta$.

Phenylalanine and dopamine bind to $\beta$-amyloid in the HHQK and LVFF regions of the protein. The binding energies of these two molecules are more favourable than those of 3-hydroxyanthranilic acid, but the numbers of measureable binding interactions are more similar. These three molecules all represent viable targets for further development, and indeed the QSAR on 3HAA has shown that further active molecules can be designed through bioisosteric substitution and their binding sensitivity and selectivity can be improved accordingly.

The results of comparing the binding capacity of the novel chemical entities with a common $\mathbf{B B X B}$ receptor show the usefulness of designing molecules for a specific target located on multiple proteins. Given the implication of multiples factors in the progression of AD , there are a significant number of druggable targets; however, the more drugs an individual takes, the greater the risk of adverse drug-drug interactions.

The results of the NCEs demonstrate the viability of a single molecule, such as NCE-0103 or NCE-0325, binding to a specific BBXB receptor motif which is located only on proteins involved in AD . This presents the opportunity to design a single drug molecule to target a disease from multiple angles. For almost all of the proteins studies, the molecules bound within the $\mathbf{B B X B}$ region, with only a few interactions occurring with the amino acids of the surrounding side chains. This demonstrates a specificity of the compounds for the targeted region, which would further minimize adverse reactions.

The NCE compounds also demonstrate how analogues can be designed to increase the specificity and efficacy of potential therapeutic molecules. Of the NCEs examined, NCE-0112 demonstrates the lease amount of binding and when compared to the other analogues, is the smallest and least substituted species. This information indicates that the size of the molecule plays a role in its capacity to interact with the BBXB target, and the substitution may play a role in how well those interactions occur.

The QSAR of NCE-0217 demonstrates that in silico methods can be used to reduce synthetic cost by identifying which species would be the most ideal options to synthesize in order to maximize activity, and to avoid wasting time and resources developing inactive analogues.

# CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING EVHHQK 

The HHQK region of $\beta$-amyloid is of interest in the development of antiaggregants due to the role it plays in the protein misfolding. This highly positively charged region can interact with negatively charged macromolecules on cell membranes, such as with glycosaminoglycans; allowing for the misfolding process to occur and a seeding process to begin $[16,17]$. If a molecule could bind to that region, it could prevent these interactions from occurring.

The focus on HHQK can be expanded to EVHHQK. The presence of a negatively charged glutamic acid residue located immediately next to HHQK allows for different species of molecules to be examined as potential targets. A molecule binding across this expanded region could likewise prevent unwanted binding with membrane surfaces. Some of the species examined in the previous chapter looked at their capacity to bind to EVHHQK as well as the other regions of interest, HHQK and LVFF.

This chapter will study the potential interactions of two endogenous molecules and two synthetic compounds, to determine how they could bind to the EVHHQK region of $A \beta$, and if the negatively charged functional group present plays a role in their binding strength.

## $4.1 \boldsymbol{\gamma}$-Aminobutyric Acid

$\gamma$-Aminobutyric acid (GABA) is an endogenous molecule of the brain that plays a role as an inhibitory neurotransmitter [39]. GABA is a $\gamma$ amino acid, and exists as a zwitterion at physiological pH (Figure 4.1). The presence of both a negatively charged carboxylate group and a positively charged amino group should allow the molecule to interact with the EVHHQK region of $\beta$-amyloid.


Figure 4.1: GABA at physiological pH

### 4.1.1 GAS PHASE OPTIMIZATIONS OF GABA AND $\boldsymbol{\beta}$-AMYLOID

Gas phase optimizations were performed to examine the potential for GABA to bind to the EVHHQK region of $\mathrm{A} \beta$. These studies were performed in MOE using the CHARMM22 force field [48, 88].

### 4.1.1.1 Preparation of Systems for Optimizations

For the gas phase energy minimizations, the six conformers of $\beta$-amyloid (1AMB, 1AMC, 1AM1, 1BA4, 1IYT, 1Z0Q) were modified for physiological pH conditions [6872, 83, 88]. As necessary, hydrogen atoms were added, and side chains were charged appropriately before optimization with a constrained protein backbone. The energies of these geometry optimized structures are listed in Appendix 6.

A model of GABA was constructed in an extended conformation and subjected to energy minimization (the results of a conformational search generated structures that were too collapsed for use). The optimized energies of GABA are given in Table 4.1.

## Table 4.1: Gas phase energies of GABA



### 4.1.1.2 Selection of Systems for Optimization

For the gas phase minimizations, each system was set up such that either the carboxylate group or the amino group of GABA was oriented approximately $3.0 \AA$ away from two of the charged amino acids in the EVHHQK region of $\beta$-amyloid. This was performed for each of the six different conformations of A $\beta$. Although interactions were expected to be unfavourable when the amino group was oriented towards the lysine side chain, they were still included to see what kind of binding interactions could occur in these situations.

### 4.1.1.3 Optimization of the Gas Phase Systems

For each of the minimizations the charges of the system were optimized for the CHARMM22 force field, and the protein backbone was constrained [48]. Each system was examined for potential binding interactions, and the energies of the geometry optimized systems were calculated via the following equations:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\mathrm{GABA}}  \tag{4.1}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdwGABA}} \tag{4.2}
\end{align*}
$$

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {eleGABA }} \tag{4.3}
\end{equation*}
$$

The energies of the individually optimized protein conformation and GABA molecule were subtracted from the energy of the optimized system.

### 4.1.2 Results of the Gas Phase Optimizations of GABA and $\boldsymbol{\beta}$-Amyloid

The results of the gas phase minimized systems of $A \beta$ and GABA are summarized in the following table, and divided by conformer. The initial orientation of the system, and the resulting orientation upon optimization are summarized with the amino acid side chains represented by single letter abbreviations; X indicates an amino acid outside of the EVHHQK region of interest. The amino group of GABA is represented by N , while the carboxylate group is represented by C .

The calculated binding energies are also given, along with the number of measurable bonds that formed in each system.

Table 4.2: The gas phase results of GABA interacting with $\boldsymbol{\beta}$-amyloid

Conformer	Initial Orientation					Final Orientation							$\begin{gathered} \Delta \mathrm{E}_{\text {tot }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{vdv}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\Delta \mathrm{E}_{\text {ele }}$$(\mathrm{kcal} / \mathrm{mol})$	Measured   Bonds
	E11	V12 H13	H14	Q15	K16	E11	V12	H13	H14	Q15	K16	X				
1 AMB	C		N						C				-36.35	-0.29	-37.83	0
			C			N			C				-29.96	-1.59	-28.56	1
		N	C						C			N	-21.77	-2.83	-19.83	1
		C	N					C	C				-31.09	-4.44	-29.98	0
		C			N			C			C		-35.92	-1.91	-35.33	1
		N			C						C		-36.12	-1.86	-34.77	1
1AMC	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~N} \end{aligned}$		N			-	-	-	-	-	-	-	-4.40	0.28	-4.77	0
			C			N			C				-48.19	-0.75	-47.91	0
		C	N					C	N			C	-31.53	-4.94	-29.38	0
		N	C						C			N	-42.19	-0.37	-43.76	0
		C			N			C			C		-37.58	-2.22	-36.33	1
		N			C							C	-39.43	-1.39	-39.02	0
1AML	$\begin{array}{\|l\|} \hline \mathrm{N} \\ \mathrm{C} \end{array}$		C			N			C	N		C	-29.57	-3.50	-27.29	0
			N						C				-18.14	-3.45	-15.89	0
		N	C									C	-41.01	0.84	-49.17	0
		C	N					C				C	-56.26	-8.47	-51.11	0
		C			N		C	C					-43.94	-2.99	-41.56	1
		N			C						C		-29.67	-1.13	-29.98	0
1BA4	$\begin{aligned} & \mathrm{N} \\ & \mathrm{C} \end{aligned}$				C	C					C	N/C	-18.91	-8.15	-19.59	0
					N	N					N	N/C	-48.97	-3.57	-46.26	0
		N	C					C	C				-48.09	-3.55	-44.32	0
		C	N					C					-36.09	-1.41	-34.03	0
1IYT	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{C} \end{aligned}$		C			N			C				-41.41	-5.56	-35.33	0
			N						N			N	-16.64	-5.12	-10.53	0
		C	N					C	C			C	-41.27	-5.13	-34.72	0
		N	C					N/C	C				-20.66	-2.05	-17.05	1
		N			C						C		-36.80	-0.43	-34.44	0
		C			N						C	N	-38.91	-3.58	-36.07	0
1Z0Q	N		C			N			C				-46.87	-2.60	-44.77	1
			N			C				C			-10.73	-2.40	-11.50	0
		N	C						C				-24.11	-3.05	-23.24	0
		C	N					C				C	-37.26	-3.64	-35.23	0
		C			N						C		-31.49	-0.50	-31.40	1
		N			C						C		-27.38	-0.41	-27.37	1

The gas phase results indicate that GABA is capable of binding to the EVHHQK region of $A \beta$. Interactions at Glu11-His14 and His13-His14 are the favoured orientations in the minimized systems.

### 4.1.3 The Solution Phase Optimization of GABA and $\boldsymbol{\beta}$-Amyloid

Solution phase geometry optimizations were performed for each of the gas phase optimized systems of GABA and $\beta$-amyloid. Systems were solvated with a box of water molecules large enough to surround the system with an $8.0 \AA$ margin. Energy
minimization was performed with unconstrained protein backbones and periodic boundary conditions, and the optimized systems were examined for potential binding interactions. The energies of the systems were measured in the absence of solvent with constrained protein backbones to better determine the strength of interactions.

The binding energies were calculated using the following equations:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {GABA }}  \tag{4.4}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {eleGABA }}  \tag{4.5}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdwGABA}} \tag{4.6}
\end{align*}
$$

The energies of $A \beta$ and GABA optimized individually in solvated environments were subtracted from the energies of the optimized systems to calculate the binding energies. The energies of the $\beta$-amyloid conformers are given in Appendix 6 and the energies of the optimized GABA molecule are given in Table 4.3.

Table 4.3: Solution phase energies of GABA

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
GABA	-4.73	0.85	-11.72

### 4.1.4 The Results of the Solution Phase Optimization of GABA and $\boldsymbol{\beta}$ Amyloid

The results of the energy minimization of solvated systems of GABA and six different conformers of $\beta$-amyloid are summarized in the following tables. The initial and final orientations of the system are given with the three letter abbreviations of the amino acids. The measured energies and the binding energies are given, and binding interactions are noted according to colour. Hydrogen bonds are coloured orange, and interactions with
the $-\mathrm{CH}_{2}$ - chain are indigo, the -CH - of the backbone are lime green, and the $\mathrm{C}=\mathrm{O}$ of the backbone are purple.

Table 4.4: The solution phase results of GABA interacting with the 1AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 4.5: The solution phase results of GABA interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 4.6: The solution phase results of GABA interacting with the 1AML conformer of $\boldsymbol{\beta}$-amyloid

	Arg5	Glu11	Val12	His13	His14	Gln15	Lys16	Val18	Tyr10	Glu1 1	Val12	His13	His14	Gln15	Lys16
Initial Orientation					C				C			C			
Final Orientation	C								C			C			
Total $=$	91.9	$\mathrm{kca} / \mathrm{mo}$							47.9	$\mathrm{kca} / \mathrm{mol}$					
van der Waals =	60.1	$\mathrm{kca} / \mathrm{mo}$							63.2	$\mathrm{kca} / \mathrm{mol}$					
Electrostatic $=$	-192.8	$\mathrm{kca} / \mathrm{mo}$							-228.06	kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-22.6	$\mathrm{kca} / \mathrm{mo}$							-66.6	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-10.1	$\mathrm{kca} / \mathrm{mo}$							-7.07	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-9.9	$\mathrm{kca} / \mathrm{mo}$							-45.2	kcal/mol					
Initial Orientation	C	N			C	N			C						
Final Orientation	C	N				N		N					C		
Total $=$	77.4	$\mathrm{kcal} / \mathrm{mo}$							42.	$\mathrm{kca} / \mathrm{mol}$					
van der Waals =	66.6	$\mathrm{kcal} / \mathrm{mo}$							72.3	$\mathrm{kca} / \mathrm{mol}$					
Electrostatic $=$	-196.75	$\mathrm{kca} / \mathrm{mo}$							-238.9	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-37.10	$\mathrm{kca} / \mathrm{mo}$							-72.15	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-3.6	$\mathrm{kcal} / \mathrm{mo}$								$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-13.9	$\mathrm{kca} / \mathrm{mo}$							-56.1	$\mathrm{kca} / \mathrm{mol}$					
Initial Orientation			C	C											C
Final Orientation			C	C			C								C
Total $=$	63.0	$\mathrm{kca} / \mathrm{mo}$							93.4	$\mathrm{kca} / \mathrm{mol}$					
van der Waals =	68.0	$\mathrm{kca} / \mathrm{mo}$							70.9	$\mathrm{kca} / \mathrm{mol}$					
Electrostatic $=$	-226.49	$\mathrm{kca} / \mathrm{mo}$							-214.7	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-51.4	$\mathrm{kca} / \mathrm{mo}$							-21.17	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-2.281	$\mathrm{kca} / \mathrm{mo}$								$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-43.67	$\mathrm{kca} / \mathrm{mo}$							-31.8	$\mathrm{kca} / \mathrm{mol}$					

Table 4.7: The solution phase results of GABA interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 4.8: The solution phase results of GABA interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Glu1 1	Val12	His13	His 14	Gln 15	Lys16	Phe20	Tyr10	Glu11	Val12	His13	His14	Gln15	Lys16	Leu17
Initial Orientation			N	C				N				N			
			C												
Final Orientation			N	C				N	N			N			
			C												
Total $=$	78.5	$\mathrm{kca} / \mathrm{mo}$						68.99	$\mathrm{kca} / \mathrm{mol}$						
van der Waals =	59.4	$\mathrm{kca} / \mathrm{mo}$						64.70	$\mathrm{kca} / \mathrm{mol}$						
Electrostatic $=$	-214.3	$\mathrm{kcal} / \mathrm{mo}$						-214.83	kcal/mol						
$\Delta \mathrm{E}_{\text {tot }}=$	-66.5	kcal/mo						-76.11	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-17.5	$\mathrm{kca} / \mathrm{mo}$						-12.26	$6 \mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$		$\mathrm{kca} / \mathrm{mo}$							kcal/mol						
Initial Orientation						C	N		N			C			
Final Orientation						C	N		N			C			
Total $=$	38.3	$\mathrm{kcal} / \mathrm{mo}$						47.02	kcal/mol						
van der Waals =	70.0	$\mathrm{kcal} / \mathrm{mo}$							kcal/mol						
Electrostatic $=$	-257.0	$\mathrm{kcal} / \mathrm{mo}$						-247.41	kcal/mol						
$\Delta \mathrm{E}_{\text {tot }}=$	-106.7	$\mathrm{kcal} / \mathrm{mo}$						-98.08	kcal/mol						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-6.9	$\mathrm{kcal} / \mathrm{mo}$						-5.20	kcal/mol						
$\Delta \mathrm{E}_{\text {ele }}=$	-38.2	$\mathrm{kcal} / \mathrm{mo}$						-28.65	kcal/mol						
Initial Orientation						C					C	C			C
Final Orientation			C								C	C			C
Total $=$	62.0	$\mathrm{kcal} / \mathrm{mo}$						49.40	$\mathrm{kca} / \mathrm{mol}$						
van der Waals =	64.6	$\mathrm{kcal} / \mathrm{mo}$						74.62	kcal/mol						
Electrostatic $=$	-233.5	$\mathrm{kcal} / \mathrm{mo}$						-263.68	kcal/mol						
$\Delta \mathrm{E}_{\text {tot }}=$	-83.0	$\mathrm{kca} / \mathrm{mo}$						-95.70	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-12.3	$\mathrm{kcal} / \mathrm{mo}$						-2.34	kcal/mol						
$\Delta \mathrm{E}_{\text {ele }}=$	-14.7	$\mathrm{kca} / \mathrm{mo}$						-44.92	kcal/mol						

Table 4.9: The solution phase results of GABA interacting with the 1Z0Q conformer of $\boldsymbol{\beta}$-amyloid

	Glu1 1	Val12	His13	His14	Gln15	Lys16		Tyr10	Glu11	Val12	His13	His14	Gln15	Lys16
Initial Orientation	C				C			C			C			
Final Orientation	C				C			C			C			
Total $=$	86.7	$\mathrm{kcal} / \mathrm{mol}$						66.1	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	62.2	$\mathrm{kcal} / \mathrm{mol}$						70.7	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-215.62	$\mathrm{kcal} / \mathrm{mol}$						-238.2	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-45.3	$\mathrm{kcal} / \mathrm{mol}$						-65.9	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-19.7	$\mathrm{kcal} / \mathrm{mol}$						-11.3	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-22.2	$\mathrm{kcal} / \mathrm{mol}$						-44.9	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation	N			C								C		
Final Orientation	N			C				C			C	C		
Total $=$	68.2	$\mathrm{kcal} / \mathrm{mol}$						116.7	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	83.6	$\mathrm{kcal} / \mathrm{mol}$						77.9	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-251.2	$\mathrm{kcal} / \mathrm{mol}$						-208.9	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-63.7	$\mathrm{kcal} / \mathrm{mol}$						-15.2	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{mol}$						-4.1	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-57.8	$\mathrm{kcal} / \mathrm{mol}$						-15.6	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation						C								C
Final Orientation						C								C
Total $=$	112.9	$\mathrm{kcal} / \mathrm{mol}$						61.9	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	80.7	$\mathrm{kcal} / \mathrm{mol}$						71.7	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-217.5	$\mathrm{kcal} / \mathrm{mol}$						-249.2	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-19.0	$\mathrm{kcal} / \mathrm{mol}$						-70.1	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-1.3	$\mathrm{kcal} / \mathrm{mol}$						-10.3	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-24.1	$\mathrm{kcal} / \mathrm{mol}$						-55.9	$\mathrm{kcal} / \mathrm{mol}$					

The results of the solution phase optimization of GABA with $\beta$-amyloid indicate the neurotransmitter is capable of binding to the protein at two or more sites simultaneously within the EVHHQK region of interest. Interactions at His13-His14 are favoured, followed by Glu11-His14, then His13-Lys16. Only hydrogen bond interactions were formed in the optimized systems.

The electrostatic energies are much more favourable than the van der Waals energies of the systems, and there is no correlation between the favourability of the energies and the amount of binding occurring in the system. There are likely repulsive factors at play that cannot be visualized.

## $4.2 \beta$-Alanine

$\beta$-Alanine (Figure 4.2) is another small molecule endogenous to the brain that exhibits neuromodulatory effects [39]. It can exhibit effects on both GABAergic and glutamatergic processes in the brain [39]. It is similar in structure to GABA, being only one carbon unit shorter.


Figure 4.2: $\boldsymbol{\beta}$-alanine at physiological $\mathbf{p H}$
While the molecule exhibits the same functional groups as GABA, the shorter length will help to determine if the size of the amino acid is factor in its potential to form interactions within the EVHHQK region of $\beta$-amyloid.

### 4.2.1 The Gas Phase Optimization of $\boldsymbol{\beta}$-Alanine and $\boldsymbol{\beta}$-Amyloid

An extended conformation of $\beta$-alanine was constructed and geometry optimized in the gas phase using the CHARMM22 force field [48, 88]. The energies of the optimized structure are given in Table 4.10.

Table 4.10: The gas phase energies of $\boldsymbol{\beta}$-alanine


Gas phase optimizations were performed following the procedure outlined in section 4.1.1.2-4.1.1.3. The energies were calculated using the same equations 4.1-4.3 with the energy of the optimized $\beta$-alanine molecule replacing the energy of GABA. The
protein energies are those calculated with a constrained backbone and listed in Appendix 6.

### 4.2.2 The Gas Phase Results of $\boldsymbol{\beta}$-Alanine Interacting with $\boldsymbol{\beta}$-Amyloid

The gas phase results are summarized in the following table. The initial orientation of $\beta$-alanine and the final orientation upon minimization are given with the amino acids represented by single letters. The amino and carboxylate groups of $\beta$-alanine are represented by N and C , respectively. Interactions occurring with amino acids outside the EVHHQK region of interest are listed under the column X . The calculated binding energies are listed for each system, as well as the number of measurable bonds that formed.

The gas phase optimizations of $\beta$-alanine and the different conformers of $A \beta$ indicate that binding interactions can form at multiple sites within EVHHQK. Glu11His14, His13-His14, and His13-Lys16 are the order of preferred binding interactions.

Table 4.11: The gas phase results of $\boldsymbol{\beta}$-alanine interacting with $\boldsymbol{\beta}$-amyloid

Conformer	Initial Orientation					Final Orientation							$\begin{gathered} \Delta \mathrm{E}_{\text {tot }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{vdv}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\text {ele }} \\ (\mathrm{kca} / \mathrm{mol}) \end{gathered}$	Measured Bonds
	E11	V12 H13	H14	Q15	K16	E11	V12	H13	H14	Q15	K16	X				
1AMB	C		N						C				-24.49	-1.16	-26.85	0
			C			N			C				-27.01	-2.59	-24.46	0
		N	C									C	-36.33	-3.33	-32.71	0
		C	N					C	C			N	-36.79	-4.50	-35.20	0
		C			N			C			C		-31.09	-1.20	-30.61	1
		N			C			C					-33.62	-1.47	-34.05	0
1 AMC	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~N} \end{aligned}$		N			N							-33.13	-0.98	-32.66	1
			C			N			C				-34.61	-0.30	-34.82	1
		C	N					C	C/N			N	-37.10	-3.93	-35.05	0
		N	C						C			N/C	-10.73	-4.28	-7.29	0
		C			N			C			C		-37.01	-3.05	-35.12	1
		N			C			C				C	-34.58	0.23	-36.59	0
1AML	C		N						C				-36.54	-1.79	-34.83	0
			C			N			C			N	-33.44	-4.57	-29.50	0
		C	N					C				C	-59.92	-7.15	-56.11	1
		N	C									C	-31.77	0.22	-33.95	0
		C			N	-	-	-	-	-	-	-	-32.86	-1.89	-32.15	0
		N			C						C		-26.79	-1.38	-25.96	0
1BA4	C				N	C						N/C	-43.99	-3.79	-45.74	0
					C	N						N	-30.07	-4.97	-27.16	1
		N	C						C				-40.08	-2.04	-38.07	0
		C	N					C	C				-32.94	-1.89	-30.53	0
1IYT	C		N			-	-	-	-	-	-	-	-2.52	-1.66	-3.06	0
			C			N			C				-28.87	-4.00	-24.69	1
		N	C					C	C				-25.89	-1.38	-23.21	0
		C	N					C					-22.02	-2.25	-20.47	0
		C			N			C			C		-26.01	-1.97	-24.13	0
		N			C						C		-31.49	-2.91	-28.57	1
1Z0Q	CN		N			C			N				3.68	-0.85	2.49	0
			C						C				-43.36	-2.58	-39.68	0
		N	C						C				-24.15	-0.90	-24.89	0
		C	N					C					-30.39	-3.01	-27.20	0
		C			N			C					-26.16	-0.87	-26.04	0
		N			C						C		-26.07	-0.23	-26.03	0

### 4.2.3 The Solution Phase Optimization of $\boldsymbol{\beta}$-Alanine and $\boldsymbol{\beta}$-Amyloid

Each of the gas phase systems was optimized in a solution phase environment.
Explicit water molecules were used to solvate the system in a box surrounding the systems, with an $8.0 \AA$ margin selected. Periodic boundary conditions were in place during the energy minimization.

The energies of the optimized systems were measured with a constrained protein backbone and the solvent molecules excluded. The energies could therefore be compared to better understand the contributions due to the binding or non-binding interactions
occurring. The same equations of 4.4-4.6 were used with the solution phase optimized $\beta$ alanine energy replaced the solvated GABA energy. The energies of the solution phase minimized $\beta$-alanine are given in Table 4.12.

Table 4.12: Solution phase energies of $\boldsymbol{\beta}$-alanine

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
$\beta$-alanine	-18.32	2.67	-23.64

### 4.2.4 The Results of the Solution Phase Optimization of $\boldsymbol{\beta}$-Alanine and $\boldsymbol{\beta}$ Amyloid

The results of the solvation energy minimized systems of $\beta$-alanine and $\beta$-amyloid are summarized in Tables 4.13-4.18. Initial and final orientations of the interactions of $\beta$ alanine with the protein are represented by 3 letter amino acid abbreviations, and N and C for the charged amino and carboxylate groups of $\beta$-alanine. The measured energies of the systems are given, and the resulting binding energies that were calculated.

Hydrogen bonds are represented by orange coloured cells, and a cation- $\pi$ interaction is in green. Interactions with the $-\mathrm{CH}_{2}$ - chain of the amino acid are in indigo, while backbone interactions are coloured purple for $\mathrm{C}=\mathrm{O}$ and lime green for $-\mathrm{CH}-$.

Table 4.13: The solution phase results of $\boldsymbol{\beta}$-alanine interacting with the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

	Glu1 1	Val12	His 13	His14	Gln15	Lys16		Tyr10	Glu1 1	Val12	His13	His14	Gln15	Lys16
Initial Orientation				C				N			C	C		
Final Orientation				N				N			C			
				C										
Total $=$	-60.3	$\mathrm{kcal} / \mathrm{mol}$						-70.0	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	40.2	$\mathrm{kcal} / \mathrm{mol}$						37.7	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic =	-255.4	$\mathrm{kcal} / \mathrm{mol}$						-266.9	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-56.4	$\mathrm{kcal} / \mathrm{mol}$						-66.0	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-10.6	$\mathrm{kcal} / \mathrm{mol}$						-13.1	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-37.5	$\mathrm{kcal} / \mathrm{mol}$						-49.0	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation	N			C				C						
Final Orientation	N			C				C				C		
Total $=$	-65.2	$\mathrm{kcal} / \mathrm{mol}$						-72.0	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	48.3	$\mathrm{kca} / \mathrm{mol}$						38.1	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-264.5	$\mathrm{kca} / \mathrm{mol}$						-277.9	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-61.3	$\mathrm{kca} / \mathrm{mol}$						-68.1	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-2.4	$\mathrm{kca} / \mathrm{mol}$						-12.6	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-46.6	$\mathrm{kcal} / \mathrm{mol}$						-60.1	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation			C								C			C
Final Orientation			C								C			C
Total $=$	-68.7	$\mathrm{kcal} / \mathrm{mol}$						-55.5	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	50.3	$\mathrm{kcal} / \mathrm{mol}$						50.7	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-275.9	$\mathrm{kcal} / \mathrm{mol}$						-264.2	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-64.8	$\mathrm{kcal} / \mathrm{mol}$						-51.6	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-0.5	$\mathrm{kcal} / \mathrm{mol}$						-0.1	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-58.0	$\mathrm{kcal} / \mathrm{mol}$						-46.4	kcal/mol					

Table 4.14: The solution phase results of $\beta$-alanine interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 4.15: The solution phase results of $\boldsymbol{\beta}$-alanine interacting with the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


## Table 4.16: The solution phase results of $\boldsymbol{\beta}$-alanine interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	Glu3	Glu1 1	Val12	His13	His14	Gln15	Lys16	Phe19
Initial Orientation	N	C						C
Final Orientation	N	C					N	C
Total $=$		$\mathrm{kcal} / \mathrm{m}$						
van der Waals =		$\mathrm{kcal} / \mathrm{m}$						
Electrostatic $=$	-231.	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-70	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$		$\mathrm{kcal} / \mathrm{m}$						
Initial Orientation		N						N
Final Orientation		N						N
Total $=$		$\mathrm{kcal} / \mathrm{m}$						
van der Waals =		$\mathrm{kcal} / \mathrm{m}$						
Electrostatic $=$	-202	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-24	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-15	$\mathrm{kcal} / \mathrm{mo}$						
Initial Orientation				C	C			
Final Orientation					C			
Total $=$		$\mathrm{kcal} / \mathrm{m}$						
van der Waals =		$\mathrm{kcal} / \mathrm{m}$						
Electrostatic $=$	-214	$\mathrm{kcal} / \mathrm{mo}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-30.	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-27	$\mathrm{kcal} / \mathrm{m}$						
Initial Orientation					C			
Final Orientation					C			
Total $=$		$\mathrm{kcal} / \mathrm{m}$						
van der Waals =		$\mathrm{kcal} / \mathrm{mo}$						
Electrostatic $=$	-228	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-54	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-42.	$\mathrm{kcal} / \mathrm{m}$						

Table 4.17: The solution phase results of $\boldsymbol{\beta}$-alanine interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Glu1 1	Val12	His13	His14	Gln15	Lys16	Tyr10	Glu11	Val12	His 13	His14	Gln 15	Lys16	Leu17
Initial Orientation			C	C				N			C			
Final Orientation				C			C	N			C			
							N							
Total $=$	43.2	$\mathrm{kcal} / \mathrm{mol}$					30.8	$\mathrm{kcal} / \mathrm{m}$						
van der Waals =	70.5	$\mathrm{kcal} / \mathrm{mol}$					54.8	$\mathrm{kca} / \mathrm{m}$						
Electrostatic $=$	-249.6	$\mathrm{kcal} / \mathrm{mol}$					-243.80	$\mathrm{kca} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-88.2	$\mathrm{kcal} / \mathrm{mol}$					-100.70	$\mathrm{kca} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-8.2	$\mathrm{kcal} / \mathrm{mol}$					-23.90	$\mathrm{kca} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-18.9	$\mathrm{kcal} / \mathrm{mol}$					-13.13	$\mathrm{kca} / \mathrm{m}$						
Initial Orientation			C			C	-	-	-	-	-	-	-	-
Final Orientation						C		N						
Total $=$	35.4	$\mathrm{kcal} / \mathrm{mol}$					68.5	$\mathrm{kcal} / \mathrm{m}$						
van der Waals =	69.3	$\mathrm{kcal} / \mathrm{mol}$					66.1	$\mathrm{kca} / \mathrm{m}$						
Electrostatic $=$	-260.7	$\mathrm{kcal} / \mathrm{mol}$					-226.1	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-96.0	$\mathrm{kcal} / \mathrm{mol}$					-62.96	$\mathrm{kca} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-9.4	$\mathrm{kcal} / \mathrm{mol}$					-12.62	$\mathrm{kca} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-30.1	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kca} / \mathrm{m}$						
Initial Orientation						C				C				
Final Orientation						C				C	N			C
Total $=$	40.0	kcal/mol					49.0	$\mathrm{kca} / \mathrm{m}$						
van der Waals =	71.5	$\mathrm{kcal} / \mathrm{mol}$					72.2	$\mathrm{kca} / \mathrm{m}$						
Electrostatic $=$	-252.9	$\mathrm{kcal} / \mathrm{mol}$					-248.12	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-91.4	$\mathrm{kcal} / \mathrm{mol}$					-82.4	$\mathrm{kca} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.2	$\mathrm{kcal} / \mathrm{mol}$					-6.58	$\mathrm{kca} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-22.2	$\mathrm{kcal} / \mathrm{mol}$					-17.4	$\mathrm{kca} / \mathrm{m}$						

Table 4.18: The solution phase results of $\beta$-alanine interacting with the $1 \mathrm{Z0Q}$ conformer of $\boldsymbol{\beta}$-amyloid


The solution phase results indicate that fewer interactions occur between $\beta$ alanine and $\beta$-amyloid in the presence of water. Interactions were favoured at Glu11His 14, although a few others formed as well. The systems formed only two measureable bonds in the presence of solvent compared to the eight in the gas phase results. Systems did tend to retain the initial orientations of interactions, but not as well as GABA.

Electrostatic energies were more negative than the van der Waals energies of the systems, indicating that they play a greater role in the overall energetic favourability of a system. The amount of binding interactions occurring had no correlation with the energies of the systems.

### 4.3 Homotaurine

Homotaurine (Figure 4.3) is a small molecule with an analogous structure to GABA, having a sulfonate group instead of a carboxylate group. This compound is capable of crossing the blood-brain barrier by active transport, and in vitro studies demonstrate a capacity to bind to $\beta$-amyloid [105].


Figure 4.3: Homotaurine at physiological pH
At physiological pH , homotaurine exists in a zwitterionic form and should be capable of interacting with the EVHHQK region of $\beta$-amyloid.

### 4.3.1 GAS Phase Optimizations of Homotaurine and $\boldsymbol{\beta}$-Amyloid

The structure of homotaurine was constructed in an extended form before undergoing minimization. The energies of the optimized molecule are summarized in Table 4.19.

Table 4.19: The gas phase energies of homotaurine

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Homotaurine	-12.58	-0.22	-12.86

The minimizations of the gas phase systems were performed following the procedure outlined in section 4.1.1.2-4.1.1.3. The binding energies were calculated using equations 4.1-4.3, where the energy of optimized homotaurine is replacing the energy of GABA. The protein energies are listed in Appendix 6.

### 4.3.2 The Gas Phase Results of Homotaurine Interacting with $\boldsymbol{\beta}$-Amyloid

The results of the gas phase energy minimized systems of homotaurine and $A \beta$ are given in Table 4.20. The initial orientation that homotaurine was arranged in is given, along with the orientation that resulted after minimization. The amino acid residues are represented by single letters and the amino and sulfonate groups of homotaurine are represent by N , and S , respectively. The calculated binding energies for each system are included, as well as the number of measureable bonds that formed.

Table 4.20: The gas phase results of homotaurine interacting with $\boldsymbol{\beta}$-amyloid

Conformer	Initial Orientation   E11 V12 H13 H14 Q15 K16					E11	V12	Final   H13	$\begin{gathered} 1 \text { Orien } \\ \text { H14 } \\ \hline \end{gathered}$	Q15	K16	X	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{tot}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{vdv}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\text {ele }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	Measured Bonds
1 AMB	SN		N						S				-35.88	-2.73	-37.02	0
			S			N			S				-24.92	-2.14	-23.17	1
		S						S	S			S/N	-46.44	-11.20	-35.39	0
		N	S						S			S	-27.61	-7.07	-21.03	0
		S			N			S			S	S	-32.25	-2.99	-30.03	1
		N			S			S			S		-37.17	-3.64	-34.02	1
1AMC	SN		N			N							-44.18	-1.49	-41.72	1
			S			N			S				-40.50	-0.97	-39.41	1
		N	S						S			S	-50.40	-2.07	-49.99	1
		S	N					S	N/S			N/S	-50.25	-9.63	-43.30	0
		S			N			S			S	S	-35.31	-3.94	-32.09	1
		N			S			S			S	S	-35.66	-4.02	-33.99	1
1AML	$\begin{gathered} \hline \mathrm{S} \\ \mathrm{~N} \end{gathered}$		N						S				-31.14	-2.39	-28.09	0
			S			N			S			N	-29.61	-5.09	-24.14	0
		S	N					S	S			S	-49.99	-9.04	-40.56	0
		N	S					S				S	-50.08	-4.49	-46.53	0
		S			N		S	S					-42.20	-5.23	-37.28	2
		N			S		S	S				S	-41.29	-5.20	-36.29	1
1BA4	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~S} \end{aligned}$				S	N						N	-25.18	-3.87	-21.96	0
					N	S						N/S	-43.12	-4.93	-39.23	0
		N	S					S	S				-40.99	-4.13	-37.58	0
		S	N					S	S				-44.54	-4.15	-40.72	1
1IYT	$\begin{gathered} \hline \mathrm{S} \\ \mathrm{~N} \end{gathered}$		N			N							-33.54	-4.92	-27.60	1
			S			N			S				-29.92	-5.97	-23.81	1
		S	N					S				S	-36.64	-6.80	-28.71	0
		N	S					S	S			S	-31.79	-4.90	-26.38	0
		S			N			S					-32.03	-2.21	-30.80	0
		N			S			S			S		-34.71	-3.90	-30.78	0
1Z0Q	SN		N			N						S	-49.21	-4.51	-43.24	1
			S			N			S			S	-47.69	-6.25	-43.03	1
		N	S					S	S			S	-34.76	-5.73	-29.95	0
		S	N					S	S			S	-28.71	-5.69	-23.47	0
		N			S			S			S		-28.92	-3.81	-24.90	0
		S			N						S		-30.56	-1.64	-29.10	1

The gas phase results of homotaurine interacting with different conformers of $\beta$ amyloid indicate its potential to bind to the EVHHQK region of interest at multiple sites. Interactions favour His13-His14 and His13-Lys16 over Glu11-His14.

### 4.3.3 The Solution Phase Optimization of Homotaurine and $\boldsymbol{\beta}$-Amyloid

Solution phase optimizations were performed for each of the resulting gas phase optimized systems. Water molecules were placed on the system in a box large enough to surround the protein-homotaurine complex completely.

The systems were energy minimized without constrained protein backbones, and with periodic boundary conditions in place. The energies of the optimized systems were measured with the solvent molecules excluded and a constrained protein backbone. Equations of 4.4-4.6 were used to calculate the binding energies with the solution phase optimized energy of homotaurine (Table 4.21) replacing the solvated GABA energy.

Table 4.21: Solution phase energies of homotaurine Energies (kcal/mol)

	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Homotaurine	-9.96	-0.15	-12.36

### 4.3.4 The Results of the Solution Phase Optimization of Homotaurine and $\beta$-AMYLOID

The solution phase minimized systems of homotaurine and $\beta$-amyloid are summarized in the following tables according to $A \beta$ conformer. Three letter abbreviations are used to indicate the amino acids for the initial and final orientations that homotaurine is located in. The amino group of homotaurine is represented by N , while the sulfonate group is represented by S . The measured energies of the system (with a constrained
protein backbone, and ignoring solvent contributions) and the calculated binding energies are given.

Orange coloured cells indicate where hydrogen bonds have formed and the darker the orange, the greater the number of bonds. Interactions with the $-\mathrm{CH}_{2}$ - chain of the amino acid are coloured in indigo. Backbone interactions are coloured purple for $\mathrm{C}=\mathrm{O}$, lime green for $-\mathrm{CH}-$, and yellow for $-\mathrm{NH}-$

Table 4.22: The solution phase results of homotaurine interacting with the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

	Glu1 1	Val12	His13	His 14	Gln 15	Lys16	Tyr10	Glu11	Val12	His13	His 14	Gln 15	Lys16	Leu17	Val18
Initial Orientation	N			S						S			S	S	
Final Orientation	N			S						S			S	S	
Total $=$	-58.86	$\mathrm{kcal} / \mathrm{mol}$					-56.1	$\mathrm{kcal} / \mathrm{mol}$							
van der Waals =	35.2	$\mathrm{kcal} / \mathrm{mol}$					49.9	$\mathrm{kca} / \mathrm{mol}$							
Electrostatic $=$	-252.3	$\mathrm{kcal} / \mathrm{mol}$					-256.5	$\mathrm{kca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {tot }}=$	-63.29	$\mathrm{kcal} / \mathrm{mol}$					-60.5	$\mathrm{kca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-12.80	$\mathrm{kcal} / \mathrm{mol}$					1.9	$\mathrm{kcal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {ele }}=$	-45.80	$\mathrm{kcal} / \mathrm{mol}$					-49.97	$\mathrm{kcal} / \mathrm{mol}$							
Initial Orientation				S							S			S	S
Final Orientation	-	-	-	-	-	-					S			S	S
Total $=$	-80.56	$\mathrm{kcal} / \mathrm{mol}$					-54.5	$\mathrm{kca} / \mathrm{mol}$							
van der Waals =	38.1	$\mathrm{kcal} / \mathrm{mol}$					43.2	$\mathrm{kca} / \mathrm{mol}$							
Electrostatic $=$	-272.22	$\mathrm{kca} / \mathrm{mol}$					-250.3	$\mathrm{kca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {tot }}=$	-84.98	$\mathrm{kca} / \mathrm{mol}$					-58.9	$\mathrm{kca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-9.89	$\mathrm{kca} / \mathrm{mol}$					-4.7	$\mathrm{kcal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {ele }}=$	-65.6	kcal/mol					-43.7	$\mathrm{kca} / \mathrm{mol}$							
Initial Orientation			S			S	S			S	S				
							N								
Final Orientation			S			S	S			S	S				
							N				N				
Total $=$	-62.7	$\mathrm{kca} / \mathrm{mol}$					-77.8	$\mathrm{kcal} / \mathrm{mol}$							
van der Waals =	53.1	$\mathrm{kca} / \mathrm{mol}$					29.3	$\mathrm{kca} / \mathrm{mol}$							
Electrostatic $=$	-276.97	$\mathrm{kca} / \mathrm{mol}$					-252.7	$\mathrm{kca} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {tot }}=$	-67.15	$\mathrm{kca} / \mathrm{mol}$					-82.2	$\mathrm{kcal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kca} / \mathrm{mol}$					-18.66	$\mathrm{kcal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {ele }}=$	-70.39	$\mathrm{kca} / \mathrm{mol}$					-46.2	$\mathrm{kca} / \mathrm{mol}$							

Table 4.23: The solution phase results of homotaurine interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 4.24: The solution phase results of homotaurine interacting with the 1AML conformer of $\boldsymbol{\beta}$-amyloid

	Ser8	Glu1 1	Val12	His13	His 14	Gln 15	Lys16	Vall 8		Tyr10	Glu1 1	Val12	His13	His14	Gln15	Lys16	Leu17
Initial Orientation	N	N			S							S	S			S	
Final Orientation	N	N			S			S				S	S			S	
Total $=$	79.	$\mathrm{kcal} / \mathrm{m}$								59.3	$\mathrm{kcal} / \mathrm{m}$						
van der Waals =		$\mathrm{kcal} / \mathrm{m}$								68.9	$\mathrm{kcal} / \mathrm{m}$						
Electrostatic $=$	-205.	$\mathrm{kcal} / \mathrm{m}$								-219.4	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-29.93	$\mathrm{kcal} / \mathrm{m}$								-50.01	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{m}$									$\mathrm{kca} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-21.97	$\mathrm{kcal} / \mathrm{m}$								-36.03	$\mathrm{kcal} / \mathrm{m}$						
Initial Orientation					S					S			S				S
Final Orientation		S			S					S			S				S
Total $=$		$\mathrm{kcal} / \mathrm{m}$								64.7	$\mathrm{kcal} / \mathrm{m}$						
van der Waals =		$\mathrm{kcal} / \mathrm{m}$								70.4	$\mathrm{kca} / \mathrm{m}$						
Electrostatic =	-183.	$\mathrm{kcal} / \mathrm{m}$								-220.18	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-15.	$\mathrm{kcal} / \mathrm{m}$								-44.63	$\mathrm{kcal} / \mathrm{n}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{m}$									$\mathrm{kcal} / \mathrm{n}$						
$\Delta \mathrm{E}_{\text {ele }}=$		$\mathrm{kcal} / \mathrm{m}$								-36.72	$\mathrm{kcal} / \mathrm{m}$						
Initial Orientation			S	S						S			S	S			S
Final Orientation			S	S			S			S			S	S			S
Total $=$		$\mathrm{kcal} / \mathrm{m}$								47.6	$\mathrm{kcal} / \mathrm{m}$						
van der Waals =		$\mathrm{kcal} / \mathrm{m}$								66.02	$\mathrm{kcal} / \mathrm{m}$						
Electrostatic $=$	-226.	$\mathrm{kcal} / \mathrm{m}$								-235.63	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-52.	$\mathrm{kcal} / \mathrm{m}$								-61.70	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{m}$								-3.29	$\mathrm{kcal} / \mathrm{m}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-42.84	$\mathrm{kcal} / \mathrm{m}$								-52.18	$\mathrm{kca} / \mathrm{m}$						

Table 4.25: The solution phase results of homotaurine interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	Asp1	Glu3	Glu1 1	Val12	His13	His14	Gln15	Lys16	Phe19
Initial Orientation		N	N						
Final Orientation		N	N						
Total $=$ van der Waals = Electrostatic $=$	116. 69. -175.	$\mathrm{kca} / \mathrm{n}$ $\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\text {tot }}=$		$\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\text {ele }}=$		$\mathrm{kca} / \mathrm{m}$							
Initial Orientation		N	S						S
Final Orientation	N	N						N	S
Total $=$ van der Waals =	83.	kcal/n							
Electrostatic $=$	-196.	$\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\text {tot }}=$	-32.	$\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\text {ele }}=$	-21.	$\mathrm{kca} / \mathrm{m}$							
Initial Orientation					S	S			
Final Orientation					S				
Total $=$ van der Waals =	65.	kcal/n							
Electrostatic $=$	-223.	$\mathrm{kcal} / \mathrm{m}$							
$\Delta \mathrm{E}_{\text {tot }}=$	-51.	$\mathrm{kcal} / \mathrm{n}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\text {ele }}=$	-48.	$\mathrm{kca} / \mathrm{m}$							
Initial Orientation					S	S			
Final Orientation					S	S			
Total $=$		$\mathrm{kca} / \mathrm{m}$							
van der Waals =		$\mathrm{kca} / \mathrm{m}$							
Electrostatic $=$	-231.	$\mathrm{kcal} / \mathrm{m}$							
$\Delta \mathrm{E}_{\text {tot }}=$	-61.	$\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kca} / \mathrm{m}$							
$\Delta \mathrm{E}_{\text {ele }}=$	-55.	$\mathrm{kca} / \mathrm{m}$							

Table 4.26: The solution phase results of homotaurine interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Tyr10	Glu1 1	Val12	His13	His14	Gln15	Lys16		Glu1 1	Val12	His13	His14	Gln15	Lys16	Leu17
Initial Orientation		N			S						S				
Final Orientation	S	N			S						S				
Total $=$	47.3	$\mathrm{kcal} / \mathrm{m}$							44.7	$5 \mathrm{kca} / \mathrm{m}$					
van der Waals =	67.1	$\mathrm{kcal} / \mathrm{m}$							69.9	$3 \mathrm{kcal} / \mathrm{m}$					
Electrostatic $=$	-243.3	$\mathrm{kcal} / \mathrm{m}$							-259.79	kcal/n					
$\Delta \mathrm{E}_{\text {tot }}=$	-92.5	$\mathrm{kca} / \mathrm{m}$							-95.	$2 \mathrm{kcal} / \mathrm{m}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-8.8	$\mathrm{kca} / \mathrm{m}$							-6.03	$3 \mathrm{kca} / \mathrm{m}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-23.9	$\mathrm{kcal} / \mathrm{m}$							-40.	$\mathrm{kcal} / \mathrm{m}$					
Initial Orientation		N									S	S			S
Final Orientation		N									S	S			S
Total $=$	53.6	$\mathrm{kcal} / \mathrm{m}$							54.00	$\mathrm{kca} / \mathrm{m}$					
van der Waals =	73.7	$\mathrm{kca} / \mathrm{m}$							61.7	kcal/m					
Electrostatic $=$	-238.7	$\mathrm{kca} / \mathrm{m}$							-233.03	$3 \mathrm{kca} / \mathrm{m}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-86.2	$\mathrm{kcal} / \mathrm{m}$							-85.87	kcal/m					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-2.2	$\mathrm{kca} / \mathrm{m}$							-14.21	$1 \mathrm{kca} / \mathrm{m}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-19.3	$\mathrm{kca} / \mathrm{m}$							-13.6	$4 \mathrm{kcal} / \mathrm{m}$					
Initial Orientation				S			S				S				S
Final Orientation				S			S				S	S			S
Total $=$	104.0	$\mathrm{kca} / \mathrm{m}$							30.9	$6 \mathrm{kca} / \mathrm{m}$					
van der Waals =	68.7	$\mathrm{kcal} / \mathrm{m}$							61.3	$5 \mathrm{kcal} / \mathrm{m}$					
Electrostatic =	-257.4	$\mathrm{kcal} / \mathrm{m}$							-242.	kcal/n					
$\Delta \mathrm{E}_{\text {tot }}=$	-35.8	$\mathrm{kca} / \mathrm{m}$							-108.91	$\mathrm{kcal} / \mathrm{m}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.1	$\mathrm{kca} / \mathrm{m}$							-14.62	kcal/m					
$\Delta \mathrm{E}_{\text {ele }}=$	-38.0	$\mathrm{kca} / \mathrm{m}$							-22.7	kcal/m					

Table 4.27: The solution phase results of homotaurine interacting with the 1Z0Q conformer of $\boldsymbol{\beta}$-amyloid

	Phe4	Glu1 1	Val12	His13	His 14	Gln 15	Lys16	Val18		Gly9	Tyr10	Glu1 1	Val12	His13	His14	Gln 15	Lys16
Initial Orientation		N			S			S									S
Final Orientation		N			S			S									S
Total $=$	81.5	$\mathrm{kcal} / \mathrm{mol}$								96.18	$\mathrm{kca} / \mathrm{mol}$						
van der Waals =	71.6	$\mathrm{kcal} / \mathrm{mol}$								68.7	kcal/mol						
Electrostatic $=$	-236.	$\mathrm{kcal} / \mathrm{mol}$								-222.1	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-45.27	$\mathrm{kcal} / \mathrm{mol}$								-30.5	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-9.37	$\mathrm{kcal} / \mathrm{mol}$								-12.32	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-42.	$\mathrm{kcal} / \mathrm{mol}$								-28.13	$\mathrm{kca} / \mathrm{mol}$						
Initial Orientation	S	N									S			S	S		S
Final Orientation	S	N									S			S	S		
Total $=$	71.1	$\mathrm{kcal} / \mathrm{mol}$								89.0	$\mathrm{kca} / \mathrm{mol}$						
van der Waals =		$\mathrm{kcal} / \mathrm{mol}$								87.7	kcal/mol						
Electrostatic $=$	-238.4	$\mathrm{kcal} / \mathrm{mol}$								-241.6	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-55.58	$\mathrm{kcal} / \mathrm{mol}$								-37.76	kcal/mol						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-13.61	$\mathrm{kcal} / \mathrm{mol}$									$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-44.5	$\mathrm{kcal} / \mathrm{mol}$								-47.6	$\mathrm{kca} / \mathrm{mol}$						
Initial Orientation				S			S			S	S			S	S		
Final Orientation				S			S				S			S			
Total $=$	113.	$\mathrm{kcal} / \mathrm{mol}$								89.03	kcal/mol						
van der Waals =	78.0	$\mathrm{kcal} / \mathrm{mol}$								68.9	$\mathrm{kca} / \mathrm{mol}$						
Electrostatic $=$	-212.2	$\mathrm{kcal} / \mathrm{mol}$								-223.8	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-13.67	$\mathrm{kcal} / \mathrm{mol}$								-37.73	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-3.03	$\mathrm{kcal} / \mathrm{mol}$								-12.1	$\mathrm{kca} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	-18.26	$\mathrm{kcal} / \mathrm{mol}$								-29.8	$\mathrm{kca} / \mathrm{mol}$						

The solution phase optimizations of homotaurine and $A \beta$ indicate that binding can occur at multiple sites within the EVHHQK region of interest. His13-His14 and His13Lys 16 were the most favoured orientations for interactions, followed immediately by Glu11-His14. Homotaurine bound quite well within the EVHHQK region of A $\beta$, and tended to retain the same orientation as in the gas phase despite the presence of water molecules.

Hydrogen bonds were the only measureable type of bonds that were observed in the optimized systems. The energies tended to be favourable, especially the electrostatic energy contributions.

### 4.4 3-Aminopropyl Dihydrogen Phosphate

A synthetic molecule, 3-aminopropyl dihydrogen phosphate (Figure 4.4), was selected for study to compare the effect of a phosphate group on the potential binding interactions with the EVHHQK region of $\beta$-amyloid, relative to carboxylate or sulfonate.


Figure 4.4: 3-Aminopropyl dihydrogen phosphate at physiological pH

The functional groups on 3-aminopropyl dihydrogen phosphate exist in a zwitterionic state at physiological pH .

### 4.4.1 GAS PhASE OPTIMIZATIONS OF 3-AMINOPROPYL DIHYDROGEN PHOSPHATE AND $\boldsymbol{\beta}$-AMYLOID

A model of 3-aminopropyl dihydrogen phosphate was constructed in an extended structure and geometry optimized; the energies are given in Table 4.28.

Table 4.28: The gas phase energies of 3-aminopropyl dihydrogen phosphate

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
3-aminopropyl dihydrogen phosphate	-21.69	1.31	-29.25

Each system was prepared such that the amino and phosphate group of 3aminopropyl dihydrogen phosphate were oriented approximately $3.0 \AA$ away from two of the charged amino acid side chains in the EVHHQK region of A $\beta$. The optimizations were performed following the procedure outlined in Section 4.1.1.3. The calculated
energies used equations 4.1-4.3 with the energy of the optimized 3-aminopropyl dihydrogen phosphate replacing the energy of optimized GABA.

### 4.4.2 Results of the Gas Phase Optimizations of 3-AMInopropyl DIHYDROGEN PHOSPHATE AND $\boldsymbol{\beta}$-AMYLOID

The results of the gas phase optimizations of 3-aminopropyl dihydrogen phosphate with $A \beta$ in different conformations are summarized in the following table. The initial and finial orientations of the optimized systems are given with the amino and phosphate groups of 3-aminopropyl dihydrogen phosphate represented by N and P , and the amino acids by single letters. The numbers of measured bonding interactions for each system are given along with the calculated binding energies for each system.

Table 4.29: The gas phase results of 3-aminopropyl dihydrogen phosphate interacting with $\boldsymbol{\beta}$-amyloid


The results of the gas phase minimizations of 3-aminopropyl dihydrogen phosphate with the different conformers of $A \beta$ suggest that the molecule is capable of binding to the EVHHQK region of the protein. Interactions at Glu11-His14 were the preferred orientation of binding.

### 4.4.3 The Solution Phase Optimization of 3-Aminopropyl Dihydrogen Phosphate and $\boldsymbol{\beta}$-AMyloid

Each of the systems resulting from the gas phase minimization of 3-aminopropyl dihydrogen phosphate with $\beta$-amyloid was subjected to solution phase optimization.

Each system was solvated using a box of explicit water molecules with periodic boundary conditions in place during the minimization and having an unconstrained protein backbone. Energies were measured with the protein backbone constrained and solvent contributions were ignored. Equations 4.4-4.6 were used to calculate the binding energies with the energy of the solution phase optimized 3-aminopropyl dihydrogen phosphate substituted for the GABA energy. Appendix 6 contains the energies of the proteins and Table 4.30 lists the energies of the optimized 3-aminopropyl dihydrogen phosphate, ignoring solvent contributions.

## Table 4.30: Solution phase energies of 3-aminopropyl dihydrogen phosphate

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\mathrm{vdw}}$	$\mathrm{E}_{\text {ele }}$
3-aminopropyl dihydrogen phosphate	-16.52	0.76	-29.65

### 4.3.4 The Results of the Solution Phase Optimization of 3Aminopropyl Dihydrogen Phosphate and $\boldsymbol{\beta}$-Amyloid

The results of the solution phase minimization of 3-aminopropyl dihydrogen phosphate with $\beta$-amyloid are given in Tables 4.31-4.36 according to $\beta$-amyloid conformer. The amino and phosphate group of 3-aminopropyl dihydrogen phosphate are represented by N and P and are shown in the initial orientation before minimization in a solvated environment and the resulting final orientation after. The amino acids involved
are listed by their three-letter abbreviations, and both the measured and calculated energies for each system are given.

Instances where hydrogen bonds have formed are coloured in orange, and interactions with the $-\mathrm{CH}_{2}$ - chain of the amino acid are shown in indigo. Where interactions occur with the $-\mathrm{CH}-,-\mathrm{NH}$ - or $\mathrm{C}=\mathrm{O}$ of the protein backbone, cells are coloured lime green, yellow, and purple, respectively.

Table 4.31: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 4.32: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 4.33: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 4.34: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 4.35: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 4.36: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


The solution phase energy minimizations of 3-aminopropyl dihydrogen phosphate with the different conformers of $\beta$-amyloid result in multiple binding interactions in the EVHHQK region. Interactions at Glu11-His14 are favoured, followed by His13-His14. Only five hydrogen bonds were measured in the optimized systems; fewer measureable interactions occurred than in the gas phase minimized systems, however, there was not much difference in the orientations of the interactions.

The energies of the optimized systems were mostly favourable, and the electrostatic energies were much lower than the van der Waals energies. Comparing
systems with multiple interactions to those with few or none indicates that the energies vary and that having more potential binding interactions does not equate to energetic favourability. It is likely that repulsive factors are also a contributing factor in these systems.

### 4.5 Semi-Empirical Energy Calculations of GABA, $\boldsymbol{\beta}$-Alanine, Homotaurine and 3-Aminopropyl Dihydrogen Phosphate with $\beta$ Amyloid

To further compare the results of the gas and solution phase minimizations of the four compounds covered in this chapter, semi-empirical calculations were performed. The Austin Model 1 (AM1) model was selected for use [42, 106].

### 4.5.1 Selection of Systems for Semi-Empirical Calculations

Selected systems from the gas phase energy minimized results of each of GABA, $\beta$-alanine, homotaurine and 3-aminopropyl dihydrogen phosphate with $\beta$-amyloid, were used for semi-empirical calculations using the AM1 Hamiltonian as implemented in the Gaussian 09W suite of programs [107].

For each of the four compounds, one system with each of the six $\beta$-amyloid conformers was selected for modelling at the semi-empirical level. These systems needed to have binding interactions occurring with at least two different amino acid residues. The individual molecules and each $\mathrm{A} \beta$ conformer were also submitted for energy calculations.

### 4.5.2 Semi-Empirical Energy Calculation Set-Up

Each of the selected systems was submitted for energy calculations. These energies were calculated in the ground state with a singlet spin. The quadratically convergent SCF function was selected, as convergence of the system was not obtained otherwise. The units of measurement of Gaussian calculations are in hartrees; the energies were converted to $\mathrm{kcal} / \mathrm{mol}$ for comparison.

The energy of interaction of each system was calculated by subtracting the individual energies of each molecule and the specific $\beta$-amyloid conformer from the energy of the modelled system via the following equation:

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {bind }}=\mathrm{E}_{\mathrm{A} \beta \mathrm{~mol}}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\mathrm{mol}} \tag{4.7}
\end{equation*}
$$

Where $E_{\text {mol }}$ is the energy of the target molecule, $E_{A \beta}$ is the energy of the $\beta$-amyloid conformer and $\mathrm{E}_{\mathrm{A} \beta \mathrm{mol}}$ is the energy of the interacting $\mathrm{A} \beta$-molecule system. The energies of the $A \beta$ conformers are listed in Appendix 6.

### 4.5.3 Results of the Semi-Empirical Energy Calculations

The energies of each of the four molecules were calculated using the AM1 model and are summarized in the following table.

Table 4.37: Energies of GABA, $\boldsymbol{\beta}$-alanine, homotaurine and 3-aminopropyl dihydrogen phosphate calculated at the AM1 level of theory

GABA	Energy
$\beta$-alanine	-0.053803541 hartrees
	$-33.762 \mathrm{kcal} / \mathrm{mol}$
homotaurine	-0.064715664 hartrees
	$-40.61 \mathrm{kcal} / \mathrm{mol}$
3-aminopropyl dihydrogen phosphate	-0.110178939 hartrees
	$-69.138 \mathrm{kcal} / \mathrm{mol}$

The results of the energy calculations for each of GABA, $\beta$-alanine, homotaurine and 3-aminopropyl dihydrogen phosphate with A $\beta$ using the AM1 level of theory are summarized in Tables 4.38-4.41. The orientation of the interaction is given with the single letter amino acid abbreviation, and the functional groups of each of the molecules are represented by $\mathrm{N}, \mathrm{C}, \mathrm{S}$ and P for the amino, carboxylate, sulfonate and phosphate groups. The measured energy of each system is given, along with the calculated binding energy.

Table 4.38: AM1 energies of GABA interacting with $\boldsymbol{\beta}$-amyloid

	R5 E11	V12 H13	H14	Q15	K16	L17		E3 E11	V12 H13	H14	Q15	K16	F19
Orientation		C	C				Orientation	N C				C	C
								C					
Energy $=$	-749.464	$\mathrm{kca} / \mathrm{mol}$					Energy =	-1078.737	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {bind }}=$	-41.711	$\mathrm{kcal} / \mathrm{mol}$					$\Delta \mathrm{E}_{\text {bind }}=$	-11.122	$\mathrm{kcal} / \mathrm{mol}$				
Orientation		C	N			C	Orientation		N	C			
									C				
Energy $=$	-748.947	$\mathrm{kca} / \mathrm{mol}$					Energy $=$	-1398.660	kcal/mol				
$\Delta \mathrm{E}_{\text {bind }}=$	-35.713	$\mathrm{kcal} / \mathrm{mol}$					$\Delta \mathrm{E}_{\text {bind }}=$	-0.193	kcal/mol				
Orientation	C N		C	N			Orientation	N		C			
Energy $=$	-992.926	kcal/mol					Energy $=$	-917.623	kcal/mol				
$\Delta \mathrm{E}_{\text {bind }}=$	-57.669	$\mathrm{kca} / \mathrm{mol}$					$\Delta \mathrm{E}_{\text {bind }}=$	-76.516	$\mathrm{kcal} / \mathrm{mol}$				

Table 4.39: AM1 energies of $\boldsymbol{\beta}$-alanine interacting with $\boldsymbol{\beta}$-amyloid

	S8 E11	V12 H13	H14 Q15	K16		E3 E11	V12 H13	H14	Q15 K16 F19
Orientation	N		C		Orientation	N C			C
Energy =	-735.381	$\mathrm{kcal} / \mathrm{mol}$			Energy $=$	-1097.851	$\mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {bind }}=$	-20.782	$\mathrm{kcal} / \mathrm{mol}$			$\Delta \mathrm{E}_{\text {bind }}=$	-23.389	$\mathrm{kcal} / \mathrm{mol}$		
Orientation		C		C	Orientation	N		C	
Energy $=$	-777.692	$\mathrm{kcal} / \mathrm{mol}$			Energy $=$	-1468.757	$\mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {bind }}=$	-57.610	$\mathrm{kca} /$ mol			$\Delta \mathrm{E}_{\text {bind }}=$	-63.444	$\mathrm{kcal} / \mathrm{mol}$		
Orientation	N N		C		Orientation	C		N	
Energy $=$	-1006.058	$\mathrm{kcal} / \mathrm{mol}$			Energy $=$	-814.268	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {bind }}=$	-63.954	$\mathrm{kcal} / \mathrm{mol}$			$\Delta \mathrm{E}_{\text {bind }}=$	33.686	$\mathrm{kcal} / \mathrm{mol}$		

Table 4.40: AM1 energies of homotaurine interacting with $\boldsymbol{\beta}$-amyloid

	S8 Y10	E11 V12	H13	H14	Q15	K16		E11 V12	H13	H14	Q15	K16	V18
Orientation		N		S			Orientation		S	S			
Energy $=$	-795.621	kcal/mol					Energy $=$	-1160.430	kcal/				
$\Delta \mathrm{E}_{\text {bind }}=$	-52.493	$\mathrm{kca} / \mathrm{mol}$					$\Delta \mathrm{E}_{\text {bind }}=$	-57.440	kcal/				
Orientation	$\begin{gathered} \mathrm{S} \\ \mathrm{~N} \end{gathered}$			$\begin{aligned} & \mathrm{N} \\ & \mathrm{~S} \end{aligned}$			Orientation	N		S			
Energy $=$	-787.256	$\mathrm{kca} / \mathrm{mol}$					Energy $=$	-1494.552	kcal/				
$\Delta \mathrm{E}_{\text {bind }}=$	-38.646	kcal/mol					$\Delta \mathrm{E}_{\text {bind }}=$	-60.710	kcal/				
Orientation	N	N		S			Orientation	N		S			S
Energy $=$	-1042.940	kcal/mol					Energy $=$	-943.679	kcal/				
$\Delta \mathrm{E}_{\text {bind }}=$	-72.307	$\mathrm{kca} / \mathrm{mol}$					$\Delta \mathrm{E}_{\text {bind }}=$	-67.197	kcal/				

Table 4.41: AM1 energies of 3-aminopropyl dihydrogen phosphate interacting with $\beta$-amyloid

	S8 E11	V12 H13	H14	Q15	K16		E3	E11	V12 H13	H14	Q15	K16	V18	F19	E22	D23
Orientation		P			P	Orientation	P	N				P		P		P
Energy =	-944.378	$\mathrm{kcal} / \mathrm{mol}$				Energy $=$	-12	4.782	$\mathrm{kcal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {bind }}=$	-69.725	$\mathrm{kcal} / \mathrm{mol}$				$\Delta \mathrm{E}_{\text {bind }}=$		266	$\mathrm{kcal} / \mathrm{mol}$							
Orientation	N		P	P		Orientation		N		P						
Energy =	-948.158	$\mathrm{kca} / \mathrm{mol}$				Energy =	-16	9.361	$\mathrm{kcal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {bind }}=$	-68.023	$\mathrm{kcal} / \mathrm{mol}$				$\Delta \mathrm{E}_{\text {bind }}=$		. 993	$\mathrm{kcal} / \mathrm{mol}$							
Orientation	P P		P			Orientation		N		P			P		P	
Energy =	-1111.677	$\mathrm{kcal} / \mathrm{mol}$				Energy =	-10	2.663	$\mathrm{kcal} / \mathrm{mol}$							
$\Delta \mathrm{E}_{\text {bind }}=$	-9.519	$\mathrm{kca} /$ mol				$\Delta \mathrm{E}_{\text {bind }}=$		. 655	$\mathrm{kcal} / \mathrm{mol}$							

The energies of each system can be compared to determine whether the negatively charged functional group plays a role in the strength of the interactions that occur.

Homotaurine interacting with $\beta$-amyloid resulted in the most consistently favourable energies. All of the systems selected demonstrated binding within the EVHHQK region of $A \beta$.

Energies of 3-aminopropyl dihydrogen phosphate binding to $\beta$-amyloid in different conformations were the next most favourable relative to homotaurine. With the exception of two systems, the energies were all very low, and interactions occurred at two or more sites within EVHHQK. Interestingly, the systems with the highest energies had hydrogen bonds present and multiple binding sites between the molecule and protein.

The energies calculated for GABA interacting with $A \beta$ demonstrated slightly less favourability compared to 3-aminopropyl dihydrogen phosphate. The energies of these systems were a bit more variable.

While the calculated binding energies of $\beta$-alanine were more consistent than 3aminopropyl dihydrogen phosphate and GABA, they tended to be slightly higher. One system did not have interactions occurring at two sites within EVHHQK, and one occurring in that region was extremely unfavourable.

### 4.6 Conclusions on GABA, $\boldsymbol{\beta}$-Alanine, Homotaurine and 3-Aminopropyl Dihydrogen Phosphate Interacting with the EVHHQK Region of $\beta$ Amyloid

Overall comparing the interactions occurring between GABA, $\beta$-alanine, homotaurine and 3-aminopropyl dihydrogen phosphate with $\beta$-amyloid allows for some conclusions to be drawn based on their nature.

First, both the endogenous and synthetic compounds demonstrated a capacity to bind to the EVHHQK region of $\beta$-amyloid in silico. This indicates that these small molecules may be used to target this region to prevent amyloid aggregation from occurring. Furthermore they could be used as lead molecules to design even more effective binding agents, or drugs that would increase the levels of the endogenous compounds could be developed.

Second, the nature of the negatively charged group on the zwitterions plays a role in the strength of binding interactions. Comparing the energies of the four molecules showed that the order of favourability ranked $\mathrm{SO}_{3}{ }^{-}>\mathrm{PO}_{3}{ }^{-}>\mathrm{CO}_{2}{ }^{-}$. Also, the length of the $-\mathrm{CH}_{2}$ - chain played a factor. GABA was capable of forming more measureable binding interactions than $\beta$-alanine.

Homotaurine presents itself as the most viable option of the four molecules for binding to the EVHHQK region of $\beta$-amyloid. Indeed, this may be the mechanism by which the molecule keeps the protein in its monomeric form in vivo [105].

### 4.7 Interpretation

The results of the in silico optimizations of GABA, $\beta$-alanine, homotaurine and 3aminopropyl dihydrogen phosphate demonstrate how both the size of the molecule and the anionic group are important in forming binding interactions with the EVHHQK region of $\beta$-amyloid.

Of the systems studied, the synthetic compound homotaurine demonstrated the most favourable binding energies (calculated at a semi-empirical level of theory) and the greatest capacity to form binding interactions within the EVHHQK region of interest. Homotaurine was especially capable of forming binding interactions with the $\mathbf{B B X B}$ motif of $A \beta, \mathbf{H H Q K}$.

The next most favourable interactions occurred between GABA and $\beta$-amyloid. More binding interactions formed in both the HHQK and expanded EVHHQK regions than 3-aminopropyl dihydrogen phosphate. The semi-empirical binding energies of GABA were more variable than those of the phosphate species, and slightly less favourable. 3-Aminopropyl dihydrogen phosphate formed fewer binding interaction than GABA in the EVHHQK systems studied. Though it is difficult to rank these species in terms of favourability, the binding energies suggest that 3-aminopropyl dihydrogen phosphate can interact more strongly with $\beta$-amyloid.

The interactions between $\beta$-alanine and $\beta$-amyloid are the least favourable of the four molecules examined in this chapter. The number of binding interactions occurring with the protein is less than those observed for 3-aminopropyl dihydrogen phosphate, as well the binding energies (measured by semi-empirical calculations) were the least favourable of the four; one system demonstrated highly unfavourable energetics. The molecular mechanics binding energies further support the notion that the $\beta$-alanine systems are less favourable than those of the other three molecules.

Overall these results can be interpreted to suggest that the anionic group present on these endogenous and synthetic species plays an important role in determining the strength of binding interactions that can occur. The three anionic groups can all be considered acidic species with the order of relative acidity sulfonic acid $>$ phosphonic acid $>$ carboxylic acid for the functional groups. It is more likely that this feature affects the strength of interaction, which may potentially be affected by the size of the anionic group as well: phosphonate and sulfonate are both larger than carboxylate. The larger, more acidic species can interact more strongly with the positively charged amino acids to form more energetically favourable interactions.

Furthermore, the length of the carbon chain also plays a role in the effective binding of molecules to the EVHHQK region of $A \beta$. Although $\beta$-alanine and GABA are functionally identical, the difference of one carbon unit in the chain length between charged functional groups clearly impacts the amount of binding interactions that can occur. The number of binding interactions between $\beta$-alanine and $\mathrm{A} \beta$ are only about half of those formed between GABA and $A \beta$. It appears that the size of the molecule is also important for the binding interactions to form between itself and $\beta$-amyloid.

These results indicate that molecules can be developed to target the EVHHQK region of $\beta$-amyloid with greater specificity by tuning the anionic functional groups present to form stronger binding interactions with the positively charged amino acids. Adjusting the length/size of the molecule can also play a role in increasing the strength of interactions within the EVHHQK region of interest.

## CHAPTER 5: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING LVFF

Located immediately next to the $\mathbf{H H Q K}$ region of $\beta$-amyloid is the LVFF region. The highly positively charged HHQK segment plays a role in the misfolding process of the protein by binding to negatively charged glycosaminoglycans on the surface of membranes. Similarly, the LVFF region of A $\beta$ is a hydrophobic region that can interact with cholesterol rafts on the surface of membranes to further facilitate the conformational change.

The LVFF region follows a pattern that can be identified as AAXA, where A is an aliphatic or aromatic amino acid. As this motif is similar to $\mathbf{B B X B}$, there arose the question as to whether or not a single drug molecule could bind to both HHQK and LVFF with the same strength and efficacy, if so this would provide further evidence to support the concept of a "promiscuous drug" targeting $\beta$-amyloid to prevent aggregation.

### 5.1 Interactions Between an Indole and the HHQK and LVFF Regions of $\boldsymbol{\beta}$-AmYLOID

A simple indole (Figure 5.1) was selected for this study to determine its capacity to bind to the LVVF region of $\mathrm{A} \beta$, relative to HHQK . An indole is a small aromatic molecule that should, in essence, be able to interact with both regions by forming cation$\pi$ and $\pi-\pi$ type interactions. The indole is also representative of biological molecules
endogenous to the brain. Indole constitutes the aromatic moiety within tryptophan (examined in Chapter 4) and is present in some of tryptophan's metabolites.


Figure 5.1: Indole

### 5.1.1 ISOLATION OF THE HHQK AND LVFF REGIONS OF $\beta$-Amyloid

To better compare the binding of indole, the LVFF and $\mathbf{H H Q K}$ regions were isolated from $\beta$-amyloid. For the LVFF region, residues 13-24 were isolated. This provided a four amino acid cap on either side of the region that would be more reflective of the area as it exists in a natural state; isolating only the LVFF region is too exposed to empty space and is less reflective of the interactions that could form. The ends of the 1324 residue segment were capped with amide groups. Six different conformers of A $\beta$ were used for this study and each was optimized with a constrained protein backbone in vacuo using the CHARMM22 force field in MOE [47, 48].

Similarly, the HHQK region was isolated in residues 9-20 of A $\beta$. Each terminal end was capped with an amide group before optimization (with a constrained protein backbone) in the gas phase. The energies observed for both the isolated HHQK and LVFF regions of $A \beta$ used in this chapter are summarized in Appendix 5.

The indole structure was built in MOE and optimized to obtain the following energies:

Table 5.1: The gas phase energies of an indole

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Indole	16.40	6.39	-0.15

### 5.1.2 The Gas Phase Optimization of an Indole with HHQK and LVFF

Gas phase systems were set up such that the indole ring could interact with two of the basic amino acids in HHQK or two of the aliphatic/aromatic amino acids in LVFF. These orientations were set up such that the indole was situated approximately $3.0 \AA$ away from the two side chains. As indole is composed of a benzyl ring connected to a pyrrole ring, the systems were differentiated by denoting which ring was oriented towards the amino acids.

Each energy minimization was performed with the protein backbone constrained to prevent structural collapse, and the binding energies were calculated using the following equations:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {Indole }}  \tag{5.1}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\text {vdwIndole }}  \tag{5.2}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {eleA } \beta}-\mathrm{E}_{\text {elelndole }} \tag{5.3}
\end{align*}
$$

The total, van der Waals, and electrostatic energies of each of the optimized indole and $A \beta$ segment were subtracted from the energies of the optimized systems to determine the relative strength of binding for each of the three energies.

### 5.1.3 The Results of The Gas Phase Optimizations of an Indole and the HHQK AND LVFF REGIONS OF $\boldsymbol{\beta}$-AMYLOID

The gas phase results of the minimization of the indole with each of the isolated HHQK and LVFF segments of $A \beta$ in six different conformations are summarized in the following two tables. The calculated energies are given for each system, along with the initial orientation the indole was arranged in and the final orientation upon optimization. The indole ring is represented by InB to represent the benzyl ring of the indole, $\operatorname{InP}$ to represent the pyrrole ring, and In is used for interactions occurring with both rings. The bonding interactions that formed are coloured accordingly: orange for hydrogen bonds, light blue for $\pi-\pi$ interactions, and green for cation- $\pi$ interactions. Darker shades of the colours indicate the presence of more of that type of interaction.

Table 5.2: The gas phase results of an indole interacting with the HHQK region of $\beta$-amyloid

Conformer	Initial Orientation				Final Orientation					$\begin{gathered} \Delta \mathrm{E}_{\mathrm{tot}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\Delta E_{v d v}$   ( $\mathrm{kcal} / \mathrm{mol}$ )	$\begin{gathered} \Delta \mathrm{E}_{\text {ele }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$
	H13	H14	Q15	K16	H13	H14	Q15	K16	Other			
1 AMB	InB	InP			InB	InP			InB	-16.04	-6.53	-12.22
	InP	InB			InP	InB			In	-15.43	-8.68	-7.00
	InB			InP				InB	In	-14.40	-8.37	-6.46
	InP			InB				InB	In	-15.02	-8.37	-6.93
1AMC	InB	InP				InP				-10.99	-6.96	-4.33
	InP	InB			InP	InB			InP	-13.05	-7.93	-5.75
	InB			InP	InB				In	-12.98	-8.67	-4.46
	InP			InB					In	-13.48	-7.15	-6.39
1 AML	InB	InP							In	-8.69	-4.08	-5.19
	InP	InB							InB	-9.61	-4.10	-5.91
	InB			InP	InB			InP		-8.46	-3.50	-6.22
	InP			InB				InB		-10.02	-4.50	-6.22
1BA4	InB	InP			InB	InP				-7.46	-4.90	-2.96
						InB				.		
	InP	InB			InP	InB				-8.26	-4.64	-4.07
						InP						
1IYT	InB	InP			InB	InP				-16.82	-5.35	-13.29
	InP	InB			InP	InB				-13.78	-7.37	-7.68
	InB			InP	InB			InP		-11.14	-5.47	-5.66
	InP			InB	InP			InB		-12.15	-5.39	-6.12
1Z0Q	InB	InP				InP				-14.82	-7.97	-8.21
	InP	InB			InP					-7.57	-5.75	-2.08
	InB			InP	InB			InP		-6.10	-3.40	-3.82
	InP			InB	In				InB	-13.29	-6.67	-7.57

Table 5.3: The gas phase results of an indole interacting with the LVFF region of $\beta$ amyloid

Conformer	Initial Orientation				Final Orientation					$\Delta \mathrm{E}_{\text {tot }}$   (kcal/mol)	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{vdv}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\text {ele }} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$
	L17	V18	F19	F20	L17	V18	F19	F20	Other			
1 AMB			InB	InP					InB	-5.26	-3.35	-2.62
			InP	InB				InB	In	-17.20	-6.49	-11.46
	InB			InP	InB			InP		-10.06	-4.21	-5.87
	InP			InB	InP			InB		-8.12	-3.00	-5.33
1 AMC			InB	InP				InP	In	-18.23	-6.27	-12.91
			InP	InB			InP			-15.07	-5.67	-8.05
	InB			InP	InB			In		-8.06	-4.22	-3.64
	InP			InB	InP			InB		-8.22	-4.82	-2.70
1 AML			InB	InP				InP	InB	-10.69	-4.31	-7.24
			InP	InB			InP	InB	InB	-11.16	-7.65	-4.23
	InB			InP	-	-	-	-	-	-4.41	-2.97	-1.12
	InP			InB	InP			InB		-4.25	-3.32	-0.90
1BA4	InB			InP	InB			InP		-14.27	-4.61	-6.23
	InP			InB	InP			InB		-8.35	-4.18	-4.25
1IYT			InB	InP			InB		InB	-5.54	-3.09	-2.51
			InP	InB			InP		InP	-9.88	-2.72	-6.90
	InB			InP	InB			InP		-5.71	-3.49	-2.63
	InP			InB	InP			InB		-7.40	-3.84	-3.81
1Z0Q			InB	InP				InP		-9.20	-5.23	-5.21
			InP	InB			InP	InB		-7.23	-3.70	-5.54
	InB		InP		InB		InP			-6.52	-3.27	-3.30
	InP		InB		In		InB	InB		-13.57	-8.54	-9.99
	InB			InP	InB			InP		-6.95	-5.17	-6.22
	InP			InB	InP			InB		-4.73	-4.24	-2.73

More measureable interactions form between the indole and the $\mathbf{H H Q K}$ region of $\beta$-amyloid compared to the LVFF region. Interactions in the HHQK region favour binding at His13-His14 and His13-Lys16. In the LVFF region, binding at Leu17-Phe20 is favoured over any other possible orientations.

For both regions, the electrostatic energies and van der Waals energies are comparable; the HHQK total binding energies are slightly more favourable than those of LVFF (although there are a few that are on par).

### 5.1.4 The Solution Phase Optimization of an Indole with HHQK and LVFF

Each of the systems resulting from the gas phase minimizations of an indole with the HHQK and LVFF regions of $\mathrm{A} \beta$ was subjected to solution phase optimizations to determine whether binding would still occur in an aqueous environment.

A box of explicit water molecules was placed on each peptide-indole system, with periodic boundary conditions in place. The systems were optimized without constrained protein backbones. The energies for each interaction were calculated in the absence of solvent, and with a constrained protein backbone using equations 5.1-5.3. The energies of the solution phase optimized protein segments are listed in Appendix 5 and the indole is given in Table 5.4.

Table 5.4: The solution phase energies of an indole

	Energies $(\mathrm{kcal} / \mathrm{mol})$		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Indole	17.23	6.62	-0.17

### 5.1.5 The Results of the Solution Phase Optimizations of an Indole and THE HHQK AND LVFF REGIONS OF $\boldsymbol{\beta}$-AMYLOID

The results of the minimization of an indole with the HHQK and LVFF regions of $\beta$-amyloid in a solution phase environment are summarized in the following table according to $A \beta$ conformer. Each table lists the interactions in the HHQK region on the left-hand side, and the LVFF region on the right-hand side; initial and final orientations are given. The amino acid side chains are given in their three letter abbreviations, and the indole interactions can be represented one of three ways: interactions with both rings are represented by In , those with the benzyl ring by InB , and those with the pyrrole by InP .

Coloured cells are used to indicate binding interactions: hydrogen bonds, cation- $\pi$ and $\pi-\pi$ interactions are in orange, green and light blue. Darker shaded cells indicate a greater number of bonds formed. Indigo cells represent interactions occurring with the $\mathrm{CH}_{2}$ - chain of the amino acid. Interactions with the protein backbone are signified by purple $(\mathrm{C}=\mathrm{O})$, and lime green ( -CH - ).

Table 5.5: The solution phase results of an indole interacting with HHQK and LVFF on the 1AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 5.6: The solution phase results of an indole interacting with HHQK and LVFF on the 1AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 5.7: The solution phase results of an indole interacting with HHQK and LVFF on the 1AML conformer of $\boldsymbol{\beta}$-amyloid

	His13	His14	Gln15	Lys16	Leu17	Leu17	Vall 8	Phe19	Phe20	Asp23
Initial Orientation					In				InP	InB
Final Orientation					In				InB	InB
Total $=$	122.0	$\mathrm{kcal} / \mathrm{mol}$				112.6	$\mathrm{kca} / \mathrm{mol}$			
van der Waals =	40.0	$\mathrm{kcal} / \mathrm{mol}$				28.3	$\mathrm{kcal} / \mathrm{mol}$			
Electrostatic =	-2.1	$\mathrm{kcal} / \mathrm{mol}$					$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	-2.5	$\mathrm{kcal} / \mathrm{mol}$				-2.9	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-8.9	$\mathrm{kcal} / \mathrm{mol}$				-5.4	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$		$\mathrm{kcal} / \mathrm{mol}$					$\mathrm{kcal} / \mathrm{mol}$			
Initial Orientation					InB			InP	InB	InB
Final Orientation					In			InB	InB	InB
Total $=$	103.	$\mathrm{kcal} / \mathrm{mol}$				107.8	kcal/mol			
van der Waals =	43.6	$\mathrm{kcal} / \mathrm{mol}$				25.6	$\mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	-18.8	$\mathrm{kcal} / \mathrm{mol}$				-2.3	$\mathrm{kca} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	-21.2	$\mathrm{kcal} / \mathrm{mol}$				-10.7	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-5.4	$\mathrm{kcal} / \mathrm{mol}$				-8.2	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$	-7.75	$\mathrm{kcal} / \mathrm{mol}$				-2.8	$\mathrm{kcal} / \mathrm{mol}$			
Initial Orientation	InB			InP		-	-	-	-	-
Final Orientation	InB			InP		-	-	-	-	-
Total $=$	124.1	$\mathrm{kcal} / \mathrm{mol}$				127.9	$\mathrm{kcal} / \mathrm{mol}$			
van der Waals =	43.7	$\mathrm{kcal} / \mathrm{mol}$				36.4	$\mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	-6.8	$\mathrm{kcal} / \mathrm{mol}$					$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	-0.5	$\mathrm{kcal} / \mathrm{mol}$				12.4	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-5.3	$\mathrm{kcal} / \mathrm{mol}$					$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$		$\mathrm{kcal} / \mathrm{mol}$					kcal/mol			
Initial Orientation				InB		InP			InB	
Final Orientation				In					InB	
Total $=$	111.6	$\mathrm{kcal} / \mathrm{mol}$				118.2	$\mathrm{kcal} / \mathrm{mol}$			
van der Waals =	44.3	$\mathrm{kcal} / \mathrm{mol}$				32.6	$\mathrm{kca} / \mathrm{mol}$			
Electrostatic =	-11.9	$\mathrm{kcal} / \mathrm{mol}$					$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	-13.02	$\mathrm{kcal} / \mathrm{mol}$					$\mathrm{kca} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-4.73	$\mathrm{kcal} / \mathrm{mol}$				-1.20	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$	-0.8	$\mathrm{kcal} / \mathrm{mol}$					$\mathrm{kcal} / \mathrm{mol}$			

Table 5.8: The solution phase results of an indole interacting with HHQK and LVFF on the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 5.9: The solution phase results of an indole interacting with HHQK and LVFF on the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 5.10: The solution phase results of an indole interacting with HHQK and LVFF on the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid


The results of the solution phase optimizations of an indole interacting with the HHQK and LVFF region of $A \beta$ show a capacity to bind to both regions. The indole favours binding at His13-Lys16 and His13-His14 in the HHQK region, while Leu17Phe20, and Phe19-Phe20 are the favoured sites for multiple interactions in LVFF.

The binding energies are somewhat variable, with binding at HHQK being perhaps slightly more favourable than at LVFF. In general, the van der Waals energy contributions were more significant than those of the electrostatic energy; this is expected as the interactions occurring are primarily between aromatic ring systems.

### 5.2 Interactions Between a Biindole and the HHQK and LVFF Regions of $\boldsymbol{\beta}$-Amyloid

Given that a simple indole demonstrates a capacity to bind to both the BBXB and AAXA regions of $\beta$-amyloid with nearly equal strength, the question arises if a larger molecule will be able to act with the same efficacy. To this purpose, an unsubstituted biindole molecule (Figure 5.2) was constructed to determine how well it could bind to the HHQK and LVFF areas of interest.


Figure 5.2: Biindole

The biindole molecule was constructed and subjected to a conformational search, with the resulting lowest energy conformation selected for use. The same isolated HHQK and LVFF regions of $\beta$-amyloid were used as for the single indole calculations, and the energies are given in Appendix 5. The optimized energies of the biindole are given in Table 5.11.

Table 5.11: The gas phase energies of a biindole

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Biindole	21.52	11.65	0.47

### 5.2.1 The Gas Phase Optimization of a Biindole with HHQK and LVFF

Gas phase minimizations were performed to determine if the biindole could interact with both the $\mathbf{H H Q K}$ and LVFF regions of $\beta$-amyloid with the same efficacy. Systems were set up such that each of the indole groups was situated $\sim 3.0 \AA$ away from the basic amino acids in HHQK or $\sim 3.0 \AA$ away from the aliphatic or aromatic groups in LVFF. Where feasible, orientations were attempted with the indole in two possible positions: the benzyl groups oriented towards the side chains, or the pyrrole groups oriented towards the side chains.

Energy minimizations were performed with constrained protein backbones to prevent structural collapse. The following equations were used:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {Biindole }}  \tag{5.4}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdwBiindole}}  \tag{5.5}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {eleBiindole }} \tag{5.6}
\end{align*}
$$

The binding energies were calculated by subtracting the total, van der Waals and electrostatic energies of each of the optimized biindole and $\mathrm{A} \beta$ segment from the energies of the optimized systems.

### 5.2.2 The Results of the Gas Phase Optimizations of a Biindole and the HHQK and LVFF Regions of $\boldsymbol{\beta}$-Amyloid

The results of the gas phase minimization of the biindole with the isolated HHQK and LVFF segments of $A \beta$ are summarized in the Tables 5.12-5.13. The indole rings of the biindole are represented by $\operatorname{InB}$ and $\operatorname{InP}$ for the benzyl ring and the pyrrole ring; interactions occurring with both rings and the amino acid are represented by In. Binding with the two different indole rings at the same amino acid residue are separated by a "/". Calculated energies are given for each system, and bonds are indicated by pink for $\pi-\mathrm{H}$, and blue for $\pi-\pi$. The darker shades indicate the presence of more bonds. Indigo is used to denote interactions with the $-\mathrm{CH}_{2}$ - chain of the amino acid. The initial orientation of the two indoles is given, along with the final orientation upon optimization, and the amino acids are represented by single letters with their position on the protein.

Table 5.12: The gas phase results of a biindole interacting with the HHQK region of $\beta$-amyloid

Conformer	Initial Orientation				Final Orientation					$\begin{gathered} \Delta \mathrm{E}_{\mathrm{tot}} \\ (\mathrm{kca} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{vdv}} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\Delta \mathrm{E}_{\text {ele }}$   ( $\mathrm{kcal} / \mathrm{mol}$ )
	H13	H14	Q15	K16	H13	H14	Q15	K16	Other			
1 AMB	InB	InB			InB	In/InB			In/InP	-22.76	-12.67	-11.14
	InB			InB	InB			InB	InB	-14.28	-6.67	-7.84
1 AMC	InB	InB				InB			In*/InB	-15.53	-7.55	-8.65
	InB			InB				InB	InB*/In	-14.20	-7.71	-6.81
1 AML	InB	InB			In	InB			InB	-13.75	-6.75	-10.01
	InP	InP			In	In			InB*/InP	-20.04	-9.53	-13.14
	InB			InB					InB	-9.30	-2.84	-6.81
1BA4	InB	InB			In					-7.89	-1.85	-6.20
	InP	InP			In/InP	In				-10.19	-3.84	-6.21
1IYT	InB	InB			In				InP	-13.02	-4.35	-9.74
	InP	InP			InP	InP				-10.44	-1.77	-8.67
	InB			InB	In			InB		-13.63	-4.75	-7.69
	InP			InP	In			InB	InB	-18.85	-9.76	-11.76
1Z0Q	InB	InB			InB			In		-13.38	-4.30	-9.43
	InP	InP			-	-	-	-	-	-10.59	-4.88	-7.29
	InB			InB				In		-12.43	-3.13	-9.54
	InP			InP	InP			In		-10.60	-2.69	-9.26

[^1]Table 5.13: The gas phase results of a biindole interacting with the LVFF region of $\beta$-amyloid

*indicates which indole the bond is occurring with
For the minimization of the biindole with the HHQK region of $A \beta$, there were fewer orientations available where the molecule could interact with two of the charged amino acids. The results of the optimizations indicate binding interactions can occur at
multiple sites in the region, preferring His13-His14 and His13-Lys16. Binding also occurred at multiple sites within LVFF, favouring Phe19-Phe20, Leu17-Phe20 and Leu17-Val18. For both $A \beta$ regions, the electrostatic energies were more favourable than the van der Waals energies.

### 5.2.3 THE SOLUTION PHASE OPTIMIZATION OF A BIINDOLE WITH HHQK and LVFF

Solution phase optimizations were performed for each of the systems resulting from the gas phase minimizations of the biindole with the HHQK and LVFF regions of $A \beta$. The results of these calculations will demonstrate whether the biindole is still capable of forming binding interactions when water molecules are present.

Explicit solvation was used for these minimizations. A box of water molecules of sufficient size to surround each protein-indole system was put into place, along with periodic boundary conditions. Systems were optimized without constrained protein backbones; however, the energies for each interaction were calculated with a constrained protein backbone in the absence of water and using equations 5.4-5.6. Appendix 5 contains the energies of the solution phase optimized $A \beta$ segments, and the energy of the optimized biindole is given in Table 5.14.

Table 5.14: The solution phase energies of a biindole

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Biindole	26.11	12.73	0.96

### 5.2.4 The Results of the Solution Phase Optimizations of a Biindole and THE HHQK AND LVFF REGIONS OF $\boldsymbol{\beta}$-AMYLOID

The solution phase results are summarized in the following tables according to the region of $\beta$-amyloid. The initial and final orientations of the biindole are given, with each of the two indoles arbitrarily assigned as 1 or 2 to distinguish between them. The measured energies and the calculated binding energies are given, and bonds are indicated according to colour; blue for $\pi-\pi$, pink for $\pi-\mathrm{H}$, and green for cation- $\pi$. Interactions with the backbone of the protein are purple for $\mathrm{C}=\mathrm{O}$ interactions. The indigo coloured cells indicate that the $-\mathrm{CH}_{2}$ - chain of the amino acid is involved in the binding.

Table 5.15: The solution phase results of a biindole interacting with the HHQK region on the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

	Tyr10	His13	His14	Gln15	Lys 16	Val18	Phe20
Initial Orientation	$\mathrm{In}^{2} / \mathrm{InP}^{1}$	$\mathrm{InB}^{2}$	$\mathrm{In}^{1} / \mathrm{InB}^{2}$				
Final Orientation	$\mathrm{InP}^{1 /} / \mathrm{InP}^{2}$	$\mathrm{InB}^{2}$	$\mathrm{In}^{1} / \mathrm{InB}^{2}$			InB ${ }^{1}$	
	$\mathrm{InB}^{2}$						
Total $=$	72.50	$\mathrm{kca} / \mathrm{mol}$					
van der Waals =	25.06	kcal/mol					
Electrostatic $=$	-50.28	kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-29.99	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-28.95	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-14.61	$\mathrm{kca} / \mathrm{mol}$					
Initial Orientation		$\mathrm{InB}^{2}$			$\mathrm{InB}^{2}$		$\mathrm{InB}^{1}$
Final Orientation		$\mathrm{InB}^{2}$			$\mathrm{InB}^{2}$		$\mathrm{InB}^{1}$
Total $=$	80.75	$\mathrm{kca} / \mathrm{mol}$					
van der Waals =	43.38	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-47.63	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-21.74	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-10.63	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-11.97	$\mathrm{kcal} / \mathrm{mol}$					

Table 5.16: The solution phase results of a biindole interacting with the HHQK region on the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

	Tyr10	Glu1 1	His13	His14	Gln15	Lys16	Leu17	Phe20
Initial Orientation	In	$\mathrm{InB}^{1}$		$\mathrm{InB}^{1}$				
	$\mathrm{InB}^{2}$							
Final Orientation	In	$\mathrm{InB}^{1}$		$\mathrm{InB}^{1}$				
	$\mathrm{InB}^{2}$							
Total $=$   van der Waals =	$\begin{aligned} & 77.80 \\ & 39.47 \end{aligned}$	$\mathrm{kca} / \mathrm{mol}$ $\mathrm{kcal} / \mathrm{mol}$						
Electrostatic $=$	-48.43	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-6.77	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-9.52	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	4.41	$\mathrm{kcal} / \mathrm{mol}$						
Initial Orientation						$\mathrm{InB}{ }^{2}$	$\mathrm{InB}^{1}$	$\mathrm{InB}^{1}$
								$\mathrm{In}^{2}$
Final Orientation						$\mathrm{InB}{ }^{2}$	$\underline{I n B}{ }^{1}$	$\mathrm{In}^{2}$
								$\mathrm{In}^{1}$
Total $=$	83.01	$\mathrm{kcal} / \mathrm{mol}$						
van der Waals =	$41.91$	$\mathrm{kca} / \mathrm{mol}$						
Electrostatic $=$	-48.33	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {tot }}=$	-1.56	kcal/mol						
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.08	$\mathrm{kcal} / \mathrm{mol}$						
$\Delta \mathrm{E}_{\text {ele }}=$	4.51	$\mathrm{kcal} / \mathrm{mol}$						

Table 5.17: The solution phase results of a biindole interacting with the HHQK region on the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

	Tyr10	$\mathrm{Val12}$	His13	His14	Gln15	Lys16

Table 5.18: The solution phase results of a biindole interacting with the HHQK region on the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	His13	His14	Gln15
Lys16			
Initial Orientation	In 1		
Final Orientation	In 1		
Total $=$	$100.97 \mathrm{kcal} / \mathrm{mol}$		
van der Waals $=$	$39.79 \mathrm{kcal} / \mathrm{mol}$		
Electrostatic $=$	$-32.55 \mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {tot }}=$	$-22.43 \mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {vdw }}=$	$-10.31 \mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {ele }}=$	$-13.35 \mathrm{kcal} / \mathrm{mol}$		
Initial Orientation	$\mathrm{In}^{1} / \mathrm{InP}^{2} \quad \mathrm{In}{ }^{2}$		
Final Orientation	$\mathrm{In}^{1}$	$\mathrm{In}^{2}$	
Total $=$	$100.76 \mathrm{kcal} / \mathrm{mol}$		
van der Waals $=$	$40.43 \mathrm{kcal} / \mathrm{mol}$		
Electrostatic $=$	$-36.37 \mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {tot }}=$	$-22.63 \mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {vdw }}=$	$-9.68 \mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {ele }}=$	$-17.17 \mathrm{kcal} / \mathrm{mol}$		

Table 5.19: The solution phase results of a biindole interacting with the HHQK region on the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Val12	His13	His14	Gln15	Lys16	Leu17
Initial Orientation		In ${ }^{1}$				InP ${ }^{1}$
Final Orientation		In ${ }^{1}$	InB ${ }^{2}$			InP ${ }^{1}$
Total $=$	96.72	$\mathrm{kca} / \mathrm{mol}$				
van der Waals =	52.85	$\mathrm{kca} / \mathrm{mol}$				
Electrostatic $=$	-37.09	$\mathrm{kcal} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {tot }}=$	-18.18	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.00	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}=$	-7.33	$\mathrm{kcal} / \mathrm{mol}$				
Initial Orientation		$\mathrm{InP}^{1}$	InP ${ }^{2}$			
Final Orientation		$\mathrm{InP}^{1}$	InP ${ }^{2}$			
Total $=$	88.05	$\mathrm{kca} / \mathrm{mol}$				
van der Waals =	49.22	$\mathrm{kcal} / \mathrm{mol}$				
Electrostatic $=$	-45.32	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {tot }}=$	-26.86	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-10.63	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}=$	-15.56	kcal/mol				
Initial Orientation		In ${ }^{1}$			$\mathrm{InB}^{2}$	
Final Orientation		$\mathrm{InB}^{1}$			$\mathrm{InB}^{2}$	
Total $=$	93.00	$\mathrm{kca} / \mathrm{mol}$				
van der Waals =	45.16	$\mathrm{kca} / \mathrm{mol}$				
Electrostatic $=$	-31.29	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {tot }}=$	-21.91	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-14.69	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}=$	-1.53	kcal/mol				
Initial Orientation	$\mathrm{InB}^{2}$	$\mathrm{In}^{2}$			In ${ }^{1}$	
Final Orientation	$\mathrm{InB}^{2}$	InP ${ }^{2}$			$\mathrm{InB}^{1}$	
		$\mathrm{InB}^{2}$			$\mathrm{InP}^{1}$	
Total $=$	80.75	$\mathrm{kca} / \mathrm{mol}$				
van der Waals =	38.81	$\mathrm{kcal} / \mathrm{mol}$				
Electrostatic $=$	-40.28	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {tot }}=$	-34.16	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-21.04	$\mathrm{kca} / \mathrm{mol}$				
$\Delta \mathrm{E}_{\text {ele }}=$	-10.52	$\mathrm{kca} / \mathrm{mol}$				

Table 5.20: The solution phase results of a biindole interacting with the HHQK region on the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid


Table 5.21: The solution phase results of a biindole interacting with the LVFF region on the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

	Lys16	Leu17	Val18	Phe19	Phe20	Asp23	Val24	His 14	Leu17	Val18	Phe19	Phe20	Ala2 1	Glu22
Initial Orientation				$\mathrm{InB}^{1}$	$\mathrm{InB}^{2}$		$\mathrm{InB}^{2}$			$\mathrm{In}^{2}$				
Final Orientation				$\mathrm{InB}^{1}$	$\mathrm{InB}^{2}$	$\mathrm{In}^{2} / \mathrm{InP}^{1}$		$\mathrm{In}^{2}$	$\mathrm{InB}^{1}$	$\mathrm{In}^{2}$				
Total $=$	109.0	$\mathrm{kcal} / \mathrm{mol}$						110.3	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	27.5	$\mathrm{kcal} / \mathrm{mol}$						32.25	$\mathrm{kca} / \mathrm{mol}$					
Electrostatic $=$		$\mathrm{kcal} / \mathrm{mol}$							$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-33.53	$\mathrm{kca} / \mathrm{mol}$						-32.2	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-12.8	$\mathrm{kca} / \mathrm{mol}$						-8.18	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-16.2	$\mathrm{kca} / \mathrm{mol}$						-13.05	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation	$\mathrm{In}^{2} / \mathrm{InP}^{1}$			In ${ }^{1}$					$\mathrm{InB}^{1}$	$\mathrm{In}^{2}$			$\mathrm{InP}^{2} / \mathrm{InP}{ }^{1}$	
									$\mathrm{InP}^{1} / \mathrm{In}^{2}$					
Final Orientation	$\mathrm{InB}^{2} / \mathrm{InP}$			In ${ }^{1}$					$\mathrm{InP}^{1 /} / \mathrm{In}^{2}$	$\mathrm{In}^{2}$			$\mathrm{InP}^{2} / \mathrm{InP}^{1}$	
	$\mathrm{InP}^{2}$								$\mathrm{InB}^{1}$					
Total $=$	108.7	$\mathrm{kca} / \mathrm{mol}$						118.19	$\mathrm{kca} / \mathrm{mol}$					
van der Waals =	33.1	$\mathrm{kca} / \mathrm{mol}$						28.2	$\mathrm{kca} / \mathrm{mol}$					
Electrostatic =	-7.1	$\mathrm{kca} / \mathrm{mol}$							$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-33.8	$\mathrm{kca} / \mathrm{mol}$						-24.36	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.27	$\mathrm{kca} / \mathrm{mol}$						-12.16	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-18.9	$\mathrm{kca} / \mathrm{mol}$						-3.9	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation	-	-	-	-	-	-	-		$\mathrm{InB}^{1}$			InB ${ }^{2}$		
Final Orientation	-	-	-	-	-	-	-		$\mathrm{InB}^{1}$			$\mathrm{InB}^{2}$		
Total $=$	120.7	$\mathrm{kca} / \mathrm{mol}$						131.5	$\mathrm{kca} / \mathrm{mol}$					
van der Waals =	31.6	$\mathrm{kca} / \mathrm{mol}$						36.9	$\mathrm{kca} / \mathrm{mol}$					
Electrostatic $=$		$\mathrm{kca} / \mathrm{mol}$							kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-21.83	$\mathrm{kca} / \mathrm{mol}$						-11.04	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kca} / \mathrm{mol}$						-3.49	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$		$\mathrm{kca} / \mathrm{mol}$						-2.74	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation		$\mathrm{InP}^{1}$									$\mathrm{InB}^{1}$			$\mathrm{InB}^{2}$
Final Orientation		$\mathrm{InP}^{1}$									$\mathrm{InB}^{1}$			$\mathrm{InB}^{2}$
Total $=$	118.1	$\mathrm{kcal} / \mathrm{mol}$						118.1	$\mathrm{kca} / \mathrm{mol}$					
van der Waals =	36.4	$\mathrm{kca} / \mathrm{mol}$							$\mathrm{kca} / \mathrm{mol}$					
Electrostatic $=$		kcal/mol							kcal/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-24.38	$\mathrm{kca} / \mathrm{mol}$						-24.45	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{mol}$						-5.99	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-9.3	$\mathrm{kca} /$ mol						-9.80	$\mathrm{kca} / \mathrm{mol}$					

Table 5.22: The solution phase results of a biindole interacting with the LVFF region on the 1AMC conformer of $\boldsymbol{\beta}$-amyloid

	Lys16	Leu17	Val18	Phe19	Phe20	Asp23	Leu17	Val18	Phe19	Phe20
Initial Orientation				$\mathrm{InB}^{2}$	$\mathrm{InB}^{1}$		$\mathrm{InP}^{2}$			InP ${ }^{1}$
Final Orientation					$\mathrm{InB}^{1}$		$\mathrm{InP}^{2}$			In ${ }^{1}$
Total =	117.9	$\mathrm{kcal} / \mathrm{mol}$					122.44	$\mathrm{kca} / \mathrm{mol}$		
van der Waals =	29.7	$\mathrm{kcal} / \mathrm{mol}$					30.51	$\mathrm{kca} / \mathrm{mol}$		
Electrostatic $=$		$\mathrm{kcal} / \mathrm{mol}$					9.60	$\mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {tot }}=$	-12.5	kcal/mol					-8.05	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.50	$\mathrm{kcal} / \mathrm{mol}$					-6.71	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {ele }}=$	-11.7	$\mathrm{kcal} / \mathrm{mol}$					-1.07	$\mathrm{kcal} / \mathrm{mol}$		
Initial Orientation	$\mathrm{InP}^{2} / \mathrm{InP}$			$\mathrm{InB}^{1}$	InP ${ }^{2}$	InB ${ }^{2}$	In ${ }^{1}$			
				$\mathrm{InP}^{2} / \mathrm{InP}^{1}$						
Final Orientation	$\mathrm{In}^{2}$			$\mathrm{InB}^{1}$	$\mathrm{In}^{2}$	InB ${ }^{2}$	In ${ }^{1}$			
				$\mathrm{In}^{2} / \mathrm{InP}^{1}$						
Total $=$	103.	$\mathrm{kcal} / \mathrm{mol}$					131.43	$\mathrm{kcal} / \mathrm{mol}$		
van der Waals =	24.2	$\mathrm{kcal} / \mathrm{mol}$					36.70	$\mathrm{kca} / \mathrm{mol}$		
Electrostatic $=$	-6.97	$\mathrm{kcal} / \mathrm{mol}$					12.25	$\mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {tot }}=$	-27.00	$\mathrm{kcal} / \mathrm{mol}$					0.94	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-12.9	$\mathrm{kcal} / \mathrm{mol}$					-0.52	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {ele }}=$	-17.6	$\mathrm{kcal} / \mathrm{mol}$					1.57	$\mathrm{kca} / \mathrm{mol}$		
Initial Orientation	-	-	-	-	-	-			$\mathrm{InB}^{1}$	
Final Orientation	-	-	-	-	-	-			$\mathrm{InB}^{1}$	
Total $=$	123.	$\mathrm{kcal} / \mathrm{mol}$					111.68	$\mathrm{kca} / \mathrm{mol}$		
van der Waals =	40.6	$\mathrm{kcal} / \mathrm{mol}$					33.88	$\mathrm{kca} / \mathrm{mol}$		
Electrostatic $=$	-5.2	$\mathrm{kcal} / \mathrm{mol}$					-6.19	$\mathrm{kcal} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {tot }}=$	-7.07	kcal/mol					-18.81	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{mol}$					-3.34	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {ele }}=$	-15.9	$\mathrm{kcal} / \mathrm{mol}$					-16.87	$\mathrm{kca} /$ mol		
Initial Orientation		$\underline{I n P}{ }^{1}$					-	-	-	-
Final Orientation		$\mathrm{InP}^{1}$					-	-	-	-
Total $=$	136.2	$\mathrm{kcal} / \mathrm{mol}$					146.73	$\mathrm{kca} / \mathrm{mol}$		
van der Waals =	39.1	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kca} / \mathrm{mol}$		
Electrostatic $=$		$\mathrm{kcal} / \mathrm{mol}$					12.55	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {tot }}=$		$\mathrm{kcal} / \mathrm{mol}$					16.24	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{mol}$					5.97	$\mathrm{kca} / \mathrm{mol}$		
$\Delta \mathrm{E}_{\text {ele }}=$	-3.8	$\mathrm{kcal} / \mathrm{mol}$					1.87	$\mathrm{kca} /$ mol		

Table 5.23: The solution phase results of a biindole interacting with the LVFF region on the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 5.24: The solution phase results of a biindole interacting with the LVFF region on the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	Gln15	Leu17	Val18	Phe19	Phe20	Glu22	His13	His14	Lys16	Leu17	Vall 8	Phe19	Phe20
Initial Orientation					$\mathrm{InB}^{1}$		$\mathrm{InB}^{1}$	$\mathrm{InB}^{1}$	$\mathrm{InB}^{1}$	$\mathrm{InB}^{1}$			$\mathrm{In}^{2}$
Final Orientation					In ${ }^{1}$			In ${ }^{1}$	$\mathrm{InB}^{1}$	$\begin{gathered} \operatorname{InP}^{1} \\ \operatorname{In}^{1} / \mathrm{InP}^{2} \end{gathered}$			$\mathrm{In}^{2}$
Total $=$   van der Waals =   Electrostatic =	$\begin{array}{r} 117.53 \\ 34.51 \\ -8.15 \end{array}$	$\mathrm{kca} / \mathrm{mol}$ $\mathrm{kca} / \mathrm{mol}$ $\mathrm{kca} / \mathrm{mo}$					$\begin{array}{r} 99.57 \\ 30.67 \\ -25.98 \end{array}$	$\mathrm{kca} / \mathrm{mol}$ $\mathrm{kca} / \mathrm{mol}$ $\mathrm{kca} / \mathrm{mol}$					
Electrostatic -		$\mathrm{kca} / \mathrm{mol}$					-25.98	kca/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-12.96	$\mathrm{kca} / \mathrm{mol}$					-30.91	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-10.44	$\mathrm{kca} / \mathrm{mol}$					-14.28	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	1.46	$\mathrm{kcal} / \mathrm{mol}$					-16.38	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation	$\mathrm{InB}^{1}$		$\mathrm{InB}{ }^{1}$			In ${ }^{1}$				$\mathrm{InB}^{1}$			
Final Orientation	$\mathrm{InB}^{1}$		$\mathrm{InB}^{1}$	$\mathrm{InB}^{1}$		$\mathrm{In}^{1}$				$\mathrm{InB}^{1}$	$\mathrm{InB}^{1}$		
Total $=$	114.48	$\mathrm{kcal} / \mathrm{mol}$					137.69	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	35.45	$\mathrm{kcal} / \mathrm{mol}$					43.48	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic =	-13.64	$\mathrm{kcal} / \mathrm{mol}$					4.16	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {tot }}=$	-16.01	$\mathrm{kca} / \mathrm{mol}$					7.20	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-9.50	$\mathrm{kcal} / \mathrm{mol}$					-1.47	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	-4.03	$\mathrm{kca} / \mathrm{mol}$					13.76	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation	$\underline{I n P}{ }^{2}$		InP ${ }^{1}$	$\underline{I n P}{ }^{2}$		$\mathrm{In}^{1} / \mathrm{InP}^{2}$					$\underline{I n P}{ }^{1}$		
Final Orientation	$\mathrm{InP}^{2}$		InP ${ }^{1}$	$\mathrm{InP}{ }^{2}$		$\mathrm{In}^{1} / \mathrm{InP}^{2}$	-	-	-	-	-	-	-
Total $=$	113.28	$\mathrm{kca} / \mathrm{mol}$					110.53	$\mathrm{kcal} / \mathrm{mol}$					
van der Waals =	30.46	$\mathrm{kcal} / \mathrm{mol}$					30.23	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-5.52	kcal/mol					-8.61	kca/mol					
$\Delta \mathrm{E}_{\text {tot }}=$	-17.21	$\mathrm{kca} / \mathrm{mol}$					-19.95	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-14.49	$\mathrm{kcal} / \mathrm{mol}$					-14.71	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {ele }}=$	4.09	$\mathrm{kca} / \mathrm{mol}$					0.99	$\mathrm{kcal} / \mathrm{mol}$					

Table 5.25: The solution phase results of a biindole interacting with the LVFF region on the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 5.26: The solution phase results of a biindole interacting with the LVFF region on the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid

	His 14	Leu17	Val18	Phe19	Phe20	Ala21	Lys16	Leu17	Val18	Phe19	Phe20
Initial Orientation		$\mathrm{InB}^{1}$			$\mathrm{InB}^{2}$			$\mathrm{InB}^{1}$		$\mathrm{InB}^{2}$	
Final Orientation		$\mathrm{InB}^{1}$			$\mathrm{InB}{ }^{2}$		$\mathrm{InB}{ }^{1}$	$\mathrm{InB}^{1}$		$\mathrm{InB}{ }^{2}$	
Total $=$	164.8	$\mathrm{kcal} / \mathrm{mol}$					158.5	$\mathrm{kcal} / \mathrm{mol}$			
van der Waals =	44.4	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	32.7	$\mathrm{kcal} / \mathrm{mol}$					24.9	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	10.7	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{mol}$					-2.6	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$	14.5	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kcal} / \mathrm{mol}$			
Initial Orientation	In ${ }^{1}$	$\underline{I n P}{ }^{1}$	In ${ }^{1}$			$\underline{I n P}{ }^{1}$		$\underline{I n P}{ }^{1}$			$\mathrm{InP}^{1} / \mathrm{InP}^{2}$
Final Orientation	In ${ }^{1}$		In ${ }^{1}$			$\underline{I n P}{ }^{1}$		$\underline{I n P}{ }^{1}$			$\mathrm{In}^{2}$
Total $=$	133.8	$\mathrm{kcal} / \mathrm{mol}$					155.3	$\mathrm{kcal} / \mathrm{mol}$			
van der Waals =	35.7	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$		$\mathrm{kcal} / \mathrm{mol}$					16.4	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	-20.2	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-6.2	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$	-12.0	$\mathrm{kcal} / \mathrm{mol}$					-1.7	$\mathrm{kcal} / \mathrm{mol}$			
Initial Orientation		$\mathrm{InB}^{1}$	$\mathrm{InB}^{2}$			$\mathrm{InB}^{2}$	$\mathrm{InB}{ }^{1}$	InP ${ }^{1}$		$\underline{I n P}{ }^{1}$	
Final Orientation		$\mathrm{InB}^{1}$	$\mathrm{InB}^{2}$			$\mathrm{InB}^{2}$	$\mathrm{InB}^{1}$			InP ${ }^{1}$	
Total $=$	139.3	$\mathrm{kcal} / \mathrm{mol}$					154.9	$\mathrm{kcal} / \mathrm{mol}$			
van der Waals =	40.7	$\mathrm{kcal} / \mathrm{mol}$					42.8	$\mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	17.1	$\mathrm{kcal} / \mathrm{mol}$					17.4	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	-14.7	$\mathrm{kcal} / \mathrm{mol}$					0.8	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-1.2	$\mathrm{kcal} / \mathrm{mol}$						$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$	-1.1	$\mathrm{kcal} / \mathrm{mol}$					-0.7	$\mathrm{kcal} / \mathrm{mol}$			
Initial Orientation				$\mathrm{InB}^{1}$						$\underline{I n P}{ }^{1}$	$\underline{I n P}{ }^{2}$
Final Orientation				$\mathrm{InB}^{1}$						$\underline{I n P}{ }^{1}$	$\mathrm{InP}{ }^{2}$
Total $=$	159.1	$\mathrm{kcal} / \mathrm{mol}$					136.4	$\mathrm{kcal} / \mathrm{mol}$			
van der Waals =	43.4	$\mathrm{kcal} / \mathrm{mol}$					39.3	$\mathrm{kcal} / \mathrm{mol}$			
Electrostatic $=$	33.3	$\mathrm{kcal} / \mathrm{mol}$					13.5	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {tot }}=$	5.0	$\mathrm{kcal} / \mathrm{mol}$					-17.6	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\mathrm{vdw}}=$		$\mathrm{kcal} / \mathrm{mol}$					-2.6	$\mathrm{kcal} / \mathrm{mol}$			
$\Delta \mathrm{E}_{\text {ele }}=$	15.1	$\mathrm{kcal} / \mathrm{mol}$					-4.6	$\mathrm{kcal} / \mathrm{mol}$			

The solution phase results show that even when water molecules are present, the biindole is capable of binding to both the HHQK and LVFF regions of $\beta$-amyloid. The biindole binds to HHQK at His13-His14 and His13-Lys16. In the LVFF region, interactions are favoured almost equally at Leu17-Phe20, Leu17-Val18, Phe19-Phe20, and Val18-Phe19. For both regions the van der Waals energies tend to be more
favourable than the electrostatic energies when contributing to the overall binding of the system. Comparing the energies of binding at HHQK and LVFF, interactions at LVFF tend to be lower, and thus more favourable.

### 5.3 Interactions Between a Bi-aromatic Molecule and the HH and FF Regions of $\boldsymbol{\beta}$-Amyloid

To better compare the binding strength of aromatic molecules to the HHQK and LVFF regions of $A \beta$, semi-empirical calculations were performed to measure the binding energies of a bi-aromatic molecule to His13-His14 (HH) and Phe19-Phe20 (FF). For these calculations, gas phase minimizations were performed to find the optimized interacting systems, and these optimized systems were then used for semi-empirical modelling.

### 5.3.1 PREPARATION OF THE BI-AROMATIC SYSTEMS FOR OPTIMIZATION

A simple bi-aromatic molecule, 1,2-diphenylethene (Figure 5.3), was constructed for optimization with the HH and FF regions of $\beta$-amyloid. This molecule was constructed to best interact with the geometric arrangements of HH and FF on six different $\mathrm{A} \beta$ conformers; the distance between His13 and His14, and Phe19 and Phe20 was measured for each conformer and averaged to suggest that a molecule capable of spanning 10-13 $\AA$ would be ideal. As a molecule with two aromatic species was desired for interaction, several molecules were constructed before 1,2-diphenylethene was selected to fit these distances.


Figure 5.3: 1,2-diphenylethene
Gas phase systems were set up such that each ring of the bi-aromatic molecule was oriented approximately $3.0 \AA$ away from each of the histidine, or phenylalanine residues. In the case of the 1BA4 conformer, the FF region was inaccessible and was not included in these calculations.

Each of the resulting systems was energy minimized at the semi-empirical molecular orbital level of theory using the AM1 Hamiltonian as implemented in the Gaussian 09W suite of programs [107]. Energies were calculated for the singlet state and ground state system, using quadratically convergent SCF. The energies of the $\beta$-amyloid conformers are given in Appendix 5, and that of 1,2-diphenylethene in the following table, for both the gas phase minimized system and its optimized energy at the AM1 level.

Table 5.27: The gas phase and semi-empirical energies of 1,2-diphenylethene

	Energies (kcal/mol)		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\mathrm{vdw}}$	$\mathrm{E}_{\text {ele }}$
1,2-diphenylethene	31.36	24.85	-0.15
	0.10126097713	hartrees	
	63.542		$\mathrm{kcal} / \mathrm{mol}$

The binding energies were calculated using the following equations for the gas phase minimized systems:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {Biaromatic }}  \tag{5.7}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\text {vdwBiaromatic }}  \tag{5.8}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {eleBiaromatic }} \tag{5.9}
\end{align*}
$$

The binding energies are calculated by subtracting the energies of the optimized biaromatic molecule and the $A \beta$ conformers (with constrained protein backbone) from the geometry optimized systems. For the semi-empirical calculations, equation 5.10 was used to calculate the binding energy for each system.

$$
\begin{equation*}
\Delta \mathrm{E}_{\text {bind }}=\mathrm{E}_{\mathrm{A} \beta \text { Biaromatic }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {Biaromatic }} \tag{5.10}
\end{equation*}
$$

### 5.3.2 Gas Phase Results of the Optimization of a Bi-aromatic Molecule with HH AND FF of $\boldsymbol{\beta}$-Amyloid

The gas phase optimized systems of 1,2-diphenylethene with the HH and FF regions of $A \beta$ are summarized in the following table. The measured and calculated binding energies of the systems are given, also the initial and final orientations of the biaromatic molecule. Each ring was arbitrarily assigned as $\mathrm{Ar}^{1}$ or $\mathrm{Ar}^{2}$ for the summary. Measureable bonds are coloured pink for $\pi-\mathrm{H}$ and blue for $\pi-\pi$. Interactions with the $-\mathrm{CH}_{2}$ - chain of the amino acid are in indigo, while purple indicates that the $\mathrm{C}=\mathrm{O}$ of the protein backbone is involved and lime green, the - $\mathrm{CH}-$ of the backbone.

Table 5.28: The gas phase results of 1,2-diphenylethene interacting with HH and FF on $\boldsymbol{\beta}$-amyloid


The bi-aromatic molecule was capable of binding to HH and FF for all systems.
For two of the conformers, the binding energies for FF are more favourable, while the other three indicate that binding to HH is slightly more preferable than FF.

### 5.3.3 Results of the Semi-EMPIRICAL OPTIMIZATION OF A BI-AROMATIC Molecule with HH and FF on $\boldsymbol{\beta}$-Amyloid

The energies calculated from the semi-empirical optimizations of 1,2diphenylethene with the HH and FF regions of $\mathrm{A} \beta$ are summarized in Table 5.29. The measured energies are in Hartrees, while the calculated binding energies have been converted to $\mathrm{kcal} / \mathrm{mol}$ for easier comparison. Interactions that formed at HH or FF are included - these were taken into consideration when examining the binding energies in order to determine the favoured region of binding for the bi-aromatic molecule.

Table 5.29: Results of the semi-empirical calculations of a bi-aromatic molecule with HH and FF on $\boldsymbol{\beta}$-amyloid

Conformer	Orientation	Interactions	Measured Energy   (hartrees)	Binding Energy   $(\mathrm{kca} / \mathrm{mol})$	Favoured   Orientation
1AMB	H-H	-	-0.98112151594	-5.215	F-F
1AMC	F-F	Phe20	-1.01462932116	-26.241	
	H-H	His14	-0.98447816175	-1.932	F-F
1AML	H-H	Phe19	-1.03521548273	-33.770	-4.510
	F-F	Phe19	-1.34255000338	-1.35412604015	-11.774

More binding interactions formed with the FF region of A $\beta$ than the HH region.
Even taking these bonds into account, the bi-aromatic tended to bind more strongly to Phe19-Phe20.

### 5.4 Conclusions on Aromatic Compounds Binding to HHQK and LVFF of $\beta$-Amyloid

The results of both the gas phase optimizations and the semi-empirical calculations suggest that within $\beta$-amyloid, LVFF is also a viable target for endogenous molecules to bind to in addition to HHQK . It appears that aromatic molecules such as indoles may bind even more strongly to the LVFF region of A $\beta$. Therefore endogenous molecules capable of forming aromatic type interactions, such as those examined in Chapter 3, may bind to both regions of $\beta$-amyloid to prevent amyloid aggregation from occurring.

### 5.5 Interpretation

The binding interactions between $\beta$-amyloid and indole compared to an unsubstituted biindole suggest that both aromatic species bind to the $\mathbf{B B X B}$ region of $\mathrm{A} \beta$ with comparable frequency. Biindole formed more binding interactions with the AAXA motif relative to indole; as the species are chemically similar, this is most likely a difference between the size of the biindole molecule relative to the indole.

The binding energies of biindole are more favourable than those of indole for both interactions at HHQK and at LVFF. This indicates that the binding interactions with the biindole molecule are likely stronger than those with indole. Again, this is most likely due to the relative size of the species examined. The biindole presents two identical indole molecules that can each bind to a separate amino acid side chain, whereas for indole, it must interact with two different side chains simultaneously. Thus the size of the
molecule is important in identifying species to interact with the HHQK and LVFF regions of $A \beta$.

The energies of interactions occurring at the AAXA motif are less for most conformations of $A \beta$ relative to those occurring at $\mathbf{B B X B}$. For indole, the energies of interactions at LVFF are less than those at $\mathbf{H H Q K}$, despite the fact that more binding interactions can occur at LVFF versus HHQK. Thus the interactions occurring at LVFF are likely of a weaker type than those at HHQK. For biindole, more interactions have also formed at LVFF relative to HHQK ; the measured binding energies are more comparable than seen for the indole. Although there are differences in the energetics of interaction, both indole and biindole demonstrate a capacity to bind to the AAXA motif in more systems than observed for the $\mathbf{B B} \mathbf{X B}$ motif. This indicates that aromatic species could be designed to target both the $\mathbf{B B X B}$ and AAXA motifs of $\mathrm{A} \beta$ to block both these regions from interactions with the negatively charged regions and the cholesterol rafts present on membrane surfaces. This would prevent unwanted conformational changes from occurring.

The semi-empirical studies further confirm that aromatic species can bind to both HH and FF on $\mathrm{A} \beta$, and that interactions with FF tend to be more energetically favourable, at least where unsubstituted molecules are concerned. The presence of electron withdrawing or electron donating groups on the aromatic rings would affect the strength of the binding interactions observed. The conformation of $\mathrm{A} \beta$ also appears to play a role in how strongly the bi-aromatic molecule can bind to HH and FF. The different spatial orientations may allow for stronger stacking interactions to occur for some
conformations, and the surrounding amino acid side chains may also influence how energetically favourable these optimized systems are.

It can be concluded that aromatic features may be important in indentifying endogenous molecules that can target the AAXA motif of $\beta$-amyloid alongside the $\mathbf{B B X B}$ motif.

## CHAPTER 6: THE SEARCH FOR A DIAGNOSTIC AGENT FOR ALZHEIMER'S DISEASE

Currently, there are no definitive methods for diagnosing Alzheimer's disease during the life of a patient; it can only be diagnosed with certainty at autopsy. In living patients, methods such as the Mini-Mental State Examination are combined with structural tools such as positron emission tomography (PET) or magnetic resonance imaging (MRI) to diagnose possible AD [20].

MRI imaging agents can be used to produce contrasting images through the use of paramagnetic species such as gadolinium. Chelated gadolinium has significantly reduced toxicity relative to gadolinium salts, and its paramagnetic nature results in a decrease of the $T_{1}$ and $T_{2}$ relaxation times in the MRI [108]. The chelated compound can be used to show leaky blood vessels as locations with higher concentrations of complex will show up differently; the gadolinium affects the protons in the vicinity of its chelation allowing for a contrasting image to be visualized [108]. MRI imaging agents for Alzheimer's disease are desirable as this technique is most widely available in hospitals, relative to PET and SPECT.

### 6.1 Solapsone as an Imaging Agent for Alzheimer's Disease

There is a crucial need for new imaging agents with which to visualize aggregating $\beta$-amyloid in the brain of a living person. An ideal imaging agent should be safe, capable of binding to $A \beta$ and capable of concomitantly binding to an MRI-active
agent such as gadolinium cations. Based upon previous work by the Weaver group, polyvinylsulfonate (PVS) has been identified as a glycosaminoglycan mimic capable of binding to the HHQK region of $\beta$-amyloid. PVS is a polyanionic substance that is capable of binding to HHQK , but with multiple remaining anionic functional groups capable of also binding to $\mathrm{Gd}^{3+}$; however, PVS is not a safe drug-like molecule. Accordingly, a known drug with molecular properties similar to PVS was sought.

Using standard textbooks of pharmacology and medicinal chemistry, coupled with an extensive literature review, the Weaver group assembled a library of 956 compounds as known drugs (Appendix 10). A search of the library revealed that solapsone (Figure 6.1) was a known drug with striking similarities to PVS. As a result, solapsone was studied as a potential imaging agent.


Figure 6.1: Solapsone as charged for physiological pH

Solapsone is a "moderate sized" drug molecule that was used in the early 1960s to treat leprosy [109]. Solapsone is well tolerated with low toxicity and minimal side effects; the LD50 (which is the amount of drug needed to cause death in half of the studied population) was measured as 2.7 g per kilogram [110]. It also appears that solapsone is capable of crossing the blood-brain barrier as concentrations were measured
to be between 1.3-3.7 mg per 100 mL of cerebrospinal fluid, and 2.0-6.1 mg per 100 mg of brain [111].

As it has a high concentration of aromatic rings and negatively charged sulfonate groups, solapsone could potentially interact with both $\beta$-amyloid and a cation available for MRI-contrast imaging. It is also structurally similar to glycosaminoglycans, such as heparin sulfate (Figure 6.2), with which $\mathrm{A} \beta$ binds to undergo conformational changes: this suggests a capacity for solapsone to bind to the protein.


Figure 6.2: Heparin sulfate
Solapsone presents itself as a potential indicator for identifying Alzheimer's disease. Given that it has a flexible structure, it should be capable of chelating to a positively charged metal ion, such as gadolinium or manganese cations, which are commonly used in MRIs, as their paramagnetic properties allow them to be used as contrast agents [112]. The aromatic rings and sulfonate groups should be capable of interacting with the $\beta$-amyloid peptide in the HHQK and LVFF regions while chelating the metal ion. Therefore, this could be used as a method of identifying the amount of $\beta$ amyloid present in the brain and whether a patient has AD or not; the fact that solapsone has been measured in brain bodes well for its potential use as a contrast imaging agent that must cross the blood-brain barrier.

The strength of solapsone as a chelating agent for $\mathrm{Gd}^{3+}$ and $\mathrm{Mn}^{2+}$ was compared to that of EDTA and DPDP (Figure 6.3). EDTA and DPDP are frequently used as chelating agents; EDTA is commonly used as a chelating agent for heavy metals, while DPDP is already used as an organ specific contrast agent for MRI, when chelated to manganese [113].



EDTA


DPDP
Figure 6.3: EDTA and DPDP charged for physiological pH

### 6.1.1 PREPARATION OF SOLAPSONE, EDTA, AND DPDP

Solapsone is a "moderate-sized" organic molecule with numerous aromatic rings and sulfonate groups. A conformational search was performed to determine the lowest energy structure of the molecule [47]. A neutral solapsone molecule was constructed and twelve torsional angles were used to run a systematic conformational search in the gas
phase. From this search the lowest energy conformation was selected and then charged for physiological pH before being optimized in the gas phase. The lowest energy structure of solapsone is relatively symmetric, therefore one half was arbitrarily denoted as the left side and coloured blue to distinguish it from the right half of the molecule.

The same procedure was followed for both EDTA and DPDP, where the molecules were constructed in neutral forms and subjected to systematic conformational searches. There were seven torsional angles examined for EDTA and thirteen for DPDP. The lowest energy conformation from each search was then charged and minimized in the gas phase.

### 6.1.2 Gas Phase OPTIMIZATION OF SOLAPSONE, EDTA, AND DPDP ChELATING GD $^{\mathbf{3 +}}$ AND $\mathbf{M n}^{2+}$

For each of solapsone, EDTA, and DPDP, initial gas phase geometry optimizations were performed with one ion of either $\mathrm{Gd}^{3+}$ or $\mathrm{Mn}^{2+}$ placed at distance of $10 \AA$ from the molecule being examined. These were used to calculate the energy of a non-interactive system. Following these calculations, the ions being examined were separated from the various functional groups on each of the three molecules by approximately $3 \AA$. For each molecule, the interaction that resulted in the lowest overall energy was selected for solution phase optimization.

The results of the gas phase minimizations with $\mathrm{Gd}^{3+}$ are given in Table 6.1 where the calculated total, $\Delta \mathrm{E}_{\text {tot }}$, van der Waals, $\Delta \mathrm{E}_{\text {vdw }}$, and electrostatic energies, $\Delta \mathrm{E}_{\text {ele }}$, for each of the gas phase systems selected are given in $\mathrm{kcal} / \mathrm{mol}$. The table also identifies functional groups where chelation was occurring.

Table 6.1: Gas phase results of solapsone, EDTA and DPDP chelating Gd ${ }^{3+}$

	$\mathrm{E}_{\text {tot }}$	$\Delta \mathrm{E}_{\mathrm{vdw}}$	$\Delta \mathrm{E}_{\text {ele }}$	Chelation sites
Solapsone	-231.28	6.92	-244.50	$2 \mathrm{SO}_{3}{ }^{-}$
EDTA	-234.16	13.85	-247.07	$2 \mathrm{CO}_{2}{ }^{-}$and 1 N
DPDP	-236.53	9.01	-252.26	$2 \mathrm{CO}_{2}{ }^{-}$

The results of the gas phase optimization of the three molecules with $\mathrm{Mn}^{2+}$ are given in Table 6.2 for each of the lowest energy systems.

Table 6.2: Gas phase results of solapsone, EDTA and DPDP chelating Mn ${ }^{2+}$

	$\Delta \mathrm{E}_{\text {tot }}$	$\Delta \mathrm{E}_{\mathrm{vdw}}$	$\Delta \mathrm{E}_{\text {ele }}$	Chelation sites
Solapsone	-134.67	4.27	-142.39	$2 \mathrm{SO}_{3}{ }^{-}$
EDTA	-157.36	8.88	-165.20	$2 \mathrm{CO}_{2}{ }^{-}$and 1 N
DPDP	-155.24	8.05	-173.89	$\mathrm{PO}_{3}{ }^{2-}$ and $1 \mathrm{CO}_{2}{ }^{-}$

### 6.1.3 SOLUTION PhASE OPTIMIZATION OF SOLAPSONE, EDTA, AND DPDP Chelating Gd ${ }^{3+}$ and $\mathbf{M n}^{2+}$

Each of the selected energetically favourable systems from the gas phase interactions was minimized in a solvated environment. The systems in which the chelating agents were separated by $10 \AA$ were also optimized in the solution phase in order to determine the energies of interaction.

Each system was placed in a $30.28 \AA$ x $30.28 \AA$ x $30.28 \AA$ box of water molecules and minimized. The energies for each system were calculated upon removal of the solvent (as the number of water molecules present will vary with each system) and the chelation sites were identified for solapsone, EDTA and DPDP.

The results of the solution phase optimized interactions between each of the chelating agents and $\mathrm{Gd}^{3+}$ are given in Table 6.3, while the interactions with $\mathrm{Mn}^{2+}$ are given in Table 6.4. The measured energies are in $\mathrm{kcal} / \mathrm{mol}$.

Table 6.3: Solution phase results of solapsone, EDTA and DPDP chelating Gd ${ }^{\text {3+ }}$

	$\Delta \mathrm{E}_{\text {tot }}$	$\Delta \mathrm{E}_{\mathrm{vdw}}$	$\Delta \mathrm{E}_{\text {ele }}$	$l$
Colapsone	-221.84	2.91	-220.86	$2 \mathrm{SO}_{3}{ }^{-}$and $2 \mathrm{H}_{2} \mathrm{O}$
EDTA	-232.79	13.33	-240.90	$2 \mathrm{CO}_{2}{ }^{-}$and 1 N and $2 \mathrm{H}_{2} \mathrm{O}$
DPDP	-228.86	4.26	-227.98	$2 \mathrm{CO}_{2}{ }^{-}$and $1 \mathrm{H}_{2} \mathrm{O}$

Table 6.4: Solution phase results of solapsone, EDTA and DPDP chelating $\mathbf{M n}^{\mathbf{2 +}}$

	$\mathrm{E}_{\text {tot }}$	$\Delta \mathrm{E}_{\mathrm{vdw}}$	$\Delta \mathrm{E}_{\text {ele }}$	Chelation sites
Solapsone	-128.13	4.45	-134.11	$2 \mathrm{SO}_{3}{ }^{-}$
EDTA	-151.65	5.54	-154.15	$2 \mathrm{CO}_{2}{ }^{-}$and 1 N and $2 \mathrm{H}_{2} \mathrm{O}$
DPDP	-144.65	9.94	-164.76	$1 \mathrm{PO}_{3}{ }^{2-}$ and $1 \mathrm{CO}_{2}{ }^{-}$and $1 \mathrm{H}_{2} \mathrm{O}$

### 6.1.4 CONCLUSIONS ON SOLAPSONE, EDTA AND DPDP ChELATING Gd ${ }^{3+}$ and Mn ${ }^{2+}$

Gas phase minimizations indicated that solapsone was capable of chelating both $\mathrm{Gd}^{3+}$ and $\mathrm{Mn}^{2+}$. The total binding energy of solapsone relative to EDTA and DPDP for chelating $\mathrm{Gd}^{3+}$ is very similar, it is also the case for the electrostatic energies. In terms of the van der Waals energies, solapsone is most favoured, followed by DPDP and then EDTA, this can be explained by the number of aromatic rings present in each molecule.

In the gas phase minimization of the three molecules with $\mathrm{Mn}^{2+}$, solapsone was less favourable in terms of binding energies, with the exception of having the best van der Waals energy of the three. Manganese is a much smaller ion than gadolinium, so it would
seem that the large structure of solapsone is not as capable as the smaller EDTA and DPDP structures in terms of chelating the ion.

The solution phase results of the minimization of solapsone, EDTA and DPDP with $\mathrm{Gd}^{3+}$ indicate an order of overall energetic favourability of EDTA $\geq$ DPDP $>$ solapsone, although solapsone is still quite capable of chelating the ion. Solapsone is still preferred in terms of the van der Waals energy over the other two chelating agents. All three systems have the gadolinium ion chelating with water, as well as the molecule of interest. In the case of solapsone in particular, this indicates that the chelated system could also interact with the $\beta$-amyloid peptide. Figure 6.4 demonstrates the orientation of the most favourable chelated complex of solapsone and gadolinium.


Figure 6.4: Solapsone chelating gadolinium (III).

The results of the solution phase optimization of the systems involving the manganese ion indicate a distinct pattern of EDTA $>$ DPDP $>$ solapsone in terms of the overall binding energy. Contrary to what is seen for the gadolinium systems, DPDP chelated to $\mathrm{Mn}^{2+}$ has a lower electrostatic energy than EDTA, which is still much lower than the same energy for solapsone. Similarly, while solapsone is still the most favoured for van der Waals energies, EDTA exhibits a lower energy than DPDP (despite a lack of aromatic rings). One possible explanation for the less favourable solapsone energies may be due to the fact that manganese (II) is chelating in such a position that it is not interacting with any water molecules; this results in few chelation sites for the ion and may indicate that the structure of the system is less favourable as a whole.

### 6.2 The Optimization of a Solapsone-Gd ${ }^{3+}$ COMPLEX With $\boldsymbol{\beta}$-Amyloid

As solapsone presented itself as a viable molecule for chelating paramagnetic cations, the next phase was to determine if a complex of solapsone and gadolinium would be capable of binding to $\beta$-amyloid. Molecular mechanics simulations were performed in gas and solution phase environments to determine if binding could occur with the HHQK and LVFF regions of $A \beta$.

### 6.2.1 Preparation of $\boldsymbol{\beta}$-Amyloid-Solapsone-Gd ${ }^{3+}$ SYSTEMS FOR GAS PHASE OPTIMIZATION

The best chelated solapsone- $\mathrm{Gd}^{3+}$ complex identified in Section 6.1.1 was selected for optimization with six different conformations of $\beta$-amyloid: 1AMB, 1AMC, 1AML, 1BA4, 1IYT and 1Z0Q (as identified by their PDB codes). The gas phase
optimized energies of the $A \beta$ conformers are given in Appendix 6, and that of the solapsone- $\mathrm{Gd}^{3+}$ complex is given in Table 6.5.

Table 6.5: The gas phase energies of solapsone chelating gadolinium

	Energies $(\mathrm{kcal} / \mathrm{mol})$		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Solapsone $-\mathrm{Gd}^{3+}$	-150.16	47.42	-223.73

As the chelated solapsone- $\mathrm{Gd}^{3+}$ complex is more fixed in its structure, there were only a few orientations that could be set up for optimization. Systems were prepared such that two of the functional groups on solapsone were situated $\sim 3.0 \AA$ away from two of the amino acid side chains of interest in the HHQK or LVFF region of $\beta$-amyloid. For the optimized results, the energies were calculated to determine the binding strength via the following equations:

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {SolapGd }}  \tag{6.1}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdwSolapGd}}  \tag{6.2}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {ele } A \beta}-\mathrm{E}_{\text {eleSolapGd }} \tag{6.3}
\end{align*}
$$

The total, van der Waals, and electrostatic binding energies were calculated by subtracting the energy of the optimized solapsone- $\mathrm{Gd}^{3+}$ complex and the energy of the $\mathrm{A} \beta$ conformer from the energy of the gas phase minimized system.

The energy minimizations were performed with constrained protein backbones to prevent structural collapse.

### 6.2.2 The Gas Phase Results of SOLAPSONE-Gd ${ }^{3+}$ OPTIMIzEd WITH $\boldsymbol{\beta}$-AMYLOID

A significant number of optimized $A \beta$-solapsone- $\mathrm{Gd}^{3+}$ systems were generated from the gas phase minimizations. The complete results are given in Appendix 11. From
the gas phase results, six systems were selected for each of the HHQK and LVFF regions of each conformer of $\beta$-amyloid for solution phase optimization. The systems that were selected are listed in the following tables according to $\mathrm{A} \beta$ conformer. The functional groups on solapsone are identified according to Figure 6.5.


Figure 6.5: Abbreviations of the functional groups on solapsone
The amino acid side chains are represented by their three letter notation, and both the initial orientation of solapsone- $\mathrm{Gd}^{3+}$ and its final orientation upon minimization are given. Measured bonds that formed are coloured blue for $\pi-\pi$, green for cation- $\pi$, and orange for hydrogen bonds. When more than one hydrogen bond formed with an amino acid, a darker shade of orange was used. Interactions with the $-\mathrm{CH}_{2}$ - of the amino acid side chain are shown in indigo, while interactions with the $\mathrm{C}=\mathrm{O},-\mathrm{NH}-$ or $-\mathrm{CH}-$ of the protein backbone are coloured purple, yellow and lime green, respectively. The chelation occurring with $\mathrm{Gd}^{3+}$ was also included for reference.

Table 6.6: Selected results of the gas phase minimization of solapsone-Gd ${ }^{3+}$ with the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 6.7: Selected results of the gas phase minimization of solapsone-Gd ${ }^{3+}$ with the 1AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 6.8: Selected results of the gas phase minimization of solapsone-Gd ${ }^{3+}$ with the 1AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.9: Selected results of the gas phase minimization of solapsone-Gd ${ }^{3+}$ with the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.10: Selected results of the gas phase minimization of solapsone- $\mathbf{G d}^{\mathbf{3 +}}$ with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.11: Selected results of the gas phase minimization of solapsone- $\mathbf{G d}^{\mathbf{3 +}}$ with the LVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.12: Selected results of the gas phase minimization of solapsone- $\mathbf{G d}^{3+}$ with the HHQK region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid

	Gly9	Tyr10	His 13	His14	Gln15	Lys 16	Leu17	Gly9	Tyr10	His 13	His 14	Gln15	Lys16	
Initial Orientation			LB1	RS1		LS1				LS1	RS1			
Final Orientation	CS	CS		RS1		LS1		LS1	LB1	LS1	RS1			
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$@ 6 sites								$\mathrm{Gd}^{3+}$ chela	2 $\mathrm{SO}_{3}{ }^{-}$	@ 4 sit				
Total $=$	-72.10	kcal/mol		$\Delta \mathrm{E}_{\text {Tot }}=$	-85.39 kcalmol			-64.8	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-78.09	$\mathrm{ca} / \mathrm{mol}$	
Van der Waals =	121.54	kcal/mol		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-7.03	$\mathrm{kca} / \mathrm{mol}$		121.9	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-6.67	ca/mol	
Electrostatic =	-484.65	kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-79.87	kca/mol		-480.66	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-75.88	ca/mol	
Initial Orientation			$\begin{aligned} & \text { RS1 } \\ & \text { RS1 } \end{aligned}$	LS1			CS			RB2	LS1		RS1	
Final Orientation				LS1				LS1	LS 1			RS1		
			LB1											
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$@ 6 sites								$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$		@ 5 sites				
Total $=$	-62.75	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-76.04	$\mathrm{kca} / \mathrm{mol}$			-62.6	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-75.84	calmol
Van der Waals =	118.78	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-9.79	$\mathrm{kca} / \mathrm{mol}$			119.0	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-9.53	cal/mol
Electrostatic =	-475.26	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-70.49	$\mathrm{kca} / \mathrm{mol}$			-474.	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-69.63	calmol
Initial Orientation   Final Orientation	RS2	LS1	RS2	LS1	RS1					LB1			RB1	
			RS1	LS1						LS1			RB1	
			$\begin{aligned} & \text { RB2 } \\ & \text { RS2 } \end{aligned}$							CS			RS1	
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$@ 6 sites								$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$@ 6 sites						
Total $=$	-59.70	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-72.98	$\mathrm{kca} / \mathrm{mol}$		-47.76	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-61.04	$\mathrm{ca} / \mathrm{mol}$	
Van der Waals =	116.27	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-12.30	$\mathrm{kca} / \mathrm{mol}$		121.2	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-7.30	$\mathrm{ca} / \mathrm{mol}$	
Electrostatic =	-473.41	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-68.63	$\mathrm{kca} / \mathrm{mol}$		-462.8	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-58.03	$\mathrm{ca} / \mathrm{mol}$	

Table 6.13: Selected results of the gas phase minimization of solapsone- $\mathrm{Gd}^{3+}$ with the LVFF region of the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid


Where possible, the gas phase systems selected for optimization in the solution
phase had low energies, and binding interactions occurring at multiple sites within the $\mathrm{A} \beta$ region of interest. It can be seen that the complex can bind to $\beta$-amyloid at multiple sites within the HHQK and LVFF regions and gadolinium can chelate solapsone at multiple sites while these interactions are occurring.

### 6.2.3 The Solution Phase Optimization of Solapsone-Gd ${ }^{3+}$ with $\boldsymbol{\beta}$-Amyloid

The solution phase optimizations were performed by surrounding the gas phase system with a box of explicit water molecules. Minimization was performed with unconstrained protein backbones and periodic boundary conditions in place. Each of the optimized systems was examined for potential binding interactions, the energies were measured ignoring solvent contributions, and with a constrained protein backbone. The binding energies were calculated using equations 6.1-6.3; the energies of the solution phase optimized proteins are given in Appendix 6, and the energy of the solapsone- $\mathrm{Gd}^{3+}$ complex is given in the following table.

Table 6.14: The solution phase energies of solapsone-Gd ${ }^{3+}$

	Energies $(\mathrm{kcal} / \mathrm{mol})$		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Solapsone $-\mathrm{Gd}^{3+}$	-130.46	51.01	-210.73

### 6.2.4 RESULTS OF THE Solution Phase OPTIMIZATION OF Solapsone-Gd ${ }^{3+}$ WITH $\boldsymbol{\beta}$-AMYLOID

The results of the $\mathrm{A} \beta$-solapsone- $\mathrm{Gd}^{3+}$ systems geometry optimized in an aqueous environment are summarized in the following tables according to $\beta$-amyloid conformer and region of interest (HHQK or LVFF). The measured and calculated energies for each system are given, along with the initial and final orientations of binding (amino acids are noted by their three letter abbreviations). The chelation occurring with gadolinium is also given, and the measured bonds that formed in the systems are indicated according to the following colours: orange for hydrogen bonds, green for cation- $\pi$, and blue for $\pi-\pi$. Darker shades indicate the formation of multiple bonds of that type. Indigo is used for
interactions occurring with the $-\mathrm{CH}_{2}$ - chain of the amino acid, lime green is used for the $-\mathrm{CH}-$ of the backbone, and yellow and purple are used for the $-\mathrm{NH}-$ and $\mathrm{C}=\mathrm{O}$ of the backbone.

Table 6.15: The solution phase results of solapsone- $\mathrm{Gd}^{\mathbf{3 +}}$ interacting with the HHQK region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 6.16: The solution phase results of solapsone- Gd $^{3+}$ interacting with the LVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 6.17: The solution phase results of solapsone-Gd ${ }^{3+}$ interacting with the HHQK region of the 1 AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 6.18: The solution phase results of solapsone- Gd $^{3+}$ interacting with the LVFF region of the 1 AMC conformer of $\boldsymbol{\beta}$-amyloid


Table 6.19: The solution phase results of solapsone- Gd $^{3+}$ interacting with the HHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.20: The solution phase results of solapsone-Gd ${ }^{3+}$ interacting with the LVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.21: The solution phase results of solapsone-Gd ${ }^{3+}$ interacting with the HHQK region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.22: The solution phase results of solapsone- Gd $^{3+}$ interacting with the LVFF region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.23: The solution phase results of solapsone- Gd $^{3+}$ interacting with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.24: The solution phase results of solapsone- Gd $^{3+}$ interacting with the LVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.25: The solution phase results of solapsone- Gd $^{3+}$ interacting with the HHQK region of the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid

	Gly9	Tyr10	His13	His 14	Gln 15	Lys16	Leu17	Gly9	Tyr10	His 13	His14	Gln 15	Lys16	Leu17
Initial Orientation	CS	CS	LB1	RS1		LS 1		LS 1	LB1	LS1	RS1			
Final Orientation		CS	LB1	RS 1		LS 1		LS 1	CS	LS 1	RS 1			
			CS						LB1					
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@ 4 sites $+2 \mathrm{H}_{2} \mathrm{O}$								$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$@ 3 sites $+2 \mathrm{H}_{2} \mathrm{O}$						
Total $=$	-39.5	kcal/m						-86.	$\mathrm{kca} / \mathrm{mol}$					
Van der Waals =	105.	kcal/m						113.	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-472.0	$\mathrm{kcal} / \mathrm{m}$						-464.	$\mathrm{kca} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {Tot }}=$	-46.1	$\mathrm{ccal} / \mathrm{m}$						-93.	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-22.7	$\mathrm{kcal} / \mathrm{m}$						-15.0	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {Ele }}=$	-88.1	$\mathrm{kcal} / \mathrm{m}$						-81.	$\mathrm{kcal} / \mathrm{mol}$					
Initial Orientation			RS1	LS 1			CS		LS 1	RB2	LS 1		RS 1	CS
				LB1										
Final Orientation	RS 1		RS1	LS 1			CS	LS 1	LS 1	RB2	LS 1		RS1	
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@ 4 sites $+2 \mathrm{H}_{2} \mathrm{O}$								$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@ 4 sites $+1 \mathrm{H}_{2} \mathrm{O}$						
Total $=$	-138.2	$\mathrm{kca} / \mathrm{m}$						-88	$\mathrm{kcal} / \mathrm{mol}$					
Van der Waals =	101.6	kcal/m						130	$\mathrm{kcal} / \mathrm{mol}$					
Electrostatic $=$	-485.0	kcal/m						-479	kcal/mol					
$\Delta \mathrm{E}_{\text {Tot }}=$	-144.7	$\mathrm{ccal} / \mathrm{m}$						-95.	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-26.6	kcal/m							$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {Ele }}=$	-101.0	kcal/m						-95.	kcal/mol					
Initial Orientation	RS2	LS 1	RS1	LS 1		RS1				LS 1			RB1	
			RB2							CS			RS1	
			RS2											
Final Orientation		LS 1	RS1	LS 1		RS1				LS 1			RS1	
			RS2							LB1			RB1	
										CS				
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@ 6 sites $+1 \mathrm{H}_{2} \mathrm{O}$								$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$@ 3 sites $+2 \mathrm{H}_{2} \mathrm{O}$						
Total $=$	-80.00	$\mathrm{kcal} / \mathrm{m}$						-95.	$\mathrm{kcal} / \mathrm{mol}$					
Van der Waals =	121.4	kcal/m						118.	$\mathrm{kca} / \mathrm{mol}$					
Electrostatic $=$	-473.4	$\mathrm{kcal} / \mathrm{m}$						-453.	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {Tot }}=$	-86.57	$\mathrm{kcal} / \mathrm{m}$						-102.	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-6.8	kcal/m						-9.	$\mathrm{kcal} / \mathrm{mol}$					
$\Delta \mathrm{E}_{\text {Ele }}=$	-89.5	kcal/m						-69.	$\mathrm{kcal} / \mathrm{mol}$					

Table 6.26: The solution phase results of solapsone- Gd $^{3+}$ interacting with the LVFF region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


The solution phase optimized systems of $\beta$-amyloid and solapsone- $\mathrm{Gd}^{3+}$ showed binding could occur between the complex and the HHQK and LVFF regions of interest. The orientation of the interactions tended to remain the same as in the gas phase system, and gadolinium was still capable of chelating to solapsone in the presence of water, and
even interacted with the protein in some instances. An example of the binding
interactions can be seen in Figure 6.6, with the water molecules removed except for those interacting with gadolinium. The electrostatic energies are more favourable than the van der Waals energies of the systems. Binding occurs preferentially at His13-His14, followed by His13-Lys16 in the HHQK region, while Leu17-Phe20, Phe19-Phe20, and

Leu17-Val18 are favoured in the LVFF region.


Figure 6.6: Solution phase interactions between the chelated solapsone-Gd ${ }^{\mathbf{3 +}}$ complex and $\boldsymbol{\beta}$-amyloid. Dashed green lines indicate the formation of aromatic-aromatic and cation-aromatic interactions. Dashed purple lines represent the formation of hydrogen bonds, and dashed blue lines indicate metal-ligation interactions.

### 6.3 Solapsone as an Amyloid Anti-agGregant

Given the success of solapsone- $\mathrm{Gd}^{3+}$ binding to $\beta$-amyloid, solapsone was examined by itself as a potential inhibitor of $A \beta$ aggregations. Both gas phase and solution phase optimizations were performed to determine solapsone's ability to bind to the $\beta$-amyloid protein.

### 6.3.1 GAS PhASE OPTIMIZATIONS OF SOLAPSONE WITH $\boldsymbol{\beta}$-AMYLOID

Gas phase minimizations were performed for solapsone interacting with five different conformers of $\mathrm{A} \beta$ (the 1 AMB and 1 AMC conformers are nearly identical, so only one was used) using the CHARMM22 force field in the Molecular Operating Environment [48, 87]. Each system was set up such that a combination of two of the functional groups on solapsone were oriented towards two of the amino acid side chains on $\mathrm{A} \beta$ in one of three regions: HHQK, LVFF and overlapping both HHQK and LVFF. The functional groups were selected such that a combination of one group from each half of the molecule was selected, or one group from the side along with the central $\mathrm{SO}_{2}$ group.

For these optimizations, the lowest energy structure identified from the systematic conformational search performed in section 6.1.1 was selected for use. The energies of the $\mathrm{A} \beta$ conformers, measured with a constrained protein backbone, are given in Appendix 6, and the energies of the optimized solapsone molecule are given in the following table.

Table 6.27: The gas phase energies of solapsone

	Energies $(\mathrm{kcal} / \mathrm{mol})$		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Solapsone	81.13	40.56	20.81

Using these energies, equations 6.4-6.6 were used to calculate the binding energies for the optimized systems.

$$
\begin{align*}
& \Delta \mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {tot }}-\mathrm{E}_{\mathrm{A} \beta}-\mathrm{E}_{\text {Solapsone }}  \tag{6.4}\\
& \Delta \mathrm{E}_{\mathrm{vdw}}=\mathrm{E}_{\mathrm{vdw}}-\mathrm{E}_{\mathrm{vdwA} \beta}-\mathrm{E}_{\mathrm{vdwSolapsone}}  \tag{6.5}\\
& \Delta \mathrm{E}_{\text {ele }}=\mathrm{E}_{\text {ele }}-\mathrm{E}_{\text {eleA } \beta}-\mathrm{E}_{\text {eleSolapsone }} \tag{6.6}
\end{align*}
$$

The total, $\Delta \mathrm{E}_{\text {tot }}$, van der Waals, $\Delta \mathrm{E}_{\mathrm{vdw}}$, and electrostatic energies, $\Delta \mathrm{E}_{\text {ele }}$, were calculated by subtracting the energies of the individually optimized $\mathrm{A} \beta$ proteins and the solapsone molecule from the energies of the minimized protein-solapsone systems.

### 6.3.2 Results of the Gas Phase Optimization of Solapsone and $\boldsymbol{\beta}$-Amyloid

The minimization of solapsone with five different conformations of $\beta$-amyloid resulted in a massive number of systems. From these systems, one fifth of the results for each of the three regions of $A \beta$ were selected for solution phase optimizations, these are summarized in the following tables. Each table shows the initial and final orientation of solapsone, with the functional groups identified according to Figure 6.4. The amino acids are represented by their three letter abbreviations, and the different binding interactions are noted by colour: orange, green and blue are used for hydrogen bonds, cation $-\pi$, and $\pi$ $\pi$ interactions; yellow, purple and lime green are used for interactions with the $-\mathrm{NH}-$, $\mathrm{C}=\mathrm{O}$, and $-\mathrm{CH}-$ of the protein backbone; indigo is used for interactions occurring with the $-\mathrm{CH}_{2}$ - chain of the amino acids.

Table 6.28: The gas phase results of solapsone interacting with the HHQK region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 6.29: The gas phase results of solapsone interacting with the LVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

	Val12	His13 H	His14	Gln 15	Lys 16	Leu17 V	Val18	Phe19	Phe20	His13	Lys16	Leu17	Val18	Phe19	Phe20	Val24	Lys28
Initial Orientation								RB1	LB1			LB2			RB2		
Final Orientation	RS1	LS1		RS 1	RS2			RS1	LB1	LS2	LS1	LB2			RS2	RB2	RS2
					RB1			RB1	LNH	LS 1					RB2		
					RS 1			CS									
					LB1												
					LS1												
					LS2												
Total $=$	-59.60	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-128.94	$\mathrm{kcal} / \mathrm{mol}$				-56.08	$\mathrm{kcal} / \mathrm{m}$	ol	$\Delta \mathrm{E}_{\text {Tot }}=$	-125.42	$\mathrm{kcal} / \mathrm{n}$		
Van der Waals =	68.57	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-27.27	$\mathrm{kca} / \mathrm{mol}$				77.3	$\mathrm{kcal} / \mathrm{m}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-18.49	$\mathrm{kcal} / \mathrm{m}$		
Electrostatic $=$	-303.53	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-112.63	$\mathrm{kcal} / \mathrm{mol}$				-308.00	$\mathrm{kcal} / \mathrm{m}$		$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-117.10	$\mathrm{kcal} / \mathrm{m}$		
Initial Orientation						RB2 L	LB2					LB1			RB1		
Final Orientation			LB2							LS2	LS2	LS1			CS		RS1
			LB2							LS1	LS1				RB1		
											LB1						
Total $=$	22.73	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-46.61	$\mathrm{kca} / \mathrm{mol}$				-52.8	$\mathrm{kcal} / \mathrm{m}$	ol	$\Delta \mathrm{E}_{\text {Tot }}=$	-122.21	$\mathrm{kcal} / \mathrm{m}$		
Van der Waals =	86.93	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-8.91	$\mathrm{kcal} / \mathrm{mol}$				83.5	$\mathrm{kcal} / \mathrm{m}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-12.27	$\mathrm{kcal} / \mathrm{m}$		
Electrostatic $=$	-235.18	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-44.29	$\mathrm{kcal} / \mathrm{mol}$				-308.18	$\mathrm{kcal} / \mathrm{m}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-117.28	$\mathrm{kcal} / \mathrm{m}$		
Initial Orientation								LB2	RB2			LB2			RB1		
Final Orientation		RS2			LS2	RS2		LB2	RS2		RS2	LB2			LS2		LS1
					LNH	RB2									LB1		LS2
					LB1										RB1		
					RS2												
Total $=$	-52.56	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-121.90	$\mathrm{kcal} / \mathrm{mol}$				-51.4	$\mathrm{kca} / \mathrm{m}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-120.80	$\mathrm{kca} / \mathrm{m}$		
Van der Waals =	79.19	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-16.65	$\mathrm{kcal} / \mathrm{mol}$					$\mathrm{kcal} / \mathrm{m}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-11.33	$\mathrm{kcal} / \mathrm{m}$		
Electrostatic $=$	-297.39	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-106.50	$\mathrm{kca} / \mathrm{mol}$				-305.4	$\mathrm{kca} / \mathrm{m}$	ol	$\Delta \mathrm{E}_{\text {Ele }}=$	-114.57	$\mathrm{kcal} / \mathrm{m}$		

Table 6.30: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 6.30: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

	Gly9	Tyr10	His13	His14	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Ala2 1	Val24	Lys28
Initial Orientation				LS2			RB1						
Final Orientation		LB2	LS2	LS2			RS2			RS2		CS	RS1
							CS						RS2
							LB1						
Total $=$	-62.36 kcal/mol			$\Delta \mathrm{E}_{\text {Tot }}=$	-131.70	$\mathrm{kcal} / \mathrm{mo}$							
Van der Waals =	$77.45 \mathrm{kcal} / \mathrm{mol}$			$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-18.39	$\mathrm{kcal} / \mathrm{mo}$							
Electrostatic $=$	-308.69 kcal/mol			$\Delta \mathrm{E}_{\text {Ele }}=$	-117.80	$\mathrm{kcal} / \mathrm{mo}$							
Initial Orientation   Final Orientation			LB1							RB2			
	LS 1	LS 1	LB1				RNH			RB2			
			RB1			RS1	RB1			RS1			
			LB1			RNH							
			LNH			RB1							
			LS1										
Total	-62.08 kcal/mol			$\Delta \mathrm{E}_{\text {Tot }}=$	-131.42	$\mathrm{kcal} / \mathrm{mo}$							
Van der Waals	$71.44 \mathrm{kcal} / \mathrm{mol}$			$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-24.40	$\mathrm{kcal} / \mathrm{mo}$							
Electrostatic	-305.99 kcal/mol			$\Delta \mathrm{E}_{\text {Ele }}=$	-115.10	$\mathrm{kcal} / \mathrm{mo}$							
Initial Orientation Final Orientation	RS1				LB1								
		RS1	RB2	RS1			LS1			LS 1			LS2
		RS2	RB2				LB1						
			RNH										
			RS1										
Total	-59.01 $\mathrm{kcal} / \mathrm{mol}$			$\Delta \mathrm{E}_{\text {Tot }}=$	-128.35	$\mathrm{kcal} / \mathrm{mo}$							
Van der Waals	$70.65 \mathrm{kcal} / \mathrm{mol}$			$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-25.19	$\mathrm{kcal} / \mathrm{mo}$							
Electrostatic	-300.95 kcal/mol			$\Delta \mathrm{E}_{\text {Ele }}=$	-110.06	$\mathrm{kca} / \mathrm{mo}$							
			RB1							LB2			
Final Orientation			RB2			RB2	LS 1			LS1			LS2
			RS1							LB2			
			RNH										LB2
			RB1										
Total	-55.20 kcal/mol			$\Delta \mathrm{E}_{\text {Tot }}=$	-124.5	$\mathrm{kca} / \mathrm{mo}$							
Van der Waals	$76.56 \mathrm{kcal} / \mathrm{mol}$			$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-19.28	$\mathrm{kcal} / \mathrm{mo}$							
Electrostatic	-310.76 kcal/mol			$\Delta \mathrm{E}_{\text {Ele }}=$	-119.86	$\mathrm{kcal} / \mathrm{mo}$							
Initial Orientation	$\begin{aligned} & \text { LS2 } \\ & \text { LS2 } \\ & \text { LB1 } \end{aligned}$						RB2						
Final Orientation				RS2		LS2	RB1	RS2			RB2		
						LNH	RS2	RB2					
Total	-54.86 kcal/mol			$\Delta \mathrm{E}_{\text {Tot }}=$	-124.20	$\mathrm{kcal} / \mathrm{mo}$							
Van der Waals	$80.19 \mathrm{kca} / \mathrm{mol}$			$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-15.65	$\mathrm{kcal} / \mathrm{mo}$							
Electrostatic	-303.44 kcal/mol			$\Delta \mathrm{E}_{\text {Ele }}=$	-112.5	kcal/mo							
Initial Orientation			LS2					RB1					
Final Orientation			LS2	RS2		LS2	RB1	RS2					
			LB1			$\begin{gathered} \text { LNH } \\ \text { LB2 } \end{gathered}$	RS2						
Total	-54.79 kcal/mol			$\Delta \mathrm{E}_{\text {Tot }}=$	-124.13	kcal/mo							
Van der Waals	$84.03 \mathrm{kcal} / \mathrm{mol}$			$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-11.8	$\mathrm{kcal} / \mathrm{mo}$							
Electrostatic	$-309.00 \mathrm{kca} / \mathrm{mol}$			$\Delta \mathrm{E}_{\text {Ele }}=$	-118.1	$\mathrm{kcal} / \mathrm{mo}$							

Table 6.30: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

	Gly9 Tyr10	Val12	His13	His14	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Ala21	Val24	Lys28
Initial Orientation			CS				RB1						
Final Orientation			LB1			LS2	RS2			RS2			RB2
			LS1				RB1						
Total $=$	-78.98 kcal/mol		$\Delta \mathrm{E}_{\text {Tot }}=$	-148.3	$\mathrm{kcal} / \mathrm{mol}$								
Van der Waals =	$77.21 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-18.6	$\mathrm{kca} / \mathrm{mol}$								
Electrostatic $=$	-323.94 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-133.0	$\mathrm{kcal} / \mathrm{mol}$								
Initial Orientation						RS2	LB2						
Final Orientation			RB2			RS2	RB1			LS2			LS1
			RS1			RB1							LS2
			RNH										
Total $=$	-73.59 kcal/mol		$\Delta \mathrm{E}_{\text {Tot }}=$	-142.9	$\mathrm{kcal} / \mathrm{mol}$								
Van der Waals =	$71.76 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-24.0	$\mathrm{kca} / \mathrm{mol}$								
Electrostatic $=$	-314.61 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-123.7	$\mathrm{kca} / \mathrm{mol}$								
Initial Orientation			LB2				RB2						
Final Orientation	LB2 LB2		LB2			LB1	RB2			RS1	RB2		RS 1
			LB1			LNH				RNH			
			LNH			LS1							
Total $=$	-71.30 kcal/mol		$\Delta \mathrm{E}_{\text {Tot }}=$	-140.6	$\mathrm{kcal} / \mathrm{mol}$								
Van der Waals =	$69.88 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-25.9	$\mathrm{kca} / \mathrm{mol}$								
Electrostatic $=$	-309.26 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-118.3	$\mathrm{kca} /$ mol								
Initial Orientation						LS1	RB1						
Final Orientation			LS 1			LS2	LS1			LB1			RS2
						LS 1				CS			RS1
Total $=$	-69.14 kcal/mol		$\Delta \mathrm{E}_{\text {Tot }}=$	-138.4	$\mathrm{kca} / \mathrm{mol}$								
Van der Waals =	$78.19 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-17.6	$\mathrm{kca} / \mathrm{mol}$								
Electrostatic $=$	-317.42 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-126.5	$\mathrm{kcal} / \mathrm{mol}$								
Initial Orientation						RB1	LB2						
Final Orientation			RB2			RS2	LS2			LS2			LS 1
													LS2
Total $=$	-68.14 kcal/mol		$\Delta \mathrm{E}_{\text {Tot }}=$	-137.4	$\mathrm{kca} / \mathrm{mol}$								
Van der Waals =	$77.03 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-18.8	$\mathrm{kcal} / \mathrm{mol}$								
Electrostatic $=$	-315.12 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-124.2	$\mathrm{kcal} / \mathrm{mol}$								
Initial Orientation			LS2							RB2			
Final Orientation			LS2			LB1	LB1			RB2		RB2	RS2
			LS1			LS2				RS2		RS2	RB2
										RB1			
										CS			
Total $=$	-63.76 kcal/mol		$\Delta \mathrm{E}_{\text {Tot }}=$	-133.1	$\mathrm{kcal} / \mathrm{mol}$								
Van der Waals =	$72.92 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-22.9	$\mathrm{kcal} / \mathrm{mol}$								
Electrostatic $=$	-306.56 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-115.6	$\mathrm{kcal} / \mathrm{mol}$								

Table 6.30: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 6.31: The gas phase results of solapsone interacting with the HHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.31: The gas phase results of solapsone interacting with the HHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

	Tyr10	Val12	His13	His14	Gln15	Ly16	Leu17	Ala30	Ile31	Met35	Tyr10	His13	His14	Gln15	Lys16	Leu17	Val18	Ala2 1	Ile 31
Initial Orientation				LB2		RB2						RB1	LB2						
Final Orientation	LB1	RB2	RS2	LB2		RB2	LS2				LB1	LB1	LS2		RB2	LS2			LS1
	LNH	RS2	RB1	LS2		RS2					LS2	LB1			RS2				
		RNH	LB1								LB2	RB1							
		RB1	LS2									LS1							
												LS2							
Total $=$	89.2	$\mathrm{ca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Tot }}=$	-177.5	$\mathrm{kca} / \mathrm{mol}$						90.05	$\mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Tot }}=$	-176.73	$\mathrm{kca} / \mathrm{mo}$				
Van der Waals =	109.4	$\mathrm{ca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-22.3	$\mathrm{kca} / \mathrm{mol}$						111.04	$\mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-20.82	$\mathrm{kca} / \mathrm{mo}$				
Electrostatic $=$	-265.4	ca/mol	$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-155.7	$\mathrm{kca} / \mathrm{mol}$						-267.29	$\mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Ele }}=$	-157.56	$\mathrm{kca} / \mathrm{mo}$				
Initial Orientation			RS2	CS								RB1	LS1						
Final Orientation	LS2		RS2	LB1					CS		RB1	RB1	LS2			LS1			
	RS2			LS2					RB1		CS	RB1	LS1						
	RB2			LS1					RS1		LB1	RS1							
											LS1	RNH							
												LS1							
Total $=$	91.6	cal/mol	$\Delta \mathrm{E}_{\text {Tot }}=$	-175.1	$\mathrm{kca} / \mathrm{mol}$						92.27	$\mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Tot }}=$	-174.51	$\mathrm{kca} / \mathrm{mo}$				
Van der Waals =	102.8	ca/mol	$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-28.9	$\mathrm{kca} / \mathrm{mol}$						108.97	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-22.89	$\mathrm{kca} / \mathrm{mo}$				
Electrostatic $=$	-260.3	ca/mol	$\Delta \mathrm{E}_{\text {Ele }}=$	-150.6	$\mathrm{kca} / \mathrm{mol}$						-266.00	kcal/mol	$\Delta \mathrm{E}_{\text {Ele }}=$	-156.28	$\mathrm{kca} / \mathrm{mo}$				
Initial Orientation			CS	RB1								LS2	RB1						
Final Orientation	LS1		LB1	RS 1		LS2	RB1		CS	RS2	LS1	LB2	RB1			LS2	RS2	RB2	
			LS2				RS1		RB1			LS2	LS2				RB2		
			LS1						RS2				RNH						
			RB1										RS2						
Total $=$	94.3	cal/mol	$\Delta \mathrm{E}_{\text {Tot }}=$	-172.4	$\mathrm{kca} / \mathrm{mol}$						97.58	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Tot }}=$	-169.21	$\mathrm{kca} / \mathrm{mo}$				
Van der Waals =	109.4	$\mathrm{ca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-22.3	$\mathrm{kca} / \mathrm{mol}$						112.97	$\mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-18.89	$\mathrm{kca} / \mathrm{mo}$				
Electrostatic $=$	-265.2	$\mathrm{ca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Ele }}=$	-155.52	$\mathrm{kca} / \mathrm{mol}$						-261.45	$\mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Ele }}=$	-151.72	$\mathrm{kca} / \mathrm{mo}$				

Table 6.32: The gas phase results of solapsone interacting with the LVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

	Arg5 Ser8	Tyr10	Vall2	His13	His14	Lys16	Leu17	Vall8	Phe19	Phe20	Ala2 1	Glu22	Ala30	Ile31
Initial Orientation							LB2	RB2						
Final Orientation	RS2	LB2		LB2	LB1		LS2	RS2						
		LS2		LS2	LS2			RB2						
					RB1									
Total $=$	$94.30 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-172.4	1/mol									
Van der Waals =	$110.92 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-20.9	1/mol									
Electrostatic $=$	-264.34 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-154.6	1/mol									
Initial Orientation							LB2		RB2					
Final Orientation			LB1	LB2		LS2	LB2		RB2	LS2				
				LS1		RB1								
				LNH		RNH								
				LB1		RS2								
Total $=$	$109.48 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-157.3	1/mol									
Van der Waals =	$113.85 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-18.0	$1 / \mathrm{mol}$									
Electrostatic $=$	-252.91 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-143.1	1/mol									
Initial Orientation							RB2			LB2				
Final Orientation		RS2		LB1	RB2	LS2	RS2			LB2				RB1
				RB1	RS2					LS2				RNH
				RS2										
Total $=$	$96.27 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-170.5	1/mol									
Van der Waals =	$110.67 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-21.1	$1 / \mathrm{mol}$									
Electrostatic $=$	-261.60 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-151.8	$1 / \mathrm{mol}$									
Initial Orientation							RB2	LB2						
Final Orientation	LB2 LB1	RB1		RB2	RB1		RS2	LB2						RS2
	LS 1	RS 1			LB1									RB2
Total $=$	$115.98 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-150.8	1/mol									
Van der Waals =	$110.77 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-21.0	1/mol									
Electrostatic $=$	-242.87 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-133.1	$1 / \mathrm{mol}$									

Table 6.33: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.33: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.33: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.34: The gas phase results of solapsone interacting with the HHQK region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.35: The gas phase results of solapsone interacting with the LVFF region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid

	His14	Leu17	Val18	Phe19	Phe20	Ala2 1	Val24	Lys28	His13 His14	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Val24	Lys 28
Initial Orientation			LB2		RB2								RB1		LB1		
Final Orientation	LS1	LB1	LB1			RB1	RB2	RB2	RB1	RS1		LB1	RB1				
		LNH	LB2			CS		RS2	RNH				RS1				
						LB1			RS1								
Total $=$	55.79	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Tot }}=$	-117.05	$\mathrm{kca} / \mathrm{mol}$				$83.39 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-89.45	$\mathrm{kca} / \mathrm{mol}$				
Van der Waals =	79.39	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-22.30	$\mathrm{kcal} / \mathrm{mol}$				$83.41 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-18.28	$\mathrm{kcal} / \mathrm{mol}$				
Electrostatic =	-239.52	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Ele }}=$	-90.79	$\mathrm{kca} / \mathrm{mol}$				-209.63 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-60.89	$\mathrm{kca} / \mathrm{mol}$				
Initial Orientation		RB2			LB1								RB2		LB1		
Final Orientation	RS2	RS2			LB1				LB2		LB2	LB2			LB1	RS1	RS1
		RNH RB1													RB1		
Total $=$	83.54	kcalmol	$\Delta \mathrm{E}_{\text {Tot }}=$	-89.30	kcal/mol				$83.58 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-89.26	$\mathrm{kcal} / \mathrm{mol}$				
Van der Waals =	91.23	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-10.46	$\mathrm{kcal} / \mathrm{mol}$				$84.59 \mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-17.10	$\mathrm{kca} / \mathrm{mol}$				
Electrostatic =	-238.55	kcalmol	$\Delta \mathrm{E}_{\text {Ele }}=$	-89.82	$\mathrm{kcal} / \mathrm{mol}$				-228.30 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-79.57	$\mathrm{kcal} / \mathrm{mol}$				
Initial Orientation		RB1			LB2							LB1	RB2				
Final Orientation	RS2	RB1	RS2		LB2				LS2 LS2			LB1	RB2				
					LS2								RS2				
Total $=$	85.42	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Tot }}=$	-87.42	$\mathrm{kcal} / \mathrm{mol}$				$86.05 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-86.79	$\mathrm{kcal} / \mathrm{mol}$				
Van der Waals =	90.61	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-11.08	$\mathrm{kcal} / \mathrm{mol}$				$88.26 \mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdv}}=$	-13.43	$\mathrm{kca} / \mathrm{mol}$				
Electrostatic =	-224.83	$\mathrm{kca} / \mathrm{mol}$	$\Delta \mathrm{E}_{\text {Ele }}=$	-76.09	$\mathrm{kcal} / \mathrm{mol}$				-210.98 kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-62.24	$\mathrm{kcal} / \mathrm{mol}$				

Table 6.36: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.36: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.37: The gas phase results of solapsone interacting with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.37: The gas phase results of solapsone interacting with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.38: The gas phase results of solapsone interacting with the LVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Val12	His13	His14	Lys16	Leu17	Vall8	Phe19	Phe20	His13	His14	Lys16	Leu17	Vall 8	Phe19	Phe20	Asp23
Initial Orientation					RB1			LB1				RB1			LB2	
Final Orientation	LS 1	LB1	RS1	LS2	CS			LS2	LB1	RS2	LS2	RS2			LS2	
		LS1		LS 1	RB1				LS1		LS1	RB1			LB2	
		LNH							CS							
		RB1							LS2							
		RS1														
Total $=$		$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-132.48	$\mathrm{kcal} / \mathrm{mol}$			12.50	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-121.5	$\mathrm{ccal} / \mathrm{mol}$		
Van der Waals =	74.9	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-21.3	$\mathrm{kcal} / \mathrm{mol}$			73.70	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-22.5	$\mathrm{kcal} / \mathrm{mol}$		
Electrostatic $=$	-287.03	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-107.59	$\mathrm{kcal} / \mathrm{mol}$			-282.13	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Elc}}=$	-102.68	kcal/mol		
Initial Orientation					RB2			LB1						LB1	RB1	
Final Orientation	LS2	LS2		LS 1	RS2			CS	RS 1		LB1			LS2	CS	CS
	LB2			LB1	RNH			LB1			LS1			LS1	RB1	
				LNH	RB1						LNH			LB1	RS2	
											RB1					
											RS1					
Total $=$	29.6	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-104.38	$\mathrm{kcal} / \mathrm{mol}$			37.83	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-96.2	$\mathrm{kcal} / \mathrm{mol}$		
Van der Waals =	77.5	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-18.76	$\mathrm{kcal} / \mathrm{mol}$			75.40	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-20.8	$\mathrm{kcal} / \mathrm{mol}$		
Electrostatic $=$	-267.8	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-88.38	$\mathrm{kcal} / \mathrm{mol}$			-261.18	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-81.7	kcal/mol		
Initial Orientation					LB1			RB1								
Final Orientation		LB1		CS	LB1			RB1								
		$\mathrm{CS}$														
Total $=$	75.1	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-58.86	$\mathrm{kcal} / \mathrm{mol}$										
Van der Waals =	83.1	$\mathrm{kcal} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-13.17	$\mathrm{kcal} / \mathrm{mol}$										
Electrostatic $=$	-222.9	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-43.50	$\mathrm{kcal} / \mathrm{mol}$										

Table 6.39: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.39: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.39: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.40: The gas phase results of solapsone interacting with the HHQK region of the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid


Table 6.40: The gas phase results of solapsone interacting with the HHQK region of the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid


Table 6.41: The gas phase results of solapsone interacting with the LVFF region of the $1 Z 0 Q$ conformer of $\boldsymbol{\beta}$-amyloid

	His 14	Lys16	Leu17	Val18	Phe19	Phe20	Ala21	Glu22	Asp23	Val24	Lys28	Val12	His14	Gln 15	Lys16	Leu17	Val18	Phe19	Phe20	Val24	Lys 28
Initial Orientation			RB1	LB2												LB1	RB2				
Final Orientation	LB2	RS1	RB1	LB2									RB2		LS2	LB1	RB2				
	LS1	RNH	LB1										RS2		LB1	RB1					
Total $=$	156.16	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-88.42	$\mathrm{kca} / \mathrm{mol}$						161.2	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-83.33	$\mathrm{kca} / \mathrm{mo}$				
Van der Waals =	107.95	kca/mol		$\Delta \mathrm{E}_{\text {vdiv }}=$	-13.75	$\mathrm{kca} / \mathrm{mol}$						110.0	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {vdiv }}=$	-11.65	$\mathrm{kca} / \mathrm{mo}$				
Electrostatic $=$	-249.60	kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-89.36	$\mathrm{kca} / \mathrm{mol}$						-233.7	kca/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-73.47	kcal/mol				
Initial Orientation				LB2		RB2										LB2		RB1			
Final Orientation	LB2	LS1	LS1	LB2		RS2	LB2	LB2				RB2		RB2	RB1	LB2		RB1	LS2		
	LS2		LNH			RB2	LB1								RB2	LS2		RS2			
	LS1		LB1																		
Total $=$	161.66	kcalmol		$\Delta \mathrm{E}_{\text {Tot }}=$	-82.92	$\mathrm{kca} / \mathrm{mol}$						164.3	kca/mol		$\Delta \mathrm{E}_{\text {Tot }}=$	-80.24	kcal/mol				
Van der Waals =	104.25	kcalmol		$\Delta \mathrm{E}_{\mathrm{Vdv}}=$	-17.45	$\mathrm{kca} / \mathrm{mol}$						102.5	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-19.18	kcal/mol				
Electrostatic $=$	-233.26	kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-73.02	$\mathrm{kca} / \mathrm{mol}$						-226.59	kcal/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-66.35	kca/mol				
Initial Orientation			LB2			RB1												RB1	LB1		
Final Orientation		LB2	LB2			RB1					RS1							RS1	LB1	LS1	LS1
						LB1					RNH								RB1		LNH
Total $=$	167.30	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-77.27	$\mathrm{kca} / \mathrm{mol}$						172.5	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-72.02	kcal/mol				
Van der Waals =	108.22	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Vdw }}=$	-13.49	$\mathrm{kca} / \mathrm{mol}$						110.96	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdv}}=$	-10.74	$\mathrm{kca} / \mathrm{mol}$				
Electrostatic $=$	-233.09	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Ele }}=$	-72.84	kcalmol						-223.02	kca/mol		$\Delta \mathrm{E}_{\text {Ele }}=$	-62.78	kca/mol				
Initial Orientation					RB2	LB1															
Final Orientation			LS2			RB2			RB2	RS2	RS2										
						RS2					RB2										
						RB1															
						$\begin{gathered} \text { CS } \\ \text { LS2 } \end{gathered}$															
Total $=$	179.19	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\text {Tot }}=$	-65.39	$\mathrm{kca} / \mathrm{mol}$															
Van der Waals =	108.95	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Vdv}}=$	-12.75	$\mathrm{kca} / \mathrm{mol}$															
Electrostatic $=$	-204.46	$\mathrm{kca} / \mathrm{mol}$		$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-44.22	$\mathrm{kca} / \mathrm{mol}$															

Table 6.42: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


Table 6.42: The gas phase results of solapsone interacting with the HHQKLVFF region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


The gas phase minimization of solapsone with $\beta$-amyloid indicated that it was
indeed capable of binding to the HHQK , LVFF and overlapping regions on the protein in an energetically favourable fashion. The electrostatic energies were much lower than the van der Waals energies.

These systems were selected for optimization in an aqueous environment based on two criteria: they must have the lowest energy possible, and binding interactions must occur with at least two amino acids in the $A \beta$ region of interest.

### 6.3.3 Results of the Solution Phase Optimization of Solapsone with $\beta$ Amyloid

Minimization of the solvated systems followed the same process as in section 6.2.3. The energies of the optimized $\beta$-amyloid conformers are listed in Appendix 6, and the energies of solapsone upon minimization in a solvated environment (and ignoring the solvent contribution) are summarized in Table 6.43.

Table 6.43: The solution phase energies of solapsone

	Energies $(\mathrm{kcal} / \mathrm{mol})$		
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {vdw }}$	$\mathrm{E}_{\text {ele }}$
Solapsone	93.96	46.55	21.82

The energies were calculated using equations 6.4-6.6 (these were measured ignoring solvent contributions and with constrained protein backbones), both the measured and calculated energies are summarized in the following tables. The amino acids are indicated by their three letter abbreviations, and the initial and final orientations of solapsone are given. Hydrogen bonds are represented in orange, cation $-\pi$ interactions in green, and $\pi-\pi$ in blue. Purple, lime green, and yellow are used for interactions with the protein backbone, at the $\mathrm{C}=\mathrm{O}$. $-\mathrm{CH}-$, and -NH - groups. Potential binding occurring with the $-\mathrm{CH}_{2}$ - chain of the amino acid side chains is denoted by indigo-coloured cells.

Table 6.44: The solution phase results of solapsone interacting with the HHQK region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 6.45: The solution phase results of solapsone interacting with the LVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid


Table 6.46: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

	Gly9	Tyr10	His13	His14	Glin 5	Lys16	Leu17	Val18	Phe19	Phe20	Ala21	Val24	Gly25	Lys28
Initial Orientation	RS2	RS2	RB1				LB1			LS1				LS2
			RS1											
			RS2											
	RS2	RS2	RB1			RS1	LB1			LS1				LS2
			RS1				LS1							
			RS2											
Total $=$	-65.97 kcalmol													
Van der Waals $=$	$69.00 \mathrm{kcal} / \mathrm{mol}$$-310.62 \mathrm{kcal} / \mathrm{mol}$													
Electrostatic =														
$\Delta \mathrm{E}_{\text {Tot }}=$	-167.88 kcal/mol													
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-29.43 kcal mol													
$\Delta \mathrm{E}_{\text {Ele }}=$	-120.52 kcalmol													
Initial Orientation	RB2		RB1			RS2	LS2			LS2	LS2		LB2	LS1
			RB2								LB2			LB2
			RNH											
Final Orientation	RB2		RB1			RS2	LS2			LS2	LB2	LS2	LB2	
			RS2				LB1							
			RNH											
			RB2											
Total $=$	$\begin{array}{r} -31.54 \mathrm{kca} / \mathrm{mol} \\ 88.42 \mathrm{kca} / \mathrm{mol} \\ -302.23 \mathrm{kca} / \mathrm{mol} \end{array}$													
Van der Waals $=$														
Electrostatic $=$														
$\Delta \mathrm{E}_{\text {Tot }}=$	-133.45 kcalmol													
$\Delta \mathrm{E}_{\mathrm{vdv}}=$	-10.01 kcalmol													
$\Delta \mathrm{E}_{\text {Ele }}=$	-112.13 kcalmol													
Initial Orientation		LS1	LS1							RS 1				RS2
			LS2											RS1
Final Orientation			LS2							RS 1				RS1
			LS1											
			LB1											
Total $=$	-34.21 kcalmol													
Van der Waals $=$														
Electrostatic $=$	$-301.13 \mathrm{kca} / \mathrm{mol}$													
$\Delta \mathrm{E}_{\text {Tot }}=$	-136.11 kcalmol													
$\Delta \mathrm{E}_{\mathrm{Vdv}}=$	$-23.80 \mathrm{kca} / \mathrm{mol}$													
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-111.03 kcalmol													
Initial Orientation		LS1	LB1				RB1			RS1	RS1			RS1
			LS1											RS2
			LS2											
Final Orientation		LS1	LB1				RS1			RS1				RS1
			LS1				RB1							RS2
			LS2				CS							
Total $=$	-67.22 kcalmol													
Van der Waals $=$	$78.72 \mathrm{kcal} / \mathrm{mol}$													
Electrostatic $=$	-305.76 kcal/mol													
$\Delta \mathrm{E}_{\text {Tot }}=$	-169.13 kcalmol													
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-19.71 kcalmol													
$\Delta \mathrm{E}_{\text {Ele }}=$	-115.67 kcal/mol													
Initial Orientation	RB2		RS2	RS2		LS2	RS2			LB1				
			RS1			LB1	RB1			LS1				
						LNH	LB1							
Final Orientation		RB2	RB1	RS2		LNH	LB1			LB2				LS2
			RS1			LB1	RS2			LS1				
			RS2							LNH				
										LB1				
Total $=$	$-83.73 \mathrm{kcal} / \mathrm{mol}$													
Van der Waals $=$	$67.58 \mathrm{kca} / \mathrm{mol}$   $-319.50 \mathrm{kca} / \mathrm{mol}$													
Electrostatic $=$														
$\Delta \mathrm{E}_{\text {Tot }}=$	-185.63 kcalmol													
$\Delta \mathrm{E}_{\mathrm{Vdv}}=$	-30.85 kcalmol													
$\Delta \mathrm{E}_{\text {Ele }}=$	-129.40 kcal/mol													
Initial Orientation			LS1			LS2	LS2			CS				RS1
			LS2				LS1			RS2				
							LB1							
Final Orientation			LS1			LS2	LB1			RS2				RS1
			LS2							CS				
										LB1				
Total $=$	$-45.36 \mathrm{kca} / \mathrm{mol}$													
Van der Waals $=$	$74.06 \mathrm{kca} / \mathrm{mol}$													
Electrostatic $=$	-302.59 kcalmol													
$\Delta \mathrm{E}_{\text {Tot }}=$	-147.26 kcal/mol													
$\Delta \mathrm{E}_{\mathrm{Vdv}}=$	-24.37 kcal/mol													
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-112.49 kcalmol													

Table 6.46: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

	His6	Gly9	Tyr10	His13	His14	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Ala21	Val24	Giy25	Lys28
Initial Orientation			LB2	LS2	LS2			RS2			RS2		CS		RS1
								CS							RS2
								LB1							
Final Orientation			LB2	LS2	LS2			cs			RS2		CS		RS1
								RS2							RS2
								RB2							
Total $=$   Van der Waals = Electrostatic $=$	-46.5	almol													
	74.2	a/mol													
	-297.5	almol													
$\Delta \mathrm{E}_{\text {Tot }}=$	-148.4	almol													
$\Delta \mathrm{E}_{\mathrm{vdv}}=$	-24.1	a/mol													
$\Delta \mathrm{E}_{\mathrm{Elc}}=$	-107.4	almol													
Initial Orientation		LS1	LS1	LB1			LB2	RNH			RB2				
				RB1			RS1	RB1			RS1				
				LB1			RNH								
				LNH			RB1								
				LS1											
Final Orientation	LB2	LS1	LS1	RB1			RS1	RNH			RB2				
	LS1			LB1			RNH	RB1			RS1				
				LB1			RB1								
				LNH											
				LS1											
Total $=$   Van der Waals = Electrostatic $=$	16.0	almol													
	63.8	almol													
	-287.8	almol													
$\Delta \mathrm{E}_{\text {Tot }}=$	-85.8	almol													
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-34.6	almol													
$\Delta \mathrm{E}_{\mathrm{Elc}}=$	-97.7	almol													
Initial Orientation			RS1	RB2	RS1			LS1			LS1				LS2
			RS2	RB2				LB1							
				RNH											
				RS1											
Final Orientation			RS1	RB2	RS1			LS1			LS1				LS2
			RS2	RNH				LB1							LB2
			RB2	RS1											
Total $=$		-57.20	kcalm												
Vander Waals =			kcalm												
Electrostatic $=$		-291.8	kcalm												
$\Delta \mathrm{E}_{\text {Tot }}=$		-159.10	kcalm												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$		-29.2	kcalm												
$\Delta \mathrm{E}_{\mathrm{Elc}}=$		-101.	kcalmo												
Initial Orientation				RB2			RB2	LS1			LS1				LS2
				RS1							LB2				
				RNH											LB2
				RB1											
Final Orientation				RB2				LS1			LS1		LB2		LB2
				RB1				RB2							LS2
				RNH											
				RS1											
Total $=$	-33.4	almol													
Van der Waals =	86.3	almol													
Electrostatic $=$	-289.6	almol													
$\Delta \mathrm{E}_{\text {Tot }}=$	-135.3	almol													
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-12.1	almol													
$\Delta \mathrm{E}_{\mathrm{Elc}}=$	-99.5	almol													
Initial Orientation				LS2	RS2		LS2	RB1	RS2			RB2			
				LB1			LNH	RS2	RB2						
							LB1	RB2							
Final Orientation				LS2	RS2		LS2	RS2	RS2			RB2			
				LB1											
Total $=$		almol													
Vander Waals =	80.3	almol													
Electrostatic $=$	-295.4	almol													
$\Delta \mathrm{E}_{\text {Tot }}=$	-93.2	almol													
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-18.0	almol													
$\Delta \mathrm{E}_{\text {Elc }}=$	-105.3	almol													
Initial Orientation				LS2	RS2		LS2	RB1	RS2						
				LB1			$\begin{gathered} \text { LNH } \\ \text { LB2 } \end{gathered}$	RS2							
Final Orientation				LB1	RS2		LB2	LB1	RS2						
				LS2				RB1	RB2						
								RS2							
Total $=$	-33.2	almol													
Vander Waals =	79.0	almol													
Electrostatic $=$	-296.4	almol													
$\Delta \mathrm{E}_{\text {Tot }}=$	-135.1	almol													
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-19.4	a/mol													
$\Delta \mathrm{E}_{\mathrm{Elc}}=$	-106.3	almol													

Table 6.46: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1AMB conformer of $\boldsymbol{\beta}$-amyloid

	Gly9 Tyr10	Val12	His13	His14	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Ala21	Val24	Lys 28
Initial Orientation			LB1			LS2	RS2			RS2			RB2
Final Orientation			LS1				RB1						
			LS2										
			LB1			LS2	RS2			RB2			RB2
			LS1				LB1			RS2			
			LS2										
Total $=$	-16.42 kcalmol												
Van der Waals $=$	73.97 kcalmol												
Electrostatic $=$	-311.30 kca/mol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-118.33 kcalmol												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	$-24.46 \mathrm{kca} / \mathrm{mol}$												
$\Delta \mathrm{E}_{\text {Ele }}=$	-121.20 kcalmol												
Initial Orientation			RB2			RS2	RB1			LS2			LS1
			RS1			RB1							LS2
			RNH										
Final Orientation			RS1			RS2	LS2			LS2	LS2		LS1
			RNH			RB1	RB1			LB1			LS2
			RB2			RNH				cs			
						RB2				RB1			
Total $=$	$8.25 \mathrm{kca} / \mathrm{mol}$												
Van der Waals =	$77.07 \mathrm{kca} / \mathrm{mol}$												
Electrostatic $=$	-292.22 kcalmol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-93.65 kcalmol												
$\Delta \mathrm{E}_{\mathrm{vdv}}=$	$-21.36 \mathrm{kcal} \mathrm{mol}$												
$\Delta \mathrm{E}_{\mathrm{Elc}}=$	-102.12 kcalmol												
Initial Orientation	LB2 LB2		LB2			LB1	RB2			RS1	RB2		RS1
			LB1			LNH				RNH			2
			LNH			LSI							
Final Orientation	LB2 LB2		LB2			LB1	RB2			RS 1			RS1
			LB2			LNH				RNH			2
			LB1			LSI				RB1			
			LNH										
Total $=$	-57.28 kcalmol												
Van der Waals =	$71.09 \mathrm{kcal} / \mathrm{mol}$												
Electrostatic =	-301.47 kcalmol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-159.18 kcalmol												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-27.34 kcalmol												
$\Delta \mathrm{E}_{\mathrm{Elc}}=$	-111.37 kcalmol												
Initial Orientation			LS1			LS2	LS1			LB1			RS2
						LS 1				CS			RS1
Final Orientation			LS1			LS1	LB1			LB1			RS2
						LS2	LS1			CS			RS1
										LS1			
										LS2			
Total $=$	25.83 kcal mol												
Van der Waals $=$	91.66 kcal mol												
Electrostatic =	-296.88 kcal/mol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-76.07 kcalmol												
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$-6.77 \mathrm{kcal} \mathrm{mol}$												
$\Delta \mathrm{E}_{\text {Ele }}=$	-106.78 kcalmol												
Initial Orientation			RB2			RS2	LS2			LS2			LS1
													LS2
Final Orientation			RB2			RS2	LS2			LS2			LS1
						RB1							
						RNH							
						RB2							
Total $=$	$-49.60 \mathrm{kca} / \mathrm{mol}$												
Vander Waals =	$75.85 \mathrm{kcal} / \mathrm{mol}$												
Electrostatic $=$	-293.75 kcal/mol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-151.51 kcalmol												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	$-22.58 \mathrm{kca} / \mathrm{mol}$												
$\Delta \mathrm{E}_{\text {Ele }}=$	-103.65 kcalmol												
Initial Orientation			LS2			LB1	LB1			RB2		RB2	RS2
			LS1			LS2				RS2		RS2	RB2
										RB1			
										CS			
Final Orientation			LS2			LS2	LB1			RS2		RB2	RS2
			LS1				LS1			RB1			
										CS			
Total $=$	$-65.55 \mathrm{kca} / \mathrm{mol}$												
Van der Waals =	65.29 kcalmol												
Electrostatic $=$	-308.05 kcal/mol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-167.45 kcal/mol												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	$-33.14 \mathrm{kcalmol}$												
$\Delta \mathrm{E}_{\text {Elc }}=$	-117.95 kcalmol												

Table 6.46: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 AMB conformer of $\boldsymbol{\beta}$-amyloid

	Gly9 Tyr10	Val12	His13	His14	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Ala21	Val24	Lys28
Intital Orientation			RS1			RB1				CS			LS2
			RS2			RS2				LB1			
						CS				LS2			
						RS1							
Final Orientation			RS1			RB1				LS2			LS2
			RS2			CS				LB1			
						RS1				CS			
Total $=$	-36.95 kcal/mol												
Van der Waals =	$80.72 \mathrm{kcal} / \mathrm{mol}$												
Electrostatic $=$	-296.56 kcalmol												
$\Delta \mathrm{E}_{\text {Tot }}=$	$-138.85 \mathrm{kca} / \mathrm{mol}$												
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	$-17.71 \mathrm{kca} / \mathrm{mol}$												
$\Delta \mathrm{E}_{\text {Ele }}=$	$-106.46 \mathrm{kcal} / \mathrm{mol}$												
Initial Orientation			LB2			LS1	LS1			CS			RS2
			LS2			LS2							RS1
			LS1										
Final Orientation			LB2			LS1	LS1			CS			RS2
						LS2							RS1
Total $=$	-37.01 kcalmol												
Van der Waals $=$	$93.54 \mathrm{kcal} / \mathrm{mol}$												
Electrostatic $=$	-309.25 kcalmol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-138.92 kcalmol												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	$-4.89 \mathrm{kcal} / \mathrm{mol}$												
$\Delta \mathrm{E}_{\text {Ele }}=$	-119.15 kcal/mol												
Initial Orientation	RB2		RB2			RB1	RS1			CS			
			RS1			LS2							
						LB1							
Final Orientation	RB2	RB2	RB2			RB1	RS1			LB1			
			RS1			LS2				CS			
						LB1				RB1			
						RNH							
Total $=$	$4.96 \mathrm{kca} / \mathrm{mol}$												
Van der Waals =	$68.20 \mathrm{kcal} / \mathrm{mol}$												
Electrostatic $=$	-287.12 kcalmol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-96.95 kcalmol												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-30.22 kcal mol												
$\Delta \mathrm{E}_{\text {Ele }}=$	-97.02 kcal mol												
Initial Orientation			RS2	RS2		LS2	RB2	RB2		LB2			
			LB1							LS2			
			CS										
			RB1										
Final Orientation			RS2	RS2		LS2	LS2	RB2		LB2			
			LB1	RB2						LS2			
			CS										
			RB1										
Total $=$	-54.96 kcalmol												
Van der Waals =	$75.90 \mathrm{kca} / \mathrm{mol}$												
Electrostatic $=$	-299.57 kcalmol												
$\Delta \mathrm{E}_{\text {Tot }}=$	$-156.86 \mathrm{kca} / \mathrm{mol}$												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-22.53 kcal mol												
$\Delta \mathrm{E}_{\text {Ele }}=$	-109.47 kcal/mol												
Initial Orientation			RS1			RS1	RS1			LS1			LS1
			RS2							LB1			
Final Orientation			RS2			RS1	RS1			LS1			LS1
			RS1							LB1			
Total $=$	-34.06 kcalmol												
Van der Waals =	$80.91 \mathrm{kcal} / \mathrm{mol}$												
Electrostatic $=$	-295.46 kcal/mol												
$\Delta \mathrm{E}_{\text {Tot }}=$	-135.96 kcal/mol												
$\Delta \mathrm{E}_{\mathrm{vdw}}=$	-17.52 kcalmol												
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-105.36 kcalmol												
Intitial Orientation			RS2			RS2	RS2			LS2			
			RS1			LS1				LB2			
Final Orientation			RS2			LS2	RS2			LB2			
			RS1			LS1				LS2			
Total $=$	-48.63 kcalmol												
Van der Waals =	$84.99 \mathrm{kcal} / \mathrm{mol}$												
Electrostatic $=$	-303.59 kcal/mol												
$\Delta \mathrm{E}_{\text {Tot }}=$	$-150.53 \mathrm{kca} / \mathrm{mol}$												
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-13.44 kcalmol												
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-113.49 kcal/mol												

Table 6.47: The solution phase results of solapsone interacting with the HHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.47: The solution phase results of solapsone interacting with the HHQK region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.48: The solution phase results of solapsone interacting with the LVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.49: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.49: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid


Table 6.49: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 AML conformer of $\boldsymbol{\beta}$-amyloid

	Arg5	Tyr10	His13	His14	Gln15	Lys16	Leu17	Val18	Phe19	Phe20	Ala21	Gly29	Ala30	Ile31	Ile32	Met35
Initial Orientation		RS1	RS2	LB1			RS2				LB2			RS2	LS2	
				RB1										RB2		
				LNH												
Final Orientation		RS1	RS1	LB1			RS2				LB2			RS2	LS2	
			RS2	RB1												
				LNH												
Total $=$	$109.14 \mathrm{kca} / \mathrm{mol}$															
Van der Waals =	$111.26 \mathrm{kcal} / \mathrm{mol}$															
Electrostatic =	-252.63 kcal/mol															
$\Delta \mathrm{E}_{\text {Tot }}=$	-138.94 kcal/mol															
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-15.97 kca/mol															
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-138.75 kcalmol															
Initial Orientation	RB2		LB2	RB1			LS2	RB2						LB1		
	RS2			LB1										LNH		
				LS2										LB2		
Final Orientation	RS2		LB2	RB1			LS2							LB1		
	RB2		LS2	LB1										LNH		
				LS2										LB2		
Total $=$	$111.37 \mathrm{kca} / \mathrm{mol}$															
Van der Waals =	$107.33 \mathrm{kca} / \mathrm{mol}$															
Electrostatic =	-245.00 kcal/mol															
$\Delta \mathrm{E}_{\text {Tot }}=$	-136.71 kcal/mol															
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-19.89 kcal/mol															
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-131.12 kcalmol															
Initial Orientation	RB2		LB2	LB1			LS2	RB2						LB1		CS
		LS2	LS2	LS2												
				RB1												
				RS2												
Final Orientation				LS2			LS2	RB2						LB1		CS
				LS1												
				LB1												
				RB1												
				RS2												
Total $=$	$97.41 \mathrm{kcal} / \mathrm{mol}$															
Van der Waals =	$104.32 \mathrm{kca} / \mathrm{mol}$															
Electrostatic =	-264.29 kcalmol															
$\Delta \mathrm{E}_{\text {Tot }}=$	-150.67 kcalmol															
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-22.91 kcal/mol															
$\Delta \mathrm{E}_{\text {Ele }}=$	-150.41 kcal/mol															
Initial Orientation			RB1	LB2			LS2					RB2	RB2	LS2		
		LNH LS 1		LB2									RS2			
Final Orientation			RB1	LB2			LS2			RB2		RB2	RS2	LS2		
			LB1	LS1									RB2			
			RNH													
Total $=$	$94.41 \mathrm{kcal} / \mathrm{mol}$															
Van der Waals =	$109.97 \mathrm{kcal} / \mathrm{mol}$															
Electrostatic $=$	-256.25 kcalmol															
$\Delta \mathrm{E}_{\text {Tot }}=$	- $153.67 \mathrm{kca} / \mathrm{mol}$															
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	$-17.26 \mathrm{kca} / \mathrm{mol}$															
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-142.36 kcal/mol															
Initial Orientation			LB1			RB2	LS1		RB2	LS 1						
			LS1			RNH										
			LS2			LB1										
						$\begin{aligned} & \text { LNH } \\ & \text { LS } 1 \end{aligned}$										
Final Orientation	LS1					RB2	LS1		RB2	LS1			LS1			
			LS2			LB1										
						LNH										
Total $=$	$89.69 \mathrm{kca} / \mathrm{mol}$															
Van der Waals =	$87.11 \mathrm{kca} / \mathrm{mol}$															
Electrostatic $=$	-259.20 kcal/mol															
$\Delta \mathrm{E}_{\text {Tot }}=$	-158.39 kca/mol															
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$	-40.12 kca/mol															
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	$-145.32 \mathrm{kca} / \mathrm{mol}$															

Table 6.50: The solution phase results of solapsone interacting with the HHQK region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.51: The solution phase results of solapsone interacting with the LVFF region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.52: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.52: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of $\boldsymbol{\beta}$-amyloid


Table 6.53: The solution phase results of solapsone interacting with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.53: The solution phase results of solapsone interacting with the HHQK region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.54: The solution phase results of solapsone interacting with the LVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.55: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid

	Gly9	Tyr10	Val12	His13	His14	Gli15 Lys16	Leu17	Val18	Phe19	Phe20	Tyr10	Val12	His13	His14	Glln15	Lys16	Leu17	Val18	Phe19	Phe20
Initial Orientation	LS2	LS2		RB1	LS1	RS2	CS						RS1		LS2	LB1			LS2	RS2
				$\begin{aligned} & \text { LB1 } \\ & \text { LS2 } \end{aligned}$			LS1						RS2		LB2	$\begin{aligned} & \text { RS2 } \\ & \text { LS2 } \end{aligned}$			LB2	
Final Orientation	LS2	LB2		RB1	LS1	RS2	LS1						RS1		LS2	LB1	RB2		LS2	RB2
	LB2			LB1									RS2		LB2	RS2	RS2		LB2	RS2
				LS2												$\begin{aligned} & \text { RB1 } \\ & \text { LS2 } \end{aligned}$				
Total $=$	113.6	kca/mol									96.0	kcal mol								
Van der Waals $=$	121.3	kcal/mol									105.8	$\mathrm{kcal} / \mathrm{mol}$								
Electrostatic $=$	-277.1	kcal/mol									-252.9	$\mathrm{kcal} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {Tot }}=$	-35.5	kcalmol									-53.1	$\mathrm{kca} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$		kcal/mol									-12.2	$\mathrm{kcal} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {Ele }}=$	-78.4	kcal/mol									-54.2	$\mathrm{kcal} / \mathrm{mol}$								
Initial Orientation			LS2	LS1		RB1			RB2		RS2	LS2	LB1	RB2		LB1	RB1			
				LS2		LS1							LS1	RS2		LS2				
				LB2									RS2			LB2				
													$\begin{aligned} & \text { RB1 } \\ & \text { LS2 } \end{aligned}$							
Final Orientation			LS2	LS 1		LB1			RB1			LS2	LS1	RB2		LB2	LB1			
				LS2		RB1							LS2	RS2		LS2	RB1			
				LB2		LS1							LB1			LNH	RNH			
													RB1			LB1				
													RS2							
Total $=$		kcalmol									68.2	$\mathrm{kcal} / \mathrm{mol}$								
Van der Waals $=$	98.7	$\mathrm{kca} / \mathrm{mol}$									112.6	kcal/mol								
Electrostatic $=$	-272.6	kcalmol									-183.6	$\mathrm{kcal} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {Tot }}=$	-83.2	kcalmol									-80.9	$\mathrm{kca} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\mathrm{Vdv}}=$	-19.4	$\mathrm{kca} / \mathrm{mol}$									-5.5	$\mathrm{kcal} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {Ele }}=$	-73.9	kcalmol									15.0	kcal/mol								
Initial Orientation				RB1	LS2	RS2	CS						LB1	RS2		LB2	RS2			LB2
				LS2			LS1						LS1			LS2	RB1			LS2
													$\begin{gathered} \text { CS } \\ \text { LS2 } \end{gathered}$							
Final Orientation				RB1	LS2	RS2	CS						LB1	RS2		LB2	RB1			LB2
				LS2			LB1						LS2			LS2				LS2
							LS1						LS1							
													CS							
													RS2							
Total $=$		kcal/mol									73.7	$\mathrm{kcal} / \mathrm{mol}$								
Van der Waals $=$	115.8	$\mathrm{kcal} / \mathrm{mol}$									112.2	$\mathrm{kcal} / \mathrm{mol}$								
Electrostatic =	-274.8	kcal/mol									-283.8	kcalmol								
$\Delta \mathrm{E}_{\text {Tot }}=$	-67.9	kcalmol									-75.3	kcalmol								
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$		$\mathrm{kca} / \mathrm{mol}$									-5.9	kcalmol								
$\Delta \mathrm{E}_{\text {Ele }}=$	-76.2	kcalmol									-85.1	kca/mol								
Initial Orientation			RB1	LB2		RS2	LB2		RS2	LS1			RB1			RS1	LS1			
				LS2		LS2	LS2						RS2							
				LB1									LB1							
													LS1							
Final Orientation			RB1	LB1		RS2	LS2		RS2	LS1			LS1			RS1	LS1			
				LS2		LS2	LB2						LB1							
				LB2									RB1							
													RS2							
Total $=$	92.6	kcal/mol									108.0	kcalmol								
Van der Waals =	116.0	kca/mol									107.2	$\mathrm{kca} / \mathrm{mol}$								
Electrostatic =	-265.70	kcal/mol									-300.8	$\mathrm{kcal} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {Tot }}=$	-56.5	kcalmol									-41.1	$\mathrm{kca} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$		kcalmol									-10.9	$\mathrm{kca} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {Ele }}=$	-67.0	kcalmol									-102.1	kca/mol								
Initial Orientation		RS1		LS2	RS1	LS2	LS2			LB2		RB1	LB1			RB2	LS1		RS1	LB2
				LS1	RS2		RS2			LS2			LS1			LS1				
				LB1												LNH				
																LB1				
																$\begin{aligned} & \text { RNH } \\ & \text { RS1 } \\ & \hline \end{aligned}$				
Final Orientation		RS1		LB1	RS1	LS2	LS2			LB2		RB1	LB1			RB2	LS1		RS1	LB2
				LS1						LS2		LB1	LS1			RS1				
				LS2												$\begin{aligned} & \text { RNH } \\ & \text { LS1 } \end{aligned}$				
Total $=$	111.1	kcalmol									85.5	$\mathrm{kca} / \mathrm{mol}$								
Van der Waals =	116.3	kca/mol									107.2	$\mathrm{kcal} / \mathrm{mol}$								
Electrostatic $=$	-251.32	kcal/mol									-273.6	$\mathrm{kcal} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\text {Tot }}=$	-37.9	kcal mol									-63.5	$\mathrm{kca} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\mathrm{Vdw}}=$		$\mathrm{kca} / \mathrm{mol}$									-10.9	$\mathrm{kca} / \mathrm{mol}$								
$\Delta \mathrm{E}_{\mathrm{Ele}}=$	-52.6	kcalmol									-74.9	kcalmol								

Table 6.55: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.55: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of $\boldsymbol{\beta}$-amyloid


Table 6.56: The solution phase results of solapsone interacting with the HHQK region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


Table 6.56: The solution phase results of solapsone interacting with the HHQK region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


Table 6.57: The solution phase results of solapsone interacting with the LVFF region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


Table 6.58: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


Table 6.58: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1 ZOQ conformer of $\boldsymbol{\beta}$-amyloid


The addition of water molecules into the solapsone-A $\beta$ systems has minimal effect on the binding interactions that occur. Overall the electrostatic energies tend to be significantly more favourable than the van der Waals energies in the binding interactions.

Solapsone is capable of forming multiple binding interactions within the HHQK and
LVFF regions, as well as overlapping both regions. An example of binding occurring with the $\mathbf{H H Q K}$ region can be seen in Figure 6.7.


Figure 6.7: Solapsone interacting with $\boldsymbol{\beta}$-amyloid after solution phase optimization. Water molecules have been removed for clarity. Dashed green lines indicate cation- $\pi$ interactions between the aromatic rings and Lys16. The dashed blue line indicates an electrostatic type interaction between one of the sulfonate groups and His13.

### 6.4 Biological Validation of Solapsone-Gd ${ }^{3+}$ as an Imaging Agent

Given the positive in silico results of solapsone- $\mathrm{Gd}^{3+}$ interacting with $\beta$-amyloid, as well as solapsone binding to $A \beta$, it was determined that solapsone should be tested for its in vitro capacity to bind to the protein.

As solapsone is no longer commercially available, the compound had to be synthesized and then complexed with gadolinium in a 1:1 and 2:1 ratio of solapsone to metal ion (in silico studies showed that gadolinium could chelate with two solapsone molecules simultaneously). Solapsone was synthesized (by Dr. Arun Yadav) via the following scheme in Figure 6.5.

A thioflavin-T assay was performed by Rose Chen to compare the antiaggregation ability of solapsone and solapsone- $\mathrm{Gd}^{3+}$. The results are given in Figure 6.9.


Reagent and Conditions: a. $10^{\circ} \mathrm{C}$ to rt b. $\mathrm{NaHSO}_{3} / \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 90 \mathrm{~min}$.
Figure 6.8: Synthesis of solapsone

A thioflavin-T assay was performed by Rose Chen to compare the antiaggregation ability of solapsone and solapsone- $\mathrm{Gd}^{3+}$. The results are given in Figure 6.9.


Figure 6.9: Thioflavin $T$ assay of solapsone and solapsone-Gd ${ }^{3+}$

The results of the ThT assay show that solapsone is capable of binding to $A \beta$ to prevent aggregation from occurring. A 1:1 complex of solapsone- $\mathrm{Gd}^{3+}$ decreases aggregation significantly, meaning that it can bind to the smaller soluble forms of $\beta$ amyloid. The $2: 1$ complex binds even more strongly to $A \beta$ than the $1: 1$ complex. Interestingly, gadolinium on its own demonstrates a capacity to inhibit amyloid aggregation; however, the goal is to cure AD , not kill the patient in the process, as would occur with giving patients a heavy metal such as gadolinium. Only miniscule amounts of
gadolinium would be required to complex with solapsone to make a viable imaging agent, and thus would be well tolerated (given gadolinium is used in current MRI agents).

Furthermore, an animal study is underway to test the efficacy of solapsone-Gd ${ }^{3+}$ as an imaging agent for MRI. This study involves the use of an APP/PS1 doubly transgenic mouse model of AD. At six months of age, the mice will be injected with the solapsone- $\mathrm{Gd}^{3+}$ complex at a single dose of $25 \mathrm{mg} / \mathrm{kg}$. MRI images will be captured at 15, 30 and 60 minutes after injection to determine how well the imaging agent performs.

### 6.5 CONCLUSIONS ON SOLAPSONE AS A DIAGNOSTIC IMAGING AgENT FOR AlZHEIMER's DISEASE

The in silico and in vitro studies of solapsone- $\mathrm{Gd}^{3+}$ as a diagnostic agent are quite favourable. The molecular modelling suggests that solapsone is more than capable of binding to $\beta$-amyloid while also chelating a paramagnetic ion such as gadolinium. This is further supported by in vitro testing showing a decrease in amyloid aggregation. This truly is a novel diagnostic agent, as all of the currently available imaging agents for AD being developed are being analogued from molecules used to bind to the aggregated forms of $\beta$-amyloid, and they only bind to the plaques. Solapsone has already been used in humans, and thus would be more market ready, and given that it binds to the soluble forms of $A \beta$ that are responsible for the disease, it would allow for earlier diagnosis of the disease. The fact that solapsone- $\mathrm{Gd}^{3+}$ could be used in MRI imaging is also a boon, as most all hospitals have a MRI machine (this is not the case for PET imaging).

Overall solapsone presents itself as an excellent potential imaging agent for Alzheimer's disease, and a provisional patent for the solapsone-Gd ${ }^{3+}$ complex (which also includes a novel synthetic route for solapsone) has been filed.

### 6.6 Interpretation

The in silico optimization of solapsone- $\mathrm{Gd}^{3+}$ with different conformations of $\beta$ amyloid suggests that the complex can bind to monomeric forms in order to allow for their identification. Solapsone can chelate gadolinium with a binding energy similar to those of known chelators, indicating that the metal-ligand interactions are fairly strong. Binding interactions within the LVFF region sometimes overlapped into the $\mathbf{H H Q K}$ region, and vice versa. For some conformations, the solapsone- $\mathrm{Gd}^{3+}$ complex did bind outside the HHQK region, but it can be seen that this is a result of the complex surrounding the amyloid peptide.

The in vitro results support the in silico evidence that solapsone- $\mathrm{Gd}^{3+}$ can bind to $A \beta$ in a monomeric or at least in the soluble forms, as aggregation was inhibited. As the blood vessels in the region of $A \beta$ aggregation become damaged in the disease process, and given the evidence that solapsone can cross the blood-brain barrier, it is entirely possible that this complex will be able to enter the brain and bind to the soluble forms of $\mathrm{A} \beta$, and potentially the plaques as well.

The in vitro results also show that a complex ratio of two solapsone molecules to one gadolinium ion can bind to $\beta$-amyloid more effectively. In silico studies suggest that a variety of orientations are possible for this complex, and it may be that with the 2:1 complex, two or more separate monomers of $A \beta$ could be bound. The decreased
aggregation observed relative to the $1: 1$ ratio suggests a similar action may be occurring in vitro.

The mouse model will allow for in vivo verification of this hypothesis, and if it should prove successful will present a readily accessible MRI contrast agent to allow for earlier diagnosis of AD than compounds that are currently available. This is also a favourable complex of interest, as solapsone has a very low toxicity, and chelated gadolinium also has reduced toxicity. The potential side-effects of the administration of this complex may therefore be minimal.

The in silico studies also suggest that solapsone can bind to different conformations of $\beta$-amyloid on its own. The molecule can interact with both the HHQK and LVFF regions, as well as overlapping the two. This is possible as the larger size of solapsone allows it to wrap itself around the amyloid protein to prevent conformational conversion. The binding energies of these systems are also favourable, and multiple binding interactions can form between the protein and small molecule. Although its activity in vitro is less than that of complexed solapsone- $\mathrm{Gd}^{3+}$, it does show some capacity to inhibit $A \beta$ aggregation which is a beneficial outcome. Thus a known drug can be repurposed to target other diseases in need of new therapeutic approaches.

## CHAPTER 7: CONCLUSIONS

Through the course of this research computational methods have been used to identify endogenous molecules within the human brain that have the potential to bind to $\beta$-amyloid to prevent neurotoxic aggregation from occurring, and the results have potential significance.

## 7.1 Рhosphoserine

Phosphoserine has demonstrated by in silico and in vitro means that it is capable of binding to the monomeric form of $\beta$-amyloid to prevent aggregation. Phosphoserine can also bind to other proteins involved in AD bearing a common $\mathbf{B B X B}$ motif. In fact, it binds well to these proteins and demonstrated itself as more energetically favourable in binding to them relative to other species that were investigated. Thus phosphoserine may act in a multi-faceted approach, to not only prevent $A \beta$ aggregation, but inhibit the damaging inflammatory responses that occur.

Further research of phosphoserine as an anti-AD drug is warranted. As the pathways involved in the synthesis and degradation of the molecule are known, drugs could be designed to increase the concentration of phosphoserine in the brain. Phosphoserine could also be used as a lead molecule to develop analogues with even more efficacy.

### 7.2 HHQK as a Target for Anti-Alzheimer's Drugs

The research presented demonstrates that the $\mathbf{H H Q K}$ region of $A \beta$, which plays an important role in the misfolding, is a viable target for anti-AD drugs. The indentified
endogenous molecules, such as phenylalanine, dopamine, and 3-hydroxyanthranilic acid, were all capable of binding to $\mathbf{H H Q K}$, and are of interest for further development. The positive computational results, supported by in vitro assays, led to the development of a novel series of analogues of 3HAA, and the activity of these new analogues has been increased. Further QSARs will be performed to continue to improve the efficacy of these drugs.

### 7.3 BBXB and the "Promiscuous Drug" Concept

The molecular mechanics studies of a series of synthetic molecules interacting with the BBXB motif on multiple proteins support the concept of a "promiscuous drug". All five compounds were capable of binding to the concentrated region of basic amino acids on multiple proteins involved in Alzheimer's disease. Certain compounds were more efficacious at forming these binding interactions; however, they were all able to target $\mathbf{B B X B}$. This supports the concept that a single drug could target multiple proteins involved in the disease process.

One particular compound of interest, NCE-0217, was "analogued" further and a QSAR was performed to provide direction on which compounds should be synthesized next. This process will be repeated as necessary to improve the activity of the molecules.

### 7.4 EVHHQK as a Target for Anti-Alzheimer’s Drugs

Studies on the interactions between both endogenous and synthetic molecules with the EVHHQK region of $\beta$-amyloid support its potential for another binding target to
prevent aggregation. Therefore, small molecules containing both anionic and cationic moieties could interact with EVHHQK in a preventative manner.

The results indicate that the anionic groups on these molecules play a role in the strength of binding interactions, where $\mathrm{SO}_{3}{ }^{-}>\mathrm{PO}_{3}{ }^{-}>\mathrm{CO}_{2}{ }^{-}$. This indicates that a search for molecules with sulfonate groups would yield compounds with a greater chance of positive binding interactions than those with carboxylate groups. The size of the molecule is also a factor in its ability to bind to $\beta$-amyloid, as $\beta$-alanine was not as capable as GABA for forming interactions with the protein.

### 7.5 LVFF as a Target for Anti-Alzheimer's Drugs

The in silico studies of small molecules comparing the binding strength of the HHQK region to the LVFF region of $\beta$-amyloid demonstrate the viability of LVFF as another drug target. Compounds with aromatic rings are capable of targeting both HHQK and LVFF, and may bind even more strongly to the LVFF region of $A \beta$. Thus, we can design and develop drug molecules capable of targeting both regions of the protein to better promote stability in the monomeric form.

### 7.6 Solapsone as an Imaging Agent for Alzheimer's Disease

The results of the minimization of solapsone chelating gadolinium with $\beta$-amyloid are favourable for its use as a diagnostic agent. Optimizations in both the gas phase and solution phase demonstrated multiple interactions formed between solapsone- $\mathrm{Gd}^{3+}$ and the HHQK and LVFF regions of A $\beta$, which was further supported by in vitro results. The
next phase of this project will be to obtain the results of animal study in order to proceed with its development.

Solapsone may also be capable of acting as an amyloid anti-aggregant. The in silico studies showed that it would form many binding interactions, not only with HHQK or LVFF, but overlapping both regions. It should be quite capable of keeping $\beta$-amyloid in its non-toxic form by binding around these regions.

### 7.7 GENERAL CONCLUSIONS

The use of computational techniques has facilitated the identification, design and development of novel therapeutics for Alzheimer's disease. The identification of endogenous molecules of the brain as anti-Alzheimer's drugs is an approach that has not previously been postulated. These identified compounds have shown great promise as leads in the development of putative anti-AD drugs. Computational methods were also of use in the design and development of novel molecules for inhibiting amyloid aggregation, as they allowed for more focused research and positive results to be obtained with less synthetic cost.

Furthermore, through the use of these computational techniques, the idea of "physinformatics" was developed, this would allow for the discovery of potentially useful molecules based on specific functional groups and electronic arrangements in order to better target an identified region. Drugs may also be repurposed through these means of discovery, as with the identification of solapsone (formerly used to treat leprosy), and its subsequent development as a diagnostic imaging agent for Alzheimer's disease.

## References

[1] Parihar, M. S., Hemnani, T. J. Clin. Neurosci. 2004, 11, 456-467.
[2] Grossberg, G. T. J Clin Pyschiatry. 2003, 64 (suppl 9), 3-6.
[3] Brookmeyer, R., Johnson, E., Zeigler-Graham, K., Arrighi, H. M. Alzheimer's \& Dementia. 2007, 3, 186-191.
[4] Easwaramoorthy, B., Pichika, R., Collins, D., Potkin, S.G., Leslie, F.M., Mukherjee, J. Synapse. 2007, 61, 29-36.
[5] Wenk, G. L. J Clin Psychiatry, 2003, 64 (suppl 9), 7-10.
[6] Purves, D. \& Williams, S.M. Neuroscience, $3{ }^{\text {rd }}$ ed; Sinauer Associates: Sunderland, MA, 2004.
[7] Nestler, E.J., Hyman, S.E. \& Malenka, R.C. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. The McGraw-Hill Companies, Inc.: Toronto, ON 2001.
[8] Lahiri, D. K., Greig, N. H. Neurobiol. Aging. 2004, 25, 581-587.
[9] Walsh, D. M., Selkoe, D. J. J. Neurochem. 2007, 101, 1172-1184.
[10] Maltseva, E., Kerth, A., Blume, A., Mohwald, H., Brezesinski, G. ChemBioChem. 2005, 6, 1817-1824.
[11] Verdile, G., Fuller, S., Atwood, C. S., Laws, S. M., Gandy, S. E., Martins, R. N. Pharmacol. Res. 2004, 50, 397-409.
[12] Gandy, S. J. Clin. Invest. 2005, 115, 1121-1129.
[13] Buchet, R., Pikula, S. Acta Biochim. Pol. 2000, 47, 725-733.
[14] LaFeria, F. M., Green, K. N., Oddo, S. Nat. Rev. Neurosci. 2007, 8, 499-508.
[15] Gouras, G. K., Almeida, C. G., Takahashi, R. H. Neurobiol. Aging. 2005, 26, 12351244.
[16] Morita, M., Vestergaard, M., Hamada, T., Takagi, M. Biophys. Chem. 2010, 147, 81-86.
[17] Yoda, M., Miura, T., Takeuchi, H. Biochem. Bioph. Res. Co. 2008, 376, 56-59.
[18] Fändrich, M., Schmidt, M., Grigorieff, N. Trends Biochem. Sci. 2011, 36, 338-345.
[19] Oddo, S., Caccamo, A., Tran, L., Lambert, M. P., Glabe, C. G., Klein, W. L., LaFeria, F. M. J. Biol. Chem. 2006, 281, 1599-1604.
[20] Minati, L., Edginton, T., Bruzzone, M. G., Giaccone, G. Am J Alzheimers Dis. 2009, 24, 95-121.
[21] Vijayan, S., El-Akkad, E., Grundke-Iqbal, I., Iqbal, K. FEBS Lett. 2001, 507, 375381.
[22] Karp, G. Cell and Molecular Biology: Concepts and Experiment,. $3^{\text {rd }}$ ed.; John Wiley \& Sons, Inc.: Hoboken, NJ 2003.
[23] Butterfield, D. A., Bush, A. I. Neurobiol. Aging. 2004, 25, 563-568.
[24] World Alzheimer Report. Alzheimer's Disease International: London 2009.
[25] Diamond, J. "A Report of Alzheimer's Disease and Current Research." Alzheimer Society.Toronto, ON, 2006.
[26] Alzheimer Treatment: Drug Treatments. Alzheimer Society of Canada. 2007. [http://www.alzheimer.ca/english/treatment/treatments-into.htm](http://www.alzheimer.ca/english/treatment/treatments-into.htm) 21 Dec. 2007.
[27] Robinson, D. M., Keating, G. M. Drugs. 2006, 66, 1515-1534.
[28] Sugimoto, H., Yamanishi, Y., Imura, Y. \& Kawakami, Y. Curr. Med. Chem. 2000, 7, 303-339.
[29] Bar-On, P., Millard, C.B., Harel, M., Dvir, H., Enz, A., Sussman, J.L., Silman, I. Biochemistry. 2002, 41, 3555-3564.
[30] Pilger, C., Bartolucci, C., Lamba, D., Tropsha, A., Fels, G. J. Mol. Graphics Modell. 2001, 19, 288-296.
[31] Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P, Kivipelto, M. Lancet Neurol. 2010, 9, 702-716.
[32] Adlard, P.A., Cherny, R. A., Finkelstein, D. I., Gautier, E., Robb, E., Coretes, M., Volitakis, I., Liu, X., Smith, J. P., Perez, K., Laughton, K., Li, Q-X., Charman, S. A., Nicolazzo, J. A., Wilkins, S., Deleva, K., Lynch, T., Barnham, K. J., Bush, A. I. Neuron. 2008, 59, 43-55.
[33] Salloway, S., Sperling, R., Keren, R., Porsteinsson, A. P., van Dyck, C. H., Tariot, P. N., Gilman, S., Arnold, D., Abushakra, S., Hernandez, C., Crans, G., Liang, E., Quinn, G., Bairu, M., Pastrak, A., Cedarbaum, J. M. Neurology. 2011, 77, 12531262.
[34] Townsend, M. J. Alzheimer's Dis. 2011, 24, 43-52.
[35] Humpel. C. Trends Biotechnol. 2011, 29, 26-32.
[36] Hampel, H., Frank, R., Brioch, K., Teipel, S. J., Katz, R. G., Hardy, J., Herholz, K., Bokde, A. L. W., Jessen, F., Hoessler, Y. C., Sanhai, W. R., Zetterberg, H., Woodcock, J., Blennow, K. Nat. Rev. Drug Discov. 2010, 9, 560-574.
[37] Lin, K.-J., Hsu, W.-C., Hsiao, I.-T., Wey, S.-P., Jin, L.-W., Skovronsky, D., Wai, Y.-Y., Chang, H.-P., Lo, C.-W., Yao, C. H., Yen, T.-C., Kung, M.-P. Nucl. Med. Biol. 2010, 37, 497-508.
[38] Ono, M., Saji, H. Int. J. Mol. Imaging. 2011, 1-12.
[39] Nogrady, T., Weaver D. F. Medicinal Chemistry: A Molecular and Biochemical Approach. $3{ }^{\text {rd }}$ ed.; Oxford University Press, Inc.: Toronto, ON 2005.
[40] Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeny, P. J. Adv. Drug Deliv. Rev. 2001, 46, 3-26.
[41] Stephenson, V. C., Heyding, R. A., Weaver, D. F. FEBS Lett. 2005, 579, 13381342.
[42] Leach, A. R. Molecular Modelling: Principles and Applications. 2nd Ed. Toronto : Pearson Educated Limited, 2001.
[43] Mayo, S. L., Olafson, B. D., Goaddard III, W. A. J. Phys. Chem. 1990, 94, 88978909.
[44] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., Sates, D. J., Swaminathan, S., Karplus, M. J. Comput. Chem. 1983, 4, 187-217.
[45] Cerius ${ }^{2}$. Version 4.10. Accelrys Inc., 2005.
[46] QUANTA2005. Version 05.0417. Accelrys Software Inc., 2006.
[47] Molecular Operating Environment. Version 2008.10. Chemical Computing Group Inc., 2009.
[48] MacKerell Jr., A. D., Basford, D,. Bellott, M., Dunbrack Jr., R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuezera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher III, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., Karpus, M. J Phys Chem B. 1998, 102, 3586-3616.
[49] QUANTA 2005 Basic Operations. 2005. San Diego : Accelrys Inc.
[50] "CHARMM: The Energy Function and Its Parameterization." Encyclopedia of Computational Chemistry. John Wiley and Sons Ltd.: Chichester, New York 1998, 271-277.
[51] Molecular Operating Environment. Chemical Computing Group Inc.: Montreal, Quebec 2009.
[52] Cerius ${ }^{2} 4.10$ L Forcefield-Based Simulations. Accelrys Software Inc.: San Diego 2005.
[53] Labute, P. JCCG. 1995.
[54] Carbó-Dorca, R., Robert, D., Amat, Ll., Gironés, X., Besalú, E. Molecular Quantum Similarity in QSAR and Drug Design. Springer-Verlag: Berlin 2000.
[55] Mannhold, R. Molecular Drug Properties: Measurement and Prediction. WileyVCH Verlag GmbH \& Co. KGaA: Weinheim 2008.
[56] Cerius ${ }^{2}$ Version 4.10 QSAR. Accelrys Software Inc.: San Diego 2005.
[57] Labute, P. Pacific Symposium on Biocomputing. 1999, 4, 444-455.
[58] Cohen, J. Educ. Psychol. Meas. 1960, 20, 37-46.
[59] Szegedi, V., Juhász, G., Rózsa, E., Juhász-Vedres, G., Datki, Z., Fülöp, L., Bozsó, Z., Lakatos, A., Laczkó, I. , Farkas, T., Kis, Z., Tóth, G., Soós, K., Zarándi, M., Budai, D.,Toldi, J., Penke, B. FASEB J. 2006, 20, E324-333.
[60] Klunk, W. E., McClure, R. J., Richard, J., Pettegrew, J. W. Mol. Chem. Neuropathol. 1991, 15, 51-73.
[61] Mason, R. P., Trumbore, M. W., Pettegrew, J. W. Neurobiol. Aging. 1995, 16, 531539.
[62] Molina, J. A., Jiménez-Jiménez, F. J., Vargas, C., Gómez, P., de Bustos, F., OrtíPareja, M., Tallón-Barranco, A., Benito-León, J., Arenas, J., Enríquez-deSalamanca, R. J. Neural Transm. 1998, 105, 279-286.
[63] Klunk, W. E., McClure, R. J., Pettegrew, J. W. J. Neurochem. 1991, 56, 19972003.
[64] Mason, R. P., Trumbore, M. W., Pettegrew, J. W. Ann. NY Acad, Sci. 1996, 17, 368-373.
[65] Wu, S-Z., Bodles, A. M., Porter, M. M., Griffin, W. S. T., Basile, A. S., Barger, S. W. J. Neuroninflamm. 2004, 1.
[66] Wood, P. L., Hawkinson, J. E., Goodnough, D. B. J. Neurochem. 1996, 67, 14851490.
[67] Berman, H. M., Westbrook, J., Feng, Z., Gililand, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. Nucleic Acids Res. 200, 28, 235-242.
[68] McGrath, M. E., Vasquez, J. R., Craik, C. S., Yang, A. S., Honig, B., Fletterick, R. J. Biochemistry, 1992, 31, 3059-3064.
[69] Talafous, J., Marcinowski, K. J., Klopman, G., Zagorski, M. G. Biochemistry, 1994, 33, 7788-7796.
[70] Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther K., Frank, R. W., Rosch, P. Eur. J. Biochem. 1995, 233, 293-298.
[71] Coles, M., Bicknell, W., Watson, A. A., Fairlie, D. P., Craik, D. J. Biochemistry. 1998, 37, 11064-11077.
[72] Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A. M., Temussi, P. A., Picone, D. Eur. J. Biochem. 2002, 269, 5642-5648.
[73] Zirah, S., Kozin, S. A., Mazur, A. K., Blond, A., Cheminant, M., Segalas-Milazzo, I., Debey, P., Rebuffat, S. J. Biol. Chem. 2006, 281, 2151-2161.
[74] Gasteiger, J., Marsili, M. Tetrahedron. 1980, 36, 3219-3288.
[75] Kraich, M., Klein, M., Patiño, E., Harrer, H., Nickel, J., Sebald, W., Mueller, T. D. BMC Biol. 2006, 4:13.
[76] Yoon, C., Johnston, S. C., Tang, J., Stahl, M., Tobin, J. F., Somers, W. S. EMBO J. 2000, 19, 3530-3541.
[77] LaPorte, S. L., Juo, Z. S., Vaclavikova, J., Colf, L. A., Qi, X., Heller, N. M., Keegan, A. D., Garcia, K. C. Cell. 2008, 132, 259-272.
[78] Smith, S. P., Shaw, G. S. Structure. 1998, 8, 211-222.
[79] Chung, C., Cooke, R. M., Proudfoot, A. E. I., Wells, T. N. C. Biochemistry. 1995, 34, 9307-9314.
[80] Bella, J., Kolatkar, P. R., Marlor, C. W., Greve, J. M., Rossman, M. G. Proc. Natl. Acad. Sci. 1998, 95, 4140-4145.
[81] Atwood, C. S., Martins, R. N., Smith, M. A., Perry, G., Peptides. 2002, 23, 13431350.
[82] Liu, R., McAllister, C., Lyubchenko, Y., Sierks, M. R. J. Neurosci. Res. 2004, 75, 162-171.
[83] Tomaselli, S., Esposito, V., Vangone, P., van Nuland, N.A., Bonvin, A.M., Guerrini, R., Tancredi, T., Temussi, P.A., Picone, D. ChemBioChem. 2006, 7, 257-267.
[84] Fonteh, A. N., Harrington, R. J., Tsai, A., Liao, P., Harrington, M. G. Amino Acids. 2007, 32, 213-224.
[85] Yates, C. M., Allison, Y., Simpson, J., Maloney, A. F. J., Gordon, A. Lancet. 1979, 2, 851-852.
[86] Richard, D. M., Dawes, M. A., Mathias, C. W., Acherson, A., Hill-Kapturczak, N., Dougherty, D. M. IJTR. 2009, 2, 45-60.
[87] Molecular Operating Environment. Version 2009.10. Chemical Computing Group Inc., 2009.
[88] Molecular Operating Environment. Version 2010.10. Chemical Computing Group Inc., 2010.
[89] Krause, D., Suh, H.-S., Tarassishin, L., Cui, Q. L., Durafourt, B. A., Choi, N., Bauman, A., Cosenza-Nashat, M., Antel, J. P., Zhao, M.-L., Lee, S. C. Am. J. Pathol. 2011, 179, 1330-1372.
[90] Patani, G. A., LaVoie, E. J. Chem. Rev. 1996, 96, 3147-3176.
[91] Lima, L. M., Barreiro, E. J. Curr. Med. Chem. 2005, 12, 23-49.
[92] Gooptu, B., Hazes, B., Chang, W.-S., W., Dafforn, T. R., Carrell, R. W., Read, R. J., Lomas, D., A. PNAS. 2000, 97, 62-72.
[93] Harrel, M., Sussman, J. L. 2J3D. 2009.
[94] Mahley, R. W., Weisgraber, K. H., Huang, Y. PNAS. 2006, 103, 5644-5654.
[95] Verderame, J. R., Kantardjieff, K., Segelke, B., Weisgraber, K., Rupp, N. 1GS9. 2009.
[96] Ikemizu, S., Gilbert, R. J. C., Fennelly, J. A., Collins, A. V., Harlos, K., Davis, S. J. Immunity. 2000, 12, 51-60.
[97] Evans, J. C., Huddler, D. P., Jiracek, J., Castro, C., Millian, N. S., Garrow, T. A., Ludwig, M. L. Structure. 2002, 10, 1159-1171.
[98] Païdassi, H., Tacnet-Delorme, P., Garlatti, V., Darnault, C., Ghebrehiwet, B., Gaboriauld, C., Arlaud, G. J., Frachet, P. J. Immunol. 2008, 180, 2329-2338.
[99] Landar, A., Curry, B., Parker, M. H., DiGiacomo, R., Indelicato, S. R., Nagabhushan, T. L., Rizzi, G., Walter, M. R. J. Mol. Biol. 2000, 299, 169-179.
[100] Wilson, K. P., Black, J.-A. F., Thomson, J. A., Kim, E. E., Griffith, J. P., Navla, M. A., Murcko, M. A., Chambers, S. P., Aldape, R. A., Raybuck, S. A., Livingston, D. J. Nature. 1994, 370, 270-274.
[101] Ren, M., Guo, Q., Guo, L., Lenz, M., Qian, F., Koenen, R. R., Xu, H., Schilling, A. B., Weber, C., Ye, R. D., Dinner, A. R., Tang, W.-J. EMBO J. 2010, 29, 39523966.
[102] Glossop, M. S., Bazin, R. J., Dack, K. N., Fox, D. N. A., MacDonald, G. A., Mills, M., Owen, D. R., Phillips, C., Reeves, K. A., Ringer, T. J., Strang, R. S., Watson, C. A. L. Bioorg. Med. Chem. Lett. 2011, 21, 3404-3406.
[103] Crump, M. P., Gong, J.-H., Loetscher, P., Rajarathnam, K., Amara, A., ArenzanaSeisdedos, F., Virelizier, J.-L., Baggiolini, M., Sykes, B. D., Clark-Lewis, I. EMBO J. 1997, 16, 6996-7007.
[104] Eckenroth, B. E., Steere, A. N., Chasteen, D., Everse, S. J., Mason, A. B. PNAS. 2011, 108, 13089-13094.
[105] Gervais, F., Paquette, J., Morissette, C., Kryzwkowski, P., Yu, M., Azzi, M., Lacombe, D., Kong, X., Aman, A., Laurin, J., Szarek, W. A., Tremblay, P. Neurobiol. Aging. 2007, 28, 537-547.
[106] Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902-3909.
[107] Gaussian 09W. Version 7.0. Gaussian, Inc. 2009.
[108] Carr, D. H., Brown, J., Bydder, G. M., Weinmann, H.J., Speck, U., Thomas, D. J., Young, I. R. Lancet. 1984, 323, 484-486.
[109] Jopling, W. H. Postgrad Med. J. 1960, 36, 634-637.
[110] Brownlee, G., Green, A. F., Woodbine, M. Brit. J. Pharmacol. 1948, 3, 15-28.
[111] Brownlee, G. Lancet. 1948, 252, 131-134.
[112] Runge, V. M. J. Magn. Reson. Imaging. 2000, 12, 205-213.
[113] Tirkkonen, B., Aukrust, A., Couture, E., Grace, D., Haile, Y., Holm, K. M, Hope, H., Larsen, å., Sivertsen Lunde, H, Sjøgren, C. E. Acta Radiol. 1997, 38, 780-789.

## Appendix 1: The Library of Endogenous Molecules of the Brain

(S)13-hydroxyoctadecadienoic acid
(S)1-benzyl-1,2,3,4-TIQ
(S)1-phenyl-1,2,3,4-TIQ
(S)1-phenyl-N-methyl-1,2,3,4-TIQ
(S)-norcoclaurine
(S)-reticuline
(S)-salsoline
(S)-salsolinol
(S)-tetrahydropapaveroline

1,2,3,4-TIQ
1,2-dimethyl-6,7-dihydroxyisoquinolinium
1,2-N-dimethyl-1,2,3,6tetrahydroisoquinoline

1,3-butadiene
1,3-P-D-glycerate
10-formylTHF
11beta-17alpha-21-trihydroxy-5beta-pregnane-3,20-dione

11beta-21-dihydroxy-3,20-oxo-5beta-pregnan- 18-al

11beta-hydroxy-4-androstene-3,17-dione
11-cis-retinal
11-deoxycortisol
11-hydroxyeicosatetraenoic acid

12-hydroxyeicosatetraenoic acid
14-desmethyllanosterol
15-hydroxyeicosatetraenoic acid
16alpha-hydroxydehydroepiandrosterone
16alpha-hydroxyestrone
17alpha-21-didyhroxy-5beta-pregnane-
3,11,20-trione
17alpha-hydroxypregnenolone
17alpha-hydroxyprogesterone
18-hydroxycorticosterone
19-hydroxyandrost-4-ene-3,17-dione
19-hydroxy-PGA1
19-hydroxy-PGA2
19-hydroxy-PGB1

19-hydroxy-PGB2

19-hydroxytestosterone
1-carboxy(S)salsolinol
1D-myo-inositol,1,4,5-P3
1L-myo-inositol-1-P
1-lysolecithin
1-lysophosphatidylethanolamine
1-methyl-1,2,3,4-THBC
1-methyl-1,2,3,4-THBC-3-carboxylic acid

1-methylimidazole-4-acetic acid
1-monoacylglycerol
1-phosphatidyl-1D-myo-inositol
1-phosphatidyl-1D-myo-inositol-3,4-P2
1-phosphatidyl-1D-myo-inositol-3P
1-phosphatidyl-1D-myo-inositol-4,5-P2
1-phosphatidyl-1D-myo-inositol-4P
1-pyrroline2-carboxylate
1-pyrroline-4-hydroxy-2-carboxylate
2(N)-methyl-1,2,3,4-TIQ
2(N)-methyl-norsalsolinol
2,3-dioxo-L-gulonate
2,3-P-D-glycerate
2,5-dihydroxypyridine
2,9-dimethyl-beta-carbolinium
2,9-dimethyl-harmanium
20-alpha-22-beta-dihydroxycholesterol
20-carboxy-LTB4
20-hydroxy-LTB4
22beta-hydroxycholesterol
23P-D-glycerateb
24(S)-hydroxycholesterol
2-alpha-hydroxyethyl-ThPP
2-alpha-lactoyl-ThPP-r
2-alpha-lactoyl-ThPP-s

2-amino-3-carboxymuconatesemialdehyde
2-amino-3-oxadipate

2-aminomuconate

2-aminomuconatesemialdehyde

2-arachidonylglycerol

2-dehydro-3-deoxy-6-P-gluconate

2-dehydro-L-gulonolactone

2-deoxyadenosine
2-deoxyadenosine-5-diphosphate
2-deoxyadenosine-5-phosphate
2-deoxyadenosine-5-triphosphate
2-deoxycytidine
2-deoxycytidine-5-diphosphate
2-deoxycytidine-5-phosphate
2-deoxycytidine-5-triphosphate

2-deoxy-D-glucose

2-deoxyguanosine

2-deoxyguanosine-5-diphosphate
2-deoxyguanosine-5-phosphate
2-deoxyguanosine-5-triphosphate
2-deoxyinosine

2-deoxyribose
2-deoxythymidine
2-deoxythymidine-5-diphosphate
2-deoxythymidine-5-phosphate

2-deoxythymidine-5-triphosphate	2-oxo-3-methylvalerate
2-deoxyuridine	2-oxo-5-aminovalerate
2-deoxyuridine-5-diphosphate	2-oxoadipate
2-deoxyuridine-5-phosphate	2-oxobutyrate
2-deoxyuridine-5-triphosphate	2-oxoglutaramate
2-hydroxy-3-ketoadipate	2-oxoglutarate
2-hydroxy-3-oxoadipate	2-oxoisocaproate
2-hydroxyestradiol-17b	2-oxoisovalerate
2-hydroxyestrone	2-P-D-glycerate
2-hydroxyglutarate	3,3,5-triodothyronine
2-hydroxyputrescine	3,3-diiodothyronine
2-hydroxystearic acid	3,4,5-trihydroxy-2-oxo-L-valeraldehyde
2-lysolecithin	3,4-dihydroxy-5-decaprenylbenzoate
2-lysophosphatidylethanolamine	3,4-dihydroxy-5-heptaprenylbenzoate
2-methoxyestradiol-17b	3,4-dihydroxy-5-hexaprenylbenzoate
2-methoxyestrone	3,4-dihydroxy-5-nonaprenylbenzoate
2-methyl-3-hydroxybutyryl CoA	3,4-dihydroxy-5-octaprenylbenzoate
2-methylacetoacetyl CoA	3,4-Dihydroxyphenylglycol
2-methyl-beta-carbolinium	3,5,3-triiodothyronine
2-methylbutyryl CoA	3,5-diiodothyronine
2-methyl-harmanium	3alpha-11beta-21-trihydroxy-20-oxo-5beta-pregnan-18-al
2-methylheptanone	
2-methyl-THBC	3alpha-17beta-dihydroxyandrostane
2-monoacylglycerol	3alpha-hydroxy-5beta-pregnan-20-one
2-octyl-gamma-bromoacetoacetate	3beta-17beta-dihydroxy-5-androstene
	3beta-dimethylallylalcohol


3-dehydro-L-gulonate
3-dehydrosphinganine
3-dehydrothreonate
3-hydroxyanthranilate
3-hydroxyisobutyrate
3-hydroxy-L-kynurenine
3-hydroxypyruvate
3-hydroxytrimethyllysine
3-iodothyronine
3-isopropylmalate
3-mercaptopyruvate
3-methoxy-4-hydroxy-5decaprenylbenzoate
3-methoxy-4-hydroxy-5heptaprenylbenzoate
3-methoxy-4-hydroxy-5hexaprenylbenzoate
3-methoxy-4-hydroxy-5nonaprenylbenzoate
3-methoxy-4-hydroxy-5-octaprenylbenzoate
3-methoxy-4-hydroxymandelaldehyde
3-methoxy-4-hydroxymandelate
3-methoxy-4hydroxyphenylethyleneglycolsulfate
3-methoxy-4-hydroxyphenylglycol
3-methoxy-DOPA
3-methoxytyramine

3-methylcrotonate

3-methylcrotonyl CoA

3-O-acetyl-sphingosine

3-O-methyl-sphingosine

3-O-sulfoglucuronic acid

3-P-D-glycerate

3-phosphatidylethanolamine
3-phosphatidyl-L-glycerol-1P

3-P-hydroxypyruvate

3-P-serine

3-sulfinoalanine

3-sulfinylpyruvate
3-ureidoisobutyrate

3-ureidopropionate

4,7,10,13,16,19-docosahexenoic acid

4-aminobutyraldehyde

4-aminobutyrate

4-androstene-3,17-dione

4-aspartyl-P

4-fumarylacetoacetate

4-hydroxy-3-decaprenylbenzoate

4-hydroxy-3-heptaprenylbenzoate
4-hydroxy-3-hexaprenylbenzoate

4-hydroxy-3-methoxyphenylalanine
4-hydroxy-3-nonaprenylbenzoate

4-hydroxy-3-octaprenylbenzoate	5-formaminoimidazole-4-carboxamide ribotide
4-hydroxynonenal	
	5-formyl THF
4-hydroxyphenylpyruvate	
4-hydroxytrimethyllysine	
	5-hpete
4-imidazolone-5-propionate	
4-maleylacetoacetate	5-hydroxyindoleacetaldehyde
	5-hydroxyindoleacetate
4-pyridoxate	
	5-hydroxytryptophan
5,10-methenyl-THF	
5,10-methylene-THF	5-hydroxytryptophol
	5-methoxy-N,N-dimethyltryptamine
5,6-dihetre	
5,6-dihydrouracil	5-methyl THF
	5-methylcytosine
5,6-epetre	
	5-methyltetrahydrofolate
5,7-cholestadien-3-ol	
5alpha-androstane-3,17-dione	5-oxoproline
	5-P-B-D-ribosylamine
5alpha-androstane-3alpha-7beta-diol	
5alpha-dihydrotestosterone	
5alpha-pregnan-3alpha-ol-20-one S-S-cysteinyl-3,4-dikydroxyphenylalanine	
	5-S-cysteinyldopamine
5alpha-pregnane-3,20-dione	
	6-acetylmorphine
5 -aminoimidazole ribotide	
5-aminoimidazole-4-carboxamide ribotide	
	6-hydroxymelatonin
5-aminoimidazole-4-	
Nsuccinylocarboxamide ribotide	6-hydroxymelatonin sulfate
5-amino-levulinate	6-hydroxynicotinate
5beta-androstane-3,17-dione	6-ketoprostaglandin,F2alpha
5beta-pregnane-3,20-dione	6-methoxy-2-decaprenylphenol
	6-methoxy-2-heptaprenylphenol


6-methoxy-2-hexaprenylphenol	adenosine-5-phosphosulfate
6-methoxy-2-nonaprenylphenol	adenylosuccinate
6-methoxy-2-octaprenylphenol	ADP
6-methoxytryptoline	ADP-glucose
6-R-5,6,7,8-tetrahydrobiopterin	Adrenic acid
6-R-pyruvoylterahydropterin	adrenosterone
6-S-acetyl-dihydrolipoamide	alcylglycerone-P
7,8-diaminononanoate	aldimine
7,8-dihydrofolate	aldosterone
7-dehydrocholesterol	aldosterone-hemiacetal-R
8-amino-7-oxononanoate	aldosterone-hemiacetal-S
9-hydroxyoctadecadienoic acid	alkylacylglycerol
acetaldehyde	alkylglycerol-3P
acetate	alkylglycerone-P
acetoacetate	all-trans retinal
acetoacetylCoA	allo-4-hydroxy-D-proline
acetyl-CoA	alpha-aminobutyric acid
acetylcholine	alpha-carotene
acetylcholine-solv	alpha-D-fucose
acetyl-L-carnitine	alpha-D-galactose
acetylputrescine	alpha-D-galactose-1-P
aconitate	alpha-D-GalNAc
adenine	alpha-D-GlcNAc
adenosine	alpha-D-glucosamine
adenosine-5-phosphate	alpha-D-glucose-1-6P


alpha-D-glucose-1P	anthranilate
alpha-D-glucose-6P	APS
alpha-D-glucuronate	Arachidic acid
alpha-D-glucuronate-f	Arachidonic acid
alpha-D-mannose	ARA-S
alpha-D-mannose-6P	ATP
alpha-D-mannose-6-P	auxin
alpha-D-ribose-1-phosphate	behenic acid
alpha-D-ribose5-P	beta-alanine
alpha-glycero-P	beta-aminoisobutyrate
alpha-ketoadipate	beta-carotene
alpha-L-fucose	beta-D-fructose-1-6P
alpha-tocopherol	beta-D-fructose-1P
alpha-tocopherol-quinone	beta-D-fructose-6P
alph-hydroxy-nervonic acid	beta-D-fucose
aminoacrylate	beta-D-GalNAc
aminobutanesulfonic acid	beta-D-GIcNAc
aminomethanesulfonic acid	beta-D-glucosamine
aminopentanesulfonic acid	beta-D-glucuronate
ammonia	beta-D-glucuronate-f
anandamide	beta-estradiol
androst-4-enedione	beta-hydroxybutyric acid
androstenediol	betaine
androstenedione	betaine aldehyde
androsterone	beta-L-fucose


beta- N -acetylgalactosamine	cerebronic acid-S
beta-phenylethylamine	cerebroside
beta-sulfopyruvate	cGMP
bicarbonate	cholesterol
bilirubin	choline
biliverdin IXa	cisaconitate
bilrubin-B-diglucuronide	cis-vaccenic acid
biotin	citrate
c18-sphingosine	CMP-N-acetylneuraminate
calcitriol	CoA-SH
cAMP	coproporphyrinogen III
campesterol	cortexone
carbamate	corticosterone
Carbamoly-P	cortisol
carbamoyl-P	cortisone
carbon dioxide	cortol
carboxyaminoimidazole ribotide	cortolone
carnitine	creatine
carnosine	creatinine
CDP-1,2-diacyl-glycerol	crotonyl-CoA
CDP-choline	cyclohexa-2,5-diene-1,4-dione
CDP-ethanolamine	cyclo-L-His-L-Pro
ceramide-C18	cyclo-L-Gly-L-Pro
cerebrodiene	cytidine
cerebronic acid-R	cytidinediphosphate choline


cytidine-5-diphosphate	D-gluconate
cytidine-5-phosphate	D-glucono-1,5-lactone
cytidine-5-triphosphate	D-glucosamine-6-P
cytochromes-a	D-glucose
cytosine	D-glucuronate
D-3-hydroxybutyrate	D-glucuronate-1-P
d3-isopentenyl-PP	D-glucuronolactone
D-4-hydroxy-2-oxoglutarate	D-glyceraldehyde
d5,7,24-cholestadien-3beta-ol	D-glyceraldehyde-3-P
D-6-P-gluconate	D-glyceraldehyde-3P
D-6-P-glucono-1,5-lactone	D-glycerate
d7,24-cholestadien-3beta-ol	DHA
deamino-NAD+	DHF
dehydroascorbate	diacylglycerol
dehydroepiandrosterone	dihomo-gamma-linolenic acid
dehydroepiandrosterone sulfate	dihydroceramide
dephosphoCoA-SH	dihydrolipoamide
D-erythrose-4P	dihydroneopterin
desmosterol	dihydroneopterin-P3
dethiobiotin	dihydrosphingosine-1-P
dexamthasone	dihydrothymine
D-fructose	dihydrouracil
D-fructose2-6P	dihydroxyacetone-P
D-GalNAcol	dihydroxyphenylacetate
D-glucarate	diiodo-L-tyrosine


dimethylglycine	D-xylulose
dimethylallyl-PP	D-xylulose-5-P
dimethylcitraconate	D-xylulose-a
diphosphate	D-xylulose-b
diphosphatidylglycerol	Eicosapentaenoic acid
D-lactate	Eicosatrienoic acid
DL-dipalmitoyllecithin	enoloxaloacetate
D-mannose	epinephrine
Docosahexaenoic acid	estradiol
Dopa	estriol
dopamine	estrone
Dopaquin	ethanol
D-pantothenic acid	ethanolamine
D-proline	ethanolamine-P
D-ribitol	etiocholan-3alpha-ol-17-one
D-ribose	fatty acid C25
D-ribose-5-P	fatty acid C24
D-ribulose	fatty acid C18
D-ribulose-5-P	fatty acid C16
D-ribulose-a	f-xylose
D-ribulose-b	f-sorbid C22
D-sedoheptulose-7-P	ferine


fatty acid D11-C20-1	GDP-alpha-L-fucose
fatty acid D13-C22-1	GDP-D-mannose
fatty acid D6,9-C18-2	geranyl-PP
fatty acid D8,11-C20-2	globotriaosylceramide
fluorocitrate	glucosylceramide
FMN	glutaconyl-CoA
folic acid	glutamate
formic acid	glutaryl-CoA
formimglutglutamate	glyceraldehyde-P
formylglycinamide ribotide	glycero-3-phosphoethanolamine
formylglycinamidine ribotide	glycero-3-phospoethanolamine
fumarate	glycerol
GABA	glycerol-3P
galabiosylceramide	glycerol-3-phosphoethanolamine
galactitol	glycerone-P
galactosylceramide	GlyceroneP
galactosylceramide	glycerophosphoethanolamine
galactosylceramide sulfate	glycinamide ribotide
galactosylsphingosine	glycine
gamma-butyrobetaine	glycogen
gamma-hydroxybutyric acid	glycolate
gangliotriaosylceramide	glyoxylate
GDP	GSH
GDP-4-dehydro-6-deoxy-D-mannose	GSSG
GDP-4-dehydro-L-fucose	GTP


guanine	inosine-5-phosphate
guanosine	inositol-1,3,4,5,6-P5
guanosine-5-phosphate	inositol-1,3,4,5-P4
harman	inositol-1,3,4,6-P4
histamine	inositol-1,3,4-P3
homogentisate	inositol-1,3-P2
homotaurine	inositol-1,4,5,6-P4
homovanillate	inositol-1,4,5-P3
hydantoin propionate	inositol-1,4-P2
hydrogen phosphate	inositol-1-P
hydrogen sulfide	inositol-3,4,5,6-P4
hydroperoxide	inositol-3,4-P2
hydroxymethylbilane	inositol-3-P
hydroxypyruvate	inositol-4-P
hypochlorite	isobutyryl CoA
hypotaurine	isocaproic aldehyde
hypoxanthine	isocitrate
imidazole acetaldehyde	isoethionic acid
imidazole acetate	isoleucine
indole-3-acetic acid	isovaleric acid
Indole-5,6-Quinone	isovaleryl CoA
indoleacetaldehyde	itaconate
indolelactate	ketamine
indolepyruvate	kynurenate
inosine	L-1-glycero-3-phosphocholine


L-1-pyrroline-2-carboxylate	lecithin
L-1-pyrroline-3-hydroxy-5-carboxylate	L-erythro-4-hydroxyglutamate
L-1-pyrroline-5-carboxylate	L-erythro-ascorbate
L-2-aminoacetoacetate	leu enkephalin
L-2-aminoadipate	leucine
L-4-hydroxyproline	leukotriene B4
L-5-hydroxylysine	leukotriene C4
laciotriaosulceramide	leukotriene D4
lactosylceramide	leukotriene E4
L-alanine	L-gamma-carboxyglutamate
lanosterol	L-gamma-glutamylalanine
L-arabinose	L-gamma-glutamylarginine
L-arginine	L-gamma-glutamylasparagine
L-argininosuccinate	L-gamma-glutamylaspartate
L-ascorbate	L-gamma-glutamylcysteine
L-asparagine	L-gamma-glutamylglutamate
L-aspartate	L-gamma-glutamylglutamine
L-gathosterol	L-gamma-glutamylglycine
L-garic acid	L-gamma-glutamylhistidine
L-citrulline	L-gammalproline
L-cystathionine	L-cysteate


L-gamma-glutamylserine	L-proline
L-gamma-glutamylthreonine	L-ribulose-5-P
L-gamma-glutamyltryptophan	L-selenocysteine
L-gamma-glutamyltyrosine	L-serine
L-gamma-glutamylvaline	L-threonate
L-glutamate	L-thyroxine
L-glutamate-5-semialdehyde	L-tryptophan
L-glutamine	lysophosphatidate
L-glutamyl-5P	malate
L-glutamyl-5-P	maleamate
L-gulonate	maleate
L-gulonolactone	malonate
L-histidine	malondialdehyde
L-homocysteine	malonyICoA
L-iduronic acid	mannose-1-P
lignoceric acid	mannosylglucosylceramide
linoleamide	melatonin
linoleic acid	met enkephalin
linolenic acid	metanephrine
L-kynurenine	methacrylyl CoA
L-lactate	methanol
L-lysine	methionine
L-ornithine	methionine sulfone
L-oxosuccinamate	methtryptoline
L-phosphatidate	mevalonate


mevalonate-5P	N -acetyl-aspartate
mevalonate-5PP	N -acetylaspartatic acid
MoCo-dimer	N-acetyl-D-glucosamine
MoCo-dimer-ADP	N -acetyl-D-glucosamine-1-P
MoCo-dimer-ADPx2	$N$-acetyl-D-glucosamine-6-P
MoCo-dimer-CDP	N -acetyl-D-mannosamine
MoCo-dimer-CDPx2	N-acetyl-D-mannosamine-6-P
MoCo-dimer-GDP	N-acetyl-L-lysine
MoCo-dimer-GDPx2	N -acetylneuraminate
MoCo-dimer-hypoxanthineDP	N -acetylneuraminate-9-P
MoCo-dimer-hypoxanthineDPx2	N -acetyl-spermidine
MoCo-O	N -acetyl-spermine
MoCo-O-ADP	NAD+
MoCo-O-CDP	NADH
MoCo-O-GDP	NADP+
MoCo-O-hypoxanthineDP	NADPH
monoiodo-L-tyrosine	N-carbamoyl-L-aspartate
MPT	nervonic acid
myo-inositol	N -formylkynurenine
myo-inositol-hexakisphosphate	nicotinamide
myo-inositol-1,2-cyclic-P	nicotinamide nucleotide
myo-inositol-5-phosphate	nicotinate
myristic acid	nicotinate nucleotide
N,N-dimethyltryptamine	nitric oxide
N-acetyl-5-hydroxytryptamine	N-methylhistamine


N-methyl-norsalsolinol	palmitoleic acid
N -oleoylethanolamine	palmitoylCoA
norepinephrine	pantetheine
norharman	PAP
normetanephrine	PAPS
N -palmitoylethanolamine	P-creatine
N -stearoylethanolamine	PEP
Nw-hydroxyarginine	phenylalanine
o-acetylcholine	phenyllactate
oleamide	Phenyl-Pyruvate
oleic aicd	phosphatidylethanolamine
oleylCoA	phosphatidylinositol
o-phosphocholine	phosphatidylserine
o-phospho-ethanolamine	phosphatidylserine-dioleic
orotate	phosphatidylserine-distearic
orotidine-5-phosphate	phosphatidylserine-oleic-stearic
O-succinyl-acetyl-L-homoserine	phosphatidylserine-stearic-oleic
oxalate	phosphocholine
oxaloacetate	phosphorylethanolamine
oxalocrotonate	phtanic acid-R
oxalosuccinate	phtanic acid-S
oxidized alpha-lipoic acid	phytanic acid
oxytocin	phytate
PAF	picolinate
palmitic acid	pipecolic acid


plasmalogen	protoheme
plasmanylcholine	protoporphyrin IXmsf
plasmanylethanolamine	protoporphyrinogen IX
porphobilinogen	PRPP
porphobilinogen derivative	pseudouridine
precursor-z	psychosine
pregnanediol	pterin-4alpha-carbinolamine
pregnenolone	pterine-6-carboxylate
pregnenolone sulfate	putrescine
previtamin D3	pyridoxal
procollagen-5-hydroxy-L-lysine	pyridoxal-P
progesterone	pyridoxamine
propionyl-CoA	pyridoxamine-5-P
prostaglandin A1	pyridoxamine-P
prostaglandin A2	pyridoxine
prostaglandin B1	pyridoxine-P
prostaglandin B2	pyruvate
prostaglandin D2	quinoid
prostaglandin E1	quinolate
prostaglandin E2	quinolinate
prostaglandin E3	quinolinate nucleotide
prostaglandin F1a	r-3-aminoisobutyrate
prostaglandin F2alpha	r-4P-N-pantothenoylcysteine
prostaglandin G2	r-4P-pantetheine
prostaglandin 12	r-4P-pantothenate


retinoate	sphingomyelin-C16
r-methylmalonyl-CoA	sphingomyelin-C17
r-pantothenate	sphingomyelin-C19
r-pantothenol	sphingomyelin-C20
s-3-aminoisobutyrate	sphingomyelin-C21
s-3-hydroxy-3-methylglutaryl CoA	sphingomyelin-C22
s-3-hydroxyisobutyrate	sphingomyelin-C22-1
s-3-hydroxyisobutyryl CoA	sphingomyelin-C23
s-4,5-dihydro-orotate	sphingomyelin-C23-1
s-adenosyl-L-homocysteine	sphingomyelin-C24
s-adenosyl-L-methionine	sphingomyelin-C25
sarcosine	sphingomyelin-C25-1
serotonin	sphingomyelin-C26
sialolactosylceramide	sphingomyelin-C26-1
s-malate	sphingomyelin-nervonic acid
s-methylmalonate semialdehyde	sphingomyelin-stearic acid
s-methylmalonyl-CoA	sphingosine
sn-glycerol3P	sphingosine-1-P
sn-glycerol-3P	sphingosylphosphorylcholine
spermidine	spiro-intermediate
spermine	squalene
sphinganine	s-squalene-2,3-epoxide
sphinganine	stearic acid
sphingomyelin	stearoylCoA
sphingomyelin-C14	stigmasterol


succinate	trans-3-methylglutaconyl CoA
succinate semialdehyde	TRH
succinylCoA	triacylglyceride
sulfate	trimethyllysine
sulfatide	triphosophate
sulfite	triphosphoinositide-arachidoniceicosatrienoic
taurine	
testosterone	triphosphoinositide-diarachidonic
thebaine	triphosphoinositide-diC16
THF	triphosphoinositide-dieicosapentaenoic
thiamine	triphosphoinositide-dieicosatrienoic
thiamine pyrophosphate	triphosphoinositide-dioleic
thiamine-P	triphosphoinositide-distearic
thiocyanic acid	triphosphoinositide-eicosapentaenoic-C16
thiocysteine	triphosphoinositide-oleic-stearic
threonine	tryptamine
thromboxane A2	tryptoline
thromboxane B2	tryptophol
thymidine	tyramine
thymidylic acid	tyrosine
thymine	ubiquinol-10
tiglyl CoA	ubiquinol-6
trans-trans-cis-geranylgeranyl-PP	ubiquinol-7
trans-trans-farnesol	ubiquinol-8
trans-trans-farnesyl-PP	ubiquinol-9
	ubiquinone-10


ubiquinone-6	vitamin D2
ubiquinone-7	vitamin D3
ubiquinone-8	vitamin E
ubiquinone-9	vitamin K hydroquinone
UDP-D-glucuronate	vitamin K quinone
UDP-glucose	vitamin K quinone epoxide
UDP-G-glucuronate	xanthine
UDP-L-iduronate	xanthosine
UDP-N-acetyl-D-glucosamine	xanthosine-5-phosphate
UDP-N-acetyl-galactosamine	xanthurenate
uracil	zymosterol
urate	(peptide/AminoAcid)=AA
urate enolate	(peptide/AminoAcid)=AAKKAAI
uridine	(peptide/AminoAcid)=Ac-alpha-DE, "NAAG"
uridine-5-diphosphate	(peptide/AminoAcid)=Ac-DQYG-NH2
uridine-5-phosphate	(peptide/AminoAcid)=AGPE
uridine-5-triphosphate	(peptide/AminoAcid) $=$ AL
urocanoate	(peptide/AminoAcid)=alpha-DA
urocortisol	(peptide/AminoAcid)=ANKFNKEQ
urocortisone	(peptide/AminoAcid)=AVL
uroporphyrinogen I	(peptide/AminoAcid)=AYYF
uroporphyrinogen III	(peptide/AminoAcid)=beta-A-alpha-hyp
valine	(peptide/AminoAcid)=beta-A-alpha-K
vasopressin	```(peptide/AminoAcid)=beta-A-L-methyl-H, "anserine"```
vitamin A	(peptide/AminoAcid)=beta-AH, "carnosine"


(peptide/AminoAcid)=beta-D-Taurine	(peptide/AminoAcid)=FIVH, "GTP-ase-activator304-307"
(peptide/AminoAcid)=beta-DG	
(peptide/AminoAcid)=CG	
(peptide/AminoAcid)=cyclo-PG	(peptide/AminoAcid)=FLPGH
(peptide/AminoAcid)=DA	(peptide/AminoAcid)=FPNEPM
(peptide/AminoAcid)=DKGNV, "alpha-	(peptide/AminoAcid)=FRNPLAK
globin6-10"	(peptide/AminoAcid)=Gaba-hypusine
(peptide/AminoAcid)=EEP	(peptide/AminoAcid)=Gaba-K
(peptide/AminoAcid)=EFP-NH2, "Phe2TRH"	(peptide/AminoAcid)=Gaba-L-methyl-H, "homoanserine"
(peptide/AminoAcid)=EGEPNL	
(peptide/AminoAcid)=EHP "TRH	(peptide/AminoAcid)=Gaba-H,
deamidated-non-pyro"	"Homocarnosine"
(peptide/AminoAcid)=EHP-NH2, "TRH"	(peptide/AminoAcid)=gamma-E-beta-Aib
(peptide/AminoAcid)=EHPG, "TRH-Gly"	(peptide/AminoAcid)=gamma-E-cysteate-G
(peptide/AminoAcid)=ELFNPY,	(peptide/AminoAcid)=gamma-E-Gaba
"chroogranin-B-precursor520-526"	(peptide/AminoAcid)=gamma-E-Taurine
(peptide/AminoAcid)=ELP-NH2, "Leu2-TRH"	(peptide/AminoAcid)=gamma-QE
(peptide/AminoAcid)=ETP-NH2, "Thr2-TRH"	(peptide/AminoAcid)=gamma-ECG, "glutathione GSH"
(peptide/AminoAcid)=EV	
(peptide/AminoAcid)=EVGGEAL, "beta-	(peptide/AminoAcid)=GG
globin21-27"	(peptide/AminoAcid)=GGE, "beta-globin2325"
(peptide/AminoAcid)=EVGGEALG, "beta-	
globin21-28"	(peptide/AminoAcid)=GKNVP, "cytochrome-   c-oxidase-precursor-chain-VIIA32-40"
(peptide/AminoAcid)=EVP-NH2, "Val2-TRH"	
(peptide/AminoAcid)=EYP-NH2, "Tyr2-TRH"	
(peptide/AminoAcid)=FGFQKVP (peptide/AminoAcid)=GQFF	
(peptide/AminoAcid)=FISNHAY	(peptide/AminoAcid)=GVFTPP


(peptide/AminoAcid)=TVLTSKYR
(peptide/AminoAcid)=VAYKN
(peptide/AminoAcid)=VE
(peptide/AminoAcid)=VHLTDAEK
(peptide/AminoAcid)=VLGQV
(peptide/AminoAcid)=VLNP
(peptide/AminoAcid)=VLS
(peptide/AminoAcid)=VS
(peptide/AminoAcid)=VVGQV
(peptide/AminoAcid)=VVVL
(peptide/AminoAcid)=VVYP
(peptide/AminoAcid)=VVYPW
(peptide/AminoAcid)=VVYPWT
(peptide/AminoAcid)=VVYPWTQ
(peptide/AminoAcid)=VYPWT
(peptide/AminoAcid)=VYPWTQ
(peptide/AminoAcid)=VYYFPG
(peptide/AminoAcid)=WMDF-NH2
(peptide/AminoAcid)=WVAMQT
(peptide/AminoAcid)=YAYYY
(peptide/AminoAcid)=YEAVAL
(peptide/AminoAcid)=YGGFL, "leu-
enkephalin"
(peptide/AminoAcid)=YG
(peptide/AminoAcid)=YGG
(pide/AminoAcid)=YEQLSGK
(pid
(peptide/AminoAcid)=YGGFM, "Metenkephalin"
(peptide/AminoAcid)=YGGFMRF, "met-enkephalin-arg6-phe7"
(peptide/AminoAcid)=YGGFMRGL, "Met-Enk-arg-gly-leu"
(peptide/AminoAcid)=YGGFMRRV-NH2, "metorphamide"
(peptide/AminoAcid)=YKVIPKS
(peptide/AminoAcid)=YLE
(peptide/AminoAcid)=YPFF-NH2, "endomorphin-2"
(peptide/AminoAcid)=YPKG-NH2
(peptide/AminoAcid)=YPLG-NH2, "Tyr-MIF1"
(peptide/AminoAcid)=YPWF-NH2, endomorphon-1"
(peptide/AminoAcid)=YPWG-NH2
(peptide/AminoAcid)=YR, "kyotorphin"

## Appendix 2: Method for Uniting Two $30 \AA$ Å Water Boxes in QUANTA

Step 1: Turn capture commands on (save as .inp file).
Step 2: Under solvate structure, select the $30 \AA$ length (water) box and place it on an atom in the system.

Step 3: Turn capture commands off.
Step 4: Open the saved input file captured in steps 1-3 using an available editing program (in this thesis vi was used). See Appendix 3 for a sample file.

Step 5: Note the atom number in SET 2 for future reference.
Step 6: Select the text from READ COOR CARD FREE to the end of the atoms involved in the system (not including water molecules) and copy into a new .txt file.

Step 7: Using the file outlined in Appendix 4, delete lines between READ COOR CARD FREE and COOR ORIE NOROT SELE BYNUM @ 2 end.

Step 8: Read the .txt from step 6 into the space created by the deletion in step 7.
Step 9: Set the number in SET 2 to the number recorded from SET 2 in the initially captured file.

Step 10: Set 3 to an appropriate atomic number from the system being studied.
Step 11: Save the resulting file in .STR format.
Step 12: Stream the .STR file into QUANTA using the stream CHARMm file option (the system must be free from solvent before this can occur).

Step 13: Adjust the number in SET 3 as necessary to minimize overlap of the two united water boxes.

Step 14: If the overlap is minimal and is deemed acceptable, delete overlapping water bonds or water molecule fragments as necessary to produce proper water molecules.

# Appendix 3: Sample Initial File for Solvation in QUANTA Using United Water Boxes 

Text immediately preceding and following the section used in the .txt file for input into the CHARMm streaming file has been included as reference.

```
* Script file produced by QUANTA
*
* Script to read parameter, psf, and ic files
*
reset
open read unit 21 card name $CHM_DATA/MASSES.RTF
read rtf unit 21 card
close unit 20
open read unit 20 card name ".charmmprm"
read param unit 20 card
close unit 20
open read unit 20 card name ".charmmpsf"
read psf unit 20 card
close unit 20
open read unit 20 card name ".charmmic"
ic read unit 20 card
close unit 20
! Script for reading RTF
!
OPEN READ UNIT 77 CARD NAME -
"TIP3.RTF"
READ RTF CARD UNIT 77 APPEND
CLOSE UNIT 77
!set some variables
!
SET }1
SET 2 24
```

! QUANTA coordinates included in script file
READ COOR CARD FREE

* current QUANTA coordinates written for free read
* 

464

1	1	MINI CA	-7.308962	10.064661	-2.405315 MINI	1	0.0
2	1	MINI HA	-7.914192	10.877570	-2.004334 MINI	1	0.0
3	1	MINI CB	-7.960489	9.491540	-3.688795 MINI	1	0.0
4	1	MINI HB1	-8.944982	9.085988	-3.430853 MINI	1	0.0
5	1	MINI HB2	-8.122888	10.289052	-4.394613 MINI	1	0.0
6	1	MINI CG	-7.112230	8.420467	-4.302016 MINI	1	0.0
7	1	MINI CD1	-6.058426	8.760720	-5.145370 MINI	1	0.0
8	1	MINI HD1	-5.840714	9.799349	-5.347174 MINI	1	0.0
9	1	MINI CD2	-7.368808	7.075675	-4.053276 MINI	1	0.0
10	1	MINI HD2	-8.179193	6.793570	-3.399433 MINI	1	0.0
11	1	MINI CE1	-5.278129	7.772991	-5.731510 MINI	1	0.0
12	1	MINI O1	-4.224179	8.117190	-6.552227 MINI	1	0.0


13	1	MINI	CE2	-6.593439	6.086135	-4.641974 MINI		0.0
14	1	MINI	HE2	-6.803187	5.046315	-4.441598 MINI		0.0
15	1	MINI	CZ	-5.551493	6.434802	-5.488376 MINI 1	10	0.0
16	1	MIN	O 2	-4.791917	5.456796	-6.096515 MINI	0	0.0
17	1	MIN	H	-6.322476	10.471231	-2.628883 MINI	1	0.0
18	1	MIN	N1	-7.149965	9.078195	-1.343117 MINI	0	0.0
19	1	MINI	H2	-3.587694	7.411913	-6.542690 MINI		0.0
20	1	MINI	H3	-4.312234	5.841283	-6.818595 MINI		0.0
21	1	MINI	H4	-6.695127	9.530078	-0.524174 MINI 1		0.0
2	1	MINI	H5	-6.559151	8.293039	-1.684175 MINI		. 0
23	1	MIN	H6	-8.087923	8.723651	-1.071054 MINI		. 0
24	2	ASP	N	19.777775	-0.609759	1.064205 AAMB	1	0
25	2	ASP	CA	19.041170	0.412852	1.823377 AAMB		0.0
26	2	ASP	C	17.933453	0.933095	1.021516 AAMB	1	0.0
27	2	ASP	O	16.766161	0.674886	1.402760 AAMB	1	0.0
28	2	ASP	CB	19.930069	1.538161	2.379704 AAMB		0.0
29	2	ASP	CG	19.108906	2.493291	3.266880 AAMB		0.0
30	2	ASP	OD1	18.637297	2.057324	4.315971 AAMB		10.0
31	2	ASP	OD2	18.937716	3.650251	2.886323 AAMB		0.0
32	2	ASP	H1	19.122427	-1.356153	0.755510 AAMB		0.0
33	2	ASP	H2	20.217154	-0.167099	0.231754 AAMB		0.0
34	2	ASP	H3	20.517815	-1.020694	1.667922 AAMB		0.0
35	2	ASP	HA	18.610788	-0.162236	2.653509 AAMB		0.0
36	2	ASP	HB1	20.734478	1.116608	2.983014 AAMB		10.0
37	2	ASP	HB2	20.404535	2.098895	1.572696 AAMB		0.0
38	3	ALA	N	18.160498	1.642654	-0.100774 AAMB		0.0
39	3	ALA	CA	17.094845	2.143059	-0.915015 AAMB	1	0.0
40	3	ALA	C	16.254911	1.052349	-1.423196 AAMB	1	0.0
4	3	ALA	0	15.054347	1.068294	-1.075329 AAMB	1	0.0
42	3	ALA	CB	17.693850	2.943579	-2.079667 AAMB	1	0.0
43	3	ALA	HN	19.074314	1.839025	-0.364898 AAMB		0.0
44	3	ALA	HA	16.493011	2.824638	-0.300168 AAMB	1	0.0
45	3	ALA	HB1	18.346439	2.330746	-2.702714 AAMB		0.0
46	3	ALA	HB2	16.912722	3.358833	-2.718083 AAMB		10.0
47	3	ALA	HB3	18.287046	3.778799	-1.706802 AAMB		10.0
48	4	GLU	N	16.766771	0.108776	-2.238868 AAMB		0.0
49	4	GLU	CA	15.982441	-0.984445	-2.721450 AAMB		10.0
50	4	GLU	C	15.336887	-1.714932	-1.622579 AAMB	1	0.0
51	4	GLU	O	14.235341	-2.266397	-1.856518 AAMB	1	0.0
52	4	GLU	CB	16.917519	-1.940748	-3.488229 AAMB		10.0
53	4	GLU	CG	18.039606	-2.571616	-2.637842 AAMB		10.0
54	4	GLU	CD	19.012463	-3.366955	-3.521243 AAMB		10.0
55	4	GLU	OE1	18.620823	-4.416527	-4.029042 AAMB		10.0
56	4	GLU	OE2	20.149826	-2.927709	-3.691912 AAMB		10.0
57	4	GLU	HN	17.696264	0.177130	-2.510961 AAMB		0.0
58	4	GLU	HA	15.271745	-0.619510	-3.458186 AAMB		0.0
59	4	GLU	HB1	16.324903	-2.733285	-3.949845 AAMB		10.0
60	4	GLU	HB2	17.364010	-1.387508	-4.315942 AAMB		10.0
61	4	GLU	HG1	18.596556	-1.806110	-2.096667 AAMB		10.0
62	4	GLU	HG2	17.629417	-3.252203	-1.891811 AAMB		10.0
63	5	PHE	N	15.919147	-1.782670	-0.408540 AAMB		0.0
64	5	PHE	CA	15.307195	-2.459879	0.694823 AAMB		10.0
65	5	PHE	C	14.023937	-1.843083	1.055299 AAMB		0.0
66	5	PHE	O	12.972171	-2.524466	0.949426 AAMB	1	0.0
67	5	PHE	CB	16.279289	-2.527469	1.885281 AAMB	1	10.0
68	5	PHE	CG	15.739032	-3.373315	3.008089 AAMB		10.0


	5							
	5	PHE	CD2	15.136943	-2.778950	4.113894 AAMB		0.0
	5	PH	CE1	15	-5.542925	3981631 AAMB		
	5		CE2					
	5		CZ	4	-4.9			0.0
	5	PH	HN	16.751390	-1.312392	-0.		0.0
	5	PHE		15.091137	-3.477376	0.		0.0
	5	PH	H	17.229969	-2.950082	1.559053 AAMB		0.0
	5		B2	6.505520	24	.267890 AAMB		0.0
	5							0
	5			15.058798	-1.702938	4.175553 AAMB		
	5	PHE	HE1	15.400675	9			0
	5	P	HE2	14.167374	76	6.000203 AAMB		0
	5	P	HZ	14.334185	-5.549905	5.882122 AAMB		0.0
	6	A		13.973029	-0.583468	1.540645 AAMB		0.0
			CA	12.735288	.		1	0.0
	6	A	C 1		0.3	0.		0
	6	A	O	10.7	0.746743	0.82	1	.
	6	ARG	CB	13.092020	1.395360	2.551799 AAMB	1	0.0
	6	ARG	CG	14.014983	. 223515	3.769409 AAMB	1	0.0
	6		CD	14.358479	2.554219	4.443905 AAMB	1	0
	6	ARG		15.328096	2.312673	5.503546 AAMB	1	0.0
	6	AR		15.798455	3.294541	6.300189 AAMB	1	0.0
	6	AR		15.372872	4.548343	6.182192 AAMB		0.0
	6	ARG	N	16.707289	3.000172	7.220729 AAMB		0.0
	6	AR	HN	14.801904	-0.091048	1.579415 AAMB	1	0.0
	6			12.176013	-0.551757	2.589055 AAMB	1	0.0
	6	A	HB1	13	,	B	1	0.0
	6	ARG	HB2	12.17	1.906087	.863252 AAMB	1	0.0
	6	ARG	HG1	13.546998	- 0.556514	4.493953 AAMB		0.0
	6	ARG	HG2	14.948694	-0.747324	3.468746 AAMB		0.0
100	6	ARG	HD1	14.815233	3.249584	3.737501 AAMB		10.0
		ARG	D2	13.476509	3.018210	4.888027 AAMB		0.0
	6	ARG		15.684490	1.386206	5.624157 AAMB	1	0.0
析	6	ARG	H1	14.686085	4.782607	7 5.494776 AAMB		
迷	6	ARG		215.737885	5.260526	6 6.782176 AAMB		
105	6	ARG		17.045107	2.063514	4 7.311261 AAMB		
	6	ARG		17.058128	3 3.715544	4 7.825210 AAMB		
			N	12.477256	$090535-0$	-0.550493 AAMB		. 0
	7	HIS	CA	11.744717	0.312759 -	-1.758953 AAMB	1	0.0
109	7	HIS	C 1	10.796138	-0.782060-1.	-1.978250 AAMB		0.0
	7	HIS	O	9.589708	$0.479645-1$	1.876704 AAMB		0.0
	7	HIS	CB	12.670664	0.470988	-2.976635 AAMB	1	0.0
	7	HIS		11.85347	0.800605	-4.207127 AAMB	1	0.0
	7	HIS	ND	11.174619	1.956473	-4.369656 AAMB	1	.
	7	HIS	CD2	11.632096	-0.006237	-5.336245 AAMB	1	0.0
115	7	HIS	CE1	10.558787	1.856300	-5.559719 AAMB	1	0.0
116	7	HIS	NE2	10.815231	0.683228	-6.165370 AAMB	1	0.0
117	7	HIS	N	13.376023	-0.258575	-0.621651 AAMB	1	0.0
118	7	HIS		11.189747	1.253068	-1.633207 AAMB	1	0.0
119	7	HIS	HB1	13.391198	1.271157	-2.816208 AAMB	1	0.0
120	7	HIS	HB2	13.221879	-0.444952	-3.165380 AAMB	1	0.0
121	7	HIS	HD1	11.136872	2.709538	-3.744411 AAMB		0.0
122	7	HIS	HD2	12.032319	-0.994756	-5.506828 AAMB	1	0.0
123	7	HIS	E1	9.930161	2.626813	-5.980333 AAMB		0.0
24	7	HIS	H1	10.482866	0.387524	-7.037562 AAMB	1	0.0


125	8	ASP	N		-2.023194	-2		
126	8	ASP	CA	10.336828	-3.122818	-2.458477 AAMB		0.0
127	8	ASP	C	9.481910	-3.294824	-1.276572 AAMB		0.0
128	8	ASP	O	8.295098	-3.664217	-1.457893 AAMB		0.0
129	8	ASP	CB	11.157777	-4.409196	-2.672501 AAMB		
130	8	ASP	CG	11.973235	-4.345119	-3.976825 AAMB		
131	8	ASP	OD1	11.374281	-4.144149	-5.033825 AAMB		
132	8	ASP	OD2	13.194413	$3-4.495240$	-3.924402 AAMB		
133	8	ASP	HN	12.188498	-2.180787	-2.348245 AAMB		0.0
13	8	ASP	HA	9.733404	-2.936532	-3.343399 AAMB		0.0
13	8	ASP	HB1	11.833135	-4.579036	-1.831377 AAMB		0.0
136	8	ASP	HB2	10.502279	$9-5.279665$	-2.734753 AAMB		0
137	9	SER	N	9.988587	-3.138769	-0.034572 AAMB		
138	9	SER	CA	9.176601	-3.262035	1.137976 AAMB		
139	9	SER	C	8.022375	-2.358343	1.073562 AAMB		0.0
140	9	SER	O	6.868747	-2.855776	1.073585 AAMB		0.0
141	9	SER	CB	10.068615	-2.965061	2.355839 AAMB		
142	9	SER	OG	355240	-3.135004	3.573644 AAMB		
143	9	SER	HN	10.925159	-2.918284	0.		
144	9	SER	HA	. 817378	-4.297300	1.180070 AAMB		0.0
145	9	SE	HB1	10.930118	-3.641708	2.333718 AAMB		
146	9	SER	HB2	10.455923	$3-1.943617$	2.286220 AAMB		. 0
147	9	SER	HG	9.915859	-2.967490	4.327736 AAMB		0.0
48	10	GLY		8.198386	-1.021602	1.008988 AAMB		0.0
149	10	GLY	CA	7.094239	-0.121842	0.900155 AAMB		0.0
150	10	GLY	C	6.454493	-0.233650	-0.411757 AAMB		0.0
151	10	GLY	0	5.464347	0.490092	-0.620506 AAM		0.0
152	10	GLY	HN	9.096245	-0.652911	0.994446 AAMB		
	10	GLY	HA1	6.379829	-0.27	1.706055 AAMB		
	10	GLY	H	7.4	0.892686	0.9		
155	11	TYR	N	6.983	-1.033	-1.360		0.0
15	11	TYR	CA	6.388818	-1.190931	-2.650550 AAMB		0.0
157	11		C	5.169522	-2.002688	-2.575299 AAMB		0.0
158	11	TYR	0	4.083598	-1.530204	-2.994898 AAMB		0.0
159	11	YR	CB	7.350282	-1.753478	-3.713031 AAMB		0.0
160	11	TYR	CG	6.796342	-1.622310	-5.108879 AAMB		10.0
161	11	TYR	CD1	6.946820	-0.433889	-5.817184 AAMB		. 0
162	11	TYR	CD2	6.123273	-2.683400	-5.708284 AAMB		0
163	11	YR	CE1	6.430960	-0.306970	-7.100461 AAMB		
164	11	TYR	CE2	5.607652	$2-2.560893$	-6.992030 AAMB		
	11		CZ	5.761763	-1.369484	-7.691957 AAMB		
	1			255615	-1.225814	-8.969693 AAMB		
				7.757517	-1.57058	-1.156951 AAMB		
168	11	TYR	A	6.096994	-0.185557	-2.971601 AAMB		
169	11	TYR	HB1	8.295371	$1-1.216645$	-3.688034 AAMB		
170	11	TYR	HB2	7.569117	-2.803098	-3.529725 AAMB		0.0
171	11	TYR	HD1	7.467752	20.399982	-5.369175 AAMB		0.0
172	11	TYR	HD2	5.990994	$4-3.612691$	-5.173663 AAMB		0.0
173	11	TYR	HE1	6.549152	20.620338	-7.642038 AAMB		
174	11	TYR	HE2	5.083165	$5-3.399038$	-7.427675 AAMB		0.0
175	11	TYR	HH	5.439033	-1.998519	-9.487761 AAMB		0.0
176	12	GLU	N	5.214782	-3.259125	-2.090118 AAMB		
177	12	GLU	CA	4.044102	-4.064106	-1.970570 AAMB		
178	12	GLU	C	3.232757	-3.556814	- 0.869093 AAMB		0.0
179	12	GLU	O	1.983533	-3.602206	-0.998179 AAMB		
180	12	GLU	CB	4.517496	-5.503375	A		


181	12	,	CG	5.322128	-6.050351	-2.920312 AAMB		
182	12	GLU	CD	6.149025	-7.281702	-2.523667 AAMB		
18	12	GLU	OE1	7.378289	-7.199483	-2.546176 AAMB		
184	12	GLU	OE2	5.55393	-8.305547	-2.195225 AAM		0
185	12	GLU	HN	6.073738	-3.59876	-1.784515 AAM	1	0.0
186	12	GLU	HA	. 471385	-4.003354	-2.898062 AAMB		0.0
187	12	GLU	HB1	5.134706	-5.521853	-0.823157 AAMB		. 0
188	12	GLU	HB2	. 667104	-6.158360	-1.528040 AAMB		. 0
189	12	GLU	HG1	4.651354	-6.317287	-3.737273 AAMB		0.0
190	12	GLU	HG2	6.007466	-5.301211	1 -3.317899 AAMB		0.0
191	13	VAL	N	3.814550	-3.109827	0.251651 AAMB		0.0
192	13	VAL	CA	3.053213	-2.556596	1.319859 AAMB		
193	13	VAL	C	2.326123	-1.396080	0.844176 AAMB		. 0
194	13	VAL	O	1.248710	-1.084186	1.408288 AAMB		. 0
195	13	VAL	CB	3.977241	-2.253151	2.518477 AAMB		
196	13	VAL	CG1	3.262727	-1.508710	3.659647 AAMB		
197	13	VAL	CG2	4.608006	-3.544752	3.065091 AAMB		
	13	VAL	HN	4.783776	-3.122324	0.330963 AAMB		
199	13	V	HA	343054	-3.321087	1.6		0.0
200	13	VAL	HB	4.783395	-1.613705	2.166303 AAMB	1	0.0
201	13	VAL	HG11	12.396917	-2.068810	0 4.013923 AAMB		
202	13	VAL	HG12	2.933859	-1.357831	4.505430 AAMB		
203	13	VAL	HG13	$3 \quad 2.919914$	-0.523229	3.344039 AAMB		
204	13	VAL	HG21	15.136044	-4.104921	12.294390 AAMB		
05	13	VAL	HG22	25.326916	$6-3.323920$	3.854645 AAMB		
606	13	VAL	HG2	3.846898	$8-4.204151$	1 3.482245 AAMB		
207	14	AL	N	2.870301	-0.601688-0.0.0.0.0.	-0.085326 AAMB		0.0
208	14	HIS	CA	2.147757	0.486269	-0.649232 AAM		
	14	HIS	C 0	0.906	-0.041158 -1.	-1.18768		0.0
	14	HIS	O	-0.162	$0.551120-0$	-0.89		
211	14	HIS	CB	2.936666	1.288229	-1.707480 AAMB		
212	14	HIS	CG	2.015913	2.187256	-2.510916 AAMB		
213	14	HIS	ND1	1.357392	3.253081	-2.004886 AAMB		
	14	HIS	CD2	1.667202	2.053854	-3.865278 AAMB		
215	14	HIS	CE1	0.631821	3.749829	-3.021202 AAMB		
216	14	HIS	NE2	0.797974	3.046414	-4.154242 AAMB		0.0
217	14	HIS	HN	3.751224	-0.804321	-0.429730 AAMB		0.0
8	14	HIS	HA	1.901805	1.165849	0.177339 AAMB		
19	14	HIS	HB1	3.682687	1.917218	-1.224643 AAMB		
220	14	HIS	HB2	3.462702	0.633453	-2.396213 AAMB		
	14	HIS	HD1	1.394027	3.58914	-1.085397 AAMB		
	14	HIS	HD2	023841	2942	-4.545117 AAN		
	14	HIS	HE1	-0.010105	4.61359	-2.942399 AAM		
224	14	HIS	H1	0.370479	3.221088	-5.018197 AAMB	1	0.0
225	15	HIS	N 0	0.946838	-1.035730 -2.0.	-2.092577 AAMB		0.0
226	15	HIS	CA	-0.236731	-1.644258	-2.613684 AAMB		0.0
227	15	HIS	C -1.	-1.127244	-2.033749 -1.	-1.516683 AAMB		0.0
228	15	HIS	O -2	-2.353407	-2.056832 -	-1.743800 AAMB	1	0.0
229	15	HIS	CB	0.025579	-2.709569	-3.709244 AAMB	1	0.0
230	15	HIS	CG	0.080974	-4.150737	-3.231872 AAMB	1	0.0
231	15	HIS	ND1	1.178463	-4.932372	-3.311204 AAMB		0.0
232	15	HIS	CD2	-0.954665	-4.924392	-2.676597 AAMB		0.0
2	15	HIS	CE1	0.824723	-6.131931	-2.821561 AAMB		
234	15	HIS	NE2	-0.461154	-6.157293	-2.429128 AAMB		
235	15	HIS	HN	1.815019	-1.381073	-2.354747 AAMB		
236	15	HIS	HA	-0.745348	-	-3.128792 AAMB	1	.


237		HIS	HB1	-0.783553	-2.658721	-4.438816 AAMB		
238	15	HIS	HB2	0.938850	-2.468493	-4.254772 AAMB		0.0
239	15	HIS	HD1	2.053021	-4.682819	-3.671699 AAM		0.0
240	15	HIS	HD2	-1.9652	-4.600068	-2.481699 A		0.0
241	15	HI	H	1.49	-6.975	-2.75		0.0
242	15	HIS	H1	-0.940	-6.91	-2.04		0.0
243	16	GL	N	-0.618183	-2.353164	-0.307480 AAN		0.0
	16	GLN	CA	-1.446121	-2.722356	0.796756 AA		0.0
245	16	GLN		-2.285527	-1.597471	1.225606 AAMB		0.0
246	16	GLN	0	-3.507591	-1.806687	1.390926 AAMB	1	0.0
247	16	GLN	CB	-0.645303	-3.321538	1.967379 AAMB		0.0
248	16	GLN	CG	-1.523450	-4.059809	2.993394 AAMB		0.0
249	16	GLN	CD	-2.214256	-5.289377	2.386834 AAMB		0.0
250	16	GLN	OE1	-3.431685	-5.356618	2.278814 AAMB		0.0
251	16	GLN	NE2	-1.358961	-6.255718	2.009510 AAMB		0.0
252	16	GLN	HN	0.340554	-2.337373	-0.191350 AAMB		0.0
253	16	GLN	HA	-2.113590	-3.506227	0.416		
	16	GLN	HB1	,	-3.999655	B		
	16	G	HB2	-0.	37	2.506401 AAMB		0.0
256	16	GLN	HG1	-0.91860	-4.3	3.838799 AAMB		. 0
257	16	GLN	HG2	-2.289382	-3.394150	B		10.0
258	16	G	HE21	-1.720738	-7.108796	MB		
259	16	GL	HE22	$2-0.368933$	-6.149203	2.098950 AAMB		
260	17	LYS	N	-1.746697	-0.373374	1.393378 AAMB		0.0
261	17	LYS	CA	-2.527025	0.763398	1.782422 AAMB		0.0
262	17	LYS	C	-3.514591	1.121618	0.760728 AAMB		. 0
263	17	LYS		-4.6745	1.411898	1.13		
	17	LYS	CB	-1.530368	1.907630	2.0		
	17	LYS	CG	,	3.293662	2.336305 AAMB		
	17		CD	-2.438395	4.155569	1.093334 AAMB		
267	17	LYS	CE	-1.220231	4.337471	0.1		0
268	17		NZ	-1.398108	5.389336	-0.817685 AAMB		0.0
	17			-0.792302	-0.283311	1.248828 AAMB		0.0
270	17		HA	-3.048416	0.512863	2.714864 AAMB		0.0
271	17	LYS	HB1	-0.936101	1.616875	2.911986 AAMB		0.0
272	17	LYS	HB2	-0.810949	1.972501	1.230316 AAMB		0.0
273	17	LYS	HG1	-3.041641	3.182692	2.940636 AAMB		0.0
274	17	LYS	HG2	-1.433862	3.847651	2.955751 AAMB		0.0
275	17	LYS	HD1	-3.271389	3.749475	0.521260 AAMB		0.0
276	17	LYS	HD2	-2.771108	5.136537	1.434701 AAMB		0.0
	17	LY	HE1	-0.33586	4.594476	0.75		
	17			-1.003	3.418928	961		
	17			586	2906	,		
	17			-0.537215	47169	-1.396080 AAN		0.0
281	17	LYS	Hz	-2.210231	5.150732	-1.423035 AAMB		0.0
282	18	LEU	N	-3.174159	1.156810	-0.543538 AAMB		
283	18	LEU	CA	-4.113560	1.484990	-1.567282 AAMB		0.0
284	18	LEU	C	-5.176423	0.471401	-1.659226 AAMB		0.0
285	18	LEU	0	-6.329594	0.840865	-1.994066 AAMB		0.0
286	18	LEU	CB	-3.312541	1.591564	-2.885684 AAMB		0.0
287	18	LEU	CG	-3.764131	2.712226	-3.836073 AAMB		
288	18	LEU	CD1	-5.230063	2.568621	-4.262001 AAMB		0.0
289	18	LEU	CD2	-3.466871	4.099277	-3.248059 AAMB		0.0
290	18	LE	HN	-2.262553	0.934893	-0.775909 AAMB		
	18	LEU	HA	-4.577597	2.434096	-1.285496 AAMB		
292	18	LEU	HB1	-2.261363	1.775138	-2.654881 AAMB	1	,


293	18	LEU	HB2	-3.309213	0.635576	-3		
29	18	LEU	HG	-3.158692	2.615662	-4.738280 AAMB		
295	18	LEU	HD11	-5.449493	1.549911	$1-4.582293$ A		
296	18	LEU	HD1	-5.907969	2.822372	-3.447		
297	18	LEU	HD	-5.45967	. 2275			
298	18	LEU	HD2	-2.41945	4.179615	-2.9		
299	18	LEU	HD	-3.66002	4.886509	-3.973		
	18	LEU	HD2	. 07474	4.306821	-2.367718 AAMB		
	19	VAL	N	-4.932119 -0.	-0.810388	67 AAMB		
	19	AL	CA	-5.943285	-1.82395	1.356185 AAMB		0.0
303	19	VAL	C	-6.797062	-1.714142	-0.169165 AAMB		0.0
304	19	VAL	-	-8.010448	-1.991933	-0.292257 AAMB		0.0
305	19	VAL	CB	-5.283894	-3.214997	-1.505604 AAMB		0.0
306	19	VAL	CG1	-6.216343	-4.386761	-1.146817 AAMB		0.0
307	19	VAL	CG2	-4.768979	-3.403587	-2.941956 AAMB		0.0
308	19	VAL	HN	-4.041923	-1.068045	-1.045009 AAMB		0.0
309	19	VAL	HA	-6.592118	-1.648055	-2.224685 AAMB		0.0
310	19	VA	HB	-4.431998	-3.263937	-0.825355 AAM		
	19	VA		-7.127732	-4.3644	-1.745230 AAMB		
	19	VAL	HG	-5.72	-5.3			
313	19	VAL	HG13	-6.5059	. 36	B		
	19	VAL	H	-4.12	-2.585	-3.260045 AAMB		
315	19	VAL	HG22	-4.201437	-4.328980	-3.037664 AAMB		
316	19	VAL	HG23	-5.598280	-3.450290	-3.648001 AAMB		
317	20	AE	N	-6.305319	-1.202374	0.975365 AAMB		0.0
18	20	HE	CA	-7.101325	-1.045330	2.153176 AAMB		0.0
319	20	HE	C	-8.025386	0.078303	1.983149 AAMB		. 0
320	20	PHE	0	-9.174790	0.006741	2.481483 AAMB		. 0
321	20	PH	CB	-6.164958	-0.817445	3.353059 AAMB		
	20		CG	-6.918325	-0.5	4.640983 AAMB		
	20		CD1		0	5.147894 AAMB		
	20		CD2	-7.463361	-1.676588	5.333272 AAMB		
325	20		CE1	-7.800352	0.8	6.324309 AAMB		
	20		C	-8.171719	-1.472138	6.510238 AAMB		
	20		CZ	-8.340724	-0.187380	7.006686 AAMB		0.0
328	20		HN	-5.371571	-0.965666	1.007602 AAMB		0.0
329	20	PHE	HA	-7.680093	-1.966908	2.294902 AAMB		0.0
330	20	,	HB1	-5.506618	-1.678745	3.471618 AAMB		0.0
331	20		HB2	-5.513167	0.037280	3.168236 AAMB		0.0
332	20	PHE	D1	-6.681209	1.534905	4.620530 AAMB		0.0
	20	PHE	D2	-7.345307	-2.681495	4.954969 AAMB		
	20		,	-7.933961	1894438	706670 AAMB		
	20			59	. 31	7.038013 AA		
	20			-8.893	-0.030313	7.921391 AAM		0.0
	21		N	-7.67317	1.132797	1.221871 AAMB		0.0
338	21		CA	-8.544904	2.242817	0.996134 AAMB		0.0
339	21	PHE	C	-9.594489	1.882055	0.039219 AAMB		0.0
340	21	PHE	0	-10.734620	2.340141	0.209890 AAMB		0.0
,	21	PHE	CB	-7.630144	3.339085	0.406048 AAMB	1	0.0
42	21	PHE	CG	-8.279858	4.689785	0.243046 AAMB		0.0
43	21	PHE	CD1	-9.033857	4.982680	-0.889980 AAMB		0.0
344	21	PHE	CD2	-8.114664	5.673143	1.214872 AAMB		0.0
345	21	PHE	CE1	-9.610301	6.235482	-1.050958 AAMB		0
3	21	PHE	CE2	-8.682891	6.930295	1.052681 AAMB		0.0
347	21	PH	CZ	-9.431198	7.211647	-0.081760 AAMB		
348	21		HN	-	1		1	


	21	PHE	HA	-8.990414	2.589137			
350	21	PHE	HB1	-6.758051	3.460793	MB		
	21		HB2					
	21							
	21		HD2					
	21							
	21							
	21			-9.87621				
	22		N	-9.328560	1.117	-1.035		
	22	ALA	CA	-10.350311	0.737008	-1.961846 AAMB		0.0
359	22	ALA	C	-11.245373	-0.265703	-1.365418 AAMB		0.0
360	22	ALA	O	-12.307265	-0.557771	-1.942278 AAM		. 0
361	22	ALA	CB	-9.67007	0.15268	-3.205822 AAM		. 0
	22	ALA	HN	-8.4	0.809104	-1.179925 AAMB		. 0
	22	ALA	HA	-10.9	1.615099	-2.2		0
	22	AL	HB1	-9.00	0.886258	-3.6		0
	22	ALA	HB2	-9.0	-0.72	-2.9		
	22	ALA		-10.	-0.1	-3.960057 AAMB		
	23	GLU	N	-10	-1.054320	-0.35		
	23		CA	-11.671812	,	0.266841 AAM		
	23		C	-12.59	-1.352	1.179854 AAMB		0
	23	GLU	0	-13.7720	-1.752651	1.18		. 0
	23	GLU	CB	-10.786191	-3.005298	1.055466 AAMB		0.0
372	23	GLU	CG	-10.072260	-4.031264	0.157045 AAMB		0.
373	23	GLU	CD	-11.003459	-5.190736	-0.227515 AAMB		0.0
	23	GLU	OE1	-11.254838	-6.04938	0.618023 AAMB		
375	23	GLU	,	-11.46909	-5.23023	-1.		
	23	G	HN	-9.929513	-0.930140	-0.0		
	23	GLU		-120	-2.569595	-0.489512 AAMB		
	23	GLU		-10.0385	-2.439721	1.613465 AAMB		
	23	GL		-11.367321	-3.537548	1.811626 AAMB		
	23			-9.698793	-3.56	-0.754756 AAMB		
	23			-9.208701	-4.445973	0.677601 AAMB		0.0
	24		N	-12.177330	-0.354410	1.977433 AAMB		
	24	AS	CA	-13.065334	0.361538	2.837221 AAMB		0.0
	24	A	C	-13.74355	1.391010	2.052543 AAMB		. 0
88	24	ASP	0	-14.992313	1.328216	1.946455 AAMB		0.0
86	24	ASP	CB	-12.257605	0.997838	3.984617 AAMB		
	24	AS	CG	-11.77	-0.060520	4.995178 AAMB		
	24	AS	OD	-12.1	0.00662	6.155449 AAM		
	24	A	OD2	-10	-0.	4.617404 AAMB		
	24			11	-0.117474			
	24							
	24							
	24			-12.8669	1.730987	4.5170		0.
	25	VA	N	-13.033711	2.400514	1.517171 AAMB		0.0
395	25	VAL	CA	-13.627054	3.411602	0.703844 AAMB		0.0
396	25	AL	C	-14.398943	2.830595	-0.395773 AAMB		0.0
397	25	VAL	O	-15.560534	3.262855	-0.588836 AAMB		0.0
398	25	VAL	CB	-12.657796	4.541532	0.304691 AAMB		
399	25	VAL	CG1	-13.392541	5.713545	-0.365649 AAMB		
400	25	VAL	CG2	-11.899372	5.035639	1.547065 AAMB		
	25	VAL	HN	-12.081930	2.420543	1.672284 AAMB		
	25	VAL	HA	-14.366833	3.867602	1.376663 AAMB		
	25	VA	HB	-11.940532	4.17754	-0.4275		
	25	VAL		$1-13.847574$	45.406779	9 -1.306554 AAMB		


	25	VAL	HG12	-14.181201	6.107159	0.276092 AAMB		
40	25	VAL	HG13	$3-12.705975$	6.529413	-0.591897 AAMB		
407	25	VAL	HG21	1 -12.588413	5.275250	2.357176 AAMB		. 0
408	25	VAL	HG22	$2-11.195408$	4.289235	1.915162 AAMB		0.0
409	25	VAL	HG23	$3-11.335196$	5.938540	1.333591 AAMB		10.0
410	26	GL	N	-13.897909	806942	109662 AAMB		. 0
411	26	GLY	CA	-14.634172	1.19914	-2.163104 AAM		0.0
	26	GLY	C -	-15.754	0.4283	1.63		. 0
	26	GL		16.8	459768			. 0
	26			,	1.47327	889328 AAMB		
	26							
	26	GL		-14.05	0.5	-2.786183		
	27	SER	N -	-15.607442	-0.352578	-0.547584 AAMB		
418	27	SER	CA	-16.715082	-1.065141	0.019772 AAMB		0.0
419	27	SER	C	-17.905237	-0.211181	0.102507 AAMB		0.0
420	27	SER	-	-18.980049	-0.652926	-0.379306 AAMB		0.0
421	27	SER	CB	-16.459150	-1.687217	1.412520 AAMB		0.0
422	27	SER	OG	-17.627197	-2.027590	2.144411 AAMB		
	27	S	N	-14.748532	-0.419415	-0.115161 AAMB		
	27	SER		-16.934277	-1.868156	-0.69		
	27			-15.	2.59	1.317549 AAMB		
	27			-15.903035	-0.987941			
	27		HG	-18	-2.452096	1.		
	28	AS		-17	1.0	0.655349 AAMB		. 0
	28	ASN	CA	-18.9	1.902397	0.746077 AAMB		0.0
	28	ASN	C	-18.805429	3.008193	-0.214104 AAM		0.0
	28	AS	0	-18.979372	4.178142	0.210553 AAMB		0.0
	28	ASN	CB	-19.186373	2.356376	2.203287 AAMB		. 0
433	28	ASN	CG	-17.994606	3.060821	2.876493 AAMB		0.0
	28	SN	D1	-17.876747	4.279554	MB		
	28	ASN	ND2	-17	2.2	3.510754 AAMB		
	28	ASN	HN	-1	1.309415	1.001629 AAMB		
	28	ASN		-19	1.413835	0.435057 AAMB		
	28	ASN		-2	3.02895	2.253181 AAMB		
	28			-1	1.489117	.807838 AAMB		
	28			-16.		14.044052 AAMB		
		ASN		2 -17.27597	1.231059	3.450246 AAMB		
	29		N -	-18.527422	2.773166	-1.515061 AAMB		. 0
	29		CA	-18.354721	3.826449	-2.471390 AAMB		0.0
	29	LYS	C -	-19.492424	3.881565	-3.367871 AAMB		. 0
	29	LYS	O -	-19.854271	2.898005	-4.056283 AAMB		0
	29	LYS	CB	-17.088192	. 650053	-3.327225 AAMB		0.0
	29	LYS	CG	-16.037207	4.74955	-3.110100 AAM		0.0
	29	LYS	CD	-16.355852	036693	-3.877877 AAM		0.0
	29		CE	-15.2	7.119374	-3.6		0.0
	29			-15.6				
	29			-20.1060		3.577588 AAMB		0.0
	29	LYS	HN	-18.407160	1.860785	-1.813810 AAM	1	0.0
	29	LYS	HA	-18.309614	4.804605	-1.985870 AAMB		0.0
	29	LYS	HB1	-16.700270	2.679095	-3.084668 AAMB		0.0
	29	LYS	HB2	-17.287268	3.583776	-4.399544 AAMB		. 0
	29	LYS	HG1	-15.960933	4.994623	-2.053224 AAMB		. 0
57	29	LYS	HG2	-15.058952	4.379163	-3.417967 AAMB		. 0
58	29	LYS	HD1	-16.424520	5.823281	-4.945067 AAMB		. 0
59	29	LYS	HD2	-17.333387	6.411322	-3.572547 AAMB		
460	29	LYS	HE	-15.215751	7.347436	-2.575213 AAN		

```
461 29 LYS HE2 -14.319218 6.783948 -3.980606 AAMB 1 0.0
462 29 LYS HZ1 -16.516441 8.733411 -3.990545 AAMB 1 0.0
463 29 LYS HZ2 -14.854439 9.058959 -4.139287 AAMB 1 0.0
464 29 LYS HZ3 -15.661006 8.185925 -5.353293 AAMB 1 0.0
!...
! Copyright (c) 1986, 1987, 1988, 1989, 1990, 1991 Polygen Corporation
! Confidential and Proprietary: All Rights Reserved
!...
!...
!
if 1 eq 0 COOR ORIE NOROT
if 1 eq 1 COOR ORIE NOROT SELE BYNUM @2 end
```


## Appendix 4: CHARMM .STR File for Uniting Two $30 \AA$ Water Boxes for Solvating Larger Systems

Water molecules have been removed, with .... used to indicate that there are more molecules included in the system than shown.

```
* Script file produced by QUANTA
*
! Startup script for CHARMm
!
UPPER! case for files to write
open write card unit 7 name CHARMM.LOG
outu }
banner
bomblevel-2
wrnlev 0
prnlev 5
* Script to read parameter, psf, and ic files
*
reset
open read unit 21 card name $CHM_DATA/MASSES.RTF
read rtf unit 21 card
close unit 20
open read unit 20 card name ".charmmprm"
read param unit 20 card
close unit 20
open read unit 20 card name ".charmmpsf"
read psf unit 20 card
close unit 20
open read unit 20 card name ".charmmic"
ic read unit 20 card
close unit 20
! Script for reading RTF
!
OPEN READ UNIT 77 CARD NAME -
"TIP3.RTF"
READ RTF CARD UNIT }77\mathrm{ APPEND
CLOSE UNIT }7
!set some variables
!
SET 11
SET }2
SET 3 367
! QUANTA coordinates included in script file
! Copyright (c) 1986, 1987, 1988, 1989, 1990, }1991\mathrm{ Polygen Corporation
! Confidential and Proprietary: All Rights Reserved
!...
!...
READ COOR CARD FREE
* current QUANTA coordinates written for free read
```

464							
1	1		N				
2	1	AS	CA	,	0.412852		0.0
3	1	AS	C	17.933	0.933095	1.02	0.0
4	1	ASP	O	16.76	0.6	1.402	. 0
5	1	ASP	CB	19.933836	1.535490	2.379036	. 0
6	1	ASP	CG	19.121866	2.487353	3.277849 AAMB	. 0
7	1	ASP	OD1	18.632879	2.039340	4.313909 AAMB	0.0
8	1	ASP	OD2	18.976418	3.655082	2.920227 AAMB	0.0
9	1	ASP	H1	19.121496	-1.354191	0.752547 AAMB	0.0
10	1	ASP	H2	20.220243	-0.166533	0.233697 AAMB	0.
11		ASP	H3	20.515404	-1.023449	1.668909 AAMB	0.0
12		ASP	HA	18.610788	-0.162236	2.653509 A	0.0
13		ASP	HB	20.742023	1.110273	2.974636 AAMB	
14		ASP	HB	20.403439	2.099329		10.0
15	2	AL	N	18.160498	1.64	-0.100	0.0
16	2	ALA	CA	17.094845	2.143059	-0.915015 AAMB	0.0
17	2	ALA	C	16.254911	1.052349 -	-1.423196 AAMB 1	10.0
18	2	ALA	0	15.054	1.068	-1.075329	0.0
19	2	A	CB	17.694002	2.943519	-2.079650 AAMB	0.0
20	2	ALA	HN	19.074314	1.839025	-0.364898 AAMB	0.0
21	2	ALA	HA	16.493011	2.824638	-0.300168 AAMB	0.0
22	2	ALA	HB1	18.346489	2.330650	-2.702799 AAMB	10.0
23	2	ALA	HB2	16.912779	3.358901	-2.717892 AAMB	0.0
24	2	ALA	HB3	18.287	3.778764	-1.706802 AAMB	10.0
25	3	GLU	N	16.7	0.1	-2.23	
26	3	GLU	CA	15.982441	-0.984445	-2.721450 AAMB	10.0
27	3	GLU	A	15.336887	-1.714932	-1.622579 AAMB	0.0
28	3	GLU	O	14	-2.26	-1.856518	0.0
29	3	GLU	CB	16.912476	-1.943119	-3.491119 AAMB	0.0
30	3	GLU	CG	18.027748	-2.588000	-2.643043 AAMB	0.0
31	3	GLU	CD	18.976223	-3.410681	-3.527524 AAMB	0.0
32	3	GLU	OE1	18.561335	-4.460563	-4.015923 AAMB	
33	3	GLU	OE2	20.118059	-2.992227	-3.718383 AAMB	
34	3	GLU	N	17.696264	0.177130	-2.510961 AAMB	10.0
35	3	GLU	HA	15.271745	-0.619510	-3.458186 AAMB	0.0
36	3	GLU	31	16.313803	-2.728753	-3.956718 AAMB	
37	3	GLU	2	17.364645	-1.39	-4.3160	
	3	GLU		60		-2.1	
39	3	GLU		17.610920	-3.255	-1.888543 AAMB	
40		PHE	N	15.919147	-1.782670	-0.408540 AAMB	0.0
4	4		CA	15.307195	-2.459879	0.694823 AAMB	10.0
42	4		A	14.023937	-1.843083	1.055299 AAMB	0.0
43	4	PHE	0	12.972171	-2.524466	0.949426 AAMB	0.0
44	4	HE	CB	16.279325	-2.527560	1.885257 AAMB	
45	4	PHE	CG	15.739339	-3.373469	3.008183 AAMB	
46	4	PHE	CD1	15.827451	$1-4.761220$	2.950030 AAMB	
47	4	PHE	CD2	15.139515	5-2.779069	4.115228 AAMB	
48		PHE	CE1	15.323042	-5.543265	3.980633 AAMB	
49		Pre	CE2	14.634054	-3.558976	5.146505 AAMB	
50		訨		14.725373	-4.942125	5.079395 AAM	
	4	PHE	HN	16.751390	-1.312392	-0.272539 AAMB	0.0
52	4	PHE	HA	15.091137	-3.477376	0.342844 AAMB	
53	4	PHE	HB1	17.229939	-2.950183	1.558902 AAMB	
54	4	PHE	HB2	16.505716	-1.533943	2.267781 AAMB	10.0


56	4	P	HD	15.0	-1.703010	4.17		0.0
57	4	PHE	HE		-6.6	3.930117 AAMB		
58	4	PH	HE2	14.		6.00		0.0
59	4	PHE	HZ	14.335523	$-5.550326$	5.88		0.0
60	5	ARG	N	13.973029	-0.583468	1.540645 AA		. 0
61	5	ARG	CA	12.735288	0.057283	1.876006 AAMB		0.0
62	5	ARG	C	11.947042	0.320672	0.666657 AAMB		0.0
63	5	ARG	0	10.776729	0.746743	0.824206 AAMB		. 0
64	5	ARG	CB	13.090855	1.396300	2.549845 AAMB		
65	5	ARG	CG	11	1.2	B		0.0
66	5	AR	CD	14.358644	2.557881	4.438255 AAMB		0.0
67	5	A	NE	332176	82			0.0
68	5	ARG	CZ	15.810915	24	6. 283080 AAMB		. 0
69	5	ARG	NH1	730	4.556768	6.160191 AAMB		0.0
70	5	ARG	NH 2	00	3.009213	3		0.0
71	5	ARG	HN	801904	-0.091048	AAM		0.0
72	5	ARG	HA	12.176013	-0.551757	. 589055 AAMB		. 0
73	5	AR	HB1	13.585042	2.054208	1.831977 AAMB		0.0
74	5	ARG	HB2	12.177840	1.907795	2.858794 AAMB		0.0
75	5	ARG	HG1	13.541816	60.562265	5 4.494619 AAMB		0.0
76	5	ARG	HG2	14.944643	30.746375	5 3.469539 AAMB		0.0
77	5	ARG	HD1	14.812840	3.250935	3.727876 AAMB		
78	5	ARG	HD2	13.478590	3.023529	4.884431 AAMB		
79	5	ARG	HE	15.685361	1.390481	5.6		
80	5	ARG	11	114.699955	54.790350	50		
81	5	ARG	112	215.761321	5.270680	8		
	5	ARG	21	17.058340	2.071859	7.294514 AAMB		
83	5	ARG	HH22	17.080513	33.726822	22 7.798309 AAMB		
84	6	HIS	N	12.477256	$0.090535-0$	-0.550493 AAMB		0.0
85	6	HIS	CA	11.744717	0.312759	-1.758953 AAMB		0.0
86	6	HIS	C	$10.796138-0.7$	-0.782060 -1.	-1.978250 AAMB		0.0
87	6	HIS	0	$9.589708-0$	-0.479645-1	-1.876704 AAMB		0.0
88	6	HIS	CB	12.669912	0.466814	-2.978475 AAMB		
89	6	HIS	CG	11.850272	0.746600	-4.220493 AAMB		
90	6	HIS	ND1	11.024459	1.806971	-4.352235 AAMB		
	6	HIS	CD	11.	-0.02604	-5.391406 AAM		
	6	HIS	C	10.456316	1.68	-5.56		
	6	HIS	N	咗	0.58	-6.2		
	6	HIS	HN	13.37602	-0.25857	-0.621651 AAN		. 0
	6	HIS	HA	11.1897	1.25306	-1.633207 AAM		
96	6	HIS	HB	13.376599	1.28253	-2.833537 AAM		
97	6	HIS	HB2	13.235850	-0.443755	-3.144358 AAMB		
98	6	HIS	HD1	10.866956	2.516039	-3.694793 AAMB		
99	6	HIS	HD2	12.302275	-0.942279	-5.594612 AAMB		
100	6	HIS	HE1	9.738291	2.381361	-5.967376 AAMB		
101	6	HIS	H1	10.618958	0.291678	-7.108222 AAMB		
102		ASP	N	11.233445	-2.023194	-2.281511 AAMB		
	7	ASP	CA	10.336828	-3.122818	-2.458477 AAMB		
		ASP	C	9.481910	-3.294824	-1.276572 AAMB		0.0
105	7	ASP	0	8.295098	-3.664217	-1.457893 AAMB		
106	7	ASP	CB	11.158020	-4.409654	-2.672259 AAMB		
107	7	ASP	CG	12.009846	-4.344454	-3.954447 AAMB		
08	7	ASP	OD1	11.486812	$2-3.933098$	-4.991384 AAMB		
09	7	ASP	OD2	13.186305	-4.707085	5 -3.903346 AAMB		
110	7	ASP	HN	12.188498	-2.180787	-2.348245 AAMB	1	0


111	7	ASP	HA	9.733404	-2.936532	-3		
112	7	ASP	HB1	11.812886	-4.589718	-1.817311 AAMB		
11	7	ASP	HB2	10.499928	-5.275890	-2.757493 AAMB		0.0
114	8	SER	N	9.988587	-3.138769	-0.034572 AAMB		. 0
115	8	SER	CA	9.176601	-3.262035	1.137976 AAM		
116	8	SER	C	8.022375	-2.358343	1.073562 AAM		. 0
117	8	SER	O	6.868747	-2.855776	1.073585 AAMB		. 0
118	8	SER	CB	10.068766	-2.962929	2.355190 AAMB		0.0
119	8	SER	OG	9.357747	-3.133594	3.574400 AAMB		
120	8	SER	HN	10.925159	-2.918284	0.068418 AAMB		0.0
12	8	SER	HA	8.817378	-4.297300	1.180070 AAMB		0.0
122	8	SER	HB1	10.931597	-3.637786	2.332720 AAMB		0.0
123	8	SER	HB2	10.454106	-1.940798	2.283954 AAMB		0.0
124	8	SER	HG	9.918180	-2.960077	4.327270 AAMB		
125	9	GLY	N	8.198386	-1.021602	1.008988 AAMB		. 0
126	9	GLY	CA	7.094239	-0.121842	0.900155 AAMB		
127	9	GLY	C	6.454493	-0.233650	-0.411757 AAMB		. 0
	9	G	-	5.464347	0.490092	-0.6205		0
129	9	GL	HN	9.096245	-0.652911	0.994446 AAMB		
130	9	GLY	H	9829	-0.274391	1.706055 AAMB		0.0
131	9	GL	H	7.484860	0.892686	0.999122 AAMB		0.0
132	10	TYR	N	6.983341	-1.033271	-1.360520 AAMB		0.0
133	10	TYR	CA	6.388818	-1.190931	-2.650550 AAMB		0.0
134	10	TYR	-	5.169522	-2.002688	-2.575299 AAMB		0.0
35	10	TYR	0	4.083598	-1.530204	-2.994898 AAMB	1	0.0
136	10	TYR	CB	7.345534	-1.742988	-3.722003 AAMB		0.0
137	10	Rr	CG	6.780235	-1.568047	-5.108628 AAMB		
138	10	TYR	CD1	6.875566	-0.338809	-5.754462 AAMB		
	10	TYR	C	6.144049	-2.62	-5.757461 AAMB		
	10	TYR	C	6.336807	-0.	-7.022114 AAMB		
141	10	TYR	CE2	5.606416	-2.45	-7.026970 AAMB		
142	10		CZ	5.700393	-1.217822	-7.661445 AAMB		
143	10		OH	5.164546	-1.024396	-8.920258 AAMB		0.0
144	10	TrR	HN	7.757517	-1.570586	-1.156951 AAMB		0.0
145	10	TYR	HA	6.096994	-0.185557	-2.971601 AAMB		0.0
146	10	TYR	HB1	8.294446	-1.213179	-3.691091 AAMB		0.0
147	10	TYR	HB2	7.558067	-2.797953	-3.559109 AAMB		0.0
148	10	TYR	HD1	7.367125	- 0.491326	-5.267713 AAMB		0.0
49	10	TYR	HD2	6.056268	-3.584122	-5.272258 AAMB		
150	10	YR	HE1	6.410582	0.796421	-7.512625 AAMB		
	10	TYR	HE2	5.111298	-3.28459	-7.504464 AAN		
	10			5.410977	-1.736432	-9.496549 AAN		
	1	GLU	N	5.214782	-3.259125	-2.090118 AAMB		
15	11	GLU	CA	4.044102	-4.064106	-1.970570 AAMB		
155	11	GLU	C	3.232757	-3.556814	-0.869093 AAMB		0.0
156	11	GLU	0	1.983533	-3.602206	-0.998179 AAMB		. 0
157	11	GLU	CB	4.508585	-5.504136	-1.700698 AAMB		0.0
158	11	GLU	CG	5.352304	-6.073346	-2.858341 AAMB		0.0
159	11	GLU	$C D$	6.046267	-7.385198	-2.456297 AAMB		
160	11	GLU	OE1	7.271055	-7.465412	-2.563812 AAMB		
161	11	GLU	OE2	5.353405	-8.310934	-2.037041 AAMB		
162	11	GLU	HN	6.073738	-3.598763	-1.784515 AAMB		
163	11	GLU	HA	3.471385	-4.003354	-2.898062 AAMB		
164	11	GLU	HB1	5.097457	-5.521979	-0.780948 AAMB		
165	11	GLU	HB2	3.647953	-6.151681	-1.525591 AAMB		
166	11	GLU	HG1	4.723450	-6.259685	-3.729042 AAMB		10.0


167	11	GLU	2	6.119726	98	8		
168	12	VAL	N	3.814550	-3.109827	0.251651 AAMB		0.0
169	12	VAL	CA	3.053213	-2.556596	1.319859 AAMB		
17	12	VAL	C	2.326123	-1.396080	0.844176 AAM		0.0
171	12	VAL	O	1.248710	-1.084186	1.408288 AAM		. 0
172	12	VAL	CB	3.977703	-2.252757	2.517904 AAMB		
173	12	VAL	CG1	3.264524	-1.506013	3.658383 AAMB		
174	12	VAL	CG2	4.606677	-3.544638	3.065645 AAMB		0
175	12	VAL	HN	4.783776	-3.122324	0.330963 AAMB		0.0
176	12	VAL	HA	2.343054	-3.321087	1.616117 AAMB		0.0
177	12	VAL	HB	4.785039	-1.615181	2.165269 AAMB		0.0
178	12	VAL	HG11	12.397423	3 -2.064084	4 4.012671 AAMB		0.0
179	12	VAL	HG12	23.935966	-1.356168	8 4.504056 AAMB		
180	12	VAL	HG13	$3 \quad 2.923978$	-0.519927	3.342626 AAM		
181	12	VAL	HG21	15.134048	-4.105847	72.295260 AAN		
182	12	VAL	HG22	2.325817	7 -3.323709	3.854879 AAN		
183	12	VAL	HG23	3.844441	$1-4.202545$	5 3.482995 AA		
	13	HIS	N	2.870301	-0.601688	-0.085326 A		
185	13	HIS	CA	2.147757	0.486	-0.649232 AAMB		
186	13	HIS	c	0.9064	-0.041158	-1.187686 AAMB		. 0
187	13	HIS	O	-0.162553	0.551120	-0.892737 AAMB		0
188	13	HIS	CB	2.931556	1.290516	-1.710533 AAMB		
189	13	HIS	CG	2.001103	2.197772	-2.492605 AAMB		
190	13	HIS	ND1	1.418068	3.307247	-1.989043 AAMB		0.0
191	13	HIS	CD2	1.562221	2.028737	-3.816505 AAMB		0.0
19	13	HIS	CE1	0.647256	3.795218	-2.975793 AAMB		
193	13	HIS	NE2	0.714894	3.044284	-4.088673 AAMB		
194	13	HIS	HN	3.751224	-0.804321	-0.429730 AAMB		
195	13	HIS	HA	1.901805	1.165	0.1		
	13	HIS	HB1	3.685	1.914498	-1.233498 AAMB		
197	13	HI	HB	3.446121	0.639142	-2.411343 AAMB		
198	13	HIS	HD1	1.526666	3.676201	-1.087930 AAMB		
199	13	HIS	HD2	1.846090	1.232338	-4.488090 AAMB		
200	13	HIS	HE1	0.047480	4.688235	-2.890903 AAMB		
20	13	HIS	H1	0.240240	3.206418	-4.930442 AAMB		0.0
202	14	HIS	N	0.946838	-1.035730	-2.092577 AAMB		. 0
3	14	HIS	CA	-0.236731	-1.644258	-2.613684 AAMB		
204	14	HIS	C -	-1.127244	-2.033749	-1.516683 AAMB		. 0
205	14	HIS	O -2	-2.353407	-2.056832	-1.743800 AAMB		. 0
206	14	HIS	CB	0.008137	-2.701402	-3.719336 AAMB	1	0.0
	14	HIS	CG	0.135380	-4.139705	-3.249672 AAMB	1	
	14	HIS	ND1	1.244685	-4.886912	-3.421677 AAMB		
	14	HIS	CD2	-0.829846	-4.945433	-2.617420 AAMB	1	
10	14	HIS	CE1	0.966844	-6.097539	-2.913075 AAMB		0
21	14	HIS	NE2	-0.281356	-6.164334	-2.418308 AAMB	1	0.0
212	14	HIS	HN	1.815019	-1.381073	-2.354747 AAMB	1	0.0
213	14	HIS	HA	-0.745348	-0.819196	-3.128792 AAMB	1	0.0
214	14	HIS	HB1	-0.834490	-2.677860	-4.411414 AAMB		0.0
215	14	HIS	HB2	0.887401	-2.429862	-4.304904 AAMB		0.0
216	14	HIS	HD1	2.081094	-4.607575	-3.845982 AAMB		0.0
217	14	HIS	HD2	-1.832204	-4.653473	-2.341948 AAMB		0.0
218	14	HIS	HE1	1.665944	-6.920380	-2.903794 AAMB	1	0.0
219	14	HIS	H1	-0.705399	-6.941513	-1.999400 AAMB	1	
220	15	GLN	N	-0.618183	-2.353164	-0.307480 AAMB		
221	15	GLN	CA	-1.446121	-2.722356	0.796756 AAMB		
222	15	GLN	C	-2.285527	-1.597471	1.225606 AAMB	1	0


223	15	GLN	O	-3.	-1.806687	1.390926 AAMB		
22	15	GLN	CB	-0.646446	-3.324816	1.966519 AAMB		
225	15	GLN	CG	-1.525218	-4.062795	2.993101 AAMB		0.0
226	15	GLN	CD	-2.235078	-5.284182	2.38993		0.0
227	15	GLN	OE1	-3.455738	-5.372842	2.365419 A		.
228	15	GLN	NE	-1.392	-6.2	1.9		10.0
229	15	GL	HN	. 34	-2.337373	-0.19		0.0
	15	GLN	HA	.113590	. 506227	俍		
	15	GLN		0.110819	4.003546	3723 AAMB	1	0.0
232	15	GLN	HB2	-0.107666	2.549977	2.505945 AAMB		0.0
233	15	GLN	HG1	-0.917151	-4.400835	3.832102 AAMB		0.0
234	15	GLN	HG2	-2.281023	-3.391980	3.402313 AAMB		. 0
235	15	GLN	HE21	-1.763429	-7.075501	1.554611 AAMB		. 0
236	15	GLN	HE22	-0.401695	-6.089486	1.933481 AAMB		0
237	16	LYS	N	-1.746697	-0.373374	1.393378 AAMB		0.0
238	16	LYS	CA	-2.527025	0.763398	1.782422 AAMB		0.0
239	16	SY	C	-3.514591	1.121618	0.760728 AAMB		. 0
240	16	LYS	0	-4.674531	1.411898	1.132969 AAMB		
	16	LYS	CB	-1.529032	1.904917	. 049959 AAMB		
	16	LYS	CG	-2.1	3.286984	2.356941 AAMB		
243	16	LYS	C	-2.452783	4.154167	1.		0.0
244	16	LYS	CE	-1.242841	4.352679	0.197		0.0
245	16		NZ	-1.4536	5.393516	-0.798794 AAMB		0
246	16	LYS	HN	-0.792302	-0.283311	1.248828 AAMB		0.0
247	16	LYS	HA	-3.048416	0.512863	2.714864 AAMB		0.0
248	16	LYS	HB1	-0.930709	1.606689	2.911505 AAMB		0.0
249	16	LYS	HB2	-0.813467	1.977020	1.232241 AAMB		. 0
250	16	LYS	HG1	-3.033640	3.169272	2.969662 AAMB		. 0
251	16	LYS	HG2	-1.427783	3.839292	2.972631 AAMB		. 0
	16	LYS	HD	-3.	3.744693	0.553417 AAMB		
	16	LYS	HD	-2.791710	5.129979	1.472394 AAMB		
	16	LYS	H	-0.360971	4.633786	0.7		
	16	LYS	H	-1.009074	3.436814	-0.344935 AAMB		. 0
256	16	LYS	HZ	-1.67505	28	-0.316544 AAN		0.0
	16		HZ2	-0.595514	5.509400	-1.376210 AAMB		0.0
258	16	LY	HZ3	-2.255284	5.126222	-1.406323 AAMB		0.0
259	17	LEU	N	-3.174159	1.156810	-0.543538 AAMB		
260	17	LEU	CA	-4.113560	1.484990	-1.567282 AAMB		0.0
261	17	LEU	C	-5.176423	0.471401	-1.659226 AAMB		0.0
262	17	LEU	O	-6.329594	0.840865	-1.994066 AAMB		0.0
	17	LEU	CB	-3.325880	1.610585	-2.892667 AAMB		
	17	LEU	CG	-3.785712	2.747661	-3.824523 AAMB		
	17		CD1	-5	. 65459	-4.195492 AAN		
	17	LEU	CD2	-3.43	4.129725	-3.254340 AAM		
	17		H	-2.262553	0.93489	-0.775909 AAM		0.0
268	17	LEU	HA	-4.577597	2.434096	-1.285496 AAMB		
269	17	LEU	HB1	-2.271438	1.785138	-2.670066 AAMB		
270	17	LEU	HB2	-3.333622	0.662522	-3.434430 AAMB		0.0
271	17	LEU	HG	-3.218442	2.637896	-4.749746 AAMB		0.0
272	17	LEU	HD11	-5.526294	1.658127	-4.556837 AAMB		
273	17	LEU	HD12	-5.908995	2.880983	-3.341547 AAMB		
274	17	LEU	HD13	-5.520473	3.365987	-4.982799 AAMB		
275	17	LEU	HD21	-2.367505	4.209018	-3.054261 AAMB		
	17	LEU	HD22	-3.696604	4.920219	-3.958532 AAMB		
277	17	LEU	HD23	-3.965827	4.328816	-2.322925 AAMB		
278	18	VAL	N	-4.932119 -0.	-0.810388 -	-1.315467 AAMB 1		0.0


279	18	VAL	CA	85	56	-1.356185 AAMB		
28	18	VAL	C	-6.797062	-1.714142 -0.1	-0.169165 AAMB		
281	18	VAL	-	-8.010448 -1.	-1.991933	-0.292257 AAM		0.0
282	18	VAL	CB	-5.279749	-3.213930	-1.499511 AAMB		0.0
283	18	VAL	CG1	-6.213015	-4.387560	-1.148586 AAMB		
	18	VAL	CG2	-4.7	-3.40	-2.929430 AAMB		10.0
285	18	VAL	H	-4.041923	-1.06	-1.04		0.0
	18	VAL		592118	-1.64805	-2.224685 AAMB		
	18			-4.434917	3.259472	-0.810		0.0
	18	AL	HG	-7.118831	-4.366127	-1.755462 AAMB		
289	18	VAL	HG12	-5.718055	-5.343682	-1.319533 AAMB		
290	18	VAL	HG13	-6.512504	-4.366134	-0.100362 AAMB		0.0
291	18	VAL	HG21	-4.128042	-2.568224	-3.253778 AAMB		. 0
292	18	VAL	HG22	-4.146474	-4.310209	-3.007163 AAMB		. 0
293	18	VAL	HG23	-5.568073	-3.486960	-3.641508 AAMB		. 0
294	19	HE	N	-6.305319	-1.202374	0.975365 AAMB		
295	19	PHE	CA	-7.101325	-1.045330	2.153176 AAM		
296	19		C	-8.025386	0.078303	1.983149 AAMB		
	19		O	-9.174	. 006	2.481483 AAMB		
	19		CB	. 17	-0.814749	3.349294 AAMB		
99	19		CG	-6.910186	-0.61505	4.642385 AAMB		
	19	PH	CD1	-7.101917	0.6	B		0.0
	19	PH	CD2	-7.431925	-1.705304	B		
302	19	PHE	CE1	-7.804758	0.852190	6.340706 AAMB		0.0
303	19	PHE	CE2	-8.134746	-1.520186	6.515602 AAMB		0.0
304	19	PHE	CZ	-8.321570	-0.241290	7.020770 AAMB		0.0
305	19	PHE	HN	-5.371571	-0.965666	1.007602 AAMB		
306	19	PHE	HA	-7.680093	-1.966908	2.294902 AAMB		
307	19	PH	HB1	-5.492814	-1.669469	3.458332 AAMB		
	19	PH	HB2	-5.5	0	3.166873 AAMB		
	19		HD	-6.709713	1.523271	4.631473 AAMB		
	19		HD	-7.299407	-2.705380	4.946207 AAMB		
	19	PH	HE1	-7.953233	1.847965	6.732335 AAMB		0.0
	19		HE	-8.541384	-2.371681	7.041228 AAMB		0.0
	19		,	-8.870526	-0.098073	7.940141 AAMB		0.0
	20		N	-7.673174	1.132797	1.221871 AAMB		
315	20	-	CA	-8.544904	2.242817	0.996134 AAMB		0.0
316	20	硡	C	-9.594489	1.882055	0.039219 AAMB		
317	20	PHE	0	-10.734620	2.340141	0.209890 AAMB		0.0
318	20	HE	CB	-7.618481	3.328862	0.405096 AAMB		0.0
319	20	PHE	CG	-8.251472	4.681148	0.196232 AAMB		
	20		CD	-8.960198	4.960293	-0.969232 AAMB		
	20		CD2	. 10	5.682682	1.152657 AAMB		
	20			50	6.220169	-1.		
	20			-8.644730	6.94599	0.940669 AAM		
	20		CZ	-9.341792	7.216188	-0.228950 AAMB		
	20	PHE	HN	-6.783930	1.133674	0.845026 AAMB		0.0
22	20	PHE	HA	-8.990414	2.589137	1.936806 AAMB		
27	20	PHE	HB1	-6.758616	3.459482	1.064263 AAMB		
28	20	PHE	HB2	-7.198933	2.992059	-0.544946 AAMB		
29	20	PHE	HD1	-9.085909	4.193028	-1.719779 AAMB		
330	20	PHE	HD2	-7.564674	5.481259	2.065264 AAMB		
331	20	PHE	HE1	-10.057606	6.423938	-2.087032 AAMB		
332	20	PHE	HE2	-8.521981	7.719291	1.685306 AAMB		
333	20	PhE	Hz	-9.762511	8.197178	-0.395628 AAMB		
334	21	ALA	N	-9.328560	1.117209 -	-1.035786 AAMB 1		0.0


	21	ALA	CA	-10.350311	8	-1.961846 AAMB		
33	21	ALA	C	-11.245373	-0.265703	-1.365418 AAMB		0.0
337	21	ALA	O	-12.307265	-0.557771	-1.942278 AAM		0.0
338	21	ALA	CB	-9.669854	0.152794	-3.205755 AAM		. 0
339	21	ALA	HN	-8.420064	0.809104	-1.179925 AAMB		. 0
340	21	ALA	HA	-10.940668	1.615099	-2.24		0.0
	21	ALA	HB	-9.003	. 886	-3.66		. 0
	21	ALA	HB2	-9.070508	-0.7	-2.9		
	21	ALA	HB3	-10.4	-0.140363	-3.960104 AAMB		
	22	GLU	N	-10				
	22		CA		.			
	22	GLU	C	-12.599527	-1.352089	. 179854 AAM		0.0
	22	GLU	O	-13.772074	-1.752651	. 183833 AAMB		. 0
348	22	GLU	CB	-10.790043	-3.008301	1.056825 AAMB		0.0
349	22	GLU	CG	-10.06992	-4.032821	0.161508 AAMB		0.0
350	22	GLU	CD	-11.000795	-5.181879	-0.253294 AAMB		0.0
351	22	GLU	OE1	-11.28394	-6.042099	0.580723 AAMB		
352	22	GLU	OE2	-11.432377	-5.211642	-1.405437 AAMB		
	22	GLU	HN	-9.929513	-0.930140	-0.003553 AAMB		
	22	G		-12.248537	-2.569595	-0.48		
	22	GLU		-10.0	-2.	1.621465 AAMB		
	22	GLU		-11.376102	-3.5436			
	22			-9.678091	-3.563277	-0.739589 AAMB		
	22	GLU	HG2	-9.218993	-4.459637	0.693020 AAMB		10.0
	23	ASP	N	-12.17	-0.354410	1.977433 AAMB		
	23	ASP	CA	-13.065334	0.361538	2.837221 AAMB		0.0
	23	ASP	C	-13.74355	1.391010	2.052543 AAMB		
362	23	ASP	O	-14.992313	1.328216	1.946455 AAMB		. 0
363	23	ASP	CB	-12.266554	0.983707	3.997362 AAMB		
	23	ASP	CG	-11.8	-0.095633	4.997859 AAMB		
	23	ASP	OD1	-12.	-0.112497	6.120143 AAMB		
	23	ASP	OD2	-10	-0.	4.648471 AAMB		
	23	ASP		-11	-0.117474	1.970835 AAMB		
	23	AS		-13.8257	-0	3.237243 AAMB		
	23			-11.389018	1.516296	3.627135 AAMB		
	23	AS		-12.87690	1.714050	. 532335 AAMB		0.0
	24	VAL	N	-13.033711	2.400514	1.517171 AAMB		. 0
	24	VAL	CA	-13.627054	3.411602	0.703844 AAMB		
	24	VAL	C	-14.398943	2.830595	-0.395773 AAM		. 0
		L	O	-15.560534	3.262855	-0.588836 AAMB		. 0
375	24	VAL	CB	-12.652191	4.532939	0.287577 AAMB		
	24	VAL	CG1	-13.384815	5.709221	-0.377373 AAMB		
	24	VAL	CG2	-11.863484	5.030176	1.509347 AAMB		
		VAL		-12.081930	420543	A		
				-14	3.867602	1		
	24			-11.95	4.158	-0.4		
	24			-13.856360	5.403377	-1.310308 AAMB		
382	2	VAL	HG1	-14.159917	6.113651	10.274056 AAMB		
	24	VAL	HG1	$3-12.693000$	6.516822	-0.617229 AAMB		
	24	VAL	HG21	-12.535227	5.315455	2.319210 AAMB		
385	24	VAL	HG22	-11.182512	4.269599	1.890988 AAMB		
887	24	VAL	HG23	-11.267399	5.904689	1.262430 AAMB		
87	25	GLY	N	-13.897909	1.806942	-1.109662 AAMB		
88	25	GLY	CA	-14.634172	1.199144	-2.163104 AAMB		0.0
389	25	GLY	C	-15.754764	0.428300	-1.636873 AAMB	1	. 0
300	25	GLY	O	-16.810810	0.459768	-2.314776 AAMB	1	.


	25	GLY	HN	-1	1.473277	-0		
392	25	GLY	HA1	-14.927588	1.958454	-2.865408 AAMB		
393	25	GLY	HA2	-14.053854	0.540123	-2.786183 AAMB		0.0
394	26	SER	N	-15.607442	-0.352578	-0.547584 AAMB		0.0
395	26	SER	CA	-16.715082	-1.065141	0.019772 AAMB		0.0
	26	S	C	-17.9052	-0.211181	0.10		. 0
	26	S	O	-18.9800	-0.652926	-0.37		. 0
	26	SER	CB	-16.458	-1.687199	1.4		0.0
	26	SER	OG	-17.62	-2020			
	26			-14				
	26	SER	HA	-16.93427	-1.868	-0.693759 A		.
402	26	SER	HB1	-15.858155	-2.594639	1.316521 AAMB		
403	26	SER	HB2	-15.902379	-0.987645	2.035284 AAMB		
404	26	SER	HG	-18.251007	-2.453056	1.564705 AAMB		. 0
405	27	ASN	N	-17.828413	1.017654	0.655349 AAMB		0.0
406	27	SN	CA	-18.949713	1.902397	0.746077 AAMB		0.0
407	27	AN	C	-18.805429	3.008193	-0.214104 AAMB		
408	27	ASN	O	-18.979372	4.178142	0.210553 AAMB		. 0
	27	ASN	CB	-19.194557	2.352446	2.203225 AAMB		
	27	ASN	CG	-18.0206	. 081731	2.880505 AAMB		
	27	ASN	OD	-17.94896	4.303613	2.911146 AAMB		
	27	ASN	ND2	-17.	2.259248	3.485601 AAMB		. 0
	27	ASN	HN	-16.969	1.309415	1.001629 AAMB		0.0
	27	ASN	HA	-19.8	1.413835	AMB		0.0
	27	ASN	HB	-20.064405	3.008574	AMB		
	27	ASN	HB2	-19.445787	1.480943	2.808213 AAMB		0
	27	ASN	HD2	-16.398821	2.643177	74.021193 AAMB		
418	27	ASN	HD2	$22-17.22556$	1.266129	3.398957 AAMB		
419	28	LYS	N	-18.527422	2.773166	-1.515061 AAMB		0
	28	LYS	CA	-18.354721	3.826449	-2.471390 AAMB		
	28	LYS	C	-19.49	65	-3.367871 AAMB		
	28		0	-19	2.898005	-4.0		
	28	LYS	CB	-17	3.649163	-3		
	28		CG	-16.039965	4.752141	-3.114206 AAMB		
	28	LYS	CD	-1	. 03	-3.887490 AAM		. 0
	28		CE	-15.312076	7.123820	-3.652524 AAMB		0.0
	28	LYS	NZ	-15.622320	8.362862	-4.355102 AAMB		. 0
428	28	SY	OXT	-20.106014	4.955043	-3.577588 AAMB		0.0
429	28	YS	HN	-18.407160	1.860785	-1.813810 AAMB		0.0
430	28	LYS	HA	-18.309614	4.804605	-1.985870 AAMB		. 0
431	28	LYS	HB1	-16.697926	2.681018	-3.077460 AAMB		0.0
	28	YS	HB2	-17.286669	3.576143	-4.398309 AAMB		
	28	YS	HG1	-15.963959	5.000231	-2.057859 AAMB		
	28	LYS	HG2	-15.060901	4.383323	-3.421366 AAMB		
	28			-16.4313	81610	-		
	28			. 34	6.406069	-3.584526 AAM		
	28	LYS	H	-15.234	. 35988	-2.590948 AAMB		0.0
438	28	LYS	HE2	-14.330296	6.790445	-3.989171 AAMB		0.0
439	28	LYS	HZ1	-16.537807	8.727137	-4.022856 AAMB		0.0
440	28	LYS	HZ2	-14.878768	9.064148	-4.163210 AAMB		0.0
441	28	LYS	HZ3	-15.671393	8.177383	-5.377058 AAMB		
12	29	MINI	CA	0.801935	7.774904	-1.808129 MINI		.
3	29	MINI	HA	0.566938	8.545598	-1.074308 MINI		
	29	MINI	CB	1.945340	8.232927	-2.719579 MINI		
445	29	MINI	HB1	1.666320	9.148425	-3.242029 MINI		
446		,	HB2	2.825317	8.470255	-2.121215 MIN	10.	


447	29	MINI CG	2.299530	7.168966	-3.721584 MINI	1	0.0
448	29	MINI CD1	3.194309	6.160393	-3.383742 MINI	1	0.0
449	29	MINI HD1	3.653621	6.151380	-2.406369 MINI	1	0.0
450	29	MINI CD2	1.725775	7.168845	-4.989739 MINI	1	0.0
451	29	MINI HD2	1.031304	7.948564	-5.267232 MINI	1	0.0
452	29	MINI CE1	3.495388	5.156970	-4.292325 MINI	1	0.0
453	29	MIII O1	4.362117	4.143554	-3.942663 MINI	1	0.0
454	29	MINI CE2	2.031391	6.170089	-5.905367 MINI	1	0.0
455	29	MINI HE2	1.561771	6.200259	-6.877861 MINI	1	0.0
456	29	MINI CZ	2.916948	5.156667	-5.552899 MINI	1	0.0
457	29	MINI O2	3.233977	4.132008	-6.425073 MINI	1	0.0
458	29	MINI H1	1.076688	6.872482	-1.261128 MINI	1	0.0
459	29	MIII N1	-0.420729	7.485872	-2.547294 MIII	1	0.0
460	29	MINI H2	4.387321	3.503186	-4.644748 MINI	1	0.0
461	29	MINI H3	3.209215	4.441852	-7.321945 MINI	1	0.0
462	29	MINI H4	-1.167603	7.194327	-1.884370 MINI	1	0.0
463	29	MINI H5	-0.241900	6.719477	-3.227988 MINI	1	0.0
464	29	MINI H6	-0.725669	8.339811	-3.056801 MINI	1	0.0
$!$							

COOR ORIE NOROT SELE BYNUM @2 end
READ SEQU TIP3 1000
GENE SOLV SETU NOANGLE NODIHE
READ COOR CARD APPE
*1000 water molecules in 30 angstrom cube
*
3000
1 1 TIP3 OH2 10.72971 13.82612-4.91916 SEG1 $1 \quad 0.00000$
21 TIP3 H1 9.79544 13.62522 -4.97383 SEG1 $1 \quad 0.00000$
31 TIP3 H2 10.91210 13.86591-3.98035 SEG1 10.00000

```
29981000 TIP3 OH2 -2.08570-3.85276 11.60936 SEG8 10000.00000 29991000 TIP3 H1 -1.37778-3.80913 10.96658 SEG8 10000.00000 30001000 TIP3 H2 \(-2.68185-3.14730\) 11.35804 SEG8 10000.00000
```

COOR ORIE NOROT SELE BYNUM @3 end
READ SEQU TIP3 1000
GENE SOLW SETU NOANGLE NODIHE READ COOR CARD APPE
*1000 water molecules in 30 angstrom cube *

```
3000
```

1 1 TIP3 OH2 10.72971 13.82612 -4.91916 SEG1 10.00000
2 1 TIP3 H1 9.79544 13.62522 -4.97383 SEG1 $1 \quad 0.00000$
31 TIP3 H2 $10.9121013 .86591-3.98035$ SEG1 10000000

2998 1000 TIP3 OH2 -2.08570 -3.85276 11.60936 SEG8 10000.00000
29991000 TIP3 H1 -1.37778 -3.80913 10.96658 SEG8 10000.00000
30001000 TIP3 H2 -2.68185 -3.14730 11.35804 SEG8 10000.00000
DELE ATOM SELE (.BYRES. ( (SEGID SOLV .OR. SEGID SOLW) .AND. TYPE OH2 .AND. ( ( .NOT. SEGID SOLW .AND. .NOT. SEGID SOLV .AND. .NOT. HYDROGEN ) .AROUND. 2.80) ) ) END

RETURN
STOP

## Appendix 5: Methodology of Biological Assays

Materials for In Vitro Assays. $A \beta_{40}$ and $A \beta_{42}$ (AnaSpec, San Jose, CA, >95\%) were stored at $-80^{\circ} \mathrm{C}$ until used. Tau441 was provided by Oligomerix Inc. (New York, NY) as frozen aliquots ( $8.3 \mathrm{mg} / \mathrm{mL}, 60 \mu \mathrm{~L}$ ) in Tris- $\mathrm{HCl}(50 \mathrm{mM}, \mathrm{pH} 7.4)$. 1, 1, 1,3,3,3Hexafluoroisopropanol (HFIP), and other reagents were obtained from Aldrich (St. Louis, MO ) and were of the highest grade. All water used in the in vitro studies was micropore filtered and deionized.
$\mathbf{A} \boldsymbol{\beta}_{\mathbf{4 0}}$ Stock Solutions. $\mathrm{A} \beta_{40}(1.0 \mathrm{mg})$ was pre-treated in a 1.5 mL microfuge tube with HFIP ( 1 mL ) and sonicated for 20 min . to disassemble any pre-formed $\mathrm{A} \beta$ aggregates. The HFIP was removed with a stream of argon and the $\mathrm{A} \beta$ dissolved in Tris base (5.8 $\mathrm{mL}, 20 \mathrm{mM}, \mathrm{pH} \sim 10)$. The pH was adjusted to 7.4 with concentrated $\mathrm{HCl}(\sim 10 \mu \mathrm{~L})$ and the solution filtered using a syringe filter $(0.2 \mu \mathrm{~m})$ before being used. Similar procedures were used for $A \beta_{42}$.

ThT A $\beta$ Aggregation Assay. The kinetic ThT assay for $\mathrm{A} \beta$ aggregation was done as follows. Briefly, pre-treated A $\beta 1-40(40 \mu \mathrm{M}$ in 20 mM Tris, pH 7.4$)$, was diluted with an equal volume of $8 \mu \mathrm{M}$ ThT in Tris ( $20 \mathrm{mM}, \mathrm{pH} 7.4,300 \mathrm{mM} \mathrm{NaCl}$ ). Aliquots of $\mathrm{A} \beta / \mathrm{ThT}$ $(200 \mu \mathrm{~L})$ were added to wells of a black polystyrene 96 -well plate, followed by $2 \mu \mathrm{~L}$ of a test compound in DMSO (of variable concentration), or DMSO alone (controls). Incubations were performed in triplicate and contained $20 \mu \mathrm{MA} \beta$ and various concentration of compound in 20 mM Tris, $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ DMSO. Plates were covered with clear polystyrene lids and incubated at $37^{\circ} \mathrm{C}$ in a Tecan Genios microplate reader. Fluorescence readings ( $\lambda_{\mathrm{ex}}=450 \mathrm{~nm}, \lambda_{\mathrm{em}}=480 \mathrm{~nm}$ ) were taken every 15 min ., after first shaking at high intensity for 15 sec . and allowing to settle for 10 sec . before each reading. Active compounds attenuated the increase in fluorescence over time that occurred in controls.

ThS Tau Aggregation Assay. Frozen aliquots of tau 441 were allowed to thaw at room temperature (RT) before being diluted with Tris- $\mathrm{HCl}(2.64 \mathrm{~mL}, 50 \mathrm{mM}, \mathrm{pH} 7.4)$ containing dithiothreitol (DTT, 1 mM ) to prevent disulfide bonds. After allowing to stand at RT for 1 h , Thioflavin $\mathrm{S}(\mathrm{ThS})$ was added $(2.5 \mu \mathrm{~L}, 10.8 \mathrm{mM})$, followed by the aggregation inducer heparin ( $20 \mu \mathrm{~L}, 1.08 \mathrm{~g} / \mathrm{mL}$ ). Aggregation was then monitored in a plate reader in the same manner as in the $A \beta /$ ThT assay.

Circular Dichroism (CD). Aliquots ( $220 \mu \mathrm{~L}$ ) of HFIP-pretreated $\mathrm{A} \beta(40 \mu \mathrm{M}$ in 20 mM Tris, pH 7.4 ) were added directly to 1 mm quartz CD cells, followed by $2.2 \mu \mathrm{~L}$ compound (variable concentration) in methanol or methanol alone (controls). Solutions were incubated at $37^{\circ} \mathrm{C}$ for up to 6 days. CD scans were performed on a Jasco J-810 spectropolarimeter between 190 and 250 nm , with a resolution of 0.1 nm and bandwidth of 1 nm . Ten scans were obtained for each reading. Active compounds were those that inhibited the random-coil to $\beta$-sheet transition.

Transmission Electron Microscopy (TEM). A $\beta_{42}$ stock solution ( $40 \mu \mathrm{M}$ in 20 mM Tris, pH 7.4$)$ was incubated $\left(37^{\circ} \mathrm{C}\right)$ in the absence and presence of the test compound
$(100 \mu \mathrm{M})$. After 3 days, solutions were analyzed following the procedure of Cohen et al. (Biochemistry 2006, 45: 4727-35) for TEM analysis. Briefly, a $10 \mu \mathrm{~L}$ sample was placed on a 400 mesh copper grid covered by carbon-stabilized Formvar film and allowed to stand for 1.5 min . Excess fluid was then removed and the grids negatively stained for 2 min with uranyl acetate ( $10 \mu \mathrm{~L}, 2 \%$ solution). Excess fluid was again removed and the samples viewed using an electron microscope operating at 80 kV .

## Appendix 6: Protein Energies of A $\beta$

The gas phase energies of the $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{AML}, 1 \mathrm{BA} 4,1 \mathrm{IYT}$, and 1Z0Q conformers of $A \beta$ as optimized in QUANTA using the CHARMM22 force field are summarized as follows and calculated with a constrained protein backbone:

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1AMB	-125.85	-62.91	-118.83
1AMC	-124.84	-66.16	-117.54
1AML	-152.79	-54.14	-169.05
1BA4	-186.59	-65.48	-181.57
1IYT	-188.37	-83.14	-176.62
1Z0Q	-134.31	-64.92	-171.67

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of $\mathrm{A} \beta$ as optimized in QUANTA using the CHARMM22 force field are summarized as follows, and were calculated with the solvent removed:

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1 AMB	-314.52	-270.43	-132.28
1AMC	-314.53	-280.48	-160.67
1AML	-404.92	-346.18	-212.50
1BA4	-420.10	-369.83	-206.17
1IYT	-530.26	-404.59	-240.00
1Z0Q	-448.37	-366.93	-237.08

The gas phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of $A \beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone:

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1 AMB	-0.79	53.93	-209.47
1 AMC	-11.92	55.13	-233.99
1 AML	142.72	92.67	-172.78
1 BA 4	91.73	61.10	-169.48
1 YT	52.92	55.64	-200.21
1 ZOQ	167.87	86.20	-187.97

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of $\mathrm{A} \beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows (Used for Tryptophan and 3HAA):

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1AMB	-1.65	46.77	-198.00
1AMC	-27.22	45.27	-220.50
1AML	126.29	67.92	-159.13
1BA4	141.41	91.81	-169.50
1IYT	76.65	88.19	-216.55
1Z0Q	121.78	72.47	-185.37

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of $A \beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows (Used for Tryptamine):

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\text {vdw }}$
1 AMB	-0.43	46.82	-206.95
1 AMC	-19.95	52.82	-226.14
1AML	132.19	63.10	-155.00
1BA4	112.06	66.31	-181.81
1IYT	94.26	65.26	-199.04
1 ZOQ	141.51	86.36	-190.99

The gas phase energies of the $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{AML}, 1 \mathrm{BA} 4,1 \mathrm{IYT}$, and 1Z0Q conformers of $A \beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 4 and Chapter 5 calculations):

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1 AMB	-11.92	51.40	-217.02
1 AMC	-11.92	55.13	-233.99
1 AML	142.72	92.67	-172.78
1 BA 4	91.73	61.10	-169.48
1 IYT	52.92	55.64	-200.21
1 ZOQ	167.87	86.19	-187.97

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of $A \beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 4 calculations):

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1 AMB	14.39	48.15	-194.23
1 AMC	-30.43	35.97	-229.64
1 AML	119.31	69.45	-171.10
1 BA4	126.85	71.13	-163.32
1 IYT	149.83	76.11	-207.04
1 Z0Q	136.73	81.21	-181.63

The gas phase energies of the $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{AML}, 1 \mathrm{BA} 4,1 \mathrm{IYT}$, and 1Z0Q conformers of $A \beta$ as calculated in Gaussian 09W using the AM1 level of theory (For Chapter 4 and Chapter 5 calculations):

Conformer		
1AMB	-1.074072433	Hartree
	-673.990	kcal/mol
1AMC	-1.082807729	Hartrees
	-679.472	kcal/mol
1AML	-1.436624016	Hartrees
	-901.494	kcal/mol
1BA4	-1.64754945	Hartrees
	-1033.852	kcal/mol
1IYT	-2.174795784	Hartrees
	-1364.704	kcal/mol
1Z0Q	-1.286585655	Hartrees
	-807.344	kcal/mol

The gas phase energies of the isolated LVFF and HHQK regions of $\mathrm{A} \beta$ used for calculations in Chapter 5:

	HHQK			
	Energies (kcal/mol)			
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\text {vdw }}$	
1AMB	91.02	37.71	-43.34	
1AMC	61.45	40.54	-49.48	
1AML	109.55	40.95	-7.18	
1BA4	86.87	34.28	-29.80	
1IYT	58.56	28.34	-28.12	
1Z0Q	78.88	34.77	-28.44	
	Energies (kcal/mol)			
	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\text {vdw }}$	
Conformer	101.13	19.04	8.05	
1AMB	109.87	26.88	2.98	
1AMC	106.79	30.38	3.68	
1AML	86.30	19.00	-8.86	
1BA4	89.33	20.41	2.77	
1IYT	142.12	30.61	26.10	
1 1Z0Q				

The solution phase energies of the isolated LVFF and HHQK regions of $A \beta$ used for calculations in Chapter 5:

	HHQK					
	Energies (kcal/mol)					
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$			
1AMB	91.02	37.71	-43.34			
1AMC	61.45	40.54	-49.48			
1AML	109.55	40.95	-7.18			
1BA4	86.87	34.28	-29.80			
1IYT	58.56	28.34	-28.12			
1Z0Q	78.88	34.77	-28.44			
					LVFF	
	Energies (kcal/mol)					
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\text {vdw }}$			
1AMB	101.13	19.04	8.05			
1AMC	109.87	26.88	2.98			
1AML	106.79	30.38	3.68			
1BA4	86.30	19.00	-8.86			
1IYT	89.33	20.41	2.77			
1Z0Q	142.12	30.61	26.10			

The gas phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of $A \beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 6 solapsone- $\mathrm{Gd}^{3+}$ calculations):

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1 AMB	-8.68	51.70	-211.55
1 AMC	2.50	62.41	-225.21
1AML	185.65	91.31	-130.54
1BA4	91.71	61.14	-169.55
1IYT	52.92	55.72	-200.26
1Z0Q	163.45	81.15	-171.67

The solution phase energies of the $1 \mathrm{AMB}, 1 \mathrm{AMC}, 1 \mathrm{AML}, 1 \mathrm{BA} 4,1 \mathrm{IYT}$, and 1Z0Q conformers of $A \beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 6 solapsone- $\mathrm{Gd}^{3+}$ calculations):

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1 AMB	7.95	51.88	-211.92
1 AMC	10.31	64.67	-204.04
1 AML	154.12	80.68	-135.70
1 BA4	128.32	82.05	-169.65
1 YT	55.18	71.63	-220.50
1 ZOQ	137.04	77.26	-173.19

The gas phase energies of the 1AMB, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 6 solapsone-A $\beta$ calculations):

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\text {vdw }}$
1AMB	-11.78	55.28	-211.70
1AML	185.65	91.31	-130.54
1BA4	91.71	61.14	-169.55
1IYT	52.92	55.72	-200.26
1Z0Q	163.45	81.15	-181.05

The solution phase energies of the $1 \mathrm{AMB}, 1 \mathrm{AML}, 1 \mathrm{BA} 4,1 \mathrm{IYT}$, and 1 Z 0 Q conformers of $\mathrm{A} \beta$ as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 6 solapsone calculations):

	Energies (kcal/mol)		
Conformer	$\mathrm{E}_{\text {tot }}$	$\mathrm{E}_{\text {ele }}$	$\mathrm{E}_{\mathrm{vdw}}$
1 AMB	7.95	51.88	-211.92
1AML	154.12	80.68	-135.70
$1 \mathrm{BA4}$	128.32	82.05	-169.65
1 YT	55.18	71.63	-220.50
1 ZOQ	137.04	77.26	-173.19

## Appendix 7: Analogues of 3Hydroxyanthranilic Acid

Test-03	Test-08	Test-09	Test-10
2-amino-3-mercaptobenzoic	3-hydroxy-2(methylamino)benzoic acid	3-hydroxy-2-   (phenylamino)benzoic acid	2-(benzylamino)-3hydroxybenzoic acid
Test-11	Test-12	Test-14	Test-15
2-amino-3-(1H-tetrazol-5-yl)phenol	2-amino-3-(1-methyl-1H-tetrazol-5-yl)phenol	2-amino-3hydroxybenzamide	2-amino-3hydroxybenzenesulfonamide
Test-16	Test-17	Test-18	Test-19
2-amino-3hydroxybenzenesulfonic acid	2-amino-3hydroxyphenylphosphonic acid	2-amino-3',5'-difluorobiphenyl-3,4'-diol	2'-amino-2,4-difluorobiphenyl-3,3'-diol
Test-20	Test-21	Test-22	Test-23
2-amino-3-(2,2,2-trifluoro-1hydroxyethyl)phenol	2-amino-3-fluorophenol	2-amino-3-chlorophenol	2-amino-3-hydroxybenzonitrile
Test-24	Test-26	Test-27	Test-28
3-methylbenzene-1,2-diol	3-methyl-2(methylamino)phenol	3-methyl-2(phenylamino)phenol	2-(benzylamino)-3methylphenol


Test-29	Test-30	Test-31	Test-32
3-methylbenzene-1,2diamine	N -(2-amino-3methylphenyl)methan esulfonamide	2-amino-3methylbenzenethiol	2-chloro-6-methylaniline
Test-33	Test-34	Test-35	Test-36
1-(2-amino-3methylphenyl)urea	$N^{1}, 6$-dimethylbenzene-1,2-diamine	3-fluorobenzene-1,2diamine	$N^{1}, N^{2}, 3$-trimethylbenzene 1,2-diamine
Test-37	Test-38	Test-39	Test-40
2-(thiophen-2-yl)phenol	3-fluoro-2(phenylamino)phenol	4-methyl-2(phenylamino)phenol	5-methyl-2(phenylamino)phenol
Test-41	Test-42	Test-43	Test-44
2-methyl-6(phenylamino)phenol	2-(diphenylamino)phenol	$N^{1}$-phenylbenzene-1,2-diamine	2-methyl-N-phenylaniline
Test-45	Test-46	Test-47	Test-48
$\begin{aligned} & \mathrm{N}-(2- \\ & \text { (phenylamino)phenyl) } \\ & \text { methanesulfonamide } \end{aligned}$	2-(phenylamino)benzenethiol	2-chloro- N -phenylaniline	2-azido- N -phenylaniline

1-(2-(phenylamino)phenyl)urea


Test-53
N,4-dimethylaniline


Test-57
4-azido- $N$-methylaniline



Test-68
2,5-difluoro-4-
(methylamino)phenol


Test-58
1-(4-(methylamino)phenyl)urea


Test-64
2,5-dimethyl-4(methylamino)phenol


Test-51
$N^{1}$-methylbenzene-1,4diamine


Test-55
4-(methylamino)benzenethiol (methylamino)phenyl)met hanesulfonamide


Test-61
p-cresol


## Test-65

3,5-dimethyl-4(methylamino)phenol


Test-52
$N^{1}, N^{4}$-dimethylbenzene-1,4-diamine


Test-56
4-chloro- $N$-methylaniline


Test-62
3-methyl-4(methylamino)phenol


Test-66
3-fluoro-4(methylamino)phenol


## Appendix 8: BBXB Protein Energies

	Energy (kcal/mol)		
Protein	Total	Van der Waals	electrostatic
A $\beta$	-188.37	-176.62	-83.14
AChE	-11824.15	-3505.07	-11006.67
$\alpha_{1}$-ACT	-2535.93	-2571.00	-815.11
Apoع4	-4771.46	-870.30	-4652.69
B7-1	-1235.34	-1364.49	-387.79
BHMT	-13535.79	-4781.19	-11386.05
C1qA	-13234.02	-5566.68	-10374.84
ICAM-1	-1119.97	-1258.12	-462.30
IFN- $\gamma$	-12827.01	-3611.30	-11148.04
IL-1 $\beta$ CE	-7775.87	-1526.68	-7483.63
IL-4	-962.15	-954.61	-294.30
IL-12	-2430.07	-2807.22	-768.53
IL-13	-388.29	-554.99	-79.10
MIP-1 $\alpha$	-1832.98	-2179.97	-625.66
MIP-1 $\beta$	-1996.41	-2273.27	-654.33
NEP	-20607.56	-4580.47	-19329.89
RANTES	-1634.97	-690.39	-1634.48
S100	-977.29	-1054.54	-481.74
SDF-1	-2190.99	-302.72	-2254.47
Transferrin	-3289.34	-3436.47	-1067.03

## Appendix 9: Analogues of NCE-0217

Analogues of NCE-0217 used in the QSAR


103


104


105


106


107


108


109


110


111




115
116


117


120


124


125


132



133


155


163


171


175


176


177


179



182
185

190

191
200




241

251

252


253


254


276

295


303

309

300

329

332

334

335

336

342

354

QSAR predictions of activity for test compounds of biindoles
Compound
Active

10		Inactive
11		Active
12		Inactive
13		Active
14		Inactive

Active

Active
Active
A8
Active

47		Inactive
48		Active
49		Active
50		Inactive

Active

56		Active
57		Active
58		Inactive
59		Active
60		Active

(s) Inactive

Appendix 10: Library of Known Drugs		
abacavir suflate	amcinonide	
abciximab	amikacin sulfate	
acarbose	amiloride hydrochloride	
acebutolol hydrochloride	aminocaproic acid	
acetaminophen	aminophylline	
acetylcysteine	amiodarone hydrochloride	
acetylsalicylic acid (ASA)	amitriptyline hydrochloride	
acitretin	amlodipine besylate	
acyclovir	amobarbital sodium	
adapalene	amoxicillin trihydrate	
adenosine	amphotericin B	
alendronate	ampicillin	
alfacalcidol	amprenavir	
alfentanil hydrochloride	amsacrine	
alfuzosin	anagrelide hydrochloride	
alginic acid	anakinra	
alitetinoin	anastrozole	
allopurinol	ancestim	
alpha tocopherol	anthralin	
alprazolam	aprotinin	
alprostadil	articaine hydrochloride	
altretamine	ascorbic acid	
aluminum hydroxide	atenolol	
amantadine hydrochloride	atorvastatin calcium	


atovaquone	bismuth subsalicylate
atracurium besylate	bisoprolol fumarate
atropine sulfate	bleomycin sulfate
attapulgite, activated	bosentan
aurothioglucose	botulinum toxin type A
azatadine maleate	bovine lipid extract surfactant
azathioprine	bretylium tosylate
azithromycin	bromazepam
bacampicillin hydrochloride	bromocriptine mesylate
bacitracin	brompheniramine maleate
baclofen	budesonide
basiliximab	bumetanide
beclomethasone dipropionate	bupivacaine hydrochloride
benazepril	bupropion hydrochloride
benzocaine	buserelin
benzoyl peroxide	buspirone hydrochloride
benztropine mesylate	busulfan
beractant	butalbital
betamethasone acetate	butorphanol tartrate
betamethasone sodium phosphate	butyl methoxydibenzoylmethane (Parsol 1789)
bezafibrate	calcipotriol
bicalutamide	calcitonin salmon
biperiden hydrochloride	calcitriol
bisacodyl	calcium carbonate


cantharidin	celecoxib
capecitabine	cephalexin
capsaicin	cetirizine hydrochloride
captopril	cevonorgesterl/ethinyl estradiol
carbamazepine	chloral hydrate
carboplatin	chlorambucil
carisoprodol	chloramphenicol
carmustine	chlordiazepoxide hydrochloride
carvedilol	chlorhexidine acetate
cascara	chloroprocaine hydrochloride
caspofungin acetate	chloroquine phosphate
cefaclor	chlorphenesin
cefadroxil	chlorpheniramine maleate
cefazolin sodium	chlorpromazine hydrochloride
cefepime hydrochloride	chlorpropamide
cefixime	chlortetracycline hydrochloride
cefotaxime sodium	chlorthalidone
cefotetan disodium	cholecalciferol
cefoxitin sodium	cholestyramine resin
cefprozil	choline salicylate
ceftazidime	ciazepam
ceftazidime pentahydrate	ciclopirox olamine
ceftizoxime sodium	cilazapril
ceftriaxone sodium	cimetidine
cefuroxime sodium	ciprofloxacin


ciprofloxacin hydrochloride	colestipol hydrochloride
cisatracurium besylate	colistimethate sodium
cisplatin	cortisone acetate
citalopram hydrobromide	crythromycin
cladribine	cyanocobalamin
clarithromycin	cyclizine lactate
clemastine hydrogen fumarate	cyclobenzaprine hydrochloride
clindamycin hydochloride	cyclophosphamide
clioquinol	cycloserine
clobazam	cyclosporine
clobetasol 17-propionate	cyproheptadine hydrochloride
clodronate disodium	cyproterone acetate
clofibrate	cytarabine
clomiphene citrate	dacarbazine
clomipramine hydrochloride	daclizumab
clonazepam	dactinomycin
clonidine hydrochloride	dalteparin sodium
clopidogrel bisulfate	danaparoid sodium
clorazepate dipotassium	danazol
clotrimazole	dantrolene sodium
cloxacillin sodium	dapsone
clozapine	daunorubicin
cocaine hydrochloride	deferoxamine mesylate
codeine phosphate	delavirdine mesylate
colchicine	desflurane


desipramine hydrochloride	docetaxel
desloratadine	docusate calcium
desmopressin acetate	dolasetron mesylate
desonide	donepezil hydrochloride
desoximetasone	dopamine hydrochloride
dexamphetamine	doperidone maleate
diazepam	dornase alfa, recombinant
diazoxide	doxacurium chloride
diclofenac potassium	doxazosin
dicyclomine	doxepin hydrochloride
didanosine (ddl)	doxercalciferol
didanosine (ddl)	doxorubicin hydrochloride
diethylpropion hydrochloride	doxycycline hyclate
diethylstilbestrol sodium diphosphate	doxylamine succinate
diflucortolone valerate	dronabinol
diflunisal	econazole nitrate
digoxin	efavirenz
dihydroergotamine mesylate	enalapril maleate
dihydrotachysterol	enalaprilat
diltiazem hydrochloride	enflurane
dimenhydrinate	enoxaparin sodium
diphenhydramine	entacapone
dipyridamole	epinephrine
disopyramide	epirubicin hydrochloride
dobutamine hydrochloride	epoprostenol sodium


eprosartan mesylate	fenoterol hydrobromide
eptifibatide	fentanyl citrate
ergocalciferol (calciferol)	ferrous sulfate
erythromycin	fexofenadine hydrochloride
esmolol hydrochloride	filgrastim
estradiol	finasteride
estramustine sodium phosphate	flavoxate hydrochloride
estrone	flecainide acetate
estropipate	floctafenine
etanercept	fluconazole
ethacrynate sodium	flucytosine
ethacrynic acid	fludarabine phosphate
ethambutol hydrochloride	fludrocortisone acetate
ethinyl estradiol	flumazenil
ethopropazine hydrochloride	flumethasone pivalate
ethosuximide	flunarizine hydrochloride
etidronate	fluocinonide
etodolac	fluorouracil
etoposide	fluoxetine hydrochloride
exemestane	flupenthixol decanoate
famciclovir	fluphenazine decanoate
famotidne	flurazepam hydrochloride
felodipine	flurbiprofen
fenofibrate (micronized)	flutamide
fenoprofen calcium	fluticasone propionate


fluvastatin sodium	granisetron hydrochloride
fluvoxamine maleate	griseofulvin
folic acid	halcinonide
fomepizol	halobetasol propionate
fondaparins sodium	haloperidol
formoterol fumarate	homosalate
fosfomycin tromethamine	hydralazine hydrochloride
fosinopril sodium	hydrochlorothiazide
fosphenytoin sodium	hydrocortisone
framycetin sulfate	hydroquinone
furosemide	hydroxocobalamin
fusidic acid	hydroxyurea
gabapentin	hydroxyzine hydrochloride
galantamine hydrobromide	indapamine
ganciclovir sodium	imiquascine hydrobromide
ganirelix acetate	ibuprofen
gatifloxacin	ibutilide fumarate
gemcitabine hydrochloride	idarubicin hydrochloride
gemfibrozil	idoxuridine
gentamicin sulfate	imareme mesylate
gliclazide acetate	glyburide


indinavir sulfate	lepirudin
indomethacin	letrozole
iodoquinol	leuprolide acetate
ipecac	levodopa
irbsartan	levofloxacin
irinotecan hydrochloride	levonorgestrel
isoflurane	levothyroxine sodium
isoniazid	lidocaine
isoniazid	limepiride
isoproterenol	lincomycin hydrochloride monohydrate
isoproterenol hydrochloride	linezolid
isosorbide dinitrate	liothyronine sodium
isotretinoin	lisinopril
itraconazole	lithium carbonate
ketamine hydrochloride	lomustine
ketoconazole	loperamide hydrochloride
ketoproen	loratadine
ketorolac tromethamine	lorazepam
labetalol hydrochloride	losartan potassium
lactulose	lovastatin
lamivudine (3TC)	loxapine
lamivudine (3TC)	I-tryptohan
lamotrigine	magaldrate
lansoprazole	magnesium citrate
leflunomide	mannitol


maprotiline hydrochloride	methohexital sodium
mazindol	methotrimeprazine maleate
mebendazole	methoxamine hydrochloride
mechlorethamine hydrochloride	methoxsalen
meclizine hydrochloride	methsuximide
medrogestone	methyldopa
medroxypogesterone acetate	methylphenidate
mefenamic acid	methylprednisolone
mefloquine hydrochloride	methysergide maleate
megestrol acetate	metoclopramide hydrochloride
meloxicam	metolazone
melphalan	metoprolol tartrate
menthol	metronidazole
mentronidazole	mexiletine hydrochloride
meperidine hydrochloride (pethidine)	miconazole nitrate
mepivacaine hydrochloride	midazolam hydrochloride
mercaptopurine	milrinone lactate
meropenem	minocycline hydrochloride
mesoridazine besylate	minoxidil
mestranol/norethindrone	misoprostol
metformin hydrochloride	mitomycin
methadone	mitotane
methenamine mandelate	mitoxantrone hydrochloride
methimazole	mivacurium chloride
methocarbamol	moclobemide


modafinil	neomycin sulfate
mometasone furoate	netilmicin sulfate
montelukast sodium	nevirapine
morphine hydrochloride	niacin
moxifloxacin hydrochloride	niacinamide
mupirocin	nicotine
mycophenolate mofetil	nicoumalone
nabilone	nifedipine
nabumetone	nilutamide
nadolol	nitrazepam
nadroparin calcium	nitrofurantion
nafarelin acetate	nitroglycerin
naftifine hydrochloride	nizatidne
nalbuphine hydrochloride	nonoxynol-9
nalidixic acid	norelgestromin/ethinyl estradiol
naloxone hydrochloride	norepinephrine bitartrate
naltexone hydrochloride	norethindrone
nandrolone decanoate	norfloxacin
naparoxen	nortriptyline hydrochloride
naproxen sodium	nylidrin hydrochloride
naratriptan hydrochloride	nystatin
nateglinide	octocrylene
nedocromil sodium	octreotide acetate
nefazodone hydrochloride	octyl dimethyl PABA (Padimate O)
nelfinavir	octyl methoxycinnamate (Parsol MCX)


octyl salicylate	pantothenic acid (calcium pantothenate)
ofloxacin	papaverine hydrochloride
olanzapine	para-aminosalicylate sodium (PAS sodium)
omeprazole magnesium	paraldehyde
ondansetron	paromomycin sulfate
orciprenaline sulfate	paroxetine
orlistat	penicillamine
orphenandrine citrate	penicillin G sodium
oseltamivir	pentamidine isethionate
oxaprozin	pentazocine hydrochloride
oxazepam	pentobarbital sodium
oxbenzoneterephthalylidene dicamphor sulfonic acid	pentostatin pentoxifylline
oxcarbazepine	pergolide mesylate
oxiconazole nitrate	pericyazine
oxprenolol hydrochloride	perindopril erbumine
oxtriphylline	perphenazine
oxybutynin chloride	phenazopyridine hydrochloride
oxycodone hydrochloride	phenelzine sulfate
oxymorphone hydrochloride	phenobarbital
oxytocin	phenoxymethyl penicillin
paclitaxel	phentermine
pamabrom	phentolamine mesylate
pamidronate disodium	phenylbenzymidazole sulfonic acid (Parsol
pancuronium bromide	HS)
pantoprazole sodium	phenylbutazone


phenylephrine hydrochloride	prilocaine hydrochloride
phenytoin	primaquine phosphate
phytonadione	primidone
pimozide	probenecid
pinaverium bromide	procainamide hydrochloride
pindolol	procaine hydrochloride
pioglitzaone	procarbazine hydrochloride
piperacillin sodium	prochlorperazine
pipotiazine palmitate	procyclidine hydrochloride
piroxicam	proguanil
pivampicillin	promazine hydrochloride
pizotifen	promethazine hydrochloride
podofilox	propafenone hydrochloride
polymyxin $B$ sulfate	propantheline bromide
polysiloxane/silicone dioxide	propofol
porfimer sodium	propoxyphene napsylate
povidone-iodine	propranolol hydrochloride
pralidoxime chloride	propylthiouracil
pramipexole dihydrochloride	protamine sulfate
pravastatin sodium	pyrantel pamoate
praziquantel	pyrazinamide
prazosin hydrochloride	pyridostigmine bromide
prednisolone	pyridoxine hydrochloride
prednisolone sodium phosphate	pyrimethamine
prednisone	pyrvinium pamoate


quetiapine fumarate	rofecoxib
quinapril hydrochloride	ropinirole hydrochloride
quinidine bisulfate	ropivacaine hydrochloride
quinupristin/dalfopristin	rosiglitazone
rabavirin	salbutamol
rabeprazole	salicylic acid
rabeprazole sodium	salmeterol xinafoate
raloxifene hydrochloride	saquinavir
raltitrexed disodium	scopolamine
ramipril	secobarbital sodium
ranitidie hydrochloride	selegiline hydrochloride
ranitidine hydrochloride	selenium sulfide
remifentanil hydrochloride	sertaline hydrochloride
repaglinide	sertraline
retinol	sevelamer hydrochloride
riboflavin	sevoflurane
rifabutin	sibutramine
rifabutin	sildenafil citrate
rifampin	silver sulfadizaine
risedronate	simethicone
risperidone	simvastatin
ritonavir	sirolimus
rivastigmine tartrate	slfadiazine
rizatriptan benzoate	sodium alginate
rocuronium bromide	sodium arothiomalate


sodium fusidate	sulfinpyrazone
sodium nitroprusside	sulindac
sodium phosphates	sumatriptan succinate
sodium thiosulfate	tacrolimus
solapsone	tamoxifen citrate
somatostatin	tamsulosin hydrochloride
somatropin	taxaroten
sorbitol	tazarotene
sotalol hydrochloride	tazarotene
spiramycin	telmisartan
spironolactone	temazepam
spironolactone	temozolomide
stavudine (d4T)	teniposide
stavudine (d4T)	tenoxicam
sterculia gum	terazosin hydrochloride
streptomycin sulfate	terbinafine hydrochloride
streptomycin sulfate	terbutaline sulfate
streptozocin	terbutaline sulfate
strontium chloride	terconazole
succinylcholine chloride	testosterone
sucralfate	tetracaine
sufentanil citrate	tetracycline hydrochloride
sulfamethoxazole	theophylline
sulfapyridine	thiamine hydrochloride
sulfasalazine	thioguanine


thioproperazine mesylate	triamterene
thioridazine hydrochloride	triamterene /hydrochlorothiazide
thiotepa	triclosan
thiothixene	triethanolamine salicylate
tiaprofenic acid	trifluoperazine hydrochloride
ticarcillin disodium	trifluridine
ticlipidine hydrochloride	trifuoperazine hydrochloride
timolol maleate	trihexyphenidyl hydrochloride
tinzaparin sodium	trimcinolone
tioconazole	trimebutine
tirofiban hydrochloride	trimeprazine tartrate
tizanidine	trimethoprim
tobramycin sulfate	trimipramine maleate
tolbutamide	trizolam
tolmetin sodium	undecylenic acid
tolnaftate	ursodiol
tolterodine L-tartrate	valacyclovir hydrochloride
topiramate	valganciclovir
topotecan hydrochloride	valproic acid
trandolapril	valrubicin
tranexamic acid	valsartan
tranylcypromine sulfate	vancomycin hydrochloride
trazodone hydrochloride	vasopressin
tretinion	vecuronium bromide
triamcinolone	venlafaxine


verapamil hydrochloride	zaleplon
vigabatrin	zanamivir
vinblastine sulfate	zidovudine (AZT)
vincristine sulfate	zoledronic acid
vinorelbine tartrate	zopiclone
warfarin sodium	zuclope
zafirlukast	
zalcitabine (ddC)	

## Appendix 11: Gas Phase Results of Solapsone-Gd ${ }^{3+}$ and Solapsone

For all tables, purple cells indicate cation- $\pi$ interations, blue indicates $\pi-\pi$ and orange indicates hydrogen bonds

Gas phase results of Solapsone-Gd $\mathrm{d}^{3+}$ and the 1 AMB conformer of $\mathrm{A} \beta$


	H	H	a	к	Leu17	Phe20		H	H	Q	к	Leu17	Phe20
Initial orientation	RS1			LS2			Initial orientation	LS2			RS1		
Final Orientation	RS1			RS1	RS1	$6 d^{3+}$	Final Orientation	LS1			RS1	LS1	RS1
				LS2	RS2	LS2							
				LS1		LB2							
				-CH2-									
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3R +2 )						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{\text {- }}$ @	5 sites (3L +2R)					
Total Energy	-228.838						Total Energy	-214.508					
van der Waals	81.443						van der Waals	91.245					
electrostatic	-488.473						electrostatic	-485.579					
$\Delta \mathrm{Es}$							AEs						
	-70.002						UEs	-55.672 -7.876					
	-53.194							-50.3					
	H	н	a	к	Leu17			H	н	Q	k	Leu17	Phe20
Initial orientation	LS2			RS2			Initial orientation	RS2			LS2		
Final Orientation	LS1			RS1	LS1		Final Orientation	RB2			LS2	LS2	LB1
				2				RB2			LB2		
	5 sites (3L +2R)							6 sites ( $2 R+2 L+2 L)$					
G ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @							$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}$ - @						
Total Energy	-218.219						Total Energy	-216.515					
van der Waals	93.365						van der Waals	84.462					
electrostatic	-490.309						electrostatic	-485.249					
$\triangle \mathrm{Es}$													
	-59.383						AEs	-57.679					
	$-5.756$							-14.659					
	-55.03							-49.97					
	H	H	Q	k	Phe20			H	H	a	к	Leu17	Val18
Initial orientation	LS1			RS2			Initial orientation		RB2		LB2		
Final Orientation	LS1			RS2	RB2		Final Orientation	LB2	RB2			RS2	RB2
												LS2	
												LB2	
G ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}^{\text {- @ }}$	5 sites (3L +2R)						$\mathrm{Gd}^{3+} \mathrm{chelates} 2 \mathrm{SO}_{3}^{\text {@ @ }}$	3 sites (2L +1R)					
Total Energy	-206.592						Total Energy	-218.66					
van der Waals	92.684						van der Waals	81.656					
electrostatic	-480.249						electrostatic	-478.411					
$\Delta \mathrm{Es}$	-47.756						$\Delta \mathrm{Es}$	-59.824					
	-6.437							-17.465					
	-44.97							-43.132					
	H	н	a	k	Leu17								
Initial orientation		LB2		RB2									
Final Orientation	LS2	LB2		RB2	RS2								
		- $\mathrm{CH} 2-$			RB2								
		L52											
		- CH -											
G ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}^{\text {- @ }}$	4 sites (2each)												
Total Energy	-228.906 83.88												
van der Waals electrostatic													
$\Delta \mathrm{Es}$	-70.07												
	-15.241												
	-56.916												
	เ	v	F	F				L	$v$	F	F	His13	
Final Orientation			RB2	LB2			Initial orientation		LB2	RB2			
			RB2				Final Orientation	RB2				RB2	
								RS2					
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ - @	5 sites (2+3)												
							$6 d^{3}$ chelates $2 \mathrm{SO}_{3}$ @						
Total Energy	-191.485						Total Energy	$-212.106$					
van der Waals	92.94						van der Waals	92.231					
electrostatic	-462.602						electrostatic	-479.733					
$\Delta \mathrm{Es}$	-32.649						$\Delta \mathrm{Es}$	-53.27					
	-6.181							-6.89					
	-27.323							-44.454					
	L	v	F	F	Lys16			เ	v	F	F	Asp23	
Initial orientation			LB1	RB1			Initial orientation			LB2	${ }^{\text {RB2 } 2}$		
					RB1		Final Orientation				RB2	RB2	
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ @	6 sites - 3 each						Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @						
							Gd ${ }^{3}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L+2					
Total Energy	-196.265						Total Energy	-215.555					
van der Waals	85.138						van der Waals	93.234					
electrostatic	-460.946						electrostatic	-490.155					
$\triangle \mathrm{Es}$	-37.429						$\Delta \mathrm{Es}$	-56.719					
	-13.983							-5.887					
	-25.667							-54.876					
	L	v	f	F				L	v	F	F	Lys16	Asp23
Final Orientation		RB2	LB2				Initial orientation			RB1	LB1		
		RB2	LB2				Final Orientation			cs*		LB1	LB2
	5 sites (3L+2R)							6 sites, 2 each (R has 2 SO3 L has 1)				LNH	cs
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @							$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}$ - @						
	-214.701						Total Energy	-237.856		of sid	hain		
van der Waals	89.395						van der Waals	86.535					
electrostatic	-480.931						electrostatic	-513.324					
4Es	-55.865						$\Delta \mathrm{Es}$	-79.02					
	- -9.726 -4.652						$\square$	-12.586 -78.045					



Gas phase results of Solapsone-Gd ${ }^{3+}$ and the 1 AMC conformer of $\mathrm{A} \beta$

	H	H	Q	K	Tyr10		H	H	Q	K	Leu17	Phe20
Initial orientation	LB2	RB2				Initial orientation	RS2			LS2		
Final Orientation	LB2	RB2			LS2	Final Orientation	RB2			LS1	RB2	LB2
							RS1			2		
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@	5 sites (2R	3L)				$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$@	6 sites (3L					
Total Energy	-195.765					Total Energy	-207.886					
van der Waals	104.78					van der Waals	104.263					
electrostatic	-499.452					electrostatic	-504.147					
$\Delta \mathrm{Es}$	-48.103					$\Delta$ Es	-60.224					
	-5.05						-5.567					
	-50.517						-55.212					
	H	H	Q	K	Leu17		H	H	Q	K	Leu17	
Initial orientation	RB2	LB2				Initial orientation	LB1			RB1		
Final Orientation	RB2	LB2			RB2	Final Orientation	LB1			RS1	CS	
	RS2	LB2			LS1		LB1					
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	4 sites (2L \&	2R)				$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$@	6 sites (3L					
Total Energy	-201.584					Total Energy	-204.639					
van der Waals	94.463					van der Waals	97.662					
electrostatic	-488.395					electrostatic	-500.604					
$\Delta \mathrm{Es}$	-53.922					$\Delta \mathrm{Es}$	-56.977					
	-15.367						-12.168					
	-39.46						-51.669					


	H	H	Q	к	Tyr10			H	H	a	K	Leu17	Phe20	
	RB1	LB1					Initial orientation	RB1			LB1			
Final Orientation	RB1	LB1			LB1		Final Orientation	cs			LB1	cs	Ls1	
	cs	-CH2-									-CH2-			
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L \& 3R)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \& 3L)						
Total Energy	-197.934						Total Energy	-198.939						
van der Waals	100.293						van der Waals	103.295						
electrostatic	-489.578						electrostatic	-492.027						
4Es	-50.272						-Es	-51.277						
	-9.537							-6.535						
	-40.643							-43.092						
	H	H	a	к	Tyr10	Leu17		н	H	a	k	Leu17	Phe20	
Initial orientationFinal Orientation	LB1	RB1					Initial orientation	LS1			RS1			
	LS1	RB1			cs	LS1	Final Orientation	LB1			RS1	LB1	RS1	
		cs			LB1			LS1			RB1	cs		
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{\text {- }}$ @	6 sites (3L \& 3R)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L \& 3R)						
Total Energy	-218.345						Total Energy	-202.506						
van der Waals	97.452 -50672						van der Waals	99.885						
electrostatic	-506.372						electrostatic	-495.451						
$\triangle \mathrm{Es}$	-70.683						4Es	-54.844						
	-12.378							-9.945						
	-57.437							-46.516						
	${ }_{\text {H }}$	H	Q	K				H	H	a	K	Leu17		
Initial orientation	${ }_{\text {LB2 }}^{\text {LB2 }}$			${ }_{\text {RB2 }}$			Final Orientation	${ }_{\text {RS1 }}$			LS1			
	LB2			RB2				${ }_{\text {RS1 }}$			LS1	RS1		
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@	5 sites (2R \& 3 )						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L \& 3R)						
Total Energy	-183.466						Total Energy	-205.393						
van der Waals	102.853						van der Waals	99.724						
electrostatic	-484.495						electrostatic	-497.001						
$\Delta \mathrm{Es}$	-35.804						$\Delta \mathrm{Es}$	-57.731						
	-6.977							-10.106						
	-35.56							$-48.066$						
	H	н	a	K	Phe20									
Final Orientation	RB2			LB2										
	RB2			LB2	LB1									
	RB2			LS2										
				RS2										
Gd ${ }^{3+}$ chelates $3 \mathrm{SO}_{3}$ @	6 sites (3L\& 2R \& 1R)													
Total Energy	-208.953													
van der Waals	95.955													
electrostatic	-496.192													
$\triangle \mathrm{Es}$	-61.291													
	-13.875													
	$-47.257$													
	H	H	Q	к	Tyr10			H	H	a	K	Tyr10	Leu17	
Initial orientation		RB2		LB2			Initial orientation		LB2		RB2			
Final Orientation	LS2	RB2			RS2		Final Orientation	RB2	LS2			LB2	RS2	
	LB2	-CH2-			RS1			RS2	-CH-				LS2	
					LS2			LS2	LB2					
					RB2				- $\mathrm{CH} 2-$					
$6 \mathrm{~d}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	3 sites (2R \& 2L)						$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}$ @	5 sites (2L \& 11 \& 2R)						
Total Energy	-218.045						Total Energy	-229.735						
van der Waals	86.523						van der Waals	94.325						
electrostatic	-498.937						electrostatic	-518.809						
$\Delta \mathrm{Es}$	-70.383 -2307						$\Delta \mathrm{Es}$	$-82.073$						
	-23.307 -5002							-15.505						
	-50.002							-69.874						
	H	н	a	K	Leu17			H	H	a	K	Tyr10	Leu17	
Initial orientation	RS1			LS2			Initial orientation	LS2			RS1			
Final Orientation	RS1			LS1	RS1		Final Orientation	LB1			RB1	LS1	cs	
				LS2				LS1			RS1			
								LS2			2			
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{\text {- }}$ @	5 sites (2R \& 3L)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \& 3L)						
							Car Cherates $2 \mathrm{SO}_{3}$ @							
Total Energy	-207.725						Total Energy	-205.009						
van der Waals	102.109						van der Waals	98.398						
electrostatic	-508.407						electrostatic	-497.754						
$\Delta \mathrm{Es}$							$\Delta \mathrm{Es}$							
	-60.063 -7.721							-11.432						
	-59.472							-48.819						
	H	H	a	k	Phe20			H	H	a	K	Tyr10	Leu17	Phe20
Initial orientation Final Orientation	LS1			RS2			Initial orientation	RS2			Ls1			
	LS1			RS2	RB2		Final Orientation	RB1	RS1		Ls1	RS1	Ls1	Ls1
				,							LB1			
	5 sites (2R \& 3L)													
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L \& 3R)						
Total Energy	-191.081						Total Energy	-223.142						
van der Waals	105.299						van der Waals	97.643						
electrostatic	-490.172						electrostatic	-514.301						
$\Delta \mathrm{Es}$	-43.419						$\Delta \mathrm{Es}$	-75.48						
	-4.531							-12.187						
	$-41.237$							-65.366						


		${ }_{\text {max }}^{\substack{\text { max } \\ \text { max }}}$		.	${ }_{\text {H13 }}$	${ }_{\text {and }}^{1022}$						${ }_{\text {sal }}^{\text {val }}$	${ }^{1416}$
							art deatese 20,0	(tesar se)					
tome	cinco							cose					
Als	\$466						${ }_{\text {als }}$						
mina oremation	${ }_{\text {max }}^{\text {man }}$	\%					muta oremateon	4		\%	${ }_{\text {en }}$	4016	
										${ }_{\text {cos }}^{\text {and }}$			
atremeates 30,0	Steseres 39)							Stersas ex)					
	(10398												
${ }_{\text {ass }}$							Ass	cose					
	cile												
				F			, intis orestaon			;		\%	Lsic
	(espra 3,							\%estase					
${ }_{\text {as }}$							Ass						
				\%									
				F		$\operatorname{cosisis}_{\substack{\text { mas }}}$				\%			
artameater 20,	seseseres)						artmeatere 20,	(estar 2x)					
Tos							come						
Ass							Ass						
	$\stackrel{1}{2}$	$\stackrel{\square}{6}$		;	$\substack{\text { anin } \\ \text { and } \\ \text { crin }}$					\%			${ }_{\substack{\text { mas } \\ \text { ast }}}$
	stere 8 Rea 30				${ }^{\text {a } 2}$		art comeare $30 ;$						
Tost							cose	mile					
den	cosem						beatersals						
As							Ass	cose					
	$\llcorner$												
		${ }_{\text {cke }}^{\substack{\text { max } \\ \text { max }}}$			(102							${ }_{\text {ms }}^{\text {mis }}$	
art deseres 20,0	(estices							(eserasay					
tosemes	(istin						Tonetees						
Ass	cos						Ass						
	$\stackrel{1}{ }$			-	$6 \ln 15$   LB1	Glu22   RB1		เ	ner	¢	f		
arcmemeer $20 ;$							artameater 30; e	Steserasay					
Toses							comem						
Semesomic							deateme	coseme					
ass							ass	ctive					
	$\stackrel{1}{2}$			*	ans			1	$\stackrel{\square}{6}$	;	f		
			$\begin{gathered} \text { end } \\ \substack{010 \\ 0} \\ \hline \end{gathered}$		-								
Ortatabese 30,0	Stesesar	natu2e	oztas				Orit comease 20,0	Sisesarasu)					
${ }_{\text {ass }}$							${ }^{\text {abs }}$						
								${ }_{2}^{2589}$					
				${ }_{6}^{6}$						fand	F		
Crimemease 30,0	Sterearese						artmemease 30, e	(esprase)					
toin							Tomet	cosk					
${ }_{\text {ate }}$													
							Ass						
	$\checkmark$	$\checkmark$	${ }_{6}^{6}$	${ }_{\text {fax }}$							;		
									${ }_{\substack{\text { kn2 } \\ \text { 828 }}}$	${ }^{4}$			
artanease $30 ;$	Stesereasy						art cosease 30,0	Eespraz	dave	stio			
Tout							Tout	$\frac{20218}{2024}$					
${ }_{\text {ass }}$							ass						

Gas phase results of Solapsone- $\mathrm{Gd}^{3+}$ and the 1 AML conformer of $\mathrm{A} \beta$


Gas phase results of Solapsone- $\mathrm{Gd}^{3+}$ and the 1BA4 conformer of $\mathrm{A} \beta$



Gas phase results of Solapsone- $\mathrm{Gd}^{3+}$ and the 1IYT conformer of A $\beta$

	H	H	Q	к	Leu17		H	H	a	к	Leu17	
Initial orientation	RB2	LB2				Initial orientation	LB2	RB2				
Final Orientation	RB2	LB2			RB2	Final Orientation	LB2				RB2	
		LB2			RS2						RS2	
Gd ${ }^{3+}$ chelates $3 \mathrm{SO}_{3}^{-}$@ 5 sites (2R \& 2L \& 1 1)						$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}$ @	6 sites (3L \& 2R \& 1R)					
Total Energy	-141.591					Total Energy	-141.608					
van der Waals	89.125					van der Waals	95.575					
electrostatic	$-456.242$					electrostatic	-460.869					
4Es	-44.35					$\Delta \mathrm{Es}$	-44.367					
	-14.012						-7.562					
	-32.257						-36.884					
	н	н	a	к			н	н	a	к	Gly9	
Initial orientation	RB1	LB1				Initial orientation	LB1	RB1				
Final Orientation	RB1					Final Orientation	LB2	RB1			LB2	
	RB1						LB2	cs			$\mathrm{c}=0$	
	cs						L81					
	-CH2-											
	6 sites (3R \& 3L)						7 sites (3L \& 2R \& 2R)					
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$						$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}$ @						
Total Energy	-143.545					Total Energy	-174.374					
van der Waals	97.022					van der Waals	88.304					
electrostatic	-465.065					electrostatic	$-487.173$					
$\Delta \mathrm{Es}$												
	-46.304					$\Delta \mathrm{Es}$	-77.133					
	-6.115						-14.833					
	-41.08						-63.188					
	H	H	a	к	Leu17		H	H	a	к	Leu17	
Initial orientation	LS1	RS1				Initial orientation	RS1	LS1				
Final Orientation	LS1	RS1			RB2	Final Orientation	RS1	LS1			cs	
	LS2						2					
							RB1					
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$	5 sites (2R \& 3L)						5 sites (2R \& 3L)					
						$\mathrm{Gd}^{3}$ chelates $2 \mathrm{SO}_{3}$ @						
Total Energy	-162.665					Total Energy	-138.639					
van der Waals	90.547					van der Waals	99.072					
electrostatic	-478.553					electrostatic	-460.098					
$\triangle \mathrm{Es}$	-65.424					$\Delta \mathrm{Es}$	-41.398					
	-12.59						-4.065					
	-54.568						-36.113					
	${ }_{\text {H }}$	H	a	K			${ }_{\text {H }}$	H	a	K		
Initial orientation	LB2			RB2		Initial orientation	RB2			LB2		
				RB2		Final Orientation						
		5 sites (2R \& 3L)										
$\mathrm{Gd}^{3+} \text { chelates } 2 \mathrm{SO}_{3}^{-}$							$6 d^{3}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R\&				
Total Energy	-119.625					Total Energy	-123.108					
van der Waals	101.002					van der Waals	102.049					
electrostatic	-449.446					electrostatic	$-448.481$					
$\Delta \mathrm{Es}$	-22.384					$\Delta \mathrm{Es}$	-25.867					
	-2.135						-1.088					
	-25.461						-24.496					
	H	H	a	к			H	H	a	к	Val12	
	LB1			RB1		Initial orientation	RB1			LB1		
Final Orientation	LB1			RS1		Final Orientation	cs			L81	cs	
	cs									LNH		
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$	6 sites (3R \& 3L)											
						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \&					
	-152.622					Total Energy	-134.33					
van der Waals	94.052					van der Waals	95.398					
electrostatic	-472.187					electrostatic	-450.786					
$\Delta \mathrm{Es}$	-55.381					$\Delta \mathrm{Es}$	-37.089					
	$-9.085$						-7.739					
	-48.202						-26.801					
	H	H	a	K			H	H	a	k		
Initial orientation	LS1			RS1		Initial orientation	RS1			LS1		
Final Orientation	LS1			RS1		Final Orientation	RS1			LS1		
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ 5 sites (2R\&3L)												
						Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3R \&					
Total Energy	-154.501					Total Energy	-161.525					
van der Waals	97.145					van der Waals	99.369					
electrostatic	-472.797					electrostatic	-484.591					
$\Delta \mathrm{Es}$												
	-57.26   -5.992					$\Delta \mathrm{Es}$	$\begin{array}{r}-64.284 \\ -3.768 \\ \hline\end{array}$					
	-5.992 -48.812						-3.768 -60.606					
	-48.812						-60.606					
	H	H	a	K			H	H	a	k		
Initial orientation	LS1			RS2		Initial orientation	RS2			LS1		
Final Orientation	LS1			LS1		Final Orientation				LS1		
	5 sites (2R \& 3L)			-CH2-								
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	4 sites (2L \&					
Total Energy van der Waals	-143.833 101725					Total Energy van der Waals	${ }_{-}^{-153.091}$					
electrostatic	-472.613					electrostatic	$-470.832$					
4Es												
	-46.592 -1.412					AEs	-55.85 -6.614					
	-48.628						-46.847					


Initial orientation Final Orientation	RS1			LS2			Initial orientation	LS2			RS1				
	RS1			LS2	LB2		Final Orientation				RS1				
	LS1														
	LB2														
$\mathrm{Fd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{-}$	4 sites (2L \& 2R)							5 sites (2R \& 3L)							
							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @								
Total Energy	-156.797						Total Energy	-146.669							
van der Waals	89.143						van der Waals	102.184							
electrostatic	-474.829						electrostatic	-475.052							
$\Delta \mathrm{Es}$	-59.556						$\Delta \mathrm{Es}$	-49.428							
	-13.994							-0.953							
	-50.844							-51.067							
	H	H	a	k	Tyr10	Leu17		H	H	Q	k	Tyr10	Leu17		
Final Orientation	LS2	RS1					Initial orientation	RS1	LS2						
	RB1	RS1			RS1	RB2	Final Orientation	RS1	LS1			LB2	RB1		
	LS1												LB1		
	LS2														
	RS2														
	$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{\text {@ @ }} 5$ s ites (2R \& 3L)														
								Gdd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3R \& 3L)						
Total Energy	-168.281						Total Energy	-163.068							
van der Waals	88.104						van der Waals	96.339							
electrostatic	-482.299						electrostatic	-487.4							
$\Delta \mathrm{Es}$	-71.04						$\triangle \mathrm{Es}$	-65.827							
	-15.033							-6.798							
	-58.314							-63.415							
	H	H	a	k	Leu17			1	v	F	F	His13	Lys16	Asp23	
Initial orientation	RS2	LS1					Initial orientation	RB2		LB2					
Final Orientation	RS1	LS1			RB1		Final Orientation	RB2			RB2	RB2	RS2	LB2	
	RS2				LB1						RS2		-CH2-		
													LS2		
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ 0 s sites (2R \& 3L)							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \& 3L)							
Total Energy	-164.573						Total Energy	-147.545							
van der Waals   electrostatic	90.553 -479.415						van der Waals   electrostatic	$\begin{gathered} 92.242 \\ -471.439 \end{gathered}$							
$\Delta \mathrm{Es}$	-67.332						$\Delta \mathrm{Es}$	-50.304							
	-12.584							-10.895							
	-55.43							-47.454							
	L	$v$	F	F				L	v	F	F				
Initial orientation	LB2	RB2					Initial orientation	RB2	LB2						
Final Orientation		RB2					Final Orientation	RB2	LB2						
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@ 5 sites (2R\&3L)							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \& 3L)							
Total Energy	-107.872						Total Energy	-119.017							
van der Waals	102.762						van der Waals	97.302							
electrostatic	-435.377						electrostatic	-441.955							
$\Delta \mathrm{Es}$	-10.631						$\Delta \mathrm{Es}$	-21.776							
	-0.375							-5.835							
	-11.392							-17.97							
	L	$v$	F	F	Ala21			L	$v$	F	F	His14			
Initial orientation	LB1	RB1					Initial orientation	RB1	LB1						
Final Orientation	cs	cs			cs		Final Orientation	cs	LB1			cs			
	LB1											-- $\mathrm{CH} 2-$			
$6 \mathrm{Cd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{\text {- }}$ @ 5 sites (2R \& 3L)							Gd ${ }^{3}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R\&3L)							
							-dtcherat2503								
Total Energy	-119.66						Total Energy	-123.924							
van der Waals	97.725						van der Waals	98.639							
electrostatic	-441.631						electrostatic	-447.056							
$\Delta \mathrm{Es}$	-22.419 -5.412						$\Delta \mathrm{Es}$	-26.683 -4.498							
	-5.412 -17.646							-4.498 -23.071							
	L	$v$	F	F				L	v	F	F				
Initial orientation		LB2	RB2				Initial orientation		RB2	LB2					
Final Orientation							Final Orientation			LB2					
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@ 5 sites (2R \& 3 $)$							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{\text {- }}$ @	6 sites (3R \& 3L)							
Total Energy	-105.688						Total Energy	-129.067							
van der Waals	99.973						van der Waals	100.634							
electrostatic	-430.959						electrostatic	-456.136							
$\Delta \mathrm{Es}$	-8.447						$\triangle \mathrm{Es}$	-31.826							
	-3.164							-2.503							
	-6.974							-32.151							
	L	$v$	F	F	GIn15			1	v	F	F	His14	Gln15	Lys16	
Initial orientation		LB1	RB1				Initial orientation		RB1	LB1					
Final Orientation		LB1			RB1		Final Orientation		RS1	LB1		${ }_{\text {RS1 }}$	RS1	L51	
		cs							RB1	LS1		$\mathrm{c}=0$	LS1		
										LNH					
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{\text {@ @ }} 5$ S ites (2R \& 3L)							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \& 3L) and GIn 15 @ 1 site							
Total Energy	-131.417						Total Energy	-200.371 84.014							
van der Waals	96.099						van der Waals	84.014							
electrostatic	-456.565						electrostatic	-504.165							
$\triangle \mathrm{Es}$	-34.176						$\Delta \mathrm{Es}$	-103.13							
	-7.038 -32.58							-19.123 -80.18							


	L	v	F	F	His13			L	v	F	F		
Initial orientation	RB2			LB2			Initial orientation	LB2			RB2		
Final Orientation					RB2		Final Orientation						
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	4 sites (2L \& 2R)						Gd ${ }^{3+}$ chelates $3 \mathrm{SO}_{3}$ @	6 sites (3L \& 2R \& 1 R )					
Total Energy	-118.512						Total Energy	-137.932					
van der Waals	97.496						van der Waals	99.749					
electrostatic	-441.275						electrostatic	-458.98					
$\Delta \mathrm{Es}$	-21.271						$\Delta \mathrm{Es}$	-40.691					
	-5.641							-3.388					
	-17.29							-34.995					
	L	v	F	F	Ala21			L	v	F	F	His13	
Initial orientation	LB1			RB1			Initial orientation	RB1			LB1		
Final Orientation	CS			RB1	CS		Final Orientation	RB1			LB1	RB1	
	LB1			RS1							CS	RB2	
												RNH	
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{\text {@ @ }}$	6 sites (3R \& 3L)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \& 3L)					
Total Energy	-134.722						Total Energy	-136.958					
van der Waals	92.936						van der Waals	88.444					
electrostatic	-452.022						electrostatic	-455.313					
$\triangle$ Es													
	-37.481						$\Delta \mathrm{Es}$	-39.717					
	-10.201							-14.693					
	-28.037							-31.328					
	L	v	F	F	Asp23			L	v	F	F		
Initial orientation			RB2	LB2			Initial orientation			LB2	RB2		
Final Orientation					RB2		Final Orientation			LB2			
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \& 3L)						Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (2R \& 3L)					
Total Energy	-133.558						Total Energy	-126.371					
van der Waals	99.75						van der Waals	98.232					
electrostatic	-460.299						electrostatic	-450.218					
$\Delta \mathrm{Es}$	-36.317						$\Delta \mathrm{Es}$	-29.13					
	-3.387							-4.905					
	-36.314							-26.233					
	L	v	F	F	Lys16	Asp23		L	v	F	F	Lys16	Asp23
Initial orientation   Final Orientation			LB1	RB1			Initial orientation			RB1	LB1		
				RB1	RB1	CS	Final Orientation			CS	LB1	RB1	CS
										RB1	CS	LB1	
												CS	
$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}$ @	7 sites (3R \& 2L \& 2L)						Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ @	6 sites (3R \& 3L)				RS1	
Total Energy	-139.108						Total Energy	-136.626					
van der Waals	94.479						van der Waals	90.847					
electrostatic	-461.082						electrostatic	-451.454					
$\Delta \mathrm{Es}$	-41.867						$\Delta \mathrm{Es}$	-39.385					
	-8.658							-12.29					
	-37.097							-27.469					
	L	v	F	F	Ala21	Lys28		L	v	F	F		
Initial orientation		LB2		RB2			Initial orientation		RB2		LB2		
Final Orientation					RB2	RS1	Final Orientation						
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{\text {@ }}$ @	5 sites (2R \& 3L)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ @	5 sites (2R \& 3L)					
Total Energy	-148.741						Total Energy	-120.919					
van der Waals	95.511						van der Waals	101.347					
electrostatic	-475.794						electrostatic	-449.503					
$\Delta \mathrm{Es}$	-51.5						$\Delta \mathrm{Es}$	-23.678					
	-7.626							-1.79					
	-51.809							-25.518					

Gas phase results of Solapsone- $\mathrm{Gd}^{3+}$ and the $1 \mathrm{Z0}$ Q conformer of $\mathrm{A} \beta$

	н	H	a	к	Gly9			н	н	a	k	Gly9	
Initial orientation	LB2	RB2					Initial orientation	RB2	LB2				
Final Orientation		RB2			LB2		Final Orientation	LB2				RB2	
					C=0							C=0	
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)						Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)					
Total Energy	-13.469						Total Energy	-13.601					
van der Waals	126.557						van der Waals	125.012					
electrostatic	-436.104						electrostatic	-429.435					
$\triangle \mathrm{Es}$	$-26.753$						AEs	-26.885					
	-2.012							-3.557					
	-31.325							-24.656					
	H	H	Q	к	Tyr10			H	H	Q	k		
Initial orientation	RB1	LB1					Initial orientation	LB1	RB1				
Final Orientation	RS1	cs			cs		Final Orientation	LB1	RB1		cs		
	RB1				-CH2-				cs		-CH2-		
	-CH2-								-CH-		LB1		
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L \& 3R)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)					
Total Energy	-35.425						Total Energy						
vander Waals	-35.425 115.699						Toatenergy	-116.453					
electrostatic	-441.13						electrostatic	$-451.368$					
$\Delta \mathrm{Es}$	-48.709						$\Delta \mathrm{Es}$	-56.841					
	-12.87							-12.116					
	-36.351							-46.589					
	${ }_{\text {H }}^{\text {H }}$	H RS1	a	к	Gly9	Tyr10		$\stackrel{\text { H }}{\text { RS1 }}$	${ }_{\text {H }}$	a	k	Leu17	
Final Orientation	${ }_{\text {LS1 }}^{\text {LS1 }}$	RS1					Initial orientation Final Orientation	RS1	LS1				
		RS1			C=0	LB1 $-\mathrm{CH2}$	Final Orientation	RS1	L81			cs	
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	4 sites (2R \& 2L)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L \& 3R)					
Total Energy	-64.808						Total Ener	-62752					
van der Waals	121.901						van der Waals	${ }^{118.78}$					
electrostatic	-480.659						electrostatic	-475.264					
$\Delta \mathrm{Es}$	-78.092						$\Delta \mathrm{Es}$	-76.036					
	-6.668							-9.789					
	-75.88							-70.485					
	H	H	a	к	Gly9	Tyr10		H	H	Q	к	Gly 9	Tyr10
Initial orientation	LS1	RS2					Initial orientation	RS2	LS1				
Final Orientation	LS1	RS2			LS1	LS1	Final Orientation	${ }_{\text {RS1 }}$	LS1		RS1	RS2	LS1
		RS1			C=0	-- CH 2 -		RB2				$\mathrm{c}=0$	
								RS2					
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L					
Total Energy	$-46.413$						Total Energy	-59.7					
van der Waals	119.419						van der Waals	116.266					
electrostatic	$-457.88$						electrostatic	$-473.408$					
$\triangle \mathrm{Es}$	-59.697						4Es	-72.984					
	-9.15							$-12.303$					
	-53.101							-68.629					
	H	H	a	K				H	H	a	k		
Initial orientation	RB2			LB2			Initial orientation	LB2			RB2		
Final Orientation	RB2						Final Orientation				RB2		
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)												
							Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @						
Total Energy	-5.112						Total Energy	2.001					
van der Waals	128.211						van der Waals	123.436					
electrostatic	-427.083						electrostatic	$-414.633$					
$\Delta \mathrm{Es}$													
	-18.396 -0.358						AEs	-11.283 -5.133					
	-22.304							-9.854					
	H	H	a	K				H	H	a	k		
Initial orientation Final Orientation	LB1			${ }_{\text {R81 }}$			Initial orientation	${ }_{\text {RB1 }}$			LB1		
	LS1 cs			R81 RS1			Final Orientation	RS1			LB1		
	-- $\mathrm{CH} 2-$			,									
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L \& 3R)						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L	3R)				
Total Energy	-47.759						Total Energy	-39.749					
van der Waals	121.271						van der Waals	123.227					
electrostatic	-462.808						electrostatic	-461.035					
$\Delta \mathrm{Es}$	-61.043						$\Delta \mathrm{Es}$	-53.033					
	-7.298							-5.342					
	-58.029							-56.256					
	H	H	a	K				H	H	a	k		
Initial orientation	LS1			SR1			Initial orientation	RS1			LS1		
Final Orientation	LS1			SR1			Final Orientation	RS1			LS1		
	6 sites (3L \& 3R)										,		
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @							$\mathrm{Cd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)					
Total Energy	-39.902						Total Energy	-42.868					
van der Waals	124.088						van der Waals	127.927					
electrostatic	-455.965						electrostatic	-458.958					
$\Delta \mathrm{Es}$	-53.186						LEs	-56.152					
	-4.481 -51.186							-0.642 -54.179					


	H	H	a	k	Gly9	Tyr10			H	H	Q	,			
Initial orientation	LS2			RS1				Initial orientation	RS1			LS2			
Final Orientation	LS2	LS1		RS1	LB2	LS1		Final Orientation	RS1			Ls1			
	LS1	-NH-			c=0	- CH 2 -									
	- $\mathrm{CH} 2-$														
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ ${ }^{\text {- }}$	5 sites (3L \& 2R)							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}{ }^{\text {- }}$ @	6 sites (3L \& 3R)						
								Gd chelates $2 \mathrm{SO}_{3}$ @							
Total Energy	-43.614							Total Energy	-32.737						
van der Waals	120.136							van der Waals	125.674						
electrostatic	$-459.888$							electrostatic	-499.807						
$\Delta \mathrm{Es}$															
	-56.898							4Es	-46.021						
	${ }^{-8.433}$								-2.895						
	-55.109								-45.028						
	H	H	Q	K					H	H	Q	k			
Initial orientation	LS1			RS2				Initial orientation	RS2			Ls1			
Intinal Orientation	LS1			RS1				Final Orientation	Ls1			Ls1			
				- $\mathrm{CH} 2-$											
$\mathrm{Cd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)						
	-32.379							Total Energy	-37.648						
van der Waals	123.86							van der Waals	124.363						
electrostatic	$-447.177$							electrostatic	-456.059						
$\Delta \mathrm{Es}$	-45.663							AEs	-50.932						
	-4.709								-4.206						
	$-42.398$								-51.28						
	H	H	a	k					H	H	Q	k	Leu17		
Initial orientation		RB2		LB2				Initial orientation		LB2		RB2			
Final Orientation		RB2						Final Orientation		LB2		RB2	RS2		
												RS2			
									5 sites (3L \& 2R)			- $\mathrm{CH} 2-$			
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @							
Total Energy	-10.22							Total Energy	-20.754						
van der Waals	125.242							van der Waals	120.767						
electrostatic	$-429.447$							electrostatic	-438.291						
$\Delta \mathrm{Es}$	-23.504							AEs	-34.038						
	-3.327								-7.802						
	-24.668								-33.512						
	H	H	a	k	Tyr10				H	H	Q	k	Gly9	Tyr10	
Initial orientation		LS1		RS1				Initial orientation		RS1		LS1			
Final Orientation	RB2	LS1		RS1	LS1			Final Orientation	LB1	RS1		Ls1	cs	cs	
				2	- $\mathrm{CH}_{2}$								$\mathrm{c}=0$	- $\mathrm{CH} 2-$	
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}^{\text {- @ }}$	5 sites (3L \& 2R)							$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	6 sites (3L \& 3R)						
Total Energy	-62.557							Total Energy	-72.103						
van der Waals	119.035							van der Waals	121.535						
electrostatic	$-474.412$							electrostatic	$-484.648$						
$\triangle \mathrm{Es}$	-75.841							$\Delta \mathrm{Es}$	-85.387						
	-9.534								-7.034						
	-69.633								-79.869						
	L	v	F	F	Ala21				L	v	F	F	Ala21		
Initial orientation	LB2	RB2						Initial orientation	RB2	LB2					
Final Orientation	LB2				RB2			Final Orientation	RB2			RB2	LB2		
													$\mathrm{c}=0$		
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ ${ }^{\text {- }}$	5 sites (3L \& 2R)							Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L						
Total Energy	-8.364							Total Energy	-19.887						
van der Waals	122.979							van der Waals	119.496						
electrostatic	-425.819							electrostatic	-434.914						
$\Delta \mathrm{Es}$	-21.648							$\Delta \mathrm{Es}$	-33.171						
	-5.59								-9.073						
	-21.04								-30.135						
	L	$v$	F	F	Hls14	Ala21	Glu22		L	$\checkmark$	F	F	His14	Lys16	Ala21
Initial orientation	LB1	RB1						Initial orientation	RB1	LB1					
Final Orientation	LB1	cs			RB1	cs	cs	Final Orientation	cs	LB1			LS1	RS1	cs
					RNH	LB1	-CH2-		RB1					-CH2-	
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@ 6	6 sites (3L \& 3R)								6 sites (3L \& 3R)						
								Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @							
Total Energy	-23.729							Total Energy	-47.102						
van der Waals	111.479							van der Waals	114.657						
electrostatic	$-427.482$							electrostatic	-452.594						
$\triangle \mathrm{Es}$	-37.013							$\Delta \mathrm{Es}$	-60.386						
	-17.09								-13.912						
	$-22.703$								-47.815						
	L	v	F	F					L	v	F	F			
Initial orientation	RB2			LB2				Initial orientation	LB2			RB2			
Final Orientation	RB2							Final Orientation							
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ 5	5 sites (3L \& 2R)								5 sites (3L \& 2R)						
								$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @							
Total Energy	10.709							Total Energy	12.822						
van der Waals	125.845							van der Waals	126.816						
electrostatic	$-405.989$							electrostatic	-405.075						
$\Delta \mathrm{Es}$	-2.575							$\Delta \mathrm{Es}$	-0.462						
	$-2.724$								-1.753						
	-1.21								-0.296						


	L	v	F	F			L	v	F	F		
Initial orientation	RB1			LB1		Initial orientation	LB1			RB1		
Final Orientation	RB1			LB1		Final Orientation	LB1			RB1		
				cs						cs		
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)						5 sites (3L \& 2R)					
						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @						
Total Energy	1.62					Total Energy	-11.024					
van der Waals	122.113					van der Waals	121.182					
electrostatic	-405.695					electrostatic	-430.89					
- Es	-11.664					$\Delta \mathrm{Es}$	-24.308					
	$-6.456$						-7.387					
	-0.916						-26.111					
	L	$v$	,	F			L	$v$	20	F	Gln15	
Initial orientation		LB2	RB2			Initial orientation		RB2	LB2			
Final Orientation						Final Orientation		RB2			RB2	
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ @	5 sites (3L \& 2R)					$\mathrm{Gd}^{3+}$ chelates 2 SO, @	6 sites (3L \& 3R)					
						Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @						
Total Energy	-51.289					Total Energy	-51.939					
van der Waals	124.161					van der Waals	128.101					
electrostatic	-468.293					electrostatic	-474.913					
$\Delta \mathrm{Es}$	-64.573					$\Delta \mathrm{Es}$	-65.223					
	-4.408						-0.468					
	-63.514						-70.134					
	L	v	F	F			L	v	F	F	Ala21	Val24
Initial orientation		LB2		RB2		Initial orientation		RB2		LB2		
Final Orientation						Final Orientation	RB2	RB2			RS2	LB2
Find ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)											
						$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)					
Total Energy	-16.594					Total Energy	-23.358					
van der Waals	124.503					van der Waals	117.829					
electrostatic	-435.428					electrostatic	-439.61					
4Es	-29.878					$\Delta \mathrm{Es}$	-36.642					
	-4.066						-10.74					
	-30.649						-34.831					
	L	v	F	F			L	v	F	F		
Initial orientation	RB2		LB2			Initial orientation	LB2		RB2			
Final Orientation	RB2					Final Orientation	LB2		RB2			
$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L \& 2R)					$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}$ @	7 sites (3L \& 2R \& 2R)					
	-7.003					Total Energy	-33.049					
van der Waals	124.71					van der Waals	122.21					
electrostatic	-424.977					electrostatic	-450.006					
$\Delta \mathrm{Es}$												
	-20.287					$\Delta \mathrm{Es}$	$-46.333$					
	-3.859						$-6.359$					
	-20.198						-45.227					
	L	v	F	F	Lys16		L	v	F	F		
	LB1		RB1			Initial orientation	RB1		LB1			
Final Orientation	LB1		cs	cs	LS1	Final Orientation	RB1			cs		
				-CH2-	LB1							
				RB1	LNH							
$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}$ @	7 sites (3L \& 2R \& 2R)					$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@	5 sites (3L	2R)				
	-62.934					Total Energy	$-3.936$					
van der Waals	115.145					van der Waals	121.682					
electrostatic	-476.384					electrostatic	-415.945					
$\Delta \mathrm{Es}$	-76.218					$\Delta \mathrm{Es}$	-17.22					
	-13.424						$-6.887$					
	-71.605						-11.166					
	L	v	F	F			L	v	F	F		
Initial orientation			RB2	LB2		Initial orientation			LB2	RB2		
Final Orientation						Final Orientation				RB2		
Gd ${ }^{3+}$ chelates $2 \mathrm{SO}_{3}$ @ @												
	5 sites (3L \& 2R)					$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}$ @	5 sites (3L					
Total Energy	9.348					Total Energy	5.17					
van der Waals	126.144					van der Waals	125.277					
electrostatic	-407.448					electrostatic	-410.119					
$\triangle \mathrm{Es}$	-3.936					$\Delta \mathrm{Es}$	-8.114					
	$-2.425$						$-3.292$					
	-2.669						-5.34					
	1	v	F	F			L	v	F	F		
Initial orientation		v	LB1	RB1		Initial orientation			RB1	LB1		
Final Orientation	RS2		RB1	RB1		Final Orientation	cs			LB1		
	RB2			RB2			RB1			cs		
$\mathrm{Gd}^{3+}$ chelates $3 \mathrm{SO}_{3}^{-}$@	7 sites (3L \& 2R \& 2R)					$\mathrm{Gd}^{3+}$ chelates $2 \mathrm{SO}_{3}^{-}$@	5 sites (3L\& 2R)					
						$\mathrm{Cd}^{\text {a }}$ chelates $2 \mathrm{SO}_{3}$ @						
Total Energy	-36.079					Total Energy	-29.971					
van der Waals	118.414					van der Waals	119.226					
electrostatic	-443.942					electrostatic	-442.937					
$\Delta \mathrm{Es}$	-49.363					$\Delta \mathrm{Es}$	-43.255					
	-10.155						-43.255 -9.343					
	-39.163						-38.158					

Gas phase results of solapsone and the 1 AMB conformer of $\mathrm{A} \beta$



Intital Orientation	$\stackrel{\text { H }}{\text { H2 }}$	н	a	$\underset{\substack{\text { k } \\ \text { R31 }}}{ }$													
Final Orientation	LS2																
${ }^{\text {Total Enerery }}$	${ }_{\text {- }}^{\text {-18,394 }}$																
vander Waals electrostatic	${ }_{-}^{938.624}$																
$\triangle \mathrm{Es}$	87.735																
	(-2.24																
		H cs	a	k	Tyr10	Val18					$\stackrel{H}{\text { cs }}$		a	к	Tyr10	Val18	
Final Orientation	Rs1	RS1			RS2	cs				Final Orientation	${ }_{\text {L81 }}$	${ }_{\text {cs }}$			${ }^{181}$	RS1	
		$\stackrel{-\mathrm{CH}}{\mathrm{CS}}$									$\stackrel{\text { L }}{\substack{\text { L2 }}}$	${ }_{\text {cher }}^{\text {cht }}$			${ }_{\substack{\text { cs } \\ \text { R81 }}}$		
											${ }_{\text {cs }}{ }_{\text {cs }}$						
Total Energy	${ }^{-0.188}$									Total Enerery	-36.629						
vander Wails	${ }^{\text {coind }}$									van der Weals	- 76.8599						
electrostatic	-253.202									electrostatic	-289.707						
$\triangle \mathrm{Es}$	-69.529									AEs	105.97						
	${ }_{-62.309}$										-18.899						
	cs	${ }^{\text {H }}$	a	k	Try10	Leu17	Phe20				${ }^{\text {H }}$	H	a	к	Try10	Leu17	val18
Intital Orientation	$\mathrm{cs}^{\text {cs }}$	RS2								Intital Orientation	${ }^{\text {RS52 }}$	cs					
Final Orientation	${ }^{\text {L81 }}$	${ }_{\text {cher }}^{\text {CH2 }}$		$\stackrel{152}{2}$	RS1	L52	${ }_{\text {Li }}^{152}$			Final Orientation	RS2	${ }_{\text {Res }}^{\text {Res }}$			$\underset{\substack{\text { RS2 } \\ C=0}}{ }$	RS1	RS1
												${ }_{\text {Rs }}$					
												$\stackrel{-\mathrm{CH}}{\text { RS2 }}$					
Total Energy	-54.42																
vander Waals	${ }^{827737}$									vander Waals	${ }^{8.1385}$						
	-310.003									electrostatic	-259.023						
AEs	${ }^{123.761}$									$\triangle \mathrm{Es}$	75.477						
	${ }_{\text {- }}^{\text {-13.101 }}$										- 1.4 .453						
	H	H	a	k	Tyr10	Glu11	Leu17	Val18	Glu22		H	H	a	k	His6	Gly	Tyr10
${ }_{\text {In }} \begin{aligned} & \text { Intital Orientation } \\ & \text { Einal Orientation }\end{aligned}$		${ }_{\text {cs }}$								Intial	${ }_{\text {csi }}^{\text {csi }}$	LS cs c					
Final Orientation	LS2	$\stackrel{\text { RS2 }}{2}$	RS2		L51	${ }_{\text {- }}^{\text {CH2 }}$	L81	R82	R82	Final Orientation	${ }_{\text {R }}^{\text {R81 }}$ (	- ${ }_{\text {che }}^{\text {c- }}$			R82	${ }_{\substack{\text { RS2 } \\ \text { coo }}}$	${ }_{\text {R81 }}^{\text {R } 22}$
		${ }_{\text {csi }}^{\text {R81 }}$															
		${ }_{\text {cs }}^{\text {cs }}$															
		${ }^{152}$															
Total Energy	${ }^{-26.567}$									Total Energy	-39.49						
Van der Wals electrostatic										van der Waals electrostaic	- $\begin{gathered}71.273 \\ -28886\end{gathered}$						
${ }_{\text {ass }}$										AEs							
	- 9.5 .0088										$\stackrel{-102.831}{-24.65}$						
	-81,782										-97.933						
	$\stackrel{\text { H }}{\text { H1 }}$	$\underset{\text { R }}{\text { R }}$	a	k	Try10	${ }^{\text {Leu17 }}$					$\stackrel{\text { H }}{\text { R }}$	$\stackrel{\text { H }}{\text { H }}$	a	к	Try10		
final Orientation	${ }_{\text {LB1 }}^{\text {Li81 }}$	${ }_{\text {RSS }}$				cs				Intinal Orientation	${ }_{\text {RS1 }}$	${ }_{\text {Le1 }}^{\text {Le1 }}$	Ls1 $^{\text {d }}$		RS2		
	${ }_{\text {L }}^{\text {LS }}$	${ }^{\text {cher }}$			${ }^{181}$							${ }_{\text {L1 }}$					
	${ }_{\text {cs }} \mathrm{LS}$																
		Rs1										LNH					
Total Enersy	-37.222									Total Energy	$-14.897$						
Van der Waals electrosatic	78.84 -286991									van der Waals electrosatic	- ${ }_{\text {-285.397 }}$						
AEs										A							
	${ }_{-10.998}$									$\triangle$ Es	84.289   12.89						
	-95.998										74.854						
Initala Orientation	$\stackrel{\text { LS }}{\text { L }}$	$\underset{\text { R81 }}{\text { H }}$	a	k	Leu17					Intital Orientation	$\underset{\text { R81 }}{\text { H }}$	H	a	к	Try10	Leu17	
Final Orientation	Ls1	RS1			Ls1					Final Orientation	${ }_{\text {Re31 }}^{\text {Res }}$	152			RS2	cs	
											${ }_{\text {RS52 }}^{\text {RS }}$						
	${ }^{7} .563$																
vander Waals	${ }^{87.6}$									vander Waals	81.639						
electrostatic	262.152									electrostatic	-290.705						
SEs										SEs							
	-8.238										- 14.1499						
	н		a	k	Tyr10	Leu17	Val18					H	a	k	Leu17	Val18	
Intial $\begin{aligned} & \text { Intial orintation } \\ & \text { Einal Orientation }\end{aligned}$	${ }_{\text {L81 }}^{181}$	${ }_{\text {R }}^{\text {R22 }}$								Intital orientation Final Orientation	${ }_{\text {R } 2 \text { R2 }}$						
Final Orientation	${ }_{\text {L81 }}^{\text {LS2 }}$			Ls2		${ }_{\text {L181 }}^{152}$	RS2			Final Orientation	${ }_{\text {R81 }}^{\text {R82 }}$	${ }_{\text {L }}^{162}$		RS2	LS2	${ }^{52}$	
	Ls1										RNH	- CH 2.					
Total Energy	${ }^{-42.851}$									Total Energy	-54.195						
vander Wals	${ }^{81.753}$									vander Waals	7.935						
										electrostatic	-302.613						
AEs	-112.192									SEs	${ }^{122.536}$						
	- $\begin{aligned} & \text {-14.095 } \\ & .10 .437\end{aligned}$										- 1.19 .93						
			a	k	Tyr10	Leu17					H	H	a	k	Glu11	Leu17	
Intital Orientation	${ }^{\text {LB2 }}$	${ }_{\text {RS2 }}$								Intital Orientation							
Final Orientation	${ }_{\text {L152 }}^{\text {L1 }}$		${ }_{\text {RS2 }}$		Ls	(182				Final Orientation	${ }_{\text {R82 }}{ }_{\text {R81 }}$	${ }_{\text {LS1 }}^{\text {Li } 28}$		$\stackrel{\text { RS2 }}{2}$	${ }^{182}$	${ }^{\text {R81 }}$	
		${ }_{\text {cher }}^{\text {Cr } 2-}$															
		${ }^{\text {R82 }}$															
Total Energy										Total Energy	-43.47						
van der Waals	-7238.467 -7									van der Wals	- ${ }_{-2959.892}$						
AEs	-95.065									AEs	-112.818						
	${ }_{-82554}$										-105.036						
	H	$\stackrel{\text { R }}{\text { R } 2}$	a	${ }_{18}{ }_{18}$	Try10	Leu17	Phe20				H	$\stackrel{H}{\text { H }}$	a	k	Glu11	Leu17	Val18
$\underset{\substack{\text { Intial Orientation } \\ \text { final Orientation }}}{\text { and }}$	L81	${ }_{\substack{\text { RB2 } \\ \text { R82 }}}^{\text {ren }}$		${ }_{\text {LB2 }}^{\text {LB2 }}$	RS2	L52	${ }^{182}$			$\underset{\substack{\text { Intal Orientation } \\ \text { final Orienation }}}{\text { and }}$		${ }_{\text {L82 }}^{\text {L82 }}$		${ }_{\text {R }}^{\text {RB2 }}$	182	RS2	Ls2
	LS2			LS2		${ }^{181}$					RNH	${ }_{182}$		${ }_{\text {R } 52}$			
	Ls1											${ }^{1} 2$					
Total Energy	-60.376																
vander Waals	${ }^{73.27}$									van der wals	${ }^{82} 8252$						
electrostatic	. 306.118									electrostatic	-284.056						
AEs	-129.717									$\Delta \mathrm{Es}$	-100.767						
	- ${ }_{\text {-125.588 }}$										- ${ }_{\text {- }}^{\text {-13.66 }}$						


	1	$v$	F	F	Al231	L/28				1	v	F	F	Al321	L428			
Initial Orientatioa	181	${ }^{881}$							Intital orientation	${ }^{881}$	${ }^{181}$							
Final Orientaion	Ls			Ls	cs	152			Final Orientaion	cs			RS1	p81	${ }^{832}$			
										${ }_{881}$					RS1			
Total Energy van der Waals electrostatic	-17.888								Total Enegy	-16,488								
	84.625								vander Waas	88.217								
	-269275								electrostaic	-255.03								
AEs																		
	.88 .239 -11213								AEs	$\begin{array}{r} -85.799 \\ \hline-15.61 \end{array}$								
	$\begin{gathered} -11.213 \\ -78.322 \end{gathered}$									$\begin{array}{r} -15.621 \\ -74.19 \end{array}$								
	1	$v$	F	F	His13	His1	Ly/16			1	v	F	F	His14				
Ininal	181	${ }_{\text {R82 }}$							Intital Oieneration	${ }^{882}$	182							
	152	RS2	R82	182	152	RS2	182		Final OTientation					${ }^{182}$				
							152							${ }^{182}$				
Total Energy van der Waals electrostatic	-29528								Total Eereg	22727								
	82827								vanderWals	88.961								
	-279,74								eletrostatic	-235.178								
AFs	-98.699								AEs	-46.614								
	-13.011									-8877								
	-88488									44.285								
	1	$v$	F	F	G1u22					1	$v$	F	F					
Initial Oienention   finalo Oientation	882		182						Intital Orientation	182		R82						
					182				Final Orientaion									
Toal ferery	62.194								Total Eereg	55.76								
van der Waals electrostatic	92234								vanderWals	95559								
	-20.117								eletrostatic	-255.188								
AEs	. 7.47								AEs	-13.65								
	${ }^{-3.604}$									${ }^{-0.39}$								
	9.924									-14295								
	1	$v$	F	F	His13	Lys16	L428			1	$v$	F	F	Hisl3	L428			
Intial Oieientaioa	181			881					Intital Oienention	881			181					
Finalorientaion	Ls1			cs	152	152	R51		Final Orientaion	ps1			cs	R51	152			
				881	Ls	${ }_{5} 51$				${ }^{881}$			${ }^{181}$		2			
						181							ts1					
Total Energy van der Waals electrostatic	-52886								Total Enegry	${ }^{26336}$								
	83.566								vanderWals	85.75								
	-308.175								eletrostatic	-280.005								
AEs	-12207								AEs	-95667								
	-12272									-10.086								
	. 117.282									89.112								
	1	$v$	F	F	Ly/16	L4/28				1	$v$	F	F	Lys16	L4828			
	182			881					Intital orientation	882			${ }^{181}$					
	182			${ }^{152}$	RS2	${ }_{51} 1$			Final Orientaion	852			152	52	${ }^{\text {RS1 }}$			
				${ }^{181}$		152									2			
				881									${ }^{\text {R81 }}$		${ }_{881}$			
													RS2					
Total Eerery	.5146 84505								Total Enery	-4.287 8163								
vander Wals electostatic	88.505 -30545								vander Wals	81.67 -294105								
electrostatic	-305.46								electrostaic	-294.105								
AEs	-120.801								AEs	-113,68								
	-11333									-14.165								
	114.57									-103.212								
	1	$v$	F	F	Hisl3	His14	Lys16			1	$\checkmark$	F	F	Ty10	Hisl3	His14	Ala21	$4 \times 28$
Initala Oienentior	181			${ }^{832}$					Intial Orientation	${ }^{\text {R82 }}$	182							
Final Oientation	Ls1	182		${ }^{832}$	Ls1	Lst	R51		Final Orientaion	${ }^{\text {R81 }}$			${ }^{\text {R82 }}$	51	Ls1	182	R82	${ }_{88} 8$
	LWH					- ${ }^{\text {CH2 }}$				${ }^{181}$						182		RS2
																${ }_{51}{ }^{\text {cti }}$		2
																- CH 2		
Total ferery	-34515								Total Energy	-54.145								
vander Wals	75.784								vander Waals	${ }^{68047}$								
electrostatic	-288.116								electrostaic	-233.84								
AEs									AEs									
	-20.54									--27.791								
	.95.23									-102911								
	1	$v$	F	F	His14					L	v	F	F	His13	Lys16	L4828		
Intital Oieientaior	182	${ }_{\text {RB2 }}$							Intial Orientation	R82			182					
Finalo iointaion		RS2			${ }^{882}$				Find O Orientaion	RS2			${ }^{181}$	${ }_{8}^{882}$	RS2	L51		
					${ }^{\text {882 }}$								LNH	R32				
					RS2								152					
Total Energ	19.95								Total Energ	-48346								
vanderWals	89.169								vanderWals	81.15								
eletrostatic	-237.85								eletrostatic	-304.457								
AEs	-49.36								AEs	-117.68								
	-6.669									-14324								
	-46,92									-113,54								
	$\stackrel{1}{182}$	$v$	F	$\underset{\text { R82 }}{\text { F }}$	His13	Ls/16	Val2	L4:28		1	$\underset{\text { RB1 }}{V}$	$\stackrel{\text { F }}{181}$	F	6 ln 15				
Final ieiention	${ }_{182}^{182}$			${ }_{\text {R82 }}^{\text {R82 }}$	152	${ }_{51}$	${ }^{882}$	RS2	$\pm \begin{gathered}\text { Intita Orientation } \\ \text { Find O Oientaion }\end{gathered}$		${ }_{\text {R81 }}{ }_{\text {cs }}$	${ }_{\text {c }}^{181}$		cs				
				${ }^{832}$	Ls1						R81							
Toal Energy	-56079								Total Energ	61491								
vanderWals	77.36								vanderWals	88978								
electrostaic	-307.97								eletrostatic	-193531								
AEs	-125.42								AEs	-7.85								
	-18.922									-6.04								


	L	$v$	fror	F	Glu22				เ	$v$	兂	F	His14	Gln15	Lys16	
Initial Orientation		LB1	RB1					Initial Orientation		RB2	LB1					
Final Orientation		LB1	RS1		cs			Final Orientation		RS2	LB1		RB2	RNH	LS2	
		LS1			- $\mathrm{CH} 2-$						LNH			RB1	LB2	
											LS2				-CH2-	
Total Energy	42.68							Total Energy	0.03							
van der Waals	89.222							van der Waals	84.524							
electrostatic	-216.652							electrostatic	-253.93							
$\triangle \mathrm{Es}$	-26.661							$\Delta \mathrm{Es}$	-69.311							
	-6.616								-11.314							
	-25.759								-63.037							
	L	$\checkmark$	F	F					1	v	P2	F				
Initial Orientation Final Orientation		LB2 LB2	${ }_{\text {RB1 }}$					Initial Orientation Final Orientation		RB2	${ }_{\text {LB2 }}^{182}$					
Final Orientation		LB2	RB1					Final Orientation			LB2					
Total Energy	46.169							Total Energy	56.345							
van der Waals	87.319							van der Waals	92.647							
electrostatic	-208.605							electrostatic	-201.862							
$\Delta \mathrm{Es}$	-23.172							$\Delta \mathrm{Es}$	-12.996							
	$-8.519$								-3.191							
	-17.712								-10.969							
	ᄂ	$v$	F	F	Gln15				1	$v$	F	F	His14	Lys28		
Final Orientation		LB2	RB2					Initial Orientation		RB2		LB2				
					RB2			Final Orientation	RS2	RS2			RB2	LS1		
										RB2			RS2			
													-CH2-			
Total Energy	39.194							Total Energy	-15.154							
van der Waals	91.989							van der Waals	83.048							
electrostatic	-217.886							electrostatic	-266.074							
$\Delta \mathrm{Es}$	-30.147							$\Delta \mathrm{Es}$	-84.495							
	-3.849								-12.79							
	-26.993								-75.181							
	L	v	F	F	Ala21	Glu22	Lys28		L	v	F	F	Val12	His13	Gln15	Lys16
Initial Orientation		LB2		RB2				Initial Orientation			RB1	LB1				
Final Orientation				RB2	LB2	LB2	RS2	Final Orientation			RS1	LB1*	RS1	LS1	RS1	RS2
				RS2			2				RB1	LNH*			-CH2-	RB1
											cs	*-CH2-				RS1*
											-CH2-					LB1*
Total Energy	-9.463							Total Energy	-59.595							${ }^{\text {LS1* }}$
van der Waals	82.769							van der Waals	68.572							*-CH2-
electrostatic	-258.718							electrostatic	-303.526							LS2
$\Delta \mathrm{Es}$	-78.804							$\Delta \mathrm{Es}$	-128.936							
	-13.069								-27.266							
	$-67.825$								$-112.633$							
	L	v	F	F	Lys16	Val24			L	v	F	F	Gln15	Lys16		
Intitar OrientationFinal Orientation			LB1	RB1				Initial Orientation			LB1	RB2				
			LS1	RS1	LB1	cs		Final Orientation			RB1		LS2	RB2		
				RB1	RS1						cs			RS2		
					RB1						LB1			2		
					LNH						LS2					
Total Energy	-33.13				LS1			Total Energy	-0.123							
electrostatic	80.492 -286.645				- $\mathrm{CH} 2-$			van der Waals	83.544 -255682							
	-286.645							electrostatic	-255.682							
$\Delta \mathrm{Es}$	-102.471							$\Delta \mathrm{Es}$	-69.464							
	-15.346								-12.294							
	-95.752								-64.789							
	L	v	F	F	His13	Lys16			L	v	F	F	His13	Lys16		
Initial Orientation Final Orientation			RB2	LB1				Initial Orientation			RB1	LB2				
	LS2		RB2		LB2	RB1		Final Orientation			RB2	LB2	LS1	L81		
					LS2	RS2					RS1			RB1		
						LS2								RNH**		
						-CH2-								LNH*		
Total Energy	-48.492					RNH		Total Energy	-47.676					${ }^{\text {LS }}$ * ${ }^{\text {* }}$		
van der Waals	$77.575$					RS2		van der Waals	78.354 -300.436					*-CH2-		
	-294.481							electrostatic								
$\Delta \mathrm{Es}$	$-117.833$							$\Delta \mathrm{Es}$	-117.017							
	-18.263								-17.484							
	-103.588								$-109.543$							
	L	v	F	F	Lys16	Lys28			1	v	F	F	Lys16			
$\underset{\text { Intial }}{\text { Intial Orientation }}$			LB2	RB1				Initial Orientation			RB2	LB2				
					152	RS1		Final Orientation			RB2	LB2	LB1			
				R81	LB2	RNH					RS2		LNH			
				RB2									Ls1			
													-CH2-			
Total Energy	-28.859							Total Energy	-14.425							
van der Waals	80.05							van der Waals	87.505							
electrostatic	-285.561							electrostatic	-270.715							
$\triangle \mathrm{Es}$	-98.2							-Es	$-83.766$							
	-15.788								-8.333							
	-94.668								-79.822							
	L	v	f	F	His13	Lys16										
Initial OrientationFinal Orientation			LB2	RB2												
	$\begin{aligned} & \mathrm{RS} 2 \\ & \mathrm{RB} 2 \end{aligned}$		LB2	$\begin{gathered} \text { RS2 } \\ -{ }_{-C H 2} \end{gathered}$	RS2	LS2 LNH										
	RB2			-CH2-		LNH										
						RS2										
Total Energy	-52.56					--CH2-										
van der Waals	79.19															
electrostatic	-297.391															
$\Delta \mathrm{Es}$	-121.901															
	-16.648 -106.498															


	H	н	a	к	$\llcorner$	v	F	F	Lys28					H	н	a	k	1	v	F	F	L4\%28			
	${ }_{\text {csi }}^{\text {cs }}$												$\underset{\substack{\text { Intita Orientatio } \\ \text { final Orientation }}}{\text { chen }}$					${ }_{\text {R8S }}^{\text {R81 }}$							
Final Oienentatior	${ }_{\text {res }}^{\text {cs }}$				cs			Ls1						${ }_{\text {L }}^{\text {LS }} 1$				${ }_{\text {R81 }}^{\text {R82 }}$							
Total Energy   van der Waals	${ }_{\substack{-27.757 \\ 82473 \\ \hline}}$												Total Energy van der Waals	$\begin{array}{r} -78.978 \\ \hline 77.207 \end{array}$											
AEs	${ }^{-97.098}$												AEs	188.319											
														$\xrightarrow{-18.631}$ 13.097											
	H	H	a	k	1	$v$	F	F	giv9	Tyr10	Lys28			H							F				
Intital Orientatic	R81				L81								Initial Orientatio	$\stackrel{181}{ }$				${ }^{\text {R89 }} 1$							
Final Orientation	${ }_{\substack{\text { R81 } \\ \text { RS1 }}}$				L81			Ls 1	${ }_{\text {RS2 }}^{\text {co }}$	RS2	$\stackrel{\text { LS } 21}{2}$		Final Orientatior	$\stackrel{\text { L81 }}{\text { Ls1 }}$				R81			Rs1	- 11	Rs1	${ }_{\substack{\text { Rs1 } \\ \text { RS2 }}}^{\text {cen }}$	
	${ }_{\text {Rs2 }}$													${ }_{\text {Ls2 }}^{\text {Ls }}$											
${ }^{\text {Totale enery }}$	${ }_{\text {- }}^{\text {-83,432 }}$												Total Eerery	- 70.35											
electrostatic	${ }^{\text {-329.605 }}$												electrostaic	${ }_{-315.763}$											
AEs													AEs	139.61											
	-													19394 124,											
	H	н	a	к	L	$v$	F	F	Tyr10	Lys28				H	н	a	k	L	v	F	F	Tyr10	Ala 21	L4828	
$\xrightarrow{\text { Intita Orientatic }}$	${ }_{\text {R81 }}^{\text {R } 19}$	RS1			${ }_{\text {Lex }}^{\text {Le9 }}$			Ls1	RS1	Ls2			$\underset{\substack{\text { Intial Orientatio } \\ \text { final orientatior }}}{\text { a }}$	${ }_{\text {RS1 }}^{\text {RS2 }}$			R51	${ }_{\text {L81 }}^{\text {L5 }}$				RS2	L2	${ }_{51}$	
	${ }_{\text {RNP }}^{\text {R82 }}$	-chr.												R52				${ }_{\text {ces }}^{\substack{\text { cs } \\ \text { R81 }}}$						2	
	Rs1																								
Total Energy	-59.013												Total Energy	-53.758											
van der Wals eiectrosatic	(70.646												$\underbrace{}_{\substack{\text { van der Wails } \\ \text { eletrostaic }}}$	(820.293											
AEs	128359												AEs	123,09											
	-25.192													${ }_{\text {- }}^{\text {-13,739 }}$											
	H	H	a	к	L	$v$	F	F						H	H	a	k	$!$	v	F	F	Alaz1			
	${ }_{\text {L81 }}^{\text {Li }}$			${ }^{152} 2^{*}$	${ }_{\text {R882 }}^{\text {R82 }}$								$\xrightarrow{\text { Intita Orientation }}$ final orientatior	${ }_{\text {LS2 }}^{\text {L182 }}$			${ }^{182}$	${ }_{\text {R81 }}^{\text {R81 }}$				RS1			
	$\stackrel{2}{\text { R52 }}$																152	${ }_{\text {RNS }}^{\text {RNH }}$							
	-35.508													-13.592											
van der Waals electrosatic	${ }_{\text {-285.068 }}$												van der Waals   electrostatic	${ }_{\text {-264,497 }}^{\text {85, }}$											
													AEs												
	${ }_{\text {- }}^{\text {-12.175 }}$													10.009											
Initial Orientatic		н	a	k	$\stackrel{L}{1}$	$\checkmark$	F	F	Alaz1	Ls 288			Initial Orientatio	$\underset{\text { ¢ }}{\text { ¢ }}$	н	a	k	${ }_{\text {R }}$	$v$	F	F	6iv9	Try10	Ala21	L4228
Final Orientation	${ }_{\text {R }}^{\text {R82 }}$			${ }^{\text {Rs2 }}$				${ }_{152}^{152}$	${ }^{182}$	${ }_{\text {L }}^{182}$			final Orientation	${ }_{182}^{182}$			${ }_{\text {L }}^{\text {L101 }}$	${ }_{\text {R82 }}$			${ }_{\text {RS1 }}$	${ }^{182}$	182	${ }^{82}$	${ }^{\text {RS1 }}$
	${ }_{\text {R82 }}^{\text {R82 }}$							LB2						${ }_{\text {Lex }}^{\text {LiNH }}$			$\stackrel{\text { LNH }}{\text { LSt }}$				RNH				
Total Energy	-49,934												Total Eeregy	-71.297											
van der Waals electrostaic	- ${ }_{\text {81, } 289.15}$												$\underbrace{}_{\substack{\text { van der Wals } \\ \text { eletrostaic }}}$												
AEs																									
		н	a	к		$v$	F	F	Gly	Ala21	Gly25	L4>28			н	a	k		v	F	F	Alaz1			
Intin	${ }_{\text {R82 }}$			${ }^{\text {RS2 }}$	152			152	${ }_{\text {R82 }}$	${ }_{5} 5$	${ }_{182}$	${ }^{51}$	$\xrightarrow{\text { Intital Orientatio }}$ Finalo	${ }_{\text {LS }}{ }_{\text {L2 }}$				${ }_{\text {R81 }}^{\text {R82 }}$	RS2			${ }_{\text {R82 }}$			
				2						${ }^{182}$					-ch2-		LNH   IB1	RS2 RB2	${ }^{\text {R82 }}$						
Total fenery	-77.106												Total Energy	${ }^{-54.588}$											
ven derwals	-12859													80.91											
AEs	${ }^{143,447}$												AEs												
	${ }^{-222983}$													- 11.5678											
		H	a	k		$\checkmark$	F	F	${ }_{6} 125$						н	a	k	$\llcorner$		F	F				
${ }_{\text {In }}$ Initial Orientatic	${ }_{\text {R81 }}^{\text {R81 }}$			RS1		เ81			${ }^{182}$					${ }_{\text {L81 }}^{\text {LS }}$				เ81	${ }_{\text {R81 }}^{\text {R81 }}$						
					$\underset{\substack{\text { R11 } \\ \text { RNH }}}{\text { R }}$				102					${ }_{\text {cki }}^{\substack{\text { LiNH } \\ \text { Lex }}}$	${ }_{\text {- }-\mathrm{CH} 2 .}^{\text {RNH }}$										
Total Energy	-13,726												Total Energy	-13,999											
vander Wails	${ }_{\text {821.47 }}^{\text {-27.666 }}$												${ }^{\text {Van der Wals }}$	78,982 -259.862											
AEs	-83067												AEs												
														17.096											
		н	a	к	ᄂ		F	F						н	н	a	k	L	v	F	F				
	${ }_{\text {L51 }}^{\text {L5 }}$				L81	${ }_{\text {Res }}^{\text {Res }}$							$\underset{\substack{\text { Intital Orientatio } \\ \text { final orientation }}}{\text { a }}$	${ }_{\text {R51 }}^{\text {R51 }}$					${ }^{\text {L81 }}$						
	L81				cs	R81								${ }_{2}$				${ }_{\text {R81 }}$							
	8.04   83888   8.												${ }_{\text {Total feregy }}$	${ }_{\text {l }}^{16.33} 8$											
electrostatic	${ }_{-224365}$												eletrostatic	-240.513											
AEs	-60.377												AEs	cisind											
	-51.472													${ }_{9} 9.92$											
	$\underset{\text { R } 52}{\text { H }}$	H	a	к	L	$\stackrel{\text { v }}{\text { L81 }}$	F	F	Tyr10						H	a	k	$\llcorner$		F	F	G179			
	${ }_{\text {RS2 }}$	Ls2			${ }_{\text {RS2 }}$	${ }_{\text {LS }}$			R82					${ }_{\substack{\text { R } \\ \text { R21 } \\ \text { RNH }}}$				$L^{2}$				${ }^{\text {R82 }}$			
														${ }_{\text {R }}^{\text {R } 52}$											
														${ }_{\text {CH2 }}^{\text {R }}$ -											
Totat ferery	${ }_{\text {18, }}^{18.388}$												$\pm$												
electrostatic	-234.933												electrostaic	${ }^{-269.632}$											
AEs													AEs	89.411											
Initial Orientatic	$\stackrel{H}{\text { L5 }}$	H	a	k	$\llcorner$	$\stackrel{\text { V }}{\text { R1 }}$	F	F					nitial Orientatio	$\underset{\text { R82 }}{\text { H }}$	H	a	k	1	$\stackrel{\text { v }}{ }$	F	F	Tyr10	Ala21	Glu22	
Final Orientatior	${ }^{152}$	RS2			${ }_{\text {RS2 }}$	R52							Final Orientation	${ }_{\substack{\text { R82 } \\ \text { Re2 }}}^{\text {R20 }}$	${ }^{\text {RS } 2}$			RS2	LB2			${ }^{882}$	${ }^{182}$	${ }^{182}$	
	${ }_{\text {L81 }}^{2}$			${ }_{\text {cher }}^{\text {che }}$	${ }^{\text {R81 }}$									R52	-ch-			RS1							
voan derwals	${ }^{\text {840,29 }}$												$\xrightarrow{\text { Totalf Energy }}$ van der Waals	${ }_{\text {- }}^{\text {70.354 }}$											
electrostatic	-309.001												electrostaic	-263.467											
AEs	-124.131												AEs	79.694											
	- $\begin{gathered}-11.809 \\ \text { 118.108 }\end{gathered}$																								


Intital orieratic	${ }_{\text {H2 }}$	H	a	k	1	va	F	F	Tr10		Intital orientatio		н	a	k	$\llcorner$	$v$	F	F		
final orentation	${ }_{51}^{162}$								${ }^{1} 2$		Efmalorenention	${ }_{\text {R } 22}$			R82					L5	
															${ }_{\text {ctas }}^{\text {cher }}$						
Total Enery	(4.358										Tontenery										
Vender vals	${ }^{\text {828060 }}$										ven derwals	${ }^{8} 872254$									
AEs	73.699										AEs	70.308									
	-7732 - 691											${ }_{\substack{8.583 \\ 71.561}}^{\text {P/ }}$									
			a						(119				H	a		1			F	val2	
	$\stackrel{H}{\text { H2 }}$	H	a				${ }_{\text {R }}^{\text {R82 }}$		Gly		Intrat orientatio	$\stackrel{H}{\text { H1 }}$	H	a		$\llcorner$				val1	
Final Oreentation				$\begin{aligned} & \text { LB1 } \\ & \text { RS2 } \end{aligned}$				${ }_{\text {R82 }}^{\text {R82 }}$	${ }_{c}^{182}$		flial Oorentai	$\stackrel{\text { s1 }}{2}$			$\begin{aligned} & \text { Lis } \\ & \text { LNH } \end{aligned}$						
	-00.906																				
${ }_{\substack{\text { van der Wals } \\ \text { eiecrossaic }}}^{\substack{\text { a }}}$											vonder wals	¢									
AEs	110299																				
	-										des	-									
Intula orieratic	$\stackrel{\text { \% }}{\text { R }}$	+	a		1	v	${ }_{\text {L }}^{6}$	F			Intial Orenentaio	$\stackrel{\text { H2 }}{\text { H }}$	H	a	k	ᄂ	v	$\underset{\text { R82 }}{\text { f }}$	F		
final Orematator	${ }^{882}$			$\underset{\substack{\text { Resi } \\ \text { RNH }}}{ }$							Final Orenenation										
Total ferery	11999										Totat Enersy	${ }^{3327}$									
Ven der Wails	${ }^{225668}$																				
${ }_{\text {AEs }}$	57332										AEs										
	-											${ }_{\substack{0.147 \\ \text { 0. } \\ 0.58}}$									
Intutal orieratic	$\stackrel{H}{\text { cs }}$	H	a	*	1	$v$		$\underset{\text { k }}{1 \times 2}$				$\stackrel{\text { R }}{\text { R }}$	н	a	k	$\stackrel{1}{2}$	$v$	F		L428	
final orematioc		${ }_{\text {cher }}^{\text {cher }}$		$\stackrel{152}{2}$	${ }^{\text {日в2 }}$	${ }^{882}$		${ }_{\text {Ls }}^{162}$			Ffral Orenenation	${ }_{\substack{\text { Res1 } \\ \text { R52 }}}^{\text {ar }}$			${ }_{\text {est }}$	ns1				${ }^{51}$	
	$\begin{aligned} & \text { B1 } \\ & \text { Res } \\ & \text { RB } \end{aligned}$																				
											Total Energy										
AEs																					
											AEs										
	H	H	a	к	$\llcorner$	v	F	F	4423			H	н	a	k	1	v	F	F	L428	
	${ }_{\text {L82 }}^{\text {L18 }}$				Ls			${ }_{\text {Res }}^{\text {R }}$	RS2		Intitil orinetato	${ }_{\text {L }}^{\text {L1 }}$			Ls				${ }_{\text {ara }}^{\text {R81 }}$	Rs1	
	$\underset{\text { cs }}{\substack{\text { c2 }}}$			s2	si				Rs1							$\underset{\substack{\mathrm{LS} \\ \text { L81 }}}{\mathrm{LB}}$					
Van der Wails eictrostatic	${ }_{\text {82176 }}^{\text {812374 }}$										ven der Wals	(78013									
AEs											AEs										
	$\underset{\substack{-13562 \\ \text { 121481 }}}{1}$											coill									
	L81	H	a	k	$t$	$v$	F		Gry	Trr10		${ }_{\text {H }}^{\text {H2 }}$	H	a	k	$\checkmark$	$v$	F	F	val2	$4{ }_{4} 28$
					RNH					${ }^{\text {Ls }}$		$\underbrace{}_{\substack{\text { Ras } \\ \text { Res } \\ \text { RS1 }}}$			${ }^{882}$	${ }_{\text {as1 }}$			${ }_{1}^{181}$	$5_{1}$	${ }_{5} 5$
	${ }_{\substack{\text { R81 } \\ \text { R81 }}}^{\text {81 }}$																				
	${ }_{\text {LSt }}^{\text {LTH }}$																				
	${ }_{-1+12}$																				
	.62082										Total feregy										
Vender vals											ven der Wals										
AEs																					
											AES	,									
Orientasic	$\stackrel{\text { H }}{\text { R81 }}$	+	a	к	$\downarrow$	v	F		L428			$\stackrel{\text { H }}{\text { H2 }}$	H	a	k	$\llcorner$	$\checkmark$	F		4528	
final orenentiod	$\underbrace{\text { Ras }}_{\text {Ras }}$			${ }^{\text {R82 }}$	s1			${ }_{\text {L182 }}^{152}$	$\stackrel{15}{42}_{2}$		fmal orenemation				${ }_{\text {LTS }}^{\text {LTH }}$					${ }^{\text {RS1 }}$	
	${ }_{\substack{\text { Ren } \\ \text { Res }}}^{\text {Res }}$								${ }_{162}^{2}$						${ }_{\text {RSt }}$						
	${ }_{7}^{-555.21}$										Totat feresy	${ }_{\text {- }}^{\text {-3829 }}$									
Van der vais												${ }_{\text {83, }}^{83421}$									
Ass	${ }^{122545}$										AEs										
	- 119.828											-									
Intutal orientasic	$\stackrel{H}{\text { H1 }}$	+	a	${ }^{\kappa}$	$\llcorner$	$v$	F	R R ¢			Intital Orientatio	$\xrightarrow[\text { Rst }]{\text { R }}$	H	a	k	$\downarrow$	$v$	F		val2	${ }^{\text {v } 28}$
Final Orematator	${ }_{\text {Lsi }}^{\text {L81 }}$										Final orenetation	${ }_{\text {RS1 }}$			${ }_{\text {Rest }}^{\text {RSt }}$					182	$\underset{\substack{182 \\ \text { ch2 }}}{18}$
	LWH																				
Total enery											Totat enery										
vender Wais											${ }_{\text {van der Wals }}^{\substack{\text { van derosatic }}}$	${ }_{\text {8, }}^{\substack{\text { 25888857 }}}$									
AEs	87.082										AEs	103.89									
	$\underbrace{\substack{\text {-8887 } \\-8281}}_{\text {- }}$																				
Intual orematac	$\underset{\text { H }}{\substack{\text { H }}}$	H	a	k		v	F				Intral orientato	$\xrightarrow{\text { n } 52}$	H	a	k	L	$\checkmark$	F			
Frina Orenentator	$\frac{152}{2}$			${ }_{152}^{181}$	${ }^{181}$			${ }_{\text {R82 }}^{\text {R82 }}$	${ }_{\text {Re82 }}^{\text {R82 }}$		Final orientation	${ }_{\text {s52 }}$			${ }_{\text {ns2 }}$	ns2					
	${ }_{\text {Ls }}$			${ }_{\text {CH2 }}$								${ }_{\text {RS1 }}^{2}$			$\stackrel{2}{151}$						
Total Energy	${ }^{-63.762}$										Total ferery										
												${ }_{\text {82021 }}^{831295}$									
AEs	${ }^{133.103}$										AEs	${ }^{131.811}$									
	${ }_{\text {che }}$											${ }_{\text {- }}^{\text {-131072 }}$									
		н	a	k	1	v	F		Tr10			$\stackrel{\text { H }}{\text { H2 }}$	H	a	k	$\checkmark$	$v$	F			
		${ }_{\text {R }}^{\text {R }}$ -						(182	${ }^{882}$						${ }_{\text {ns2 }}$	182					
				${ }_{\text {Lix }}^{\text {Lix }}$	$\begin{aligned} & \text { RB1 } \\ & \hline \text { LB1 } \end{aligned}$																
Totat Energy																					
${ }_{\substack{\text { van der Wais } \\ \text { electrosatic }}}$											con	${ }^{82303}$									
AEs	- 1372688										AEs										
	${ }^{-2188876}$											${ }^{\text {-93,133 }}$									
Orentatic	$\stackrel{H}{\text { L1 }}$	H	a	k	$\stackrel{L}{\text { R }}$	$v$	F	F			Irenta	н	+	a	k	$\downarrow$	$v$	F	F		
Final Orientation	${ }_{\text {LS }}^{51}$							Rs1	L1	$\begin{gathered} \text { RS2 } \\ \text { RS1 } \end{gathered}$	final Ofientation										
vander Wals	(79.421										van der Waals										
AEs	${ }_{\substack{141553 \\ 1.236}}$										AEs	${ }_{\text {cher }}^{6931}$									
												-									


Initial Orientation	${ }^{\text {H }}$	${ }_{\text {H }}^{\text {H }}$	a	k	$\stackrel{L}{\text { RB1 }}$	v	F	F					H	${ }_{\text {LS }}^{\text {L }}$	a	k	$\stackrel{\text { R }}{\text { R1 }}$	$v$	F	F	Lys28		
Intinal Orientation	RS1	${ }_{\text {LB1 }}$			${ }_{\text {RS1 }}$							Fininal Orientation		Ls1			cs	Ls1			RS1		
	2	RB1*			RNH																		
	RB1	$\mathrm{cs}^{\text {c }}$																					
		${ }^{*}$ - ${ }_{\text {CH2- }}$ -																					
		Ls1											-19.925										
Total Energy	-2.71 83.765											Total Energy	${ }^{-19.925}$										
electrostatic	-259.134											electrostatic	277.919										
$\Delta \mathrm{Es}$	-72.112											AEs	-89.266										
	-12.073												-7.588										
	-68.241												87.026										
	H	H	a	k	1	$v$	F	F	Ala21	Gly25	Lys28		H	H	a	k	L	v	F	F	Tyr10	Ala21	Lys28
Initial Orientation		${ }_{\text {RS2 }}$			L81							Initial Orientation		${ }^{\text {LS }}$			${ }^{\text {R81 }}$						
Final Orientation		RS2			L81	RS2		Ls2	LB2	L82	L82	Final Orientatior	152	LS2			RS2			RS2	LB2	cs	RS1
					cs				LS2		- CH 2.			- $\mathrm{CH}_{2}$ -			cs						RS2
																	L81						
Total Energy	-19.689											Total Energy	-62.359										
van der Waals	73.923											van der Waals	77.452										
electrostatic	-265.45											electrostatic	-308.691										
$\triangle$ Es	-89.03											SEs	${ }_{-181386}$										
	-74.557												-117.798										
	H	H	a	к	1	v	F	F	Glu11				H	H	a	к	L	v	F	F	Tyr10		
Initial Orientation		${ }^{\text {RB2 } 2}$			L81							Initial Orientation		${ }^{\text {LB1 }}$			R82						
Final Orientation		RB2			LB1				RB2			Final Orientatior	RS1	${ }^{\text {LB1 }}$	Ls1		RB2				RS1		
														R81									
Total Energy	${ }^{12.423}$											Total Energy	1.488										
van der Waals	-90.594											vander Waals	${ }^{80.227}$										
electrostatic	-246.221											electrostatic	246.967										
$\Delta \mathrm{Es}$	-56.918											AEs	-67.853										
	-5.244												${ }^{15.611}$										
	-55.328												-56.074										
	${ }^{\text {H }}$		a	k	$\stackrel{L}{\text { RB2 }}$	$v$	F	F	Tyr10	$G 111$			H	$\stackrel{H}{\text { Rs2 }}$	a	к	$\stackrel{\text { L }}{\text { L } 21}$	v	F	F			
(intital Orientation	RS1	LS1 L81			${ }_{\text {RB2 }}^{\text {RB2 }}$	LB2			cs	LS1		$\underset{\substack{\text { and }}}{\text { Intial Orientation }}$ Final Orientation	Ls2	${ }_{\text {RS2 }} \mathrm{R}$ R2	RB2		${ }_{\text {LB2 }}^{\text {LE }}$						
	2	LNH			RS1					- CH2- $^{\text {- }}$			2	RS2			LS2						
	RB1	LS1			RNH																		
					RB1																		
Total Energy	-16.451											Total Energy	-1.717										
${ }_{\text {van der Waals }}^{\text {velectrotatic }}$	79.561 -266.042											van der Waals electrostatic	86.488 .260 .365										
$\triangle \mathrm{Es}$	-85.792											AEs	-71.058										
	-16.277												-9.35										
	.75.149												69.472										
Initial Orientation	${ }^{\text {H }}$	$\underset{\text { LB2 }}{\text { H }}$	a	k	$\stackrel{\text { RB2 }}{ }$	$v$	F	F	Glu11			Initial Orientation	H	$\stackrel{\text { R }}{\text { R } 2}$	a	k	$\stackrel{\text { L }}{\text { L } 2}$	v	F	F	Glu11		
Final Orientation		LB2							LB2			Final Orientation		R82							RB2		
		LS2												R82									
														RS2									
														- CH2-									
Total Energy	48.225 90.679											Total Energy	30.482 88.155										
electrostatic	${ }_{-208.211}$											electrostatic	${ }_{-226.179}$										
$\triangle \mathrm{Es}$												$\Delta \mathrm{Es}$											
	-5.159												${ }^{-7.683}$										
	-17.318												35.286										
	H		a	$\kappa$	1	v	F	F	Tyr10				H	H	a	k	L	v	F	F			
Initial Orientation		cs				L81						Initial Orientation		cs				RB1					
Final Orientation		cs				cs			RS1			Final Orientation		cs			RS1	R81					
												Total Energy	35.535					RS1					
van der Waals	89.197											van der Waals	89.543										
electrostatic	-212.143											electrostatic	${ }^{221.813}$										
$\triangle \mathrm{Es}$	-26.172											$\triangle \mathrm{Es}$	-33.806										
	-6.641												${ }^{6.295}$										
	-21.25												-30.92										
	H	H	a	k	ᄂ	$v$	F	F					H	H	a	k	ᄂ	v	F	F			
Initial Orientation		LB1				RB1						Initial Orientation		RB1				L81					
Final Orientation		Ls1	Ls1			cs						Final Orientation		RS1	RS1			cs					
Total Energy	60.809											Total Energy	48.306	R81									
van der Waals	90.591											van der Waals	90.239										
electrostatic	-197.759											electrostatic	208.562										
$\triangle \mathrm{Es}$	-8.532											$\Delta \mathrm{Es}$	21.035										
	-5.247												-5.599										
	-6.866												-17.669										
	H	H	a	k	1	$v$	F	F					H	H	a	k	$\llcorner$	$v$	F	F			
Initial Orientation Final Orientation		${ }_{\text {RS1 }}^{\text {RS1 }}$				$\underset{\text { LB1 }}{\text { LB1 }}$						Intial Orientation Final Orientation		${ }_{\text {LS1 }}^{\text {LS1 }}$				R81					
Final Orientation		${ }_{\text {R }}^{\text {RS1 }}$ R	RS1									Final Orientation		${ }_{\text {L81 }}^{\text {LE1 }}$									
Total Energy	${ }^{28.338}$											Total Energy	57.508										
van der Waals electrostatic	-231.463											van der Waals	90.715 -199.601										
$\triangle \mathrm{Es}$	-41.003											AEs	-11.833										
	-8.187												${ }^{5.123}$										
	-40.57												-8.708										
	${ }^{\text {H }}$	${ }_{\text {H }}$	a	к	1	v	F	F	Tyr10				H		a	к	$\llcorner$	V	F	F	G1u22		
Initial orientation		${ }_{\text {RS2 }}^{\text {RS2 }}$				L81			R82			$\xrightarrow{\text { Intital Orientation }}$ Final Orientation		${ }_{\text {LS }}^{\text {LS }}$				R81			cs		
	${ }^{17.3}$											Total Energy	50.07										
${ }_{\text {van der Waals }}^{\substack{\text { velectrostatic }}}$	89.417 -241.995											van der Waals	${ }_{-20.576}$										
electrostatic	-241.995											electrostatic	208.731										
$\triangle \mathrm{Es}$	-52.041											AEs	-19.271										
	-5.1.102												- $\begin{array}{r}-1.7262 \\ -17.838\end{array}$										



	H	H	a	k	L	$v$	F	F	Ly 528		H	н	a	к	L	v	F	F	
Initial Orientation				cs	RB1					Final Orientatior				cs	LB1				
Final Orientatior	LS1			Ls1	RS1			RB1	RS2		L81			RS1	LS1			RS1	
				LB1				cs			LS1			cs	LB1				
								RS1			LS2			-CH2-					
								RS2			cs			RB1					
														RS2					
Total Energy van der Waals	$\begin{array}{r} -48.47 \\ 88.07 \end{array}$									Total Energy van der Waals	$\begin{gathered} -50.239 \\ \hline 81.169 \end{gathered}$								
electrostatic	$-303.75$									electrostatic	${ }_{-300.455}$								
-Es	-117.811									$\Delta \mathrm{Es}$	-119.58								
	-15.768										-14.669								
	-112.857										-109.562								
	H	H	a	k	L	v	F	F			н	H	a	k	L	v	F	F	
Initial Orientation Final Orientatior				RB1	L81					Initial Orientation				L81	RB1				
	RS2			RS1	cs									L81	RS1			cs	
	cs				RB1									LS1	RB1				
	R81				RS1									- $\mathrm{CH} 2-$					
Total Energy	-34.195									Total Energy	-7.175								
	86.786									van der Waals	87.066								
electrostatic	-285.656									electrostatic	$-263.3$								
$\triangle \mathrm{Es}$										$\Delta \mathrm{Es}$									
	- $\begin{array}{r}-103.536 \\ -9.052 \\ \hline\end{array}$									QEs	-76.516 -8.72								
	-94.763										-72.407								
	н	н	a	k		v	F	F			H	H	a	k		v	F	F	Lys28
Initial OrientationFinal Orientation				RS1	LB1					Initial Orientation				Ls1	RB1				
				RS1	cs			RS1						LS2	Ls1			LB1	RS2
														2				cs	
														${ }^{\text {LS1 }}$					RS1
														- $\mathrm{CH}^{2-}$					
Total Energy	3.608									Total Energy	-69.143								
van der Waals	${ }^{92.176}$									van der Waals	78.185								
electrostatic	-254.844									electrostatic	-317.423								
$\Delta \mathrm{Es}$	-65.733									$\Delta \mathrm{Es}$	-138.484								
	-3.662										-17.653								
	-63.951										-126.53								
	H	H	a	K	L	v	F	F			н	H	a	k	1	v	F	F	Lys28
Initial OrientationFinal Orientatior				RS2	LB1					Initial Orientation				LS2	RB1				
	LS2			RS2	L81			RB1		Final Orientatior	L81			LS2	RB1			RS2	RB2
				2	L51			RS2			LS2				RS1				RS2
								RS1			LS1								2
								cs											
Total Energy	-52.386   99773									Total Energy	-39.953   82806								
van der Waals electrostatic	79.773 -297.078									van der Waals	82.806 -322.053								
	-297.078									electrostatic	${ }^{-322.053}$								
$\triangle \mathrm{Es}$	-121.727									4Es	-109.294								
	-16.065										$-13.032$								
	-106.185										-131.16								
	H	H	a	K	1	v	F	F			H	H	a	k	1	v	F	F	Lys28
Initial Orientation				RB2	LB1					Initial OrientationFinal OrientatiorRB2				RB1	LB2				
Final Orientatior	${ }^{\text {RB1 }}$			RS2	152									RS2	LS2			LS2	LS1
	RS2	- ${ }_{\text {CH2- }}$ -																	152
		${ }_{-}^{\text {LS } 22}$																	
		-CH-																	
Total Energy van der Waals	-40.782 81.424									Total Energy van der Waals	-68.14 77.03								
van der Waals electrostatic	81.424 -288.41									van der Waals electrostatic	77.03 -315.116								
$\triangle \mathrm{Es}$	-110.123									AEs	-137.481								
	-14.414										-18.808								
	-97.517										-124.223								
	H	H	a	k	L	$v$	F	F			H	н	a	K	L	v	F	F	Lys28
Initial OrientationFinal Orientation				LS2	RB2					Initial OrientationFinal Orientatior				RS2	LB2				
				LS2	RS2						RB2			RS2	RB1			LS2	
					RB2						RS1			RB1					LS2
											RNH								
Total Energy	-18.752									Total Energy	-73.585								
van der Waals	${ }^{87.046}$									van der Waals	${ }^{71.756}$								
electrostatic	-271.267									electrostatic	-314.61								
$\Delta \mathrm{Es}$	$-88.093$									$\Delta \mathrm{Es}$	-142.926								
	$-8.792$										${ }_{-}-24.082$								
	$-80.374$										-123.717								
	H	H	a	k	L	v	F	F	Lys28		H	H	a	K	L	v	F	F	Lys28
Initial OrientationFinal Orientation				LB2	RB2					Initial Orientation				RB2	LB2				
				LB1				RB1	RS1	Final Orientatior	RB1			RS2	LB1				LB2
				LNH					3					RB1	RB1				LS2
				LS2										RNH					
				- CH2-															
Total Energy	-42.684									Total Energy	-39.588								
van der Waals	84.36									van der Waals	82.574								
electrostatic	-293.107									electrostatic	-288.247								
-Es	-112.025									AEs	-108.929								
	-11.478										-13.264								
	-102.214										-97.354								
	H	H	a	k	L	$v$	F	F			н	H	a	K	1	v	F	F	Lys28
Initial OrientationFinal Orientatior				LS2		${ }_{\text {R }}^{\text {RB2 } 2}$				Initial OrientationFinal Orientation				$\stackrel{\text { LB2 }}{\text { LS2 }}$		RB2			
	RS2	${ }_{\text {- }}^{\text {RS2 }}$ -		${ }_{\text {LS2 }}^{\text {LSH }}$										${ }_{\text {L L }}^{\text {L82 }}$	${ }_{\text {LS2 }}^{\text {L81 }}$			LS1 LNH	RS1 R81
		R82		L81														L81	
		-CH2-																	
Total Energy van der Waals	-52.335   74.538									Total Energy van der Waals	-37.662 85.084								
										van der Waals electrostatic	${ }_{\text {c }} 8.088$								
$\triangle \mathrm{Es}$	-121.676 -21.3									$\Delta \mathrm{Es}$	-107.003								
											-10.754 -96.107								




Gas phase results of solapsone and the 1AML conformer of A $\beta$

	H	H	Q	k	Tyr10	Leu17	lle31			H	H	a	к	Tyr10	Ala30	Ile31
Initial Orientatior	LB1	cs							Initial Orientatio	cs	LB1					
Final Orientation	LS1	cs			RB1	cs	LS1		Final Orientation	RB1	LS1			cs	RS1	RS1
	LB1	RB1					LB1			Cs	LB1			LS2		
		RS1					cs			RS2				LB1		
Total Energy	141.601								Total Energy	128.155						
van der Waals	113.753								van der Waals	108.913						
electrostatic	-222.828								electrostatic	-232.366						
$\Delta \mathrm{Es}$	-125.184								$\Delta \mathrm{Es}$	-138.63						
	-18.11									-22.95						
	-113.101									-122.639						
	H	H	Q	k	Tyr10	Leu17	lle31	Met35		H	H	a	k	Tyr10	Leu17	11 e 31
Initial Orientatior	cs	RB1							Initial Orientatio	RS1	cs					
Final Orientation	LB1	RS1		LS2	LS1	RB1	cs	RS2	Final Orientatior	RS1	LB1			RS2	RS1	RS1
	LS2			- $\mathrm{CH} 2-$		RS1	RB1			RS2	LB1			cs		
	LS1						RS2				LS1					
	RB1										LNH					
											RB1					
Total Energy	94.318								Total Energy	113.581						
van der Waals	109.47								van der Waals	113.63						
electrostatic	-265.249								electrostatic	-249.063						
$\Delta \mathrm{Es}$	-172.467								$\Delta \mathrm{Es}$	-153.204						
	-22.393									-18.233						
	-155.522									-139.336						
	H	H	Q	k	Tyr10	Leu17	lle31			H	H	a	k	Tyr10	Leu17	lle31
Initial Orientatior	cs	RS1							Initial Orientatio	cs	LS1					
Final Orientation	LS1	RS1			RS1	RS1	RS2		Final Orientation	LB1	LS1			RS2	LS1	LB1
	LNH	RB2								cs				LS1		
	LB1									LS1						
	RS1															
Total Energy	88.354								Total Energy	131.421						
van der Waals	115.515								van der Waals	114.396						
electrostatic	-273.129								electrostatic	-225.763						
$\triangle \mathrm{Es}$	-178.431								$\Delta \mathrm{Es}$	-135.364						
	-16.348									-17.467						
	-163.402									-116.036						


Initial Orientatior	$\stackrel{H}{\text { Lis }}$	$\xrightarrow{\text { cs }}$	a	k	Sers	${ }^{10}$			Initial Orientatio	$\underset{\text { RS2 }}{\text { R }}$	$\stackrel{H}{\text { H }}$	Q	k	Tyr10	He31		
Final Orientation	Ls1	${ }^{\text {R81 }}$			RS1	Ls1			Final Orientatior	R52	${ }_{\text {L } 181}$			${ }^{152}$	${ }^{\text {cs }}$		
		${ }^{\text {RNH }}$									${ }_{\text {LS }}$ 2			RS2	${ }^{\text {R81 }}$		
		RS1									${ }^{151}$			R82	RS1		
Total Energy	153.364								Total Energy	91.679							
	${ }^{1224.57}$								van der Wals	- 1028.876							
AEs	${ }^{113,421}$								AEs	${ }^{-175.106}$							
	$\begin{array}{r}-7.293 \\ \hline 11605\end{array}$									-28.887 -150.3							
	${ }^{111.605}$																
	H	H	a	k	Tyr10	Al330	He31	Leu34		н	H	a	k	Tyr10	Val12	Leu17	He31
${ }_{\text {In }}$ Intial Orientation	${ }_{\text {cs }}^{\text {cs }}$	${ }_{\substack{\text { RS2 } \\ \text { RS2 }}}$				L52	L52		$\underset{\substack{\text { Intita Orientatio } \\ \text { Final Orientation }}}{ }$		${ }_{\text {L }}^{\text {L } 22}$		RS2	LB2		L52	
	${ }^{\text {cs }}$				${ }_{\text {RB1 }}$			${ }_{\text {L2 }} 18$		${ }_{\text {RS2 }}$			${ }_{-}^{\text {CH2 } 2 .}$	152	$\mathrm{c}=0$		${ }_{\text {LB1 }}^{\text {L81 }}$
										${ }_{\text {L81 }}^{\text {L82 }}$							
$\xrightarrow{\text { Total Energy }}$ vander Wals	128.72 10793								Total Energy vander Wals	${ }^{85313} 10.596$							
electrostatic	-229.8								electrostatic	${ }_{-268.431}$							
AEs	138.513								AEs	${ }^{181.472}$							
										-23.267 158.704							
	H	H	a	k	Tyr10	Leu17	Me33			н	H	a	k	Tyr10	Leu17	Leu34	
${ }_{\text {In }} \begin{aligned} & \text { Intital Orientation } \\ & \text { final Orientation }\end{aligned}$	$\xrightarrow{152}$	${ }_{\text {cs }}^{\text {cs }}$			${ }_{5} 5$	L52	RS2		$\pm \begin{aligned} & \text { Intital Orientatio } \\ & \text { Final Orientatior }\end{aligned}$	${ }_{\text {R81 }}^{\text {R1 }}$	${ }_{\text {L81 }}^{\text {L1 }}$			LS2	L1	R82	
		${ }_{181}$			${ }_{\text {Ls }}$					${ }_{\text {R81 }}$	${ }_{\text {LB2 }}$			${ }_{\text {L51 }}{ }_{\text {LS }}$		R82	
										RNH	Ls1			${ }^{181}$			
										R51							
Total Energy	${ }^{157.065}$								Total Enersy	106.999							
van der Wals	$\underset{-205.955}{115.35}$								van der Wals								
${ }^{\text {ats }}$	-109.72								AEs	159.786							
	- ${ }_{\text {- }}^{\text {-96.238 }}$									-							
	$\stackrel{\text { H }}{\text { H1 }}$	$\underset{\substack{\text { R } 81}}{\text { R }}$	a	k	Tyr10	11631				$\stackrel{H}{\text { H }}$	181	a	k	Ty10	Leu17	He31	
	${ }_{\text {L81 }}^{\text {L81 }}$	${ }_{\text {Re1 }}^{\text {R81 }}$				cs			Intinarinentatio	${ }_{\text {RS1 }}$	${ }_{\text {L81 }}^{\text {L81 }}$			${ }^{\text {R81 }}$	RS1	RS1	
	${ }_{\text {L181 }}$				${ }_{\text {RNH }}^{\text {RNH }}$					RS1	${ }^{151}$			cs			
	LWH										2						
Total Energy	${ }^{162.29}$								Total Energy	124.873							
${ }_{\text {l }}^{\text {van der Wals }}$	${ }_{-204.363}^{11.196}$								van der Waals electrostatic	${ }_{\text {210, }}^{119.455}$							
	${ }_{\text {-15.667 }}^{104.156}$								AEs	${ }_{-12.41088}^{14.912}$							
	${ }^{\text {-94.636 }}$									${ }_{130} 12.725$							
	н		a	k	Tyr10	Val12						a	к	Sers	Tyr10	Leu17	\|e31
Intital Orientatior	${ }^{181}$	Rs1							Intital Orientratio	Ls1							
Final Orientation	$\stackrel{\text { L81 }}{\text { LS1 }}$	${ }^{\text {RS1 }}$			${ }_{\substack{\text { Re1 } \\ \text { RS1 }}}$	Ls1			Final Orientatior	${ }_{\text {L }}^{\text {LSH }}$	${ }_{\substack{\text { R81 } \\ \text { R81 }}}$			${ }^{\text {R82 }}$	L52	L81	${ }^{1} 1$
	${ }_{\text {L }}$ L2				${ }_{\text {RSN }}^{\text {RSI }}$						${ }_{\text {R8N }}^{\text {R }}$						
											Rs1						
	${ }^{125.642}$									133.63							
vander Wals	-								van der Wals electrostatic	113.588 -23.053							
AEs									AEs	133.155 -1825 -120							
	-16.191 134.028									${ }^{-182.25}$							
	H	${ }_{\text {H }}^{\text {H }}$	a	k	Trr10	eu17				H	${ }^{\text {H }}$	a	k	Tyr10	Leu17	He31	
Intital Orientation	${ }^{\text {R81 }}$								Intial Orientatio	${ }^{\text {L81 }}$							
Final Orientation	${ }_{\text {R81 }}^{\text {R81 }}$	${ }_{\text {L }}^{\text {L5 }}$			${ }_{\text {R81 }}^{\text {cs }}$	LS1			Final Orientation	${ }_{\text {L81 }}^{\text {L82 }}$	${ }_{\text {R } 822}^{\text {R } 22}$		${ }_{\text {cher }}^{\text {ch2 }}$	${ }_{\text {R }}^{\text {R } 12}$	R52	R82	
					${ }_{\text {L151 }}^{\text {L1 }}$					${ }_{\text {R81 }}^{\text {R82 }}$							
	$\stackrel{\text { RNH }}{\text { LS }}$									R52							
Total Enerey																	
Total Energ vander Wais	271								Energ	112.594							
len	-268.094								denectrsatatic	-24.3017							
AEs									AEs								
	${ }_{-174.214}^{-229}$								AEs	${ }_{\text {-25.134 }}$							
	156.27									133.29							
			a	k	Tyr10	He31	Me35					a	k	Tyr10	Leu17	Va118	Ala21
Intital Orientatior	${ }^{\text {RS2 }}$	${ }^{181}$							Initial Orientatio								
Final Orientation	RS2	${ }^{152}$			${ }_{\substack{\text { R82 } \\ \text { R2 }}}$	${ }_{\text {R81 }}^{\text {R81 }}$	cs		Final Orientatior	${ }_{182}^{182}$	${ }_{\text {R81 }}$			Ls1	L52	${ }_{\substack{\text { RS2 } \\ \text { R82 }}}$	R82
											$\underset{\text { RNH }}{\substack{\text { LS2 }}}$						
											Rs2						
Van der Wais	-115.656								van der Wals electestatic	. 112.2972							
	-237.171																
AEs									AEs	169.207							
	-16.207									-18.891							
	127.449									151.724							
			a	k		val12		He31				a	k	Tyr10	Leu17	18	Ala21
Intital Orientratio	R81	${ }_{\text {L }}^{15}$	a						Intital Oreneratio	${ }_{\text {RB2 }}$	L81	a					
Einal Orientation	R22	${ }_{\substack{182 \\ 152}}^{\text {L2 }}$		- ${ }_{\text {chs }}^{\text {CH2 }}$	${ }_{152}^{182}$		${ }^{152}$	Ls1	Final Orientation	${ }_{\text {R82 }}^{\text {R } 2}$	$\underset{\text { L81 }}{\substack{\text { L81 }}}$				${ }_{\text {cien }}^{\text {RS2 }}$	LB2	L82
						$\begin{aligned} & \text { C=0 } \\ & \text { RB2 } \end{aligned}$					${ }_{\text {L81 }}^{182}$			$\underset{\text { RNS }}{\text { RNH }}$			
	R81										${ }_{\text {L }}^{\text {L }}$ RH1			${ }^{\text {R82 }}$			
											${ }_{\text {RS2 }}$						
									Total Enersy								
vander Wals	109.19								vander wals	${ }_{\text {l }}^{1057.741}$							
electrostatic	-271.806																
$\triangle \mathrm{Es}$	179.199								AEs	178.867							
	-22229 162079																
			a	k	Tyr10	Leu17	Phe20	He31				a	к	Tyr10	Leu17	He31	
Intital Orientation	${ }^{\text {L81 }}$	${ }^{\text {R82 }}$							Intital Orientatio	${ }^{\text {R81 }}$	${ }_{1}^{182}$						
Final Orientation	$\underbrace{\substack{\text { L81 } \\ \text { B1 }}}_{\text {cle }}$	R82		[182	${ }_{\text {R82 }}^{\text {R } 22}$	${ }_{\text {R81 }}^{\text {R81 }}$	${ }^{182}$	${ }_{\text {R81 }}^{\text {R81 }}$	Final Orientation	${ }_{\text {L81 }}^{\text {L81 }}$	L52		$\begin{aligned} & \text { RB2 } \\ & \text { RS2 } \end{aligned}$	${ }_{\text {L81 }}^{\text {L82 }}$	L52	Ls	
	${ }^{15} 2$			- $\mathrm{CH}_{2}$						${ }_{\text {R81 }}$				${ }_{182}$			
										S1							
Total Energy	82.454								Total Enersy	90.053							
van der Wails	$\underset{-272631}{10724}$								van der Waals electrosatic	${ }_{-267.29}^{111041}$							
									AEs								
										(120.322							


Initial Orientation			a	к	Tyr10	Leu17			Initial Orientatio			a	k					
Final Orientation		$\stackrel{\text { L81 }}{\text { RS2 }}$			${ }_{152}^{182}$	${ }^{181}$	R82	${ }_{\text {L81 }}^{\text {L81 }}$		${ }_{\text {R82 }}$	${ }_{\text {LS }}^{\text {L5 }}$			${ }_{\text {L82 }}^{152}$	LS2	${ }_{\text {cs }}^{\text {cs }}$		
Total Energy	12934								Total Energy	118.153								
vanderWails	118.303								vander Waals	113.636								
electrostatic									electrostatic									
AEs	${ }^{-137.45}$								AEs									
	$\begin{array}{r}\text {-13.56 } \\ \hline 13.788\end{array}$									${ }_{\substack{18.277 \\ 134788}}$								
	H	H	a	k	Sers	Tyr10	Leu17	He31		H	H	a	к	Tyr10	val2	Leu17	He31	Mer35
Initial Orientatior	${ }^{152}$	R52							Intital Orientatio	${ }_{\text {R82 }}$	${ }_{1}^{152}$							
Final Orientation	$\stackrel{\text { L }}{151}$	${ }_{\substack{\text { R52 } \\ \text { R82 }}}$			RS2	$\begin{aligned} & \text { LL1 } \\ & \hline \text { L81 } \end{aligned}$	152	(182	Final Orientatior	${ }_{\substack{\text { R88 } \\ \text { R81 }}}$	$\underset{\text { cke }}{\substack{182 \\ 152}}$			L52	R82	${ }_{5} 2$	Ls1	${ }_{\text {Lis }}^{\text {L1 }}$
						cs				${ }_{\text {R82 }}$								
Total Energy	102539								Total Energy	100.525								
${ }_{\text {l }} \begin{aligned} & \text { van der Waals } \\ & \text { electrostaic }\end{aligned}$	${ }_{-2512.396}^{112.36}$								van der Wals electrosatic a	${ }_{-259332}^{11295}$								
AEs	1626																	
	-19.507									${ }^{109.568}$								
	-148.172									199.65								
	H	H	a	к	Tyr10	Leu17	Phe20			H	H	a	k	Tyr10	val2	Lenl7	11031	
${ }_{\text {In }}$ Initial Orientatior	${ }_{\text {L }}^{\text {L2 }}$	${ }_{\text {R }}^{\text {R82 } 22}$			RS1	${ }^{182}$	182		$\xrightarrow{\text { Intital Orientatio }}$ final orientatior	${ }_{\text {R82 }}$	${ }_{\text {L }}^{\text {Ls2 }}$				R82	Ls2		
	$\underset{\text { RS2 }}{\substack{\text { L8 } \\ \text { R2 }}}$			$\xrightarrow{\text { L. } 522^{\circ}}$						${ }_{\text {R }}^{\substack{\text { RS2 } \\ \text { RNH }}}$				${ }^{\text {L82 }}$		S	Ls1	
${ }^{\text {Total Energy }}$	79.399   105.496								Total Energy	${ }^{100.095}$								
									vendertratals	${ }_{-253.507}^{112374}$								
AEs	-187.46								AEs	166.38								
	- 2 26.367									19.489 14.78								
Initial Orientation	$\stackrel{\text { H }}{\text { H2 }}$	$\underset{\text { R }}{\text { H } 2}$	a	к	Tyr10				Intital Orientatio	$\underset{\text { R82 }}{\text { H }}$	$\underset{\text { L82 }}{\text { H }}$	a	к	Tyrno				
Final Orientation	${ }^{182}$	${ }_{\text {R82 }}$			152				Final Oriertatior	${ }^{882}$	152			L81				
										RS2				${ }^{\text {R81 }} 1$				
Total Enerey	175.488								Total Energy	${ }^{133.402}$								
Vender vails	${ }_{-200.365}^{12631}$								Vander vals	${ }_{-239.103}^{119.31}$								
$\Delta \mathrm{Ass}$									AEs	133.383								
	- $\begin{array}{r}\text {-5.52 } \\ .91009\end{array}$									(-12.432								
	$\stackrel{\text { H }}{\text { L } 2}$	$\underset{\text { R82 }}{\text { H }}$	a	к	Tyr10	val12	Leu17	He31		${ }_{\text {cs }}$	н	a		Val12				
-		${ }_{\text {R82 }}$		${ }_{\text {LB2 }}^{152}$	Rs1	$\stackrel{\text { Ls2 }}{\substack{\text { coi }}}$	Ls2	RB2		${ }_{\text {cs }}^{\text {cs }}$				${ }_{\text {Rs1 }}$				
	LTH												${ }_{\text {RSIT }}^{\text {RNH }}$					
	Ls2												RB1*					
Total Enerey	${ }^{82081}$								Total Energy	155.141								
${ }^{\text {van der Wals }}$	${ }_{-275.642}^{107931}$								van der Waals electrosatic	-1192964								
AEs																		
	-23,932									112								
	-165.915									102724								
		н	a		val12						н	a						
$\underset{\substack{\text { Intita } \\ \text { Inientatior } \\ \text { Final Orientation }}}{ }$	$\mathrm{cs}_{\text {cs }}$			${ }^{\text {L81 }}$					$\underset{\substack{\text { Intital Orientatio } \\ \text { Final Orientation }}}{ }$	${ }_{\text {cs }}^{\text {cs }}$			${ }_{\text {RS1 }}$					
Final Orientation				Ls1	$\mathrm{ccs}_{\mathrm{c}=0}$				Final Orientatior									
Total Energy	${ }^{203238}$								Total Energy	${ }^{172739}$								
${ }_{\text {l }} \begin{aligned} & \text { vander Wails } \\ & \text { electostatic }\end{aligned}$									${ }_{\text {l }}^{\text {van der Waals }}$	- 130.438								
AEs									AEs									
	-7.887									${ }_{-1.42}$								
										92.135								
		н	a		Val12						н	a		val12				
$\substack{\text { Initial Orientation } \\ \text { final Orientaion }}$	${ }_{\text {Rs1 }}^{\text {Rs1 }}$			${ }_{\text {cs }}^{\text {R81 }}$	RS1				$\underset{\substack{\text { Intial Orientatio } \\ \text { Final Orenetaior }}}{\substack{\text { a }}}$				$\stackrel{\text { Ls1 }}{\text { Lst }}$					
	${ }_{\text {RS2 }}$			cice	RST					cs   cs   RS			$\stackrel{\text { Ls2 }}{\substack{\text { Lis }}}$	${ }^{\text {cs }}$				
										RS1			$\stackrel{\text { cs }}{ }$					
${ }^{\text {Totat Energy }}$	(180.46								${ }^{\text {Totat Energy }}$	131771   120.688			${ }_{-0+}^{\text {CH2- }}$					
venderwais	${ }_{-1230.299}$									- 12.0 .688								
$\triangle \mathrm{Es}$									AEs	135.014								
	-8.564 80.537									-								
		н	a								н	a						
Intital Orientatior	L151			${ }_{\text {cs }}^{\text {cs }}$					Intital Orientratio	Ls2			$\mathrm{cs}^{\text {cs }}$					
	${ }_{\text {L51 }}$								Final Orientatior	เs2			${ }_{\text {RS2 }}$					
													${ }_{\text {L81 }}^{\text {Ls2 }}$					
Total Energy	112.388								Total Energy	130.305			${ }_{\text {- }}^{\text {che }}$ -					
	$\begin{array}{r}118.4 \\ -250.78 \\ \hline\end{array}$								${ }^{\text {van der Wais }}$	${ }_{-248.375}^{12473}$								
AEs									AEs									
	-									(-36.1786								
										$-138.648$								
		н	a		val2						н	a		Tyr10				
${ }_{\text {In }}$ Intial Orientation	${ }_{\text {cs }}^{\text {cs }}$			L52	เs1				$\xrightarrow{\text { Intial Orientatio }}$ Final	${ }_{\text {cs }}^{\text {cs }}$			${ }_{\text {RSs }}^{\text {RS }}$	L52				
	${ }_{\text {Lisi }}^{\text {LS }}$				Lst					${ }_{\text {Ls2 }}^{\text {LS }}$			${ }_{\text {Rs2 }}$	Ls2				
	cs			- CH 2.						Ls1			${ }_{\text {ct }}^{\text {ct }}$					
Total enerey									Total Energy				$\stackrel{\text { - }}{\text { ch2 }}$					
Vender Wails	${ }_{-}^{1233.952}$								van der Waals electrosatic									
AEs	-115.126								AEs	-151.37								
	-113.709									141.04								
Initial Orientation	$\stackrel{\text { H }}{\text { R } 2}$	H	a	${ }_{\text {k }}^{\text {k }}$	val12	Phe19			rientatio	$\stackrel{\text { H }}{\text { L }}$	н	a	$\underset{\text { k }}{\text { k }}$	Phe19				
Final Orientation	${ }_{\text {Rs3 }}$			-181	Rs1	L82			Final Orientatior	Lst			Rst	RS1				
				${ }_{\text {Ls2 }}^{\text {LS } 2}$														
				- CH 2.														
Totat Energy	(100.666								$\underset{\substack{\text { Total Energy } \\ \text { van er Waals }}}{ }$	${ }_{120.091}^{194.922}$								
electrosataic	${ }_{-220959}$									${ }_{-26.665}$								
${ }_{\text {ass }}$	-126.119								AEs									
	-113188									- 11.818 .839								




	${ }_{\text {H }}^{\text {H }}$	H	a	k	$\llcorner$	$\checkmark$	F	F	Arg5	Try10	He31	Met35		H	н	a	к	1	$v$	F	F	Tyr10	Ala21	He31	He32
$\underset{\substack{\text { Initial Orientation } \\ \text { final Orientation }}}{ }$	${ }_{\text {L82 }}^{\text {L82 }}$	${ }^{181}$			L52	${ }_{\text {R } 882}$			R82			cs	$\underset{\substack{\text { Intiala Orientatio } \\ \text { Final Orientatior }}}{\text { a }}$	${ }_{\text {R82 }}^{\text {R82 }}$					182						
Final Orientation	${ }_{\text {L } 52}^{\text {Li } 22}$	${ }_{\text {L181 }}^{\text {LS }}$			Ls2					${ }_{\text {L182 }}^{\text {L5 }}$	${ }^{\text {L81 }}$	cs	Final Orientatior		$\substack{\text { Lex } \\ \text { R81 }}_{\text {en }}$			RS2				RS1	${ }^{182}$	${ }_{\substack{\text { RS2 } \\ \text { R82 }}}$	${ }_{5} 2$
		${ }_{\substack{\text { Re81 } \\ \text { RS2 }}}$																							
Total Energy	100.457												Total Energy	92.363											
vander Wals	- 1006939												$\underbrace{}_{\substack{\text { van der Walas } \\ \text { electrsatic }}}$	111.894 -269366											
AEs	16.3 .38												AEs	177.422											
	- $\begin{gathered}\text {-24.294 } \\ -15388\end{gathered}$													$\underset{\substack{-20.39 \\ .159 .639}}{ }$											
	H	н	a	к	1	v	F	F						H	H	a	k	L	v	F	F	His6	val12		
Initial Orientation	RS1						${ }^{181}$						Initial Orientatio	R82						${ }_{\text {L81 }}$					
Final Orientation	Rs1			${ }_{\substack{\text { L81 } \\ \text { R81 }}}^{\text {cen }}$			$\underset{\substack{\text { Re1 } \\ \text { Ls }}}{ }$	cs					Final Orientation	${ }_{\text {RS1 }}^{\text {R82 }}$						${ }_{\text {L81 }}^{\text {L81 }}$		${ }^{182}$	R82		
				RNH													${ }_{\text {RNH* }}$								
Total Energy	${ }^{177.511}$												Total Energy	151.262											
van der Waals electrostaic	${ }_{\text {120, }}^{114941}$												$\underbrace{}_{\substack{\text { van der Wails } \\ \text { electrostaic }}}$												
AEs	-19.274												AEs	115.523											
	-													(-212968											
		H	a	k	$\llcorner$	$v$	$\stackrel{\text { rex }}{\text { R }}$	F						$\underset{\text { R81 }}{\text { H }}$	H	a	k	$\llcorner$	$v$	$\stackrel{\text { F }}{\text { L }}$	F	val12			
Final Orientation	${ }^{\text {L82 }}$			${ }_{\text {L }}^{\text {NH2 }}$									Final Orientatior	${ }_{\text {Rs1 }}$			${ }_{\text {k }}^{1 \times 1}$					${ }_{\text {RS } 1}$			
				${ }_{-182}^{182}$																					
Total Energy	168.907												Total Energy	173.478											
vand der Wals electrostaic	${ }_{-128.293}^{1288}$												$\underbrace{}_{\substack{\text { van der Wals } \\ \text { electrostic }}}$												
AEs																									
	293													${ }^{15.5056}$											
	10.561																								
	H	H	a	к	$\llcorner$	v	R82	F	Glul1	Val12				H	H	a	к	$\llcorner$	$v$	F	F				
Intial Oientration Final Orientation	${ }_{\text {LSt }}^{\text {LSt }}$			${ }^{181}$			${ }_{\text {R82 }}$		${ }^{\text {R81 }}$	${ }^{181}$			$\xrightarrow{\text { Intial Oientatio }}$ Finalorientatior	${ }_{\text {RS1 }}^{\text {RS1 }}$			R81			${ }_{\text {L82 }}^{182}$	${ }^{181}$				
									c=0	cs							${ }_{\text {Lis1 }}^{\text {L82 }}$				${ }_{\text {cs }}$				
				${ }_{\text {R }}^{\text {R81 }}$																					
${ }_{\text {Total Energy }}$	115.6 118.507													160.42   119.645											
${ }^{\text {van der Wais }}$	${ }_{-254839}$												${ }^{\text {van der Wais }}$	${ }_{-203.803}^{10463}$											
AEs	-151.185												AEs	10.3 .33											
	- ${ }_{\text {- }}^{\text {-135.356 }}$													-12218 -94.076											
	$\stackrel{\text { H }}{\text { Ls }}$	H	a	к	$\llcorner$	$v$		F	Val12						H	a	k	$\llcorner$	$v$	$\underset{\text { F }}{\text { F }}$	F				
- Intial Oientration				$\stackrel{\text { Rs2 }}{ }$			$\underset{\substack{\text { R82 } \\ \text { R82 } \\ \text { R82 }}}{ }$		Ls2											${ }_{\text {L } 82}^{\text {¢82 }}$					
				${ }_{\text {R81 }}^{2}$													${ }_{\text {R }}^{\text {R } \mathrm{CH2} 2}$								
	${ }^{124.179}$													17.297											
van der Wals electrostaic													$\underbrace{}_{\substack{\text { van der Wals } \\ \text { electrstatic }}}$	- ${ }_{\text {124,2 }}$											
	${ }_{-12.556}^{12.656}$												AEs	- $\begin{array}{r}\text { 89,488 } \\ -7.63 \\ \hline\end{array}$											
	${ }^{124.4 .519}$													${ }_{80} 8.363$											
Intital Orientation	$\stackrel{\text { H }}{\text { H2 }}$	н	a	k	$\llcorner$	$\checkmark$	$\underset{\text { R82 }}{\text { F }}$	F	Val2				Intital Orientatio	$\underset{\text { R82 }}{\text { H }}$	H	a	k	$\llcorner$	$v$	$\underset{\text { ¢ }}{\text { F }}$	F	His6			
Final Orientation	${ }_{\text {L } 52}^{\text {L82 }}$			${ }_{\substack{\text { Rs2 } \\ \text { R81 }}}$			${ }_{\substack{\text { RS1 } \\ \text { R82 }}}$	R82	${ }_{\text {Let }}^{\text {L/H }}$				Final Orientation	${ }_{\text {RS2 }}^{\text {R } 2}$						${ }_{\text {LTH }}^{\text {LT }}$		${ }^{182}$			
																	${ }_{\text {L } 101}^{\text {Len }}$								
Total Energy	${ }^{124.332}$												Total Energy	112.38			${ }_{\text {R }}^{\text {CH2 }}$ -								
van der Wals electrostaic	113.258   -236.54													${ }_{\text {247.527 }}^{114}$											
AEs													ass												
	-12.605 -127.737													$\underset{\substack{-177763 \\ \text { 357.24 }}}{ }$											
		H	a	k	$\llcorner$	$v$	F		Ala30	Ne31				${ }_{\text {H }}$	H	a	k	1	$v$	F	${ }^{\text {F }}$	61729	Ala30		
$\underset{\substack{\text { Intial Orientation } \\ \text { final Orientation }}}{ }$	${ }_{\text {Ls }}^{\text {cs }}$				cs			${ }_{\text {R81 }}^{\text {R81 }}$	RS 1	R51			$\xrightarrow{\text { Intial Oientatio }}$	${ }_{\text {csi }}^{\text {cs }}$				RS2			${ }_{\text {R }}^{\text {R82 }}$		R82		
														${ }_{\text {RS1 }}^{\text {RS2 }}$			${ }_{\text {R }}^{\text {R } \mathrm{CH2} 2}$	Rs1				$\mathrm{c}=0$	${ }^{\text {R51 }}$		
														${ }_{\text {Lex }}^{\text {R81 }}$											
van der Wals electrostatic													van der Waals electrostatic	116.994 -26689											
	-122.073   -20202												AEs	${ }_{-149999}$											
	-100.887													${ }_{-159.122}$											
		н	a	k	1	v	F								н	a	к	1	v	F					
Initial Orientation	$\mathrm{cs}^{\text {cs }}$							${ }^{\text {LB2 }}$					Intital Orientatio	L81							${ }_{\text {R81 }}$				
Final Orientation	$\underset{\substack{\text { L81 } \\ \text { cs }}}{ }$			${ }_{\text {L52 }}^{\text {L5 }}$									Final Orientatior												
	139.984												Total Energy												
even derwais	${ }_{-230.755}^{12088}$												${ }_{\text {van der Wais }}^{\text {vecterstic }}$	${ }^{1212.9}$											
SEs													${ }^{\text {ass }}$	${ }^{34.034}$											
	-10.765													${ }^{2} .293$											
														-327											
	H	н	a	к	$\llcorner$	$v$	F		$\mathrm{Cl}^{2} 28$	Al330					н	a	к	$\llcorner$	v	F	F	val12			
(litital Orientation	${ }_{\text {RS1 }}^{\text {R81 }}$							${ }_{\text {L81 }}^{\text {L81 }}$		cs				${ }_{\text {Rs1 }}^{\text {RS }}$							${ }^{181}$	RS1			
	${ }_{\text {R81 }}$								$\mathrm{c}=0$					${ }_{\text {RS2 }}$			${ }_{\text {CH2- }}$								
	${ }_{\substack{23,416 \\ 124.6 \\ \hline}}$												${ }^{\text {Totale ferery }}$	158.871 123.877											
eve $\begin{aligned} & \text { venderwazals } \\ & \text { eletratic }\end{aligned}$	${ }^{124.56}$												van der Wails electrostic	${ }_{-2098}^{123077}$											
SEs	${ }^{43.369}$												AEs	107.914											
	$\begin{array}{r}7.193 \\ \hline 6.888\end{array}$																								
		н	a	к	1	v	F								н	a	к	1	v	F		val12			
$\underset{\substack{\text { Inital Orientation } \\ \text { final Orientaion }}}{ }$	${ }_{\text {Lst }}^{\text {Ls }}$			L81				R81   CS					${ }_{\text {In }}$ Intial Orientatio	${ }_{\text {Ls2 }}^{\text {Ls2 }}$			Rs2				${ }_{\text {R81 }}^{\text {cs }}$	L52			
				${ }_{51}^{151}$										Ls1							${ }_{\text {R81 }}$				
																	*-CH2-								
van der Wails	${ }_{-120.549}^{18.453}$												van der Waals electrosatic	${ }_{\text {- }}^{120.983}$											
AEs	-8.003												AEs												
	76.726													131.136											




	H	H	a	,	$\llcorner$	v	F	F				H	H	a	k	$\llcorner$	v	F	F	Val12
Initial OrientationFinal Orientation				RB2			LB1				Initial Orientation				L81			R82		
				RB2			RB1				Final Orientation	Ls1			Ls1*			RS 1		Ls1
				RS1			cs								LNH+			RB2		$\mathrm{c}=0$
				RNH			LB1								*-CH2-					
															${ }_{\text {R81 }}^{\text {RR1 }}$					
Total Energy	177.444										Total Energy	122.653			RNH					
van der Waals	123.22										van der Waals	115.562								
electrostatic	-191.461										electrostatic	-245.953								
$\Delta \mathrm{Es}$	-89.341										AEs	-144.132								
	$-8.643$											-16.301								
	81.734											136.226								
	H	H	a	k	$\llcorner$	v	F	F				H	H	a	k	$\llcorner$	v	F	F	Val12
				LB2			RB1				Intital OrientationFinal Orientation				RB1			LB2		
				L81			LB1								R81					RS1
				Ls2			cs				,				L81					R81
				LNH			RB1								RB2					
															LS2					
Total Energy	166.004										Total Energy	148.754								
van der Waals	122.824										van der Waals	116.267								
electrostatic	-206.523										electrostatic	-213.566								
$\Delta \mathrm{Es}$	-100.781										AEs	-118.031								
	-9.039											-15.596								
	-96.796											-103.839								
	H	H	a	к	$\llcorner$	$v$	F	F	His6	Asp23	Initial Orientation		H	a	к	$\llcorner$	$v$	F	F	Val12
Initial Orientationfinal Orientation				Ls2			RB2								RS2			B2		
				LS2					LB2	RB2	Final Orientation	RB2			RB1			LB2		RS2
												RS2			${ }_{\text {RNS }}{ }^{\text {RN }}$			Ls2		c=0
															RS2*					
															${ }_{\text {- }}^{\text {RB2 }}$ - ${ }^{\text {a }}$					
Total Energy	164.095										Total Energy	137.992								
van der Waals	122.648										van der Waals	120.94								
electrostatic	-207.194										electrostatic	-230.69								
$\Delta \mathrm{Es}$	-102.69										AEs	-128.793								
	$-9.215$											-10.923								
	-97.467											-120.963								
	H	H	a	k	$\llcorner$	$v$	F	F	Val12			H	H	a	K	เ	$v$	F	F	
Initial Orientationfinal Orientation				LB2			RB2				Final Orientation				${ }^{\text {R82 }}$			LB2		
				LB2					LB2						RS1					
				Ls2											RNH					
				2											RB2					
Total Energy											Total Energy	187.968								
van der Waals											van der Waals	125.272								
electrostatic											electrostatic	-182.32								
$\Delta \mathrm{Es}$	-266.785										$\Delta \mathrm{Es}$	-78.817								
	-131.863											-6.591								
	109.727											-72.593								
	H	н	a	k	$\llcorner$	v	F	F	Ala30			н	H	a	k	เ	v	F	F	
Initial OrientationFinal Orientation				cs				${ }_{\text {LB1 }}$			Initial Orientation Final Orientatior RS1				Cs				${ }_{\text {RB2 }}$	
	Ls1			cs	Ls1		${ }_{\text {RS1 }}$	LB1	Ls1						RS2				RB2	
	Ls2			LS2**			RS1								2					
				${ }_{\text {LSS }}^{\text {LS }}$											${ }_{\text {RB1 }}^{\text {R }}$ -					
				$\stackrel{*-C H 2}{ }$																
Total Energy	126.133										Total Energy	140.714								
van der Waals electrostatic	${ }_{-245.26}^{11.017}$										van der Waals electrostatic	118.665 -229.186								
$\Delta \mathrm{Es}$	$-140.652$										AEs	-126.071								
	${ }^{-20.846}$											-13.198								
	-135.533											-119.459								
	H	H	a	k	$\llcorner$	$v$	F	f				H	H	a	k	$\llcorner$	$v$	F	F	
Initial OrientationFinal Orientation	Ls2			Cs				$\underset{\text { LS1 }}{\text { LB2 }}$			$\underset{\substack{\text { Intital Orientation } \\ \text { Final Orientation }}}{ }$				${ }_{\text {LB1 }}^{\text {LB1 }}$			cs	${ }_{\text {RB1 }}^{\text {RB1 }}$	
				Ls1											Ls1				cs	
				Ls2											2					
				-CH2-																
Total Energy	148.612										Total Energy	176.618								
van der Waals	${ }^{121.812}$										van der Waals	${ }^{120.18}$								
electrostatic	-218.016										electrostatic	-192.519								
$\Delta \mathrm{Es}$	-118.173										AEs	-90.167								
	${ }^{-10.051}$											${ }^{111.683}$								
	-108.289											-82.792								
	H	H	a	k	$\llcorner$	v	F	F				H	H	a	K	$\llcorner$	$v$	F	F	
Initial OrientationFinal Orientation				RB1 R81				L81			Intital Orientation				RS1 RS 1				LB1 CS	
				RB1 RS1											$\stackrel{\text { RS1 }}{2}$					
				$\stackrel{2}{2}$																
				CS																
Total Energy	190.534										Total Energy	21.446								
van der Waals	128.431										van der Waals	${ }^{127.89}$								
electrostatic	-182.841										electrostatic	-154.375								
$\Delta \mathrm{Es}$	-76.251										$\Delta \mathrm{Es}$	-50.324								
	- -3.432											-3.973								
	-73.114											-44.648								
	H	H	a	k	1	v	F	,				H	H	a	K	$\llcorner$	$v$	F	F	G1729
Final Orientation				Ls1				R81			Initial OrientationFinal Orientation				${ }_{\text {RS2 }}$				$\stackrel{\text { LB1 }}{ }$	
				Ls1											${ }^{\text {RS2 }}$				Ls2	
				2											2					c=0
				LNH																
Total Energy van der Waals	191.889 130.73										${ }_{\text {Total Energy }}$	187.178 124.849								
electrostatic	-189.409										electrostatic	-184.491								
	-74.966 -1.133										AEs	$\begin{array}{r}\text {-79.607 } \\ -7.014 \\ \hline-7.7\end{array}$								



The gas phase results of solapsone and the 1BA4 conformer of A $\beta$

	H	H	Q	K		H	H	Q	K
Initial Orientation	RB1	CS			Initial Orientatio	CS	RB1		
Final Orientation	RS1	RB1			Final Orientatior	LS1	RS1	LS1	
	RS2	RS2				LS2	LB1	-CH2-	
	--CH2-	RS1					LS1		
	RB2						-CH2-		
Total Energy	58.557				Total Energy	51.504			
van der Waals	89.502				van der Waals	89.289			
electrostatic	-251.858				electrostatic	-260.135			
$\Delta$ Es	-114.282				$\Delta \mathrm{Es}$	-121.335			
	-12.188					-12.401			
	-103.12					-111.397			


	н	н	Q	K		H	H	Q	к
Initial Orientation	LB1	cs			Initial Orientatio	cs	LB1		
Final Orientation	LS1	LB1			Final Orientation	LB1	LS1		
		LS1				LB1			
		CS				LS2			
		RB1				LS1			
						Cs			
						RB1			
Total Energy	96.697				Total Energy	60.492			
van der Waals	95.478				van der Waals	90.116			
electrostatic	-220.32				electrostatic	-249.545			
$\Delta \mathrm{Es}$	-76.142				$\Delta \mathrm{Es}$	-112.347			
	-6.212					-11.574			
	-71.582					-100.807			
	H	H	Q	K		H	H	a	k
Initial Orientation	RS1	cs			Initial Orientatio	cs	RS1		
Final Orientation	RB2	RS1			Final Orientation	LB1	RS1		
	RS1					LS2	RS2		
	-CH2-					LS1			
Total Energy	93.394				Total Energy	46.285			
van der Waals	96.09				van der Waals	92.471			
electrostatic	-226.367				electrostatic	-267.826			
$\Delta \mathrm{Es}$	-79.445				$\Delta \mathrm{Es}$	-126.554			
	-5.6					-9.219			
	-77.629					-119.088			
	H	H	Q	к		H	H	Q	K
Initial Orientation	LS1	cs			Initial Orientatio	cs	LS1		
Final Orientation	LS1	LB1			Final Orientatior	cs	LS1		
	LS2	cs					2		
	LB2	LS1							
Total Energy	76.3				Total Energy	117.647			
van der Waals	91.861				van der Waals	99.895			
electrostatic	-237.156				electrostatic	-202.545			
$\Delta \mathrm{Es}$	-96.539				$\Delta \mathrm{Es}$	-55.192			
	-9.829					-1.795			
	-88.418					-53.807			
	H	H	Q	K		H	H	Q	K
Initial Orientation	cs	RS2			Initial Orientatio	RS2	Cs		
Final Orientation	RB1	RS2			Final Orientatior	RS2	LS2		
	RB1						cs		
	CS						RB1		
	RS1								
	RS2								
	-CH2-								
Total Energy	67.278				Total Energy	65.596			
van der Waals	93.671				van der Waals	92.098			
electrostatic	-250.015				electrostatic	-249.362			
$\Delta \mathrm{Es}$	-105.561				$\Delta \mathrm{Es}$	-107.243			
	-8.019					-9.592			
	-101.277					-100.624			
	H	H	Q	K		H	H	Q	K
Initial Orientation	LS2	cs			Initial Orientatio	cs	LS2		
Final Orientation	LS2	LB1			Final Orientation	LB1	LS2		
		LS2				LS2	LS1		
		RB1				--CH2-			
		RS2				LS1			
						CS			
						RS2			
Total Energy	49.668				Total Energy	49.632			
van der Waals	90.52				van der Waals	89.955			
electrostatic	-261.678				electrostatic	-263.924			
$\Delta \mathrm{Es}$	-123.171				$\Delta \mathrm{Es}$	-123.207			
	-11.17					-11.735			
	-112.94					-115.186			
	H	H	Q	K		H	H	Q	K
Initial Orientation	RB1	LB1			Initial Orientatio	LB1	RB1		
Final Orientation	RS1	LS1			Final Orientation	LS1	RS1		
	RB1	LNH				LNH			
	RNH	LB1				LB1			
Total Energy	96.848				Total Energy	105.56			
van der Waals	96.731				van der Waals	99.375			
electrostatic	-220.586				electrostatic	-214.764			
$\Delta \mathrm{Es}$	-75.991				$\Delta \mathrm{Es}$	-67.279			
	-4.959					-2.315			
	-71.848					-66.026			


	H	H	Q	к				H	H	Q	к	
Initial Orientation	LB1	RS1					Initial Orientatio	RS1	LB1			
Final Orientation	LS1	RS1					Final Orientatior	RS1	RB1			
	LB1								RS1			
Total Energy	102.181						Total Energy	85.121				
van der Waals	98.617						van der Waals	97.976				
electrostatic	-219.235						electrostatic	-234.908				
$\Delta \mathrm{Es}$	-70.658						$\Delta \mathrm{Es}$	-87.718				
	-3.073							-3.714				
	-70.497							-86.17				
	H	H	Q	к				H	H	Q	K	
Initial Orientation	LS1	RB1					Initial Orientatio	RB1	LS1			
Final Orientation	LS1	RB1					Final Orientatior	RB1	LB1			
	CS	RB1						RS1	LS1			
	-CH2-	RS1						cs				
	LB1	RS2										
		cs										
Total Energy	209.058						Total Energy	218.113				
van der Waals	78.677						van der Waals	84.208				
electrostatic	-61.878						electrostatic	-57.123				
$\Delta \mathrm{Es}$	36.219						$\Delta \mathrm{Es}$	45.274				
	-23.013							-17.482				
	86.86							91.615				
	H	H	a	к	Tyr10	Val12		H	H	Q	K	Leu17
Initial Orientation	LB1	RS2					Initial Orientatio	RS2	LB1			
Final Orientation	LB1	RS2			LB2	LS2	Final Orientatior	RS2	LB1			LS2
	LB2				LS2	-CH-			LS2			LS1
	LS2								RB1			
	cs											
	RB1											
Total Energy	208.765						Total Energy	205.855				
van der Waals	75.665						van der Waals	76.45				
electrostatic	-60.089						electrostatic	-62.094				
$\Delta \mathrm{Es}$	35.926						$\Delta \mathrm{Es}$	33.016				
	-26.025							-25.24				
	88.649							86.644				
	H	H	Q	к	Tyr10	Val12		H	H	Q	K	Leu17
Initial Orientation	RB1	LS2					Initial Orientatio	LS2	RB1			
Final Orientation	LS2	LB1			RB1	cs	Final Orientatior	LS2	RB1			RS2
	cs	LS2			RS1	c=0			RS2			
	-CH-	LS1			Cs				Cs			
	RS2				RS2							
Total Energy	194.27						Total Energy	214.612				
van der Waals	66.239						van der Waals	81.186				
electrostatic	-68.591						electrostatic	-58.479				
$\triangle \mathrm{Es}$	21.431						$\Delta \mathrm{Es}$	41.773				
	-35.451							-20.504				
	80.147							90.259				
	${ }_{\text {H }}$	H	a	к	Leu17			H	H	Q	K	Tyr10
Initial Orientation	RB2	LB1					Initial Orientatio	LB1	RB2			
Final Orientation	RB2	LB1			LS1		Final Orientatior	LB2	RB2			LB2
	RS1	RB1						RS2	RS2			
	RNH	LNH						RB1				
		LS1						LS2				
Total Energy	73.437						Total Energy	73.048				
van der Waals	89.365						van der Waals	88.647				
electrostatic	-240.78						electrostatic	-242.243				
$\Delta \mathrm{Es}$	-99.402						$\Delta \mathrm{Es}$	-99.791				
	-12.325							-13.043				
	-92.042							-93.505				
	H	H	Q	K	Tyr10	Val12		H	H	Q	K	
Initial Orientation	LB2	RB1					Initial Orientatio	RB1	LB2			
Final Orientation	LS2	LB1	RS1		LB2	LB2	Final Orientatior	LB1	LB2			
	LB2	RS1				c=0		LB1	LS1			
		-CH2-						RS1				
		RB1						RNH				
		LNH						RB1				
								LNH				
								LS1				
								-CH2-				
								LB2				
Total Energy	56.516						Total Energy	55.957				
van der Waals	84.58						van der Waals	87.039				
electrostatic	-255.417						electrostatic	-257.496				
$\Delta \mathrm{Es}$	-116.323						$\Delta \mathrm{Es}$	-116.882				
	-17.11							-14.651				
	-106.679							-108.758				




	L	v	F	F	Gln15					L	v	F	F				
Initial Orientation		RB2	LB1						Initial Orientation		LB2	RB1					
Final Orientation			LB1		RS1				Final Orientation								
			LNH		RNH												
					RB1												
					-CH2-												
Total Energy	148.005								Total Energy	158.662							
van der Waals	94.063								van der Waals	95.996							
electrostatic	-167.867								electrostatic	-159.285							
$\Delta \mathrm{Es}$	-24.834								$\Delta \mathrm{Es}$	-14.177							
	-7.627									-5.694							
	-19.129									-10.547							
	L	v	F	F						L	v	F	F	His13	His14	GIn15	
Initial Orientation		RB2	LB2						Initial Orientation		LB2	RB2					
Final Orientation									Final Orientation		LB2			LS2	LS2*	LS2	
															LB2	-CH2-	
														*NH of backbone			
Total Energy	151.415								Total Energy	84.855							
van der Waals	97.767								van der Waals	94.306							
electrostatic	-170.271								electrostatic	-214.875							
$\Delta \mathrm{Es}$	-21.424								$\Delta \mathrm{Es}$	-87.984							
	-3.923									-7.384							
	-21.533									-66.137							
	L	v	F	F	His14	GIn15				L	v	F	F	His13	Lys16	Val24	Lys28
Initial Orientation		RB1		LB1					Initial Orientation		RB2		LB1				
Final Orientation	LB1	RB1			RB1*	RS1			Final Orientation	LB2			LB1	LB2	LB2	RS1	RS1
		RS1			RNH*								RB1	$\mathrm{C}=0$	-CH2-		2
					RS1*												
					*-CH2-												
Total Energy	83.393								Total Energy	83.581							
van der Waals	83.406								van der Waals	84.588							
electrostatic	-209.628								electrostatic	-228.304							
$\Delta \mathrm{Es}$	-89.446								$\Delta \mathrm{Es}$	-89.258							
	-18.284									-17.102							
	-60.89									-79.566							
	L	v	F	F	Lys16					L	v	F	F				
Initial Orientation		LB2		RB1					Initial Orientation		RB2		LB2				
Final Orientation	LNH			RB1	RB2				Final Orientation								
	LB1				-CH2-												
Total Energy	116.875								Total Energy	163.769							
van der Waals	88.908								van der Waals	101.134							
electrostatic	-196.447								electrostatic	-157.239							
$\Delta \mathrm{Es}$	-55.964								$\Delta \mathrm{Es}$	-9.07							
	-12.782									-0.556							
	-47.709									-8.501							
	L	v	F	F	His14	Ala21	Val24	Lys28		L	v	F	F	His13	His14	GIn15	
Initial Orientation		LB2		RB2					Initial Orientation			LB2	RB2				
Final Orientation	LB1	LB1			LS1	RB1	RB2	RB2	Final Orientation					LS1	LS1*	LS1*	
	LNH	LB2				cs		RS2							2	NH of b	bone
						LB1		2						*NH of backbone			
Total Energy	55.789								Total Energy	60.454							
van der Waals	79.391								van der Waals	91.271							
electrostatic	-239.524								electrostatic	-240.247							
$\Delta \mathrm{Es}$	-117.05								$\Delta \mathrm{Es}$	-112.385							
	-22.299									-10.419							
	-90.786									-91.509							
	L	v	F	F	Gln15	Ala21	Val24			L	v	F	F				
Initial Orientation			RB2	LB2					Initial Orientation								
Final Orientation		RB2			RB2	LB2	LB2		Final Orientation								
Total Energy	136.813								Total Energy								
van der Waals	91.7								van der Waals								
electrostatic	-177.595								electrostatic								
$\Delta \mathrm{Es}$	-36.026								$\Delta \mathrm{Es}$	-172.839							
	-9.99									-101.69							
	-28.857									148.738							





	H	H	a	k	1	v	F	F		н	н	Q	к	L	v	F	F
Initial Orientation		LB2				RB1			Initial Orientation		LB1				RB2		
Final Orientation		LB2	RB1		LS1				Final Orientatior	RS1	LB1	RS2*					
		LNH									RB1	RB2*					
		LS1									LS2	*-CH2-					
		-CH2-									RS2						
											-NH-						
											LNH						
											RS2						
											--CH2-						
Total Energy	83.561								Total Energy	38.376							
van der Waals	91.674								van der Waals	85.242							
electrostatic	-233.95								electrostatic	-269.744							
$\Delta \mathrm{Es}$	-89.278								$\Delta \mathrm{Es}$	-134.463							
	-10.016									-16.448							
	-85.212									-121.006							
	H	H	a	к	L	$v$	F	F		H	H	Q	k	L	$v$	F	F
Final Orientation		RB2				LB1			Initial Orientation		LS2				RB2		
	RS1	RS1				LB1			Final Orientatior	LB2	LS2				RB2		
	-CH2-	RNH								LS2							
										LS1							
Total Energy	100.876								Total Energy	64.935							
van der Waals	88.86								van der Waals	88.577							
electrostatic	-211.088								electrostatic	-247.344							
$\Delta \mathrm{Es}$	-71.963								$\Delta \mathrm{Es}$	-107.904							
	-12.83									-13.113							
	-62.35									-98.606							
	H	H	a	K	L	$v$	F	F		H	H	Q	k	ᄂ	$\checkmark$	F	F
Initial Orientation		RS2				LB2			Initial Orientation		LB2				RB2		
Final Orientation	RB2	RS2							Final Orientatior	LS1	LS2				RB2		
	RB2	RB1								LS2							
	RS2									-CH2-							
Total Energy	99.026								Total Energy	72.003							
van der Waals	93.462								van der Waals	95.356							
electrostatic	-217.4								electrostatic	-245.075							
$\triangle \mathrm{Es}$																	
	-73.813 -8.828								$\Delta \mathrm{Es}$	-100.836 -6334							
	-8.228									-6.334							
	-68.662									-96.337							
	H	H	a	к	L	v	F	F		H	H	Q	k	L	v	F	F
${ }_{\text {In }}$ Initial Orientation		RB2				LB2			Initial Orientation		RS1				LB2		
	RS1	RB2							Final Orientation	LS1	LB1	LB2		RB1			
		RS1									RB1						
											RS1						
											RNH						
	87.313								Total Energy	59.375							
van der Waals	93.729								van der Waals	86.952							
electrostatic	-229.453								electrostatic	-253.898							
$\triangle \mathrm{Es}$	-85.526								$\Delta \mathrm{Es}$	-113.464							
	-7.961									-14.738							
	-80.715									-105.16							
	H	H	Q	k	L	v	F	F		H	H	Q	к	L	v	F	F
Initial Orientation		LS2					RB2		Initial Orientation		RB2					LB2	
Final Orientation	Ls2	LS2	RB2				RB2		Final Orientatior	RB1	RB2	LB2					
		-NH-	-CH2-							RNH	RS2						
		LB2								RS2	2						
										RB2							
Total Energy	75.776								Total Energy	84.008							
van der Waals	92.442								van der Waals	93.357							
electrostatic	-244.431								electrostatic	-234.649							
$\Delta \mathrm{Es}$	-97.063								$\Delta \mathrm{Es}$	-88.831							
	-9.248									-8.333 -8.911							
	-95.693									-85.911							
	H	H	a	K	L	v	F	F		H	H	a	к	L	v	F	F
Initial Orientation		LB2					RB2		Initial Orientation		RS1						LB1
Final Orientation	LS2	LB2							Final Orientation		RS1						LS1
		LS2															LB1
	90.738								Total Energy	120.925							
van der Waals	99.005								van der Waals	96.663							
electrostatic	-230.813								electrostatic	-197.317							
$\Delta \mathrm{Es}$																	
	-82.101 -2.685								$\Delta \mathrm{Es}$	-51.914 -5.027							
										-5.027 -48.579							
	H	H	Q	k	L	v	F	F		H	H	Q	к	L	v	f	F
Initial Orientation		LS1						RB1	Initial Orientation		RS2						LB1
Final Orientation		LS1			LB1			RB1	Final Orientation		RS2						cs
																	LB1
																	LS2
									Total Energy								
van der Waals	${ }^{103.24}$								van der Waals	92.29							
electrostatic	-211.732								electrostatic	-206.663							
$\triangle \mathrm{Es}$	-69.619								$\Delta \mathrm{Es}$	-62.07							
	-8.255 -62.994									-9, -57.925							



The gas phase results of solapsone and the 1IYT conformer of A $\beta$

	H	H	a	k						H	H	Q	к	Leu17		
Initial Orientatic	cs	RB1							Initial Orientatio	RS1	cs					
Final Orientatior	LS1	RS1							Final Orientatior	RS2	cs			RS1		
	LB1									RS1						
Total Energy	79.919								Total Energy	69.833						
van der Waals	90.169								van der Waals	88.674						
electrostatic	-227.953								electrostatic	-238.345						
$\Delta \mathrm{Es}$	-54.132								$\Delta \mathrm{Es}$	-64.218						
	-6.101									-7.596						
	-48.506									-58.898						
	H	H	a	k	Leu17					H	H	Q	к	His6	Tyr10	
Initial Orientatic	cs	RS1							Initial Orientatio	LS1	cs					
Final Orientatior	RS1	RS1			RB1				Final Orientatior	LS1	cs				cs	
	cs				cs									RS1	RB1	
Total Energy	64.87								Total Energy	43.494						
van der Waals	85.112								van der Waals	80.399						
electrostatic	-236.159								electrostatic	-256.129						
$\Delta \mathrm{Es}$	-69.181								$\Delta \mathrm{Es}$	-90.557						
	-11.158									-15.871						
	-56.712									-76.682						
	H	H	a	k	Leu17					H	H	Q	k	His6	Tyr10	Leu17
Initial Orientatic	cs	LS1							Initial Orientatio	RS2	cs					
Final Orientatior	RB1	LS1		RS2	cs				Final Orientatior	RS2	cs			LS2	cs	RS1
	CS	2								RS1						
	RS2															
Total Energy	29.176								Total Energy	21.227						
van der Waals	82.041								van der Waals	78.56						
electrostatic	-283.223								electrostatic	-275.029						
$\Delta \mathrm{Es}$	-104.875								$\Delta \mathrm{Es}$	-112.824						
	-14.229									-17.71						
	-103.776									-95.582						
	H	H	a	k	Gly9	Tyr10				H	H	Q	k	Tyr10		
Initial Orientatic	cs	RS2							Initial Orientatio	LS2	cs					
Final Orientatior	cs	RS2			RS1	RS1			Final Orientatior	LS2	cs			cs		
					C=0					Ls1						
Total Energy	71.26								Total Energy	53.846						
van der Waals	89.849								van der Waals	85.845						
electrostatic	-235.977								electrostatic	-251.601						
$\Delta \mathrm{Es}$	-62.791								$\Delta \mathrm{Es}$	-80.205						
	-6.421									-10.425						
	-56.53									-72.154						
	H	H	Q	k	Gly9	Tyr10	Val12	Leu17		H	H	Q	к	Gly9	Tyr10	Leu17
Initial Orientatic	cs	LS2							Initial Orientatio	cs	RB2					
Final Orientatior	RB1	LS1		RS1	Ls2	LS2	RS2	LS1	Final Orientatior	RB1	RS2			RS1	RS1	RS2
	LB1			RS2	$\mathrm{C}=0$	-CH-				RS1				$\mathrm{C}=0$	-CH-	
	LB1			-CH2-						cs						
	LS1															
Total Energy	-12.899								Total Energy	52.193						
van der Waals	75.904								van der Waals	82.429						
electrostatic	-305.236								electrostatic	-247.844						
$\Delta \mathrm{Es}$	-146.95								-Es	-81.858						
	-20.366									-13.841						
	-125.789									-68.397						
	H	H	a	k	Gly9	Tyr10	Leu17			H	H	Q	к	Phe20		
Initial Orientatic	cs	LB2							Initial Orientatio	LB1	RB1					
Final Orientatior	LB1	Ls1			Ls2	LS2	LS1		Final Orientatior	LB1	RS1		Ls2	LB2		
	LB1				$\mathrm{C}=0$	-CH-				LS2			--H2-	LS2		
	cs									Ls1				-CH2-		
	Ls2									RB1						
	Ls1									RS1						
	-CH2-									-CH2-						
Total Energy	53.912								Total Energy	-4.182						
van der Waals	83.631								van der Waals	75.97						
electrostatic	-245.373								electrostatic	-292.821						
$\Delta \mathrm{Es}$	-80.139								$\Delta \mathrm{Es}$	-138.233						
	-12.639									-20.3						
	-65.926									-113.374						
	H	H	a	K	Gly9	Tyr10				H	H	Q	к	Gly9		
Initial Orientatic	RB1	LB1							Initial Orientatio	RS1	LB1					
Final Orientatior	RS1	Ls1			cs	LS1			Final Orientatior	RB1	Ls1			cs		
	cs				$\mathrm{C}=0$					RNH				$\mathrm{C}=0$		
	-CH2-									RS1						
	RB1															
Total Energy	68.296								Total Energy	55.058						
van der Waals	87.177								van der Waals	87.365						
electrostatic	-235.337								electrostatic	-252.526						
$\Delta \mathrm{Es}$	-65.755								$\Delta \mathrm{Es}$	-78.993						
	-9.093 -55.89									-8.905 -73.079						


	H	H	a	k				H	H	Q	к	Tyr10			
Initial Orientatio	LB1	RS1					Initial Orientatio	Ls1	RB1						
Final Orientatior	Ls1	RS1					Final Orientatior	Ls1	RS1			RS1			
	LB1							LNH	,						
	LNH							LB1							
Total Energy	57.833						Total Energy	53.479							
van der Waals	90.694						van der Waals	90.318							
electrostatic	-251.347						electrostatic	-257.083							
$\Delta \mathrm{Es}$	-76.218						$\Delta \mathrm{Es}$	-80.572							
	-5.576							-5.952							
	-71.9							-77.636							
	H	H	Q	k	Gly9			H	H	Q	k	Tyr10	Val12	Leu17	
Initial Orientatio	RB1	LS1					Initial Orientatio	RS2	LB1						
Final Orientatior	RB1				cs		Final Orientatior	RB1	LB1			LS2	RS2	cs	
	RB1							RB1	LS2						
	RS1							RS1							
	2							RS2							
	cs							cs							
Total Energy	62.64						Total Energy	24.131							
van der Waals	89.396						van der Waals	80.617							
electrostatic	-245.465						electrostatic	-275.346							
$\Delta \mathrm{Es}$	-71.411						$\Delta \mathrm{Es}$	-109.92							
	${ }_{-6.874}$							-15.653							
	-66.018							-95.899							
	H	H	a	k				H	H	a	k	Val12	Leu17		
Initial Orientatio	LB1	RS2					Initial Orientatio	RB1	LS2						
Final Orientatior	LB1	RS2		LS2			Final Orientatior	RB1	LB2		RS1	RS2	LS2		
	LS2							LS2	LS2		RS2		LB1		
	RB1							LB1			-CH2-		cs		
								RNH							
								RS2							
Total Energy	16.144						Total Energy	1.033							
van der Waals	81.2						van der Waals	76.119							
electrostatic	-291.016						electrostatic	-294.243							
$\Delta \mathrm{Es}$	-117.907						$\Delta \mathrm{Es}$	-133.018							
	-15.07							-20.151							
	-111.569							-114.796							
	H	H	a	k	Tyr10	Leu17		H	H	a	k	Gly	Tyr10	Leu17	Phe20
Initial Orientatio	LS2	RB1					Initial Orientatio	LB1	RB2						
Final Orientatior	LB2				RS2	LB2	Final Orientatior	LB1	RB2		LS2*	RS2	RS2	LS2	LB2
	LS2	RS2						RB1	RS2		LS1*	c=0			LS2
								RB1			*-CH2-				-CH2-
								LS2							
Total Energy	62.674						Total Energy	-4.977							
van der Waals	86.64						van der Waals	68.419							
electrostatic	-241.725						electrostatic	-293.092							
$\triangle \mathrm{Es}$															
	-71.377 -9.63						$\Delta \mathrm{Es}$	-139.028 -27851							
	-9.63 -62.278							-27.851 -113.645							
								-113.645							
	H	H	a	k	Gly9	Tyr10		H	H	a	k	Leu17	Phe20		
Initial Orientatio	RB2	LB1					Initial Orientatio	RB1	LB2						
Final Orientatior	RB1	LB1			RS1	RS1	Final Orientatior	RB1	LB2		RS1	LB2	RB2		
	-CH2-	LNH			$\mathrm{C}=0$	LB1		LB1			2		RS1		
	RNH							LB1					-CH2-		
	RS1							RS1							
	RB2							LNH							
Total Energy	52.512						Total Energy	10.046 7							
van der Waals electrostatic	- 8 -250.921						van der Waals electrostatic	76.225 -284.797							
							electrostatic								
$\Delta \mathrm{Es}$	-81.539						$\Delta \mathrm{Es}$	-124.005							
	-12.349							-20.045							
	-70.684							-105.35							
	H	H	a	K	Tyr10	Leu17		H	H	a	k	Tyr10	Leu17	Phe20	
Initial Orientatio	LB2	RB1					Initial Orientatio	LS2	RS2						
Final Orientatior	LS2	RB1			RS2	LB2	Final Orientatior	LB1	RB2		LS2	RS2	LS2	LB2	
		RS2						LS2	RS2		--CH2-		RB2	LS2	
								LS1						-CH2-	
								RB1							
	57.831						Total Energy	-10.185							
van der Waals	82.263						van der Waals	70.925							
electrostatic	-245.693						electrostatic	-295.197							
$\Delta \mathrm{Es}$	-76.22						$\Delta \mathrm{Es}$	-144.236							
	-14.007							-25.345							
	-66.246							-115.75							
	H	H	a	k	Tyr10			H	H	a	k	Tyr10	Leu17		
Final Orientatior	RS2	LS2					Initial Orientatio	RB2	LS2						
	RS1	LS2			LB2		Final Orientatior	RS2	LS2		RS2	LS2	RS2		
	RS2							RB1			-CH2-	LB2			
Total Energy	48.454						Total Energy	42.699							
van der Waals electrostatic	-89.394						van der Waals	82.431 -26571							
	-258.855						electrostatic	-256.771							
$\triangle \mathrm{Es}$	-85.597						$\Delta \mathrm{Es}$	-91.352							
	-6.876 -79.408							-13.839 -77.324							



	H	H	Q	k	His6	Gly9	Val12			H	H	a	k	Val12	
Initial Orientatio	cs			LS1					Initial Orientatio	RS2			cs		
Final Orientatior	LB1			LS1	RS1	RB1	LS1		Final Orientation	RB2			cs	RS1	
	cs			- $\mathrm{CH} 2-$						RS2			RS2	RS2	
	Ls1			LB2									-CH2-		
Total Energy	32.293								Total Energy	55.155					
van der Waals	85.296								van der Waals	85.409					
electrostatic	-272.405								electrostatic	-249.43					
$\Delta \mathrm{Es}$	-101.758								-Es	-78.896					
	-10.974									-10.861					
	-92.958									-69.983					
	H	H	a	k	Arg 5	His6	Gly9	Val12		н	H	a	$k$	Val12	Leu17
Initial Orientatio	cs			RS2					Initial Orientatio	cs			LS2		
	RB1			RS2	LS2	LS2	LB1	cs	Final Orientation	RB1			LS2	LS1	RB2
	RS1				- $\mathrm{CH} 2-$	LS1	cs	RS2		cs			LS1		
	Cs						c=0			RS2					
Total Energy	${ }^{6.904}$								Total Energy	${ }^{22.546}$					
van der Waals	78.723								van der Waals	81.632					
electrostatic	-294.446								electrostatic	-275.363					
$\Delta \mathrm{Es}$	-127.147								$\Delta \mathrm{Es}$	-111.505					
	-17.547									-14.638					
	-114.999									-95.916					
	H	H	Q	k						H	H	Q	k	His6	Val12
Initial Orientatio	LS2			cs					Initial Orientatio	cs			RB2		
Final Orientatior	LS2			RB1					Final Orientation	RB1			RS1*	152	RS2
				RS2						cs			RS2*	LB2	
										RS1			*-CH2-		
										RS2					
Total Energy	${ }^{44.988}$														
van der Waals	93.035								van der Waals	78.983					
electrostatic	-264.15								electrostatic	-292.317					
$\Delta \mathrm{Es}$	-89.063								AFs	$-131.242$					
	$-3.235$									-17.287					
	-84.703									-112.87					
	H	H	Q	k	Val12					H	н	Q	k	Val12	
Initial Orientatio	RB2			cs					Initial Orientatio	LB2			cs		
Final Orientatior	RB2			RB1	RS1				Final Orientatior	LS1			LB1	LS2	
	RS2			RS2						LS2			cs		
	RS1			-CH2-						LB2			Ls1		
				cs									-CH2-		
Total Energy	41.649								Total Energy	43.22					
van der Waals	83.75								van der Waals	83.588					
electrostatic	-262.5								electrostatic	-258.689					
$\Delta \mathrm{Es}$ s	-92.402								$\Delta \mathrm{Es}$	-90.831					
	-12.52									-12.682					
	-83.053									-79.242					
	H	H	a	k	Val12					H	H	Q	k	Phe20	
Initial Orientatio	cs			LB2					Initial Orientatio	RB1			LB1		
Final Orientatior	LB1			LS2	LS1				Final Orientation	RS1			LB1	LB1	
	cs			LS1						RB1			LS2		
				-CH2-									2		
													cs		
													--CH2-		
													LS1		
Total Energy	51.248								Total Energy	54.912					
van der Waals	87.368								van der Waals	84.584					
electrostatic	-252.954								electrostatic	-251.043					
$\Delta \mathrm{Es}$									$\Delta \mathrm{Es}$	-79.139					
	-82.83 -8.902									-11.686					
	-73.507									-71.596					
	${ }_{\text {H }}^{\text {L }}$	H	a	$\stackrel{\text { K }}{\text { RB1 }}$					Initial Orientatio	$\stackrel{\text { H }}{\text { LB1 }}$	H	a	K RS1	Leu17	
Initial Orientatio	Ls1			RS1	cs				Final Orientatior	LS2			RB2	LS1	
	LB1			RB1						Ls1			RS1		
				- $\mathrm{CH} 2-$						LB1					
				RNH											
	50.425 85.324								Total Energy						
van der Waals	85.324								van der Waals	86.76					
electrostatic	-249.865								electrostatic	-268.341					
$\Delta \mathrm{Es}$	-83.626								$\Delta \mathrm{Es}$	-95.321					
	-10.946									-9.51					
	-70.418									-88.894					
	H	н	Q	k						H	H	a	к	Val12	Phe20
Initial Orientatio	RS1			LB1					Initial Orientatio	RB1			LS1		
Final Orientatior	RS1			LS1					Final Orientatior	${ }_{\text {RS1 }}$			L131		cs
										RB1			LS2		
													2		
													$\mathrm{Cs}^{\text {LS }}$		
													${ }_{*-C H 2}{ }_{\text {L }}$		
													*-CH2-		
Total Energy	55.039								Total Energy	24.879					
van der Waals	90.879								van der Waals	81.741					
electrostatic	-256.152								electrostatic	-274.183					
-Es	-79.012								$\Delta \mathrm{Es}$	-109.172					
	-5.391									-14.529					
	-76.705									-94.736					


	H	H	a	k	Phe20					H	H	Q	k	Val12			
Initial Orientatic	LS1			RB1					Initial Orientatio	LB1			RS2				
Final Orientatior	LB1			RS1	RS1				Final Orientatior	LS2			RS1	RS2			
	LNH												RS2				
	LS1												-CH2-				
Total Energy	64.891								Total Energy	27.089							
van der Waals	88.925								van der Waals	87.617							
electrostatic	-239.909								electrostatic	-276.079							
$\Delta \mathrm{Es}$	-69.16								$\Delta \mathrm{Es}$	$-106.962$							
	$-7.345$									-8.653							
	-60.462									-96.632							
	H	H	Q	k	Phe19	Phe20	Asp23			H	H	Q	K	Glyg	Leu17		
Initial Orientatic	RS2	H	a	LB1					Initial Orientatio	RB1	H	Q	LS2	Gy			
Final Orientatior	RS2			LB2	LB2	LB2	LB2		Final Orientatior	RB1	RS2		LS2	RS1	RS2		
				LS2						RS1			LS1	$\mathrm{C}=0$			
										RS2							
										-CH2-							
										RB2							
Total Energy	47.257								Total Energy	-1.703							
van der Waals	87.375								van der Waals	78.302							
electrostatic	-262.318								electrostatic	-301.325							
$\Delta \mathrm{Es}$	-86.794								-Es	$-135.754$							
	-8.895									-17.968							
	-82.871									-121.878							
	${ }_{\text {H }}$	H	a	K						H	H	a	K	Val12	Leu17	Phe20	
Initial Orientatic	LS2			RB1					Initial Orientatio	LB1			RB2				
Final Orientatior	LS2			RS2					Final Orientation	RB1			RB2	RS1	LS1	RB2	
				RB1						LB1			RS1				
										LS1			-CH2-				
										LNH							
Total Energy	52.185								Total Energy	27.217							
van der Waals	92.676								van der Waals	77.044							
electrostatic	-256.223								electrostatic	-274.204							
$\Delta \mathrm{Es}$	-81.866								$\Delta \mathrm{Es}$	-106.834							
	-3.594									-19.226							
	-76.776									-94.757							
	H	H	a	k	Phe19					H	H	Q	k	Ser8	Gly9	Val12	Phe20
Initial Orientatic	RB2			LB1					Initial Orientatio	RB1			LB2				
Final Orientatior	RS1			LB1	LS1				Final Orientation	RB1			LB2	RB2	RS1	RB2	LB2
				RS1						LS1			LS1		C=0		
				-CH2-						LB1			-CH2-		RB2		
				LNH													
Total Energy	42.634								Total Energy	33.825							
van der Waals	86.276								van der Waals	77.079							
electrostatic	-260.555								electrostatic	-266.754							
-Es	-91.417								$\Delta \mathrm{Es}$	-100.226							
	-9.994									-19.191							
	-81.108									-87.307							
	H	H	Q	K	Ser8	Gly9	Val12	Phe20		H	H	Q	k	Val12			
Initial Orientatic	LB2			RB1					Initial Orientatio	LS2			RS2				
Final Orientation				RS1	LS1	LS1	LS1	RB2	Final Orientation	LS2			LB2	RS2			
						LB2							RS1				
						C=0							RS2				
Total Energy	45.259								Total Energy	37.844							
van der Waals	84.771								van der Waals	88.41							
electrostatic	-264.673								electrostatic	-268.524							
$\Delta \mathrm{Es}$	-88.792								$\Delta \mathrm{Es}$	-96.207							
	-11.499									-7.86							
	-85.226									-89.077							
	H	H	a	K						H	H	Q	K	Gly9	Phe20	Asp23	
Initial Orientatic	RS2			LS2					Initial Orientatio	LS2			RB2				
Final Orientatior	RS2			LS2					Final Orientatior	LS2			RB2	LB2	RS2	RB2	
													RS2		RB2		
													2				
Total Energy	50.319								Total Energy	56.112							
van der Waals	${ }^{93.366}$								van der Waals	88.319							
electrostatic	-258.572								electrostatic	-249.953							
$\Delta \mathrm{Es}$	-83.732								AEs	-77.939							
	-2.904									-7.951							
	-79.125									-70.506							
	H	H	Q	K	Gly9	Val12	Asp23			H	H	Q	K	Phe20			
Initial Orientatic	RB2			LS2					Initial Orientatio	RS2			LB2				
Final Orientatior	RS2			LS2	RS2	RS2	LB2		Final Orientatior	RS2			LS2	LB2			
	RB2			2									LB2				
				LB2													
Total Energy	50.179								Total Energy	52.996							
van der Waals	87.529								van der Waals	89.688							
electrostatic	-253.992								electrostatic	-252.309							
$\Delta \mathrm{Es}$	-83.872								$\Delta \mathrm{Es}$	-81.055							
	$-8.741$									-6.582							
	-74.545									-72.862							



	L	v	F	F	His13	Lys16			1	v	F	F	Val12	His13	Lys16
Initial Orientatio	LB1			RB2				Initial Orientation	RB2			LB1			
Final Orientation	RS1				RS2	RS1		Final Orientation	RS2			cs	LS2	LS2	เs1
	RNH				RS1	-CH2-			RNH			L81	LB2		LB1
	RB1				RNH				RB1						LNH
	LB1														
Total Energy	41.024							Total Energy	29.676						
van der Waals	82.062							van der Waals	77.512						
electrostatic	$-261.466$							electrostatic	-267.83						
$\triangle \mathrm{Es}$	-93.027							$\Delta \mathrm{Es}$	-104.375						
	-14.208								-18.758						
	-82019								$-88.383$						
	L	v	F	F	His13	His14	Lys16		1	v	F	F	Val12	His13	Lys16
Initial Orientatio	RB1			LB2				Initial Orientation	LB2			RB1			
Initial Orientatio	RS2			LS2	L81	RS2	LS2	Final Orientation	cs				RS2	RS2	RS1
	RB1			LB2	LS1		Ls1		LB1					RB1	RS2
					cs		- $\mathrm{CH} 2-$		LS2						-CH2-
					LS2										
Total Energy	12.498							Total Energy	11.655						
van der Waals electrostatic	73.702							van der Waals	76.704						
	-282.131							electrostatic	-285.944						
$\triangle \mathrm{Es}$	-121.553							AEs	-122.396						
	-22.568								-19.566						
	-102.684								-106.497						
	L	v	F	F	His13				L	v	F	F	His13	Leu34	
Initial Orientatio	RB2			LB2				Initial Orientation	LB2			RB2			
Final Orientation	RB2				RS2			Final Orientation					Ls1	RS2	
	RS2														
Total Energy	88.702 91856							Total Energy	98.232 90396						
van der Waals electrostatic	${ }_{-222.142}{ }^{91.85}$							van der Waals electrostatic	- ${ }_{-20.396}$						
electrostatic															
$\triangle \mathrm{Es}$	-45.349							$\Delta \mathrm{Es}$	-35.819						
	-4.414								-5.874						
	$-42.695$								-33.055						
	L	v	F	F					เ	$\checkmark$	F	F	Gln15		
Final Orientation		L81	R81					Initial Orientation		RB1	LB1				
			RS2					Final Orientation		RB1	LS1		cs		
Vander Waals	${ }_{\text {124,78 }}^{124}$							Total Energy	${ }_{90.158}^{124.147}$						
electrostatic	-185.84							electrostatic	-185.17						
AEs	-9.297							$\Delta \mathrm{Es}$	-9.904						
	-4.49								${ }^{-6.112}$						
	-6.393								$-5.723$						
	1	v	F	F					1	v	F	F			
Initial OrientationFinal Orientation		RB2	LB2					Initial Orientation		LB2	RB2				
								Final Orientation							
Total Energy	128.667   95.046							Total Energy	${ }_{\text {126.202 }}$						
van der Waals	95.046							van der Waals	94.501						
electrostatic	-183.495							electrostatic	-186.161						
4Es	-5.384							AEs	-7.849						
	-1.224								-1.769						
	$-4.048$								-6.714						
	1	v	F	F	Val24				1	$v$	F	F	Val24	Lys28	Met35
Initial Orientation		LB2		RB2				Initial Orientation		RB2		LB2			
Final Orientation					RB2			Final Orientation					LB2	LS1	LS1
														2	
Total Energy	105.84   90.737							Total Energy vander Waals	80.593 86.676						
van der Waals	90.737							van der Waals	86.676						
electrostatic	-204.134							electrostatic	-226.071						
$\Delta \mathrm{Es}$	$-28.211$							AEs	$-53.458$						
	-5.533								-9.594						
	-24.687								$-46.624$						
	1	v	F	F	Lys16	Ala30			1	v	F	F	His13	Lys16	Asp23
Initial Orientation			RB1	LB1				Initial Orientation			LB1	R81			
Final Orientation			RNH		RS1	LB2		Final Orientation			LS2	cs	RS1	L81	cs
			${ }^{\text {RS1 }}$		$\stackrel{2}{881}$	L51					${ }_{\text {LS1 }}$	${ }_{\text {R81 }}$		${ }_{\text {LS1 }}$	
					R81						L81	RS2		$\underset{\text { RB1 }}{\substack{\text { LN } \\ \text { R } \\ \hline}}$	
														RS1	
														-CH2-	
	78.207							Total Energy	37.833						
van der Waals	86.398							van der Waals	75.397						
electrostatic	-225.705							electrostatic	-261.177						
$\Delta \mathrm{Es}$	-55.844							$\Delta \mathrm{Es}$							
	${ }_{-9.872}$								$-20.873$						
	$-46.258$								$-81.73$						
	L	v	F	F					1	v	F	F			
Initial Orientation Final Orientation			LB2	RB2				Initial Orientation			RB2	LB2			
				RB2				Final Orientation							
Total Energy	117.344							Total Energy	130.336						
van der Waals	95.06							van der Waals	96.283						
electrostatic	-194.279							electrostatic	-183.672						
4Es	-16.707							$\Delta \mathrm{Es}$	$-3.715$						
	-1.21 -14.832								0.013 -4.225						



	H	н	a	k	L	v	F	F			H	H	a	k	1	$v$	F	F	Ala21
Initial Orientatio	Ls2					RB2				Initial Orientatio	RS2					LB2			
Final Orientation	L81	RS2		Ls2	Ls2			LB2		Final Orientation	RB2				RB1	LB2			Ls2
	Ls1	-CH-		- CH 2.	RB1						RS2								LB2
	Ls2				RB2														
Total Energy	16.516									Total Energy	77.355								
van der Waals	73.67									van der Waals	83.779								
electrostatic	-274.942									electrostatic	-228.792								
$\Delta \mathrm{Es}$	-117.535									AEs	-56.696								
	-22.6										-12.491								
	-95.495										-49.345								
	H	H	a	k	L	v	F	F			H	н	a	k	L	v	F	F	
Initial Orientatio	RB2					LB2				Initial Orientatio	LB2					RB2			
Final Orientation										Final Orientation	Ls2								
											LB2								
Total Energy	119.99									Total Energy	72.544								
van der Waals	91.978									van der Waals	90.09								
electrostatic	-189.873									electrostatic	-235.001								
$\Delta \mathrm{Es}$	-14.061									4Es	-61.507								
	$-4.292$										-6.18								
	-10.426										-55.54								
	H	H	a	k	$\llcorner$	v	F	F	Val12		H	H	a	k	1	$v$	f	F	
Initial Orientatio	LS2						RB2			Initial Orientatio	RS2						LB2		
Final Orientation	${ }^{\text {Ls }} 1$			RS2			RB2	RS2		Final Orientation	RB2			Ls2			LB2		
	LB2								LS2		RS2								
	L52																		
	37.047									Total Energy	45.847								
van der Waals	81.637									van der Waals	90.248								
electrostatic	-259.676									electrostatic	-263.351								
$\Delta \mathrm{Es}$	-97.004									AEs	-88.204								
	-14.633 -80.279										${ }^{-6.022}$								
	-80.229										-83.904								
Initial Orientatio	$\stackrel{\text { H }}{\text { R82 }}$	H	a	k	1	v	$\stackrel{\text { F }}{\text { L }}$	F		Initial Orientatio		H	Q	k	1	$v$	$\stackrel{\text { F }}{\text { RB2 }}$	F	Val12
Final Orientation	RB2			L81			LB2	cs		Final Orientatior	LB2			Ls1			RB2		LS2
	RS2			Ls2			LS2				LS2			LS2					
				2										- $\mathrm{CH} 2-$					
				cs															
				RS2															
				-CH2.															
Total Energy	28.883									Total Energy	40.571								
van der Waals	${ }^{81.001}$									van der Waals	${ }^{85.578}$								
electrostatic	-271.1									electrostatic	-266.728								
$\Delta \mathrm{Es}$										AEs	-93.48								
	-15.269										-10.69								
	-91.653										-87.281								
	H	H	a	k	L	v	F	F			H	H	a	k	1	$v$	F	F	
Initial Orientatio	cs							RB2		Initial Orientatio	cs							LB2	
Final Orientation	RB1			RS2	RS1			RS1		Final Orientation	LB1			Ls1	Ls2			LB2	
	cs			RS1				R82			cs			${ }_{\text {L }}^{\text {LS }}$ 2					
	RS1			- $\mathrm{CH}^{-}$							L52			- H2- $^{-}$					
Total Energy	43.322									Total Energy	45.795								
van der Waals	${ }^{80.036}$									van der Waals	83.012								
electrostatic	-257.37									electrostatic	-259.482								
$\Delta \mathrm{Es}$	-90.729									4Es	-88.256								
	$-16.234$										-13.258								
	-77.923										-80.035								
	H	н	a	k	1	$v$	F		Val12		H	н	a	k	$\llcorner$	v	F		Val12
Initial Orientatio	RS1							LB1		Initial Orientatio	Ls1							RB1	
Final Orientation	RS2			RB1				LS1	RS1	Final Orientation	Ls1			cs				cs	LS2
				${ }_{\text {RS1 }}$				${ }_{\text {LB1 }}$						L52				RS1	Ls1
				-CH2-				cs						- $\mathrm{CH2}^{\text {- }}$					
														LB1					
Total Energy	50.923									Total Energy	50.248								
van der Waals	82.805									van der Waals	83.073								
electrostatic	-253.044									electrostatic	-250.771								
$\Delta \mathrm{Es}$	-83.128									AEs	-83.803								
	-13.465										$-13.197$								
	-73.597										-71.324								
	H	H	a	k	L	$v$	F	F	Asp23		H	H	a	k	$\llcorner$	$v$	F	F	
Initial Orientatio	LS2							${ }^{\text {RB1 }}$		Initial Orientatio								${ }^{\text {RB2 }}$	
Final Orientation	Ls2			RS2			RS2	cs	RS2	Final Orientation	R81			RB2	LS1			RB2	
								${ }_{\text {RB1 }}^{\text {RS2 }}$			LS1			RNH	LNH				
								RS2			${ }_{\text {- }}^{\text {CH2 }}$ - 18			- $\mathrm{CH2}$ -	${ }^{\text {LB1 }}$				
											${ }_{\text {RN1 }}^{\text {LB1 }}$								
											RS1								
										,									
van der Waals	87.336									van der Waals	76.58								
electrostatic	$-233.883$									electrostatic	-277.275								
$\Delta \mathrm{Es}$										4Es									
	${ }_{-8.934}$										-19.69								
	$-54.436$										-97.828								
	H	H	a	k	L	v	F	F			H	H	a	k	$\llcorner$	$v$	F	F	Val12
Initial Orientatio	${ }^{\text {RB2 }}$							${ }^{\text {LB1 }}$		Initial Orientatio	LB2							${ }^{\text {RB1 }}$	
Final Orientation	RS1			LB1	RS1			L81		Final Orientation	LB2			LB1*				R81	Ls1
	${ }_{\text {R R }}$			$\stackrel{\text { LNH }}{\text { LS2 }}$				cs						${ }_{\text {LNH* }}^{\text {LS }}$					
				- ${ }_{\text {LSL2 }}$															
Total Energy	35.054									Total Energy	61.416								
van der Waals	81.703 -268684									van der Waals	84.25								
electrostatic	-266.864									electrostatic	-243.192								
AEs	-98.997									AEs	-72.635								
	-14.567 -87.417										-12.02 -63.75								





	H	H	a	K	L	v	F	F	Val12		н	H	a	k	L	v	F	F	Val12
Initial Orientation				RB1	LB1					Initial Orientation				LB1	RB1				
Final Orientation	RB1			RB2	LS1				RS1	Final Orientation	RB1			Ls1	RS1			cs	LS1
				RS1*							RNH			LB1	RB1				
				RNH*							LB1			-CH2-					
				--CH2-							LNH								
Total Energy	56.963									Total Energy	37.019								
van der Waals	84.211									van der Waals	82.135								
electrostatic	-246.525									electrostatic	$-272.413$								
$\Delta \mathrm{Es}$	-77.088									$\Delta \mathrm{Es}$	-97.032								
	-12.059										-14.135								
	-67.078										-92.966								
	H	H	a	k	L	$v$	F	F			н	H	a	k	1	v	F	F	
Initial Orientation				RS1	LB1					Initial Orientation				Ls1	RB1				
Final Orientation	cs			RS 1						Final Orientation	LB1			Ls1	RS1				
	RB1			RB1							RB1								
				-CH2-							RNH								
Total Energy	71.655									Total Energy	38.815								
van der Waals	87.512									van der Waals	84.757								
electrostatic	-233.177									electrostatic	-271.108								
$\Delta \mathrm{Es}$	-62.396																		
	-62.378									AEs	-95.236								
	-53.73										-91.661								
	-53.73																		
	н	H	Q	k	L	v	F	F			H	H	a	к	L	v	F	F	
Initial Orientation				RS2	LB1					Initial Orientation				LB1	RB2				
Final Orientation	RB1	LS2		RS2	cs					Final Orientation	RS2			LB1	RS2			RB1	
	LS2				LS1						RB2			LS2	RB2				
	- $\mathrm{CH} 2-$													LNH					
														RS2					
														-CH2-					
Total Energy	7.462									Total Energy	23.709								
van der Waals	81.9									van der Waals	78.428								
electrostatic	-289.927									electrostatic	-274.36								
$\Delta \mathrm{Es}$	-126.589									$\Delta \mathrm{Es}$	-110.342								
	-14.37										-17.842								
	-110.48										-94.913								
	H	н	Q	к	L	v	F	F			н	H	Q	k	L	v	F	F	Val12
Initial Orientation				RB2	LB1					Initial Orientation				RB1	LB2				
Final Orientation	RB1			RB2	LB1			cs		Final Orientation	LB2			RS2	LB2		RS2	LS1	RB1
	RNH			RB1*				RB1			LS2			LS2	LS2				
	RS1			RNH*				RB2			LB1			- CH 2 -					
				*-CH2-															
Total Energy	42.173									Total Energy	8.517								
van der Waals	77.288									van der Waals	76.027								
electrostatic	-257.001									electrostatic	-280.887								
$\Delta \mathrm{Es}$																			
	-91.878									$\Delta \mathrm{Es}$	-125.534								
	-18.982										-20.243								
	-77.554										-101.44								
	H	H	a	к	L	$v$	F	F			H	H	a	к	L	v	F	F	Asp23
Initial Orientation				LB2	RB1					Initial Orientation				LS2	RB2				
Final Orientation	LB1			LB2	RS2	RB2		LB2		Final Orientation	RS2			Ls2	RS2		LB2	RB2	LB2
	LS2			LS2	RB1									LB2	RB2				
				-CH2-															
Total Energy	50.974									Total Energy	38.409								
van der Waals	78.384									van der Waals	80.003								
electrostatic	-246.862									electrostatic	-260.684								
$\triangle \mathrm{Es}$																			
										$\Delta \mathrm{Es}$	-95.642 -16267								
											-16.267 -81.237								
											-81.237								
	H	H	a	K	L	$v$	F	F	Val12		H	H	a	к	L	v	F	F	Val12
Initial Orientation				RS2	LB2					Initial Orientation				RB2	LB2				
Final Orientation	LB2			RB1	LS2			LB1	RS2	Final Orientation	LB1			RS1	LS2				RB2
	LS2			RS1	LB2			LS1			RS2			RS2	LB2				RS2
				RS2*							LNH			-CH2-					
				LS2*							LB2								
				*-CH2-							-CH2-								
Total Energy	16.126									Total Energy	22.004								
van der Waals	76.822									van der Waals	82.303								
electrostatic	-280.832									electrostatic	-277.767								
$\triangle \mathrm{Es}$	-117.925									$\Delta \mathrm{Es}$	-112.047 -1397								
	-19.448										-13.967								
	-101.385										-98.32								
	H	H	a	к	L	$v$	F	F	Val12		H	H	a	K	1	v	F	F	
				LB2	RB2					Initial Orientation				RB2		LB2			
Final Orientation	RS2			LB1	RS2			Cs	Ls2	Final Orientation			LS2	${ }_{\text {RS2 }}$			RB2		
				LNH				LB1					LB2	RB2			RB1		
				LS2													LB1		
				--CH2-															
										Total Energy									
van der Waals	85.354									van der Waals	83.006								
electrostatic	-271.632									electrostatic	-233.739								
$\Delta \mathrm{Es}$	-100.488									$\Delta \mathrm{Es}$	-64.521								
	-10.916										-13.264								
	-92.185										-54.292								


	H	H	a	к	เ	v	F	F	Val12		H	H	Q	k	L	v	F	F	
Initial Orientation				LB2		RB2				Initial Orientation				cs			RB1		
Final Orientation			RB1	LB2			LB1		Ls1	Final Orientation	LS1			LB1			RS1	LB2	
				LS1			cs							LS1*					
				--CH2-			RB1							LNH*					
				LNH										*-CH2-					
														RB1					
Total Energy	65.753									Total Energy	42.235								
van der Waals	65.753 80.162									Total Energy	42.235 82.418								
electrostatic	-237.979									electrostatic	-260.461								
$\Delta \mathrm{Es}$	-68.298									$\Delta \mathrm{Es}$	-91.816								
	-16.108										-13.852								
	-58.532										-81.014								
	H	H	Q	к	เ	$v$	F	F	Val12		H	н	a	k	L	v	F	F	Val12
Initial Orientation				cs			LB1			Initial Orientation				RB1			LB1		
Final Orientation				RB1			LS1		RS1	Final Orientation	RS1			LB1			Ls1		RS1
				RS2			cs				RS2			RS2					
				cs							RB2			-CH2-					
				RS1															
				--CH2-															
Total Energy	55.47									Total Energy	13.807								
van der Waals	85.598									van der Waals	81.129								
electrostatic	-251.039									electrostatic	-285.249								
$\triangle \mathrm{Es}$	-78.581									AEs	-120.244								
	-10.672										-15.141								
	-71.592										-105.802								
	H	H	a	k	เ	v	F	F			H	н	a	k	เ	v	F	F	Asp23
Initial Orientation				LB1			RB1			Initial Orientation				RS1			LB1		
Final Orientation	Ls1			LB1			RS1	LB2		Final Orientation				RB1			LB1		cs
				LNH										RNH			cs		
				Ls1										RS1			RB1		
				--CH2-										-CH2-					
TotatEnergy	${ }^{50.137}$									Toatanergy	${ }_{8} 99.235$								
electrostatic	-255.901									electrostatic	-228.17								
$\triangle \mathrm{Es}$	-83.914									$\Delta \mathrm{Es}$	-54.794 -7.035								
	-10.012										-7.035								
	-76.454										-48.723								
	H	H	Q	k	L	v	F	F			H	н	a	к	เ	v	F	F	
Initial Orientation				Ls1			RB1			Initial Orientation				RS2			LB1		
Final Orientation				Ls1			RB1			Final Orientation				RB1			LB1		
				LNH			cs							RNH			RB1		
							L81							RS2					
														-CH2-					
Total Energy										Total Energy									
van der Waals	99.184									van der Waals	85.633								
electrostatic	-223.7									electrostatic	-233.86								
$\Delta \mathrm{Es}$	-47.208									$\Delta \mathrm{Es}$	-66.88								
	-6.086										-10.637								
	-44.253										-54.413								
	H	H	Q	к	L	v	F	F	Val12		H	н	a	*	L	v	F	F	
Initial Orientation				LS2			RB1			Initial Orientation				LB1			RB2		
Final Orientation	Ls1		RB2	L81			RS2		Ls2	Final Orientation	LS1		RS1	RB1			RB2	LB2	
	LS2			cs										LB1			RS1		
	LB2			RB1										RS1*			CH2-		
				LS1													RNH		
				-CH2-										LNH*			RB1		
														${ }_{\text {LS }}{ }^{*}$					
														*-CH2-					
van der Waals	80.154									van der Waals	73.618								
electrostatic	-273.351									electrostatic	-279.528								
$\Delta \mathrm{Es}$	-108.19									$\Delta \mathrm{Es}$									
	$\begin{array}{r} -16.116 \\ -93.904 \end{array}$										-22.652 -100.081								
	H	H	a	K	L	v	F	F	Val12		H	H	a		ᄂ	v	F	F	
Initial Orientation				RB2			LB1			Initial Orientation				RB1			LB2		
Final Orientation	RB2		L52	R81			LB1		RS2	Final Orientation	RS2			RB1			LB2	RB2	
	RS2		LB2	LB1			LNH							LS2			LS2		
				RS2			LS1							2					
				-CH2-			LB2							RS2					
														-CH2-					
Total Energy	23.031									Total Energy	24.056								
van der Waals	75.841									van der Waals	81.324								
electrostatic	-269.362									electrostatic	-275.906								
$\Delta \mathrm{Es}$	-111.02									$\Delta \mathrm{Es}$	-109.995								
	-20.429										-14.946								
	-89.915										-96.459								
	н	H	Q	$\ldots$	1	v	F	F			н	н	a	,	L	v	F	F	
Initial Orientation				LB2			RB1			Initial Orientation Final Orientation				Ls2			RB2		
Final Orientation	LB2		RB2				RS2 cs			Final Orientation				Ls2			${ }_{\text {RS2 }}$		
	LS2			$\begin{gathered} \text { LS2 } \\ \hline-\mathrm{CH} 2- \end{gathered}$			CS										RB2		
Total Energy	52.479 8.273									Total Energy	65.608   8.555								
van der Waals	82.673 -252.529									van der Waals electrostatic	85.755 -234.425								
$\triangle \mathrm{Es}$	-81.572									$\Delta \mathrm{Es}$	-68.443								
	-13.507 -73.082										$\begin{aligned} & -10.515 \\ & -54.978 \end{aligned}$								




The gas phase results of solapsone and the 1Z0Q conformer of $\beta$-amyloid

	H	H	Q	K	Gly9	Tyr10		H	H	Q	к	Tyr10
Initial Orientatic	CS	LB1					Initial Orientatio	LB1	CS			
Final Orientatio	RS1	LS1		RS1	CS	CS	Final Orientatior	CS	CS		LS1	CS
	RB1			2	$\mathrm{C}=0$	-CH-		-CH2-	-NH-		LS2	-CH2-
								LB1	RS1			
	CS							LS1				
Total Energy	139.591						Total Energy	135.765				
van der Waals	117.425						van der Waals	109.219				
electrostatic	-261.241						electrostatic	-260.637				
$\Delta \mathrm{Es}$	-104.985						$\Delta \mathrm{Es}$	-108.811				
	-4.277							-12.483				
	-101							-100.396				
	H	H	Q	K	Leu17			H	H	Q	K	Gly9
Initial Orientatic	CS	RS1					Initial Orientatio	RS1	cs			
Final Orientatio	CS	RS1		RS2	RS2		Final Orientatior	RS2	LS1		RS1	RS2
	RS1			-CH2-				RS1	LS2			$\mathrm{C}=0$
	-CH2-											
	LB1											
	RB1											
Total Energy	161.738						Total Energy	110.047				
van der Waals	109.638						van der Waals	109.653				
electrostatic	-233.306						electrostatic	-284.095				
$\Delta \mathrm{Es}$	-82.838						$\Delta \mathrm{Es}$	-134.529				
	-12.064							-12.049				
	-73.065							-123.854				
	H	H	Q	K				H	H	Q	K	Tyr10
Initial Orientatic	CS	LS1					Initial Orientatio	LS1	CS			
Final Orientatio	RB1	LS2		RS1			Final Orientatior	LS1	RB1		LB1	CS
	RS1	LS1		RB1				CS	RS2		LS2	-CH2-
	RS2			RNH				-CH2-	CS		2	
									-NH-		LS1	
									RS1			
Total Energy	105.307						Total Energy	108.858				
van der Waals	110.471						van der Waals	104.221				
electrostatic	-291.8						electrostatic	-287.616				
$\Delta \mathrm{Es}$	-139.269						$\Delta \mathrm{Es}$	-135.718				
	-11.231							-17.481				
	-131.559							-127.375				
	H	H	Q	K	Gly9	Tyr10		H	H	Q	к	Leu17
Initial Orientatic	CS	RS2					Initial Orientatio	RS2	CS			
Final Orientatio	LB1	RS2		LS2	CS	CS	Final Orientatior	RS2	LB1		RS1	cs
	LS1	RS1		2	$\mathrm{C}=0$	-CH2-			LS1		CS	
	LS2			RS2					CS		-CH2-	
				-CH2-								
Total Energy	99.511						Total Energy	113.757				
van der Waals	109.292						van der Waals	105.47				
electrostatic	-293.141						electrostatic	-278.627				
$\Delta \mathrm{Es}$	-145.065						$\Delta \mathrm{Es}$	-130.819				
	-12.41							-16.232				
	-132.9							-118.386				


	H	H	Q	к	Leu17			H	H	Q	K	Gly9	Tyr10	
Initial Orientatic	cs	LS2					Initial Orientatio	LS2	cs					
Final Orientatio	cs	LS2		LS1*	LS1		Final Orientatior	LS2	RS1			LB2	LS1	
	RB1			LB1*				LB2				$\mathrm{C}=0$	- $\mathrm{CH} 2-$	
	RS2			*-CH2-									LS2	
				CS									-CH-	
Total Energy	130.683						Total Energy	139.606						
van der Waals	104.379						van der Waals	112.806						
electrostatic	-263.265						electrostatic	-257.474						
$\Delta \mathrm{Es}$	-113.893						$\Delta \mathrm{Es}$	-104.97						
	-17.323							-8.896						
	-103.024							-97.233						
	H	H	Q	K	Gly9	Tyr10		H	H	Q	K	Gly9		
Initial Orientatic	cs	LB2					Initial Orientatio	RB1	LB1					
Final Orientatio	LB1	LS2		LS1	cs	LS2	Final Orientatior	RB1	LS2		LS1	RB1		
	LS1	LS1		-CH2-	C=0	-CH2-		RNH	LS1			$\mathrm{C}=0$		
	-CH2-	-CH-						RS1						
	Cs							RB2						
Total Energy	160.629						Total Energy	106.001						
van der Waals	108.539						van der Waals	105.858						
electrostatic	-231.106						electrostatic	-288.005						
- Es	-83.947						$\Delta \mathrm{Es}$	-138.575						
	-13.163							-15.844						
	-70.865							-127.764						
	H	H	Q	к				H	H	Q	K	Gly9		
Initial Orientatic	LB1	RB1					Initial Orientatio	LB1	RS1					
Final Orientatio	LS1	RS1		LS2			Final Orientatior	LB1	RS1		LS2	LS1		
				2				CS	cs		2	$\mathrm{C}=0$		
				LB1				-CH2-	-CH-		cs			
				-CH2-				LS1			-CH2-			
								LS2						
Total Energy	132.501						Total Energy	121.79						
van der Waals	117.442						van der Waals	110.988						
electrostatic	-274.526						electrostatic	-275.435						
- Es	-112.075						$\Delta \mathrm{Es}$	-122.786						
	-4.26							-10.714						
	-114.285							-115.194						
	H	H	Q	к	Gly9			H	H	Q	K	Gly9	Tyr10	Leu17
Initial Orientatic	RS1	LB1					Initial Orientatio	RB1	LS1					
Final Orientatio	RS1	LS1		RNH	RS1		Final Orientatior	RS1	LS2		LS1	RS1*	cs	LS1
					$\mathrm{C}=0$			RB1	LS1		-CH2-	RB1*	-CH2-	
												* $\mathrm{C}=0$		
Total Energy	142.499						Total Energy	134.4						
van der Waals	117.472						van der Waals	106.173						
electrostatic	-257.406						electrostatic	-260.158						
$\Delta \mathrm{Es}$	-102.077						$\Delta \mathrm{Es}$	-110.176						
	-4.23							-15.529						
	-97.165							-99.917						
	H	H	Q	K				H	H	Q	K	Gly9	Tyr10	
Initial Orientatic	LS1	RB1					Initial Orientatio	LB1	RS2					
Final Orientatiol	RS1	CS		LB1			Final Orientatior	LB1	RS2		LS2	cs	CS	
	CS	-CH-		LS2				LS1	RS1		2	$\mathrm{C}=0$	-CH2-	
	-CH2-			2				LS2			RS2			
	LB1			cs							-CH2-			
	LS1			-CH2-										
				LS1										
Total Energy	126.537						Total Energy	98.47						
van der Waals	114.699						van der Waals	104.359						
electrostatic	-279.398						electrostatic	-292.452						
$\Delta \mathrm{Es}$	-118.039						$\Delta \mathrm{Es}$	-146.106						
	-7.003							-17.343						
	-119.157							-132.211						
	H	H	Q	K	Leu17			H	H	Q	K	Tyr10		
Initial Orientatic	RS2	LB1					Initial Orientatio	RB1	LS2					
Final Orientatio	RS2	LS2		RS1	cs		Final Orientatior	RS2	LS2			LS2		
		LB1		RS2								-CH2-		
		cs												
Total Energy	121.293						Total Energy	153.461						
van der Waals	105.592						van der Waals	112.18						
electrostatic	-272.75						electrostatic	-244.615						
$\Delta \mathrm{Es}$	-123.283						$\Delta \mathrm{Es}$	-91.115						
	-16.11							-9.522						
	-112.509							-84.374						


	H	H	Q	к	Gly9	Tyr10	Leu17	Val18		H	H	Q	K	Gly9	
Initial Orientatic	LS2	RB1							Initial Orientatio	RB2	LB1				
Final Orientatio	LB1	RB1		LB2	LS1	cs	RS2	RS2	Final Orientation	RB2	LS2		RS2	RB2	
	LS2	CS		LS2	$\mathrm{C}=0$	-CH2-				RS2	2		-CH2-	$\mathrm{C}=0$	
	LS1	-CH2-								-CH2-	RS2				
		RS1									-CH-				
		RS2													
Total Energy	99.12								Total Energy	151.844					
van der Waals	100.016								van der Waals	111.73					
electrostatic	-291.072								electrostatic	-243.709					
$\Delta \mathrm{Es}$	-145.456								$\Delta \mathrm{Es}$	-92.732					
	-21.686									-9.972					
	-130.831									-83.468					
	H	H	Q	K	Tyr10					H	H	Q	K	Gly9	
Initial Orientatic	LB1	RB2							Initial Orientatio	LB2	RB1				
Final Orientatio	RB1	RB2			RS2				Final Orientation	LB2	RB1		Ls1	LB2	
	LS2	RS2			-CH2-					LS1	RS1		-CH2-	C=O	
	LB1									LNH	LB1				
	cs									LB1	-CH-				
										-CH2-	RNH				
Total Energy	128.469								Total Energy	129.111					
van der Waals	104.222								van der Waals	107.682					
electrostatic	-263.496								electrostatic	-257.711					
$\Delta \mathrm{Es}$	-116.107								$\Delta \mathrm{Es}$	-115.465					
	-17.48									-14.02					
	-103.255									-97.47					
	H	H	Q	K	Gly9	Tyr10				H	H	Q	K	Tyr10	
Initial Orientatic	RB1	LB2							Initial Orientatio	LS2	RS2				
Final Orientatio	LB1	LB2		RS2	LB1	LS1			Final Orientatior	LS2	RB1		LB2	cs	
	RB1	LS1		RB1	$\mathrm{C}=0$	LNH*				LS1	RS1		LS2	-CH2-	
	RB1					LB1*					RS2				
	LNH					*-CH2-									
	-NH-														
	RNH														
Total Energy	107.413								Total Energy	106.184					
van der Waals	97.731								van der Waals	107.614					
electrostatic	-275.241								electrostatic	-285.376					
$\Delta \mathrm{Es}$	-137.163								$\Delta \mathrm{Es}$	-138.392					
	-23.971									-14.088					
	-115									-125.135					
	H	H	Q	к	Leu17					H	H	Q	к		
Initial Orientatic	RS2	LS2							Initial Orientatio	RB2	LS2				
Final Orientatio	RB2	LS2		RS1	cs				Final Orientation	RB2	LS2		RS2		
	RS2			RS2*						RS2	LB2		2		
				RB1*											
				cs*											
				*-CH2-											
Total Energy	114.822								Total Energy	135.755					
van der Waals	106.717								van der Waals	115.866					
electrostatic	-279.908								electrostatic	-267.65					
$\Delta \mathrm{Es}$	-129.754								$\Delta \mathrm{Es}$	-108.821					
	-14.985									-5.836					
	-119.667									-107.409					
	H	H	Q	K	Val18					H	H	Q	K	Val18	
Initial Orientatic	LS2	RB2							Initial Orientatio	LB2	RS2				
Final Orientatio	LS2	RB2		LS2	RB2				Final Orientation	LB2	RB2		LS1	RB2	
	LS1									LS2	RS2		LB2		
										LB1			LNH		
													-CH2-		
Total Energy	107.914								Total Energy	126.265					
van der Waals	105.287								van der Waals	104.686					
electrostatic	-282.698								electrostatic	-272.779					
$\Delta \mathrm{Es}$	-136.662								$\Delta \mathrm{Es}$	-118.311					
	-16.415									-17.016					
	-122.457									-112.538					
	H	H	Q	K	Leu17	Val18				H	H	Q	K	Gly9	Tyr10
Initial Orientatic	RS2	LB2							Initial Orientatio	RB2	LB2				
Final Orientatio	RB2	LB2		RB1	LS2	LS2			Final Orientatior	RS2	LB2		RS1	RB2	RS2
	RS2	LS2		RS2							LS2		RS2	$\mathrm{C}=0$	-СН-
											2				
Total Energy	124.503								Total Energy	125.792					
van der Waals	109.776								van der Waals	107.557					
electrostatic	-276.707								electrostatic	-265.71					
$\Delta \mathrm{Es}$	-120.073								$\Delta \mathrm{Es}$	-118.784					
	-11.926									-14.145					
	-116.466									-105.469					


	H	H	a	к	Gly9	Val18		н	H	Q	к
Initial Orientatic	LB2	RB2					Initial Orientatio	Ls1	RS1		
Final Orientatio	LB2	RB2			LB2	RB2	Final Orientation	LB1	RS1		LB1
		RS2			$\mathrm{C}=0$			LNH	RB1		
								Ls1			
Total Energy	195.363						Total Energy	152.459			
van der Waals	115.52						van der Waals	110.378			
electrostatic	-209.836						electrostatic	-246.619			
$\Delta \mathrm{Es}$	-49.213						$\Delta \mathrm{Es}$	-92.117			
								-11.324			
	-49.595							-86.378			
	H	н	Q	к	Tyr10			н	н	a	к
Initial Orientatic	RS1	LS1					Initial Orientatio	cs			RB1
Final Orientatio	RS1	Ls1		RS1	cs		Final Orientation	RB1			RS2
	RB1	LB1		RNH	-CH2-			cs			2
		LNH									RS1
											-CH2-
Total Energy	129.888						Total Energy	170.62			
van der Waals	106.317						van der Waals	118.265			
electrostatic	-269.602						electrostatic	-232.103			
$\Delta \mathrm{Es}$	-114.688						$\Delta \mathrm{Es}$	-73.956			
	-15.385							-3.437			
	-109.361							-71.862			
	H	H	a	K				н	H	a	к
Initial Orientatic	RB1			cs			Initial Orientatio	cs			LB1
Final Orientatio	RS1			LS1			Final Orientation				LS1
Total Energy	176.809						Total Energy	174.098			
van der Waals	120.924						van der Waals	122.367			
electrostatic	-228.247						electrostatic	-232.98			
$\triangle$ Es	-67.767						$\Delta \mathrm{Es}$	-70.478			
	-0.778							0.665			
	-68.006							-72.739			
	H	H	Q	k				H	H	Q	K
Initial Orientatic	LB1			cs			Initial Orientatio	cs			RS1
Final Orientatio	Ls1			RB1			Final Orientation	RB1			RS2
	2			RS1				cs			RS1
Total Energy	167.609						Total Energy	171.734			
van der Waals	116.064						van der Waals	116.536			
electrostatic	-233.674						electrostatic	-231.866			
$\Delta \mathrm{Es}$	-76.967						$\Delta \mathrm{Es}$	-72.842			
	-5.638							-5.166			
	-73.433							-71.625			
	H	H	Q	к				H	H	Q	k
Final Orientatio	RS1			cs			Initial Orientatio	cs			LS1
	RS1			RS2			Final Orientation	LB1			LB2
								LNH			LS1
								LS1			-CH2-
Total Energy	167.973						Total Energy	159.814			
van der Waals	116.407						van der Waals	117.038			
electrostatic	-232.764						electrostatic	-244.256			
$\Delta \mathrm{Es}$	-76.603						$\Delta \mathrm{Es}$	-84.762			
	-5.295							$-4.664$			
	-72.523							-84.015			
	H	H	Q	K				H	H	Q	K
Initial Orientatic	Ls1			cs			Initial Orientatio	cs			RS2
Final Orientatio	Ls1			RB1			Final Orientatior	RB1			RS2
				RS1				cs			2
				RS2				RS1			RS1
Total Energy	162.074						Total Energy	153.152			
van der Waals	115.997						van der Waals	117.156			
electrostatic	-239.528						electrostatic	-251.64			
$\Delta \mathrm{Es}$	-82.502						$\Delta \mathrm{Es}$	-91.424			
	-5.705							-4.546			
	-79.287							-91.399			
	H	H	Q	K				H	H	Q	к
Initial Orientatic	RS2			cs			Initial Orientatio	cs			LS2
Final Orientatio	RS1			LB1			Final Orientation	cs			LB2
	RB1			RB1				Ls2			LS2
	RS2			LS2							2
				cs							
				-CH2-							
Total Energy	142.735						Total Energy	179.787			
van der Waals	110.352						van der Waals	120.458			
electrostatic	-252.207						electrostatic	-224.119			
$\Delta \mathrm{Es}$	-101.841						$\Delta \mathrm{Es}$	-64.789			
	-11.35 -91.966							- -1.244			
	-91.966							-63.878			


	H	H	Q	k			H	H	Q	k		
Initial Orientatic	LS2			cs		Initial Orientatio	LB1			RB1		
Final Orientatio	Ls2			cs		Final Orientatior	LB1			RS1		
	Ls1						Ls1			2		
Total Energy	170.648					Total Energy	177.117					
van der Waals	120.774					van der Waals	119.216					
electrostatic	-236.567					electrostatic	-226.636					
$\Delta \mathrm{Es}$	-73.928					$\Delta \mathrm{Es}$	-67.459					
	-0.928						$-2.486$					
	-76.326						-66.395					
	H	H	Q	k			H	H	Q	k		
Initial Orientatic	RB1			LB1		Initial Orientatio	LB1			RS1		
Final Orientatiol	RS1			LS1		Final Orientation	LB1			RS2		
				2			CS			${ }^{2}$		
				LB1			RB1			RS1		
				LNH						- $\mathrm{CH} 2-$		
Total Energy	171.583					Total Energy	151.125					
van der Waals	118.557					van der Waals	114.134					
electrostatic	-233.045					electrostatic	-245.77					
$\Delta \mathrm{Es}$	-72.993					$\Delta \mathrm{Es}$	-93.451					
	-3.145						-7.568					
	-72.804						-85.529					
	H	H	Q	k			H	H	Q	k		
Initial Orientatic	RS1			LB1		Initial Orientatio	RB1			LS1		
Final Orientatiol	RS1			LS1		Final Orientatior	LB1			Ls1		
				2			Ls1					
Total Energy	173.34					Total Energy	161.759					
van der Waals	120.502					van der Waals	117.462					
electrostatic	-231.449					electrostatic	-240.766					
$\triangle \mathrm{Es}$	-71.236					$\Delta \mathrm{Es}$	-82.817					
	-1.2						-4.24					
	-71.208						-80.525					
	H	H	a	K			H	H	Q	K	Gly9	
Initial Orientatic	Ls1			RB1		Initial Orientatio	LB1			RS2		
Final Orientatiol	Ls1			RS1		Final Orientatior	LS2			RS2	LS2	
										2		
										RS1		
Total Energy	174.046 119.63					Total Energy	150.38 114.488					
electrostatic	-230.882					electrostatic	-251.666					
$\Delta \mathrm{Es}$	-70.53					$\Delta \mathrm{Es}$	-94.196					
	-2.072						-7.214					
	-70.641						-91.425					
	H	H	a	k			H	н	Q	k		
Initial Orientatic	RS2			LB1		Initial Orientatio	RB1			LS2		
Final Orientatiol	RS2			LS2		Final Orientatior	LB1			Ls2		
				2			cs			2		
				LS1			RS2					
Total Energy	148.389					Total Energy	153.37					
van der Waals	120.747					van der Waals	116.054					
electrostatic	-255.85					electrostatic	-248.262					
$\Delta \mathrm{Es}$	-96.187					$\Delta \mathrm{Es}$	-91.206					
	-0.955						-5.648					
	-95.609						-88.021					
	H	H	Q	K	Phe19		H	н	Q	k	Gly9	
Final Orientatiol	Ls2			RB1		Initial Orientatio	LB1			RB2		
	Ls2			RS2	RB2	Final Orientation	LB1			RB2	LS1	
	2			RB1	RS2		RS1			RS1	$\mathrm{C}=0$	
							RB1			RNH		
							LNH					
							LS1					
Total Energy	147.54					Total Energy	157.675					
van der Waals	113.929					van der Waals	110.979					
electrostatic	-253.465					electrostatic	-245.245					
$\Delta \mathrm{Es}$	-97.036					$\Delta \mathrm{Es}$	-86.901					
	-7.773						-10.723					
	-93.224						-85.004					
	H	H	a	k			H	H	Q	k	Ser8	Gly9
Initial Orientatic	RB2			LB1		Initial Orientatio	RB1			LB2		
Final Orientatio	RNH			LB1		Final Orientation	LB1			LB2	RS1	RB1
	RS1			RB1			RB1			LS1		
	RB2						RB1			-CH2-		
							RNH			LNH		
							RS2					
Total Energy	167.219					Total Energy	146.163					
van der Waals	114.611					van der Waals	107.697					
electrostatic	-233.144					electrostatic	-250.387					
$\triangle \mathrm{Es}$	-77.357					$\Delta \mathrm{Es}$	-98.413					
	-7.091						-14.005					
	-72.903						-90.146					


	H	н	Q	к	Val12		H	н	Q	к		
Initial Orientation	LB2			RB1		Initial Orientation	RS2			LS2		
Final Orientation	Ls1			RB1	LS1	Final Orientation	RS2			LS2		
	LNH			LB1						2		
	LB2											
Total Energy	163.53					Total Energy	164.19					
van der Waals	113.7					van der Waals	119.593					
electrostatic	-241.377					electrostatic	-241.015					
$\Delta \mathrm{Es}$	-81.046					$\Delta \mathrm{Es}$	-80.386					
	-8.002						-2.109					
	-81.136						-80.774					
	H	H	Q	K			H	H	Q	K		
Initial Orientation	LS2			RS2		Initial Orientation	LS2			RB2		
Final Orientation	LS2			RS2		Final Orientation				RS2		
										LS2		
										RNH		
Total Energy	167.65					Total Energy	153.85					
van der Waals	121.36					van der Waals	114.193					
electrostatic	-239.456					electrostatic	-246.025					
$\triangle \mathrm{Es}$												
	-76.926					$\Delta \mathrm{Es}$	-90.726					
	-0.342						-7.509					
	-79.215						-85.784					
	H	H	Q	k	Gly9		H	H	a	K		
Initial Orientation	RB2			LS2		Initial Orientation	LB2			RS2		
Final Orientation	RB2			LS2	RB2	Final Orientation	LB2			RS2		
	RS2			2			LS2			2		
Total Energy	160.506					Total Energy	163.21					
van der Waals	116.154					van der Waals	119.236					
electrostatic	-244.352					electrostatic	-243.973					
$\Delta \mathrm{Es}$	-84.07					$\Delta \mathrm{Es}$	-81.366					
	-5.548						-2.466					
	-84.111						-83.732					
	H	H	Q	K			H	H	Q	k	Gly9	
Initial Orientation	RS2			LB2		Initial Orientation	RB2			LB2		
Final Orientation	RS1			LS2		Final Orientation	RS2			LS2	RB2	
	RS2			LB2								
Total Energy	131.291					Total Energy	166.436					
van der Waals	111.018					van der Waals	116.234					
electrostatic	-266.759					electrostatic	-234.492					
$\Delta \mathrm{Es}$	-113.285					$\Delta \mathrm{Es}$	-78.14					
	-10.684						-5.468					
	-106.518						-74.251					
	H	H	Q	K	Phe19		н	н	Q	K		
Initial Orientation	LB2			RB2		Initial Orientation	LS1			RS1		
Final Orientation	LS2			RS2	RB2	Final Orientation	LB1			RB1		
				RB2			LS1			RS2		
							cs			RS1		
							RB1			-CH2-		
Total Energy	164.18					Total Energy	148.441					
van der Waals	116.998					van der Waals	113.402					
electrostatic	-239.442					electrostatic	-252.67					
$\Delta \mathrm{Es}$	-80.396					$\Delta \mathrm{Es}$	-96.135					
	-4.704						-8.3					
	-79.201						-92.429					
	H	H	Q	k			H	H	Q	k	Tyr10	
Initial Orientation	RS1			LS1		Initial Orientation		Cs		RS2		
Final Orientation	RB1			LB1		Final Orientation	RS2	Ls1		RS2	LS2	
	RS1			LS1			Cs	CS		RS1		
	cs			LS2			-CH2-	-CH-		cs		
				cs						-CH2-		
				-CH2-								
Total Energy	167.224					Total Energy	110.367					
van der Waals	112.638					van der Waals	106.661					
electrostatic	-234.371					electrostatic	-285.894					
$\triangle \mathrm{Es}$	-77.352					$\Delta \mathrm{Es}$	-134.209					
	-9.064						-15.041					
	-74.13						-125.653					
	H	H	Q	K			H	H	Q	K	Tyr10	Leu17
Initial Orientation		cs		LS2		Initial Orientation		LS2		cs		
Final Orientation	LB1	RS1		LS2		Final Orientation	RS2	LS2		RB1	LS2	LS1
	CS	cs					LS2	-CH-		RS1	-CH2-	
	-CH2-	-CH-					-CH2-	LB2		LS1		
										-CH2-		
Total Energy	122.67					Total Energy	98.547					
van der Waals	113.245					van der Waals	106.866					
electrostatic	-274.571					electrostatic	-292.232					
$\Delta \mathrm{Es}$	-121.906					$\Delta \mathrm{Es}$	-146.029					
	-8.457 -114.33					,	-14.836 -131.991					


	H	H	Q	к	Tyr10					H	H	Q	к		
Initial Orientation		RS1		LB1					Initial Orientation		LS1		RB1		
Final Orientation	LB2	RS1		LS1	RS1				Final Orientation	RS1	LS1		RS1		
				2	-CH2-								RB1		
				LNH									-CH2-		
				LB1									RNH		
Total Energy	133.918								Total Energy	138.077					
van der Waals	110.293								van der Waals	115.228					
electrostatic	-263.54								electrostatic	-264.279					
$\Delta \mathrm{Es}$	-110.658								$\Delta \mathrm{Es}$	-106.499					
	-11.409									-6.474					
	-103.299									-104.038					
	H	H	Q	K	Tyr10					H	H	Q	K	Leu17	
Initial Orientation		RB2		LB1					Initial Orientation		LB2		RB1		
Final Orientation	RS2	RB2		LB1	RS2				Final Orientation		LB2		LB1	LS2	
				LNH	- CH -								RB1		
				LS2									LS2		
													-CH2-		
Total Energy	144.288								Total Energy	170.308					
van der Waals	112.962								van der Waals	112.966					
electrostatic	-252.207								electrostatic	-227.995					
$\Delta \mathrm{Es}$	-100.288								$\Delta \mathrm{Es}$	-74.268					
	-8.74									-8.736					
	-91.966									-67.754					
	H	H	Q	K	Gly9	Tyr10	Leu17	Val18		H	H	Q	K	Tyr10	
Initial Orientation		RS2		LS2					Initial Orientation		LS2		RS2		
Final Orientation	LB1	RS1		LS2	cs	cs	RS2	RS2	Final Orientation	RS2	LB2		RS1	LB2	
	LS1	RS2		2	$\mathrm{C}=0$	-CH2-					LB2		RS2		
	Cs										LS2				
Total Energy	94.272								Total Energy	125.96					
van der Waals	106.029								van der Waals	112.307					
electrostatic	-295.616								electrostatic	-268.282					
$\Delta \mathrm{Es}$	-150.304								$\Delta \mathrm{Es}$	-118.616					
	-15.673									-9.395					
	-135.375									-108.041					
	H	H	Q	K	Leu17					H	H	a	K	Leu17	
Initial Orientation		LS2		RB2					Initial Orientation		RB2		LS2		
Final Orientation		LB2		RS2	RS2				Final Orientation	RS2	RS2		LS2	RB2	
		LB2		2						-CH2-	-CH-		2		
		LS2		RB1							RB2		LB1		
				RNH									RS2*		
													RB2*		
													*-CH2-		
Total Energy	156.298								Total Energy	143.851					
van der Waals	111.346								van der Waals	107.336					
electrostatic	-249.523								electrostatic	-251.926					
$\Delta \mathrm{Es}$	-88.278								$\Delta \mathrm{Es}$	-100.725					
	-10.356									-14.366					
	-89.282									-91.685					
	H	H	Q	K	Val18					H	H	a	к	Leu17	Val18
Initial Orientation		RS2		LB2					Initial Orientation		LB2		RS2		
Final Orientation	LB1	RB2		LB2	RB2				Final Orientation	RB2	LB2		RS2	cs	LB2
	Cs	RS2		LS2						RS1	LNH		2		
	-CH2-	cs											cs		
	LS2	-CH-											-CH2-		
													RB1		
Total Energy	132.362								Total Energy	116.633					
van der Waals	107.8								van der Waals	104.698					
electrostatic	-264.558								electrostatic	-275.832					
$\Delta \mathrm{Es}$	-112.214								$\Delta \mathrm{Es}$	-127.943					
	-13.902									-17.004					
	-104.317									-115.591					
	H	H	Q	K	Val18	Ala21				H	H	Q	K	Val18	
Initial Orientation		LB2		RB2					Initial Orientation		RB2		LB2		
Final Orientation	RB2	LNH		RS2	LB2	LB2			Final Orientation		RB2		LS2	RB2	
	RS1	LS1		2							RS2		LB2		
	RNH			RB1											
	RB1			-CH2-											
Total Energy	112.239								Total Energy	159.255					
van der Waals	103.129								van der Waals	115.368					
electrostatic	-280.205								electrostatic	-240.963					
$\Delta \mathrm{Es}$	-132.337								$\Delta \mathrm{Es}$	-85.321					
	-18.573									-6.334					
	-119.964									-80.722					


	L	v	F	F	His 14				L	v	F	F	His 14	Lys16
Initial Orientation	RB1	LB1						Initial Orientation	LB1	RB1				
Final Orientation	RS1	LB1			LS1			Final Orientation	LB1				RS1	LS1
	RB1				2				LS1					-CH2-
					LB1									
Total Energy	194.286							Total Energy	178.555					
van der Waals	114.552							van der Waals	111.697					
electrostatic	-198.761							electrostatic	-221.045					
$\Delta \mathrm{Es}$	-50.29							$\Delta \mathrm{Es}$	-66.021					
	-7.15								-10.005					
	-38.52								-60.804					
	L	v	F	F	His 14	Lys16			L	v	F	F	His14	Lys16
Initial Orientation	LB1	RB2						Initial Orientation	RB1	LB2				
Final Orientation	LB1	RB2			RB2	LS2		Final Orientation	RB1	LB2			LB2	RS1
	RB1				RS2	2			LB1				LS1	2
						LB1								RNH
						-CH2-								
Total Energy	161.249							Total Energy	156.156					
van der Waals	110.053							van der Waals	107.952					
electrostatic	-233.708							electrostatic	-249.603					
$\Delta \mathrm{Es}$	-83.327							$\Delta \mathrm{Es}$	-88.42					
	-11.649								-13.75					
	-73.467								-89.362					
	L	v	F	F	His 14				L	v	F	F	His 14	
Initial Orientation	LB2	RB2						Initial Orientation	RB2	LB2				
Final Orientation		RB2			RB2			Final Orientation					LB1	
					RS2									
					2									
Total Energy	203.694							Total Energy	204.651					
van der Waals	116.965							van der Waals	114.236					
electrostatic	-198.312							electrostatic	-195.208					
$\Delta \mathrm{Es}$	-40.882							$\Delta \mathrm{Es}$	-39.925					
	-4.737								-7.466					
	-38.071								-34.967					
	L	v	F	F					L	v	F	F	Lys16	
Initial Orientation	LB1		RB1					Initial Orientation	RB1		LB1			
Final Orientation	LB1							Final Orientation	RS1		CS	cs	RS1	
									RB1		LB1		2	
									cs				RNH	
													RB1	
Total Energy	231.76							Total Energy	199.369					
van der Waals	118.09							van der Waals	109.072					
electrostatic	-170.46							electrostatic	-203.717					
$\Delta \mathrm{Es}$	-12.816							$\Delta \mathrm{Es}$	-45.207					
	-3.612								-12.63					
	-10.219								-43.476					
	L	v	F	F	Lys16				L	v	F	F	Lys16	
Initial Orientation	RB2		LB1					Initial Orientation	LB1		RB2			
Final Orientation	RNH		LB1		RS2			Final Orientation	LS2				RS1	
					2				LB1				2	
													RB1	
													RNH	
Total Energy	193.33							Total Energy	196.046					
van der Waals	111.33							van der Waals	113.742					
electrostatic	-213.315							electrostatic	-207.25					
$\Delta \mathrm{Es}$	-51.246							$\Delta \mathrm{Es}$	-48.53					
	-10.372								-7.96					
	-53.074								-47.009					
	L	v	F	F	Val12	Gln15	Lys16		L	v	F	F	Lys16	
Initial Orientation	LB2		RB1					Initial Orientation	RB1		LB2			
Final Orientation	LB2		RB1	LS2	RB2	RB2	RB1	Final Orientation	RB1				LS2	
	LS2		RS2			-CH2-	RB2						2	
							-CH-							
Total Energy	164.34							Total Energy	189.562					
van der Waals	102.523							van der Waals	116.235					
electrostatic	-226.591							electrostatic	-214.268					
$\Delta \mathrm{Es}$	-80.236							$\Delta \mathrm{Es}$	-55.014					
	-19.179								-5.467					
	-66.35								-54.027					




Intital Orientatio	$\underset{\text { R81 }}{\text { H }}$	H	a	k	$\stackrel{\text { L }}{\text { L } 2}$	v	F	F				Intital Orientatio	$\stackrel{\text { H }}{\text { H2 }}$	H	a		$\stackrel{\text { L }}{\text { R } 1}$	$v$	F	F		
Final Orientatior	Rst											Final Orientation	182				R81					
													Ls1									
Total Enersy	188.254											Total Energy	163.546									
Vander wals	- 11.9 .565											vanderwals electrostatic	-									
AEs												AEs	81.03   -8.05									
	${ }_{\text {-53.162 }}$												${ }^{77.736}$									
						v																
Intital Orientatio	${ }_{\text {L }}^{\text {H1 }}$	${ }^{\text {H }}$	a		${ }_{\text {R }}^{\text {R }}$	$v$		F				${ }^{\text {Intita O Orientatio }}$	${ }_{\text {R }}^{\text {R }}$	H	a		${ }_{\text {L }}^{182}$	$v$	F	F		
Final Orientatior	${ }_{\text {L182 }}^{\text {L1 }}$	${ }_{-182}^{182}$		${ }_{\text {L }}^{\text {Le }}$								Final Orientation	${ }_{\text {R81 }}^{\text {R82 }}$			${ }_{\text {R81 }}^{\text {RS2 }}$	L82					
				$\stackrel{\text { LnH }}{\text { RNH }}$									${ }_{\substack{\text { RNH } \\ \text { RS1 }}}^{\text {der }}$									
Totat Energy	${ }_{\text {l }}^{1377.01} 1$											Total ferery										
electrostatic	-264.718											electrostatic	-251.97									
AEs	-107.175											AEs	98.855									
	${ }_{-104.47}$												-14.06									
	$\stackrel{\text { H }}{\text { H2 }}$	H	a	k	$\stackrel{\text { R }}{\text { R }}$	v	F	F					RS2	H	a	k	L	$v$	F	f	Giv9	Tyr10
	Ls2			L81									${ }_{\text {RS2 }}$			Ls2	L82					
													RS1			181					c=0	ch-
vander Waals	${ }_{109.474}^{127 / 75}$											Totatanergy	${ }_{12727236}^{127.05}$									
electrostatic	-265.921											electrostatic	-267.95									
SEs	-116.851											AEs	116.871									
	- $\begin{gathered}\text {-12288 } \\ -125.68\end{gathered}$												- 9.466									
	$\stackrel{\text { H }}{\text { H2 }}$	н	a	к	$\stackrel{L}{\text { L }}$	$\checkmark$	F	F					${ }_{\text {P }}^{\text {¢ }}$	H	a	k	$\stackrel{1}{182}$	$v$	F	F	Gly9	
												Intiniorienato	${ }_{\text {RS1 }}$			RS2	${ }_{\text {Ls2 }}$				R82	
													${ }^{\text {as2 }}$			R81					c=0	
Totat Energy	234.85											Total nerey	- 118.457									
Vender	- 110.8282												${ }_{-250.755}^{13.64}$									
$\Delta \mathrm{Es}$	9.701											AEs	96.119									
	${ }_{8.001}^{2.617}$												-8.238									
	${ }_{\text {Ls }}$	н	a	k	$\llcorner$	$\checkmark$	F	F	Gy9	Try10	Ala21		${ }^{\text {H }}$	н	a	k	$\llcorner$	$\checkmark$	F	F	${ }^{\text {Ala } 21}$	
	Ls1	${ }^{\text {R81 }}$		${ }^{\text {L81 }}$	cs				Ls1	Lst	RS1	Intinlor	${ }_{\text {RS2 }}$	Ls1			Ls2				${ }^{182}$	
		${ }_{\substack{\text { l81 } \\ \text { cs }}}$		Ls2												$\stackrel{\text { Rs2 }}{2}$						
				2																		
	${ }^{125.61}$											Total fenery	${ }^{100.835}$									
	${ }_{-202169}^{10268}$											${ }_{\text {l }} \begin{aligned} & \text { van der Waals } \\ & \text { electrosatic }\end{aligned}$	$\underset{\text { - }}{\substack{1055.351 \\-602}}$									
AEs	${ }_{\text {- }}^{\text {-12.933 }}$											AEs	-135.									
	-102327												-125.361									
Intital Orientatio	$\stackrel{\text { H }}{\text { H2 }}$	H	a	k	$\llcorner$	$\stackrel{V}{\text { R } 2}$	F	F				Initial Orientatio	$\stackrel{H}{\text { H1 }}$	H	a	k	$\llcorner$	$\checkmark$	$\stackrel{\text { F }}{\text { R81 }}$	F	val12	
Firal Orientation		${ }^{\text {R82 }}$			${ }^{\text {R82 }}$	R82						Final Orientation	${ }_{\text {L }} \mathrm{LS}^{15}$			Lsı					${ }_{\text {L81 }}$	
													Ls1			LNH					cs	
vanderWaals	${ }_{1}^{114,738}$												${ }_{112524}^{14203}$									
electrostatic	-100.22											electrostatic	-251.125									
$\triangle$ Es	${ }^{32756}$											AEs	99.883									
	- $\begin{aligned} & \text {-6.969 } \\ & 30.183\end{aligned}$												$\begin{array}{r}\text {-9.178 } \\ \hline 90.84 \\ \hline\end{array}$									
	H	H	a	k	$\llcorner$	v	F	F					H	H	a	k	1	$\checkmark$	F	F		
$\underset{\substack{\text { Intital Orienatio } \\ \text { Final Orientatior }}}{ }$	${ }_{\substack{\text { RS1 } \\ \text { Rs }}}$						${ }_{\text {L }}^{\text {L81 }}$					${ }_{\text {In }}$ Intita Orientation	${ }_{\text {L81 }}^{\text {L81 }}$			Ls2			${ }_{\text {R82 }}^{\text {R82 }}$			
			${ }_{-\mathrm{CH} 2 .}$	${ }_{\substack{\text { Rs } \\ \text { RS1 }}}^{\text {R1 }}$			(1)						$\underbrace{\substack{\text { LiNH }}}_{\text {List }}$									
				${ }_{\text {RS }}^{\text {cs }}$									เs1									
				c=0																		
	162892											Total Energy	152.117									
vander Wails	${ }_{\text {- }}^{10392074}$											${ }_{\text {Van der Wals }}^{\substack{\text { vecteratic }}}$	106.486   -24.86									
AEs	(81.69											AEs	- $\begin{aligned} & \text {-92.459 } \\ & -15.216\end{aligned}$									
	${ }_{-7.83}$												${ }_{-83.619}$									
Intital Orienatio	$\stackrel{\text { H }}{\text { R }}$	H	a	к	$\llcorner$	v	$\stackrel{\text { F }}{\text { F }}$	F	Val12			Inital Orienatio	$\stackrel{\text { H }}{\text { R }}$	H	a	k	$\llcorner$	$v$	$\stackrel{\text { F }}{\text { F }}$	F		
	${ }_{\text {R82 }}$			RS1					${ }_{\text {RB2 }}$				${ }_{\text {R81 }}$			Ls2			${ }_{\text {LB2 }}$			
				${ }_{\text {RNH }}$									RS2			2						
Toantererg vander waals	${ }_{11515723}^{1069}$											Total Energy	156.212 112.105									
electrosataic	-239.148											electrostatic	$-290.948$									
AEs												$\Delta \mathrm{Es}$										
	- 5.5 .979												-9.597									
													88.707									
		H	a	к	$\llcorner$	v	F	F	Val12					H	a	k	$\llcorner$	$v$	F	F	Val12	
$\substack{\text { Intital Orientatio } \\ \text { final Orientatior }}$	${ }_{\text {LB2 }}^{\text {LB2 }}$						R81					$\pm$	${ }_{\text {L81 }}^{\text {LS1 }}$						R82			
Finatorientation	${ }_{\text {LS1 }}^{\text {L82 }}$															Ls2					${ }_{\text {ci }}{ }^{\text {c }}$	
				${ }_{\text {cher }}^{\text {R/H2 }}$									เs1									
Total Energy	127.698											Total Energy										
van der Waals	-											van der Wals electrosatic										
AEs	$-116.878$											${ }^{\text {AEs }}$	${ }^{101.391}$									
	-12.24 -10.658												${ }_{\text {- }}^{\text {-138.924 }}$									




	н	H	a	k	L	v	F	F			H	H	a	k	L	v	F	F	
Initial Orientation				RB1	LB2					Initial Orientation				LB2	RB1				
Final Orientation				LB1	LB2					Final Orientation				LB1	RNH				
				RB1										LNH	RB1				
				$\mathrm{LNH}^{*}$															
				Ls1*															
				*-CH2-															
Total Energy	162.287									Total Energy	203.41								
van der Waals	114.769									van der Waals	115.398								
electrostatic	-242.039									electrostatic	-201.393								
$\Delta \mathrm{Es}$	-82.289									$\Delta \mathrm{Es}$	-41.166								
	-6.933										-6.304								
	-81.798										-41.152								
	H	H	a	k	L	v	F	F			H	H	a	k	L	v	F	F	
Initial Orientation				Ls2	RB2					Initial Orientation				RS2	LB2				
Final Orientation	LS2	RS2		Ls2	RS2					Final Orientation	RB2			RS2	LB2				
				LS1							RS2			RB1	Ls2				
				LB1										RS1					
				RS2															
				-CH2-															
Total Energy	121.887									Total Energy	169.22								
van der Waals	113.119									van der Waals	114.423								
electrostatic	$-277.752$									electrostatic	-235.432								
$\triangle \mathrm{Es}$																			
	-122.689									AEs	-75.356								
	-8.583										-7.279								
	-117.511										-75.191								
	H	н	Q		L	v	F	F			H	H	Q	K	L	v	F	F	
Initial Orientation				LB2	RB2					Initial Orientation				RB2	LB2				
Final Orientation				LS2	RB2			RB2		Final Orientation	RB2			RB1	LB2				
					RS2						RS2			cs	LS2				
														LB1					
														--H2-					
														RS2					
Total Energy	178.578									Total Energy	161.177								
van der Waals	117.844									van der Waals	112.116								
electrostatic	-224.83									electrostatic	-233.026								
AEs																			
	-65.998									AEs	-83.399								
	-3.858										$-9.586$								
	-64.589										-72.785								
	H	H	a	k	L	$\checkmark$	F	F			H	H	a	k	L	v	F	F	Tyr10
Initial Orientation				LB1		RB2				Initial Orientation				RB1		LB2			
Final Orientation	RS2	RS2		LB1						Final Orientation	Ls1	LB2		RB1	LS2	LB2			Ls1
	--H2.	-CH-		Ls2							LB1	Ls1		LB1	LB2				-CH2-
		RB2		LNH							LNH	-NH-		RNH					
				RS2							- $\mathrm{CH} 2 \cdot$			LNH					
				-CH2-										-- CH 2.					
Total Energy	131.997									Total Energy	142.465								
van der Waals	109.864									van der Waals	105.045								
electrostatic	-261.229									electrostatic	-248.714								
$\triangle \mathrm{Es}$	-112.579																		
	-112.838									LEs	-102.111 -16.657								
	-100.988										-88.473								
	H	H	a	k	L	v	F	F			H	H	a	k	L	v	F	F	Ala21
Initial Orientation			a	Ls2		RB2				Initial Orientation			a	RS2	L	LB2	f	f	,
Final Orientation	LS2	RB2		LS2		RB2				Final Orientation	RS1	Ls1		RS2	Ls1	Ls1			LB2
		RS2		LNH							RNH	LB2		2		LB2			
				LB1							RB1								
				RS2															
				--CH2-															
Total Energy	122.12 112056									Total Energy	118.876 106614								
van der Waals electrostatic	${ }_{-274.4688}^{112.056}$									van der Waals electrostatic	106.614								
										electrostatic									
$\Delta \mathrm{Es}$	-122.456									4Es	-125.7								
	-9.646										-15.088								
	-114.227										-115.946								
	H	H	a	k	L	$v$	F	F	Ala21		H	H	a	k	1	v	F	F	
Initial Orientation				RB2		LB2				Initial Orientation				LB2		RB2			
Final Orientation	RS1	LB2		RS2		LB2			LB2	Final Orientation		RB2		Ls2					
				RB1								RS2		LB2					
				RNH															
Total Energy	125.774									Total Energy	152.234								
van der Waals	108.748									van der Waals	115.229								
electrostatic	$-267.813$									electrostatic	$-245.883$								
-Es																			
	-118.802 -12.954									AEs	-92.342 -6.473								
	-107.572										-85.642								
	H	H	Q	k	L	v	F	F			H	H	Q	k	1	v	F	F	
Initial Orientation				cs			RB1			Initial Orientation				cs			LB1		
Final Orientation				Ls1			RS1			Final Orientation				RB1	cs				
				2										RS1 CS					
														$\stackrel{\text { CS }}{\text { RS2 }}$					
														RS2					
Total Energy	207.682									Total Energy	171.397								
van der Waals	${ }^{119.986}$									van der Waals	114.218								
electrostatic	-200.146									electrostatic	-229.993								
$\Delta \mathrm{Es}$	-36.894									AEs	-73.179								
	-1.716 -39.905										-7.484 -69.752								


	н	H	a	k	L	v	F	F		H	H	a	к	เ	$v$	F	F
Initial Orientation				cs			RB2		Initial Orientation				cs			LB2	
Final Orientation				RB1	RS1		RS2		Final Orientation				LB1				
													Ls1				
				RS2									Ls2				
Total Energy	197.374								Total Energy	186.299							
van der Waals	116.266								van der Waals	117.813							
electrostatic	-207.208								electrostatic	-215.419							
$\Delta \mathrm{Es}$	-47.202								$\Delta \mathrm{Es}$	-58.277							
	$-5.436$									-3.889							
	-46.967									-55.178							
	H	H	a	k	เ	$v$	F	F		H	H	a	k	เ	$v$	F	F
Initial Orientation				RB1			LB1		Initial Orientation				LB1			RB1	
Final Orientation	RS1			RB1					Final Orientation	Ls1			Ls1			RS1	
				RS1						LS2			2				
				RS2													
Total Energy	157.162								Total Energy	169.272							
van der Waals	113.685								vander Waals	119.2							
electrostatic	-242.832								electrostatic	-233.396							
$\Delta \mathrm{Es}$	-87.414								4Es	-75.304							
	$-8.017$									-2.502							
	-82.591									$-73.155$							
	н	н	Q	k	เ	v	F	F		н	н	Q	k	L	v	F	F
Initial Orientation				RS1			LB1		Initial Orientation				Ls1			RB1	
Final Orientation	RS1			RS2					Final Orientation				Ls1				
	2												2				
													LNH				
Total Energy	159.948								Total Energy	192.522							
van der Waals	119.623								van der Waals	119.997							
electrostatic	-243.4								electrostatic	-211.935							
$\Delta \mathrm{Es}$	-84.628								AEs	-52.054							
	$-2.079$									-1.705							
	-83.159									-51.694							
	H	H	a	K	L	$v$	F	F		H	H	a	$k$	L	$v$	F	F
Initial Orientation				RS2			LB1		Initial Orientation				Ls2			RB1	
Final Orientation				RS1			cs		Final Orientation				LS2				
				RS2													
				2													
Total Energy	185.586								Total Energy	192.351							
van der Waals	117.783								van der Waals	117.623							
electrostatic	-218.594								electrostatic	-211.533							
$\Delta \mathrm{Es}$	-58.99								$\Delta \mathrm{Es}$	-52.225							
	-3.919									${ }_{-4.079}$							
	$-58.353$									$-51.292$							
	H	H	a	k	เ	v	F	F		н	H	a	k	L	$v$	F	F
Initial Orientation				LB1			RB2		Initial Orientation				RB2			LB1	
Final Orientation				L81			RNH		Final Orientation				RS1				
				LNH									RNH				
Total Energy	190.876								Total Energy	203.322							
van der Waals	115.247								van der Waals	114.455							
electrostatic	-212.534								electrostatic	-201.592							
$\Delta \mathrm{Es}$	-53.7								$\Delta \mathrm{Es}$	-41.254							
	-6.455									$-7.247$							
	-52.293									-41.351							
	H	H	a	k	L	v	F	F		H	H	a	k	L	$v$	F	F
Initial Orientation				RB1			LB2		Initial Orientation				LB2			RB1	
Final Orientation	RS1			RS2			Ls2		Final Orientation				LB2	Ls2			
				LB1			LB2						LS2				
Total Energy	132.817								Total Energy	191.069							
van der Waals	114.731									114.698							
electrostatic	-265.211								electrostatic	-212.215							
$\Delta \mathrm{Es}$	-111.759								4Es	-53.507							
	-6.971									-7.004							
	-104.97									-51.974							
	H	H	a		ᄂ	v		F		H	H	a		L	v	F	F
Initial Orientation				LS2			RB2		Initial Orientation				RS2			LB2	
Final Orientation	Ls2			LS2 L81			RS2 RB2		Final Orientation	RS1 RS2						LB2	
							RB2			RS2			RB1 RS2				
													${ }_{\text {RS2 }}^{\text {- }}$ -				
Total Energy van der Waals	174.215 116.574								Total Energy van der Waals	119.08 113.42							
van der Waals   electrostatic									van der Waals electrostatic	113.42 -279.964							
									electrostatic	-279.964							
$\Delta \mathrm{Es}$	-70.361								AEs	-125.496							
	-5.128									-8.282							
	$-66.383$									$-119.723$							
	н	H	a	k	1	v	F	F		н	H	a	к	1	$v$	fr	F
Initial Orientation				RB2			LB2		Initial Orientation				LB2			RB2	
Final Orientation	RS1			R81					Final Orientation	Ls2			Ls2				
	RS2			RS2						LB2			Ls1				
				-CH2-													
Total Energy	144.843								Total Energy	164.467							
${ }^{\text {van der Waals }}$	${ }_{-}^{112.278}$								${ }_{\text {van der Waals }}$	116.009 -235955							
electrostatic									electrostatic								
$\Delta \mathrm{Es}$	-99.733								AEs	-80.109							
	-9.424 -91.736									$\begin{array}{r} -5.693 \\ -75.714 \end{array}$							


	H	H	Q	k	L	v	F	F	Val12		н	H	a	K	L	v	F	F
Initial Orientation				cs				RB2		Initial Orientation				cs				LB2
Final Orientation	Ls2			LB1	RS2		RS2	RB2	LS2	Final Orientation				LS2	LS2		Ls2	LB2
	Ls1			LS2										LB1			LS1	LS2
				-CH2-														-CH2-
Total Energy	142.078									Total Energy	189.807							
van der Waals	106.753									van der Waals	109.772							
electrostatic	-255.052									electrostatic	-208.218							
$\Delta \mathrm{Es}$																		
	-102.498									$\Delta \mathrm{Es}$	-54.769							
	-14.949										-11.93							
	-94.811										-47.977							
	H	H	Q	K	L	v	F	F			H	H	Q	K	L	v	F	F
Initial Orientation				RS1				LB1		Initial Orientation				Ls1				RB1
Final Orientation				RS1				LS1		Final Orientation				LS1	LB1		cs	cs
				2										2				-CH2-
																		RB1
																		RS1
Total Energy	203.182									Total Energy	198.741							
van der Waals	116.061									van der Waals	111.434							
electrostatic	-196.609									electrostatic	-199.89							
$\Delta \mathrm{Es}$																		
	-41.394									$\Delta \mathrm{Es}$	-45.835							
	-5.641										-10.268							
	-36.368										-39.649							
	H	H	Q	K ${ }_{\text {K }}$	L	v	F	F		Initial Orientation	H	H	Q	$\stackrel{\text { K }}{\text { R } 2}$	L	v	F	$\stackrel{\text { F }}{\text { LB1 }}$
Final Orientation				Ls1			RS1	RB2		Final Orientation				RB2	RS1			LB1
				LB1										RS1				
				LNH										2				
Total Energy	195.371									Total Energy	191.594							
van der Waals	117.58									van der Waals	112.661							
electrostatic	-206.786									electrostatic	-218.147							
$\Delta \mathrm{Es}$																		
	-49.205									$\Delta \mathrm{Es}$	-52.982							
	-4.122										-9.041							
	-46.545										-57.906							
	H	H	Q	K	L	v	F	F			H	H	Q	K	L	v	F	F
Initial Orientation				RB1				LB2		Initial Orientation				LB2				RB1
Final Orientation				RS1						Final Orientation				LB2				cs
				2														
				RNH														
				RB1														
Total Energy	190.747									Total Energy	206.743							
van der Waals	120.251									van der Waals	111.73							
electrostatic	-212.815									electrostatic	-199.399							
$\Delta \mathrm{Es}$	-53.829									$\Delta \mathrm{Es}$	-37.833							
	-1.451										-9.972							
	-52.574										-39.158							
	H	H	Q	k	L	v	F	F			H	H	Q	K	L	v	F	F
Initial Orientation				Ls1				RB2		Initial Orientation				RS1				LB2
Final Orientation				LS1						Final Orientation				RS1	LB1			
				LNH										2				
				LB2										RB1				
				-CH2-										RNH				
Total Energy	185.155									Total Energy	192.02							
van der Waals	117.83									van der Waals	117.668							
electrostatic	-217.566									electrostatic	-209.561							
$\Delta \mathrm{Es}$																		
	-59.421 -3872									$\Delta \mathrm{Es}$	-52.556 -4.034							
	-3.872 -57.325																	
											-49.32							
	H	H	Q	k	L	v	F	F			H	H	a	K	L	v	F	F
Initial Orientation				Ls2				RB2		Initial Orientation				RS2				LB2
Final Orientation	LS2			LS2						Final Orientation				RS2				LS2
				RB1										,				LB2
				LNH														
Total Energy	175.851									Total Energy	191.221							
van der Waals	118.061									van der Waals	119.17							
electrostatic	-227.405									electrostatic	-210.86							
$\Delta \mathrm{Es}$	-68.725									$\Delta \mathrm{Es}$	-53.355							
	-3.641										-2.532							
	-67.164										-50.619							
	H	H	Q	k	L	v	F	F			H	H	a	K	L	v	F	,
Initial Orientation				RB2				LB2		Initial Orientation				LB2				RB2
Final Orientation				RB2				LB2		Final Orientation				LB2				
				RS2										Ls2				
				R										2				
Total Energy	200.04									Total Energy	201.232							
van der Waals	118.514									van der Waals	122.045							
electrostatic	-203.77									electrostatic	-205.845							
$\Delta \mathrm{Es}$	-44.536									$\Delta \mathrm{Es}$	-43.344							
	-3.188										0.343							
	-43.529										-45.604							


[^0]:    *Indicates the functional group involved in the specified interaction that is occurring

[^1]:    *indicates which indole the bond is occurring with

