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Abstract

Shor’s algorithm shows that circuit-model quantum computers can factorize integers
in polynomial time — exponentially more efficiently than classical computers. There
is currently no analogous algorithm for Adiabatic Quantum Computers(AQCs). We
illustrate through a number of factorization problems that a naive AQC implemen-
tation fails to reveal an exponential speed up. An exponential speed up does become
evident with the optimization of the AQC evolution path utilizing existing optimisa-
tion approaches. We reduce the computation time even further by optimization over
heuristically-derived parametrised functions. Finally, we improve our own results by
exploring two-dimensional paths, and give arguments that using more dimensions in

the search space can enhance the computational power to an even greater extent.
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Chapter 1

Introduction

The field of Quantum Computation has become very popular in recent years. Since
the formulation of Shor’s algorithm in 1994 [1], scientists have been enthusiastic to
make a Quantum Computer. In Sec. 2.1.1, we describe the circuit model of Quan-
tum Computation. Shor’s algorithm, which has an exponential speedup over classical
algorithms, is based on this model of computation. In Sec. 2.1.2, we list the essen-
tial criteria of a feasible Quantum Computer, and through examples we show that

experimentalists have not yet been able to realize these criteria in a physical system.

In Sec. 2.2.1, the adiabatic theorem is described, where the system stays in the
same eigenstate as it is time-evolved adiabatically. In Sec. 2.2.2, Adiabatic Quantum
Computation (AQC) is described, where a system with an easily prepared ground
state is adiabatically driven to a system with a complex ground state. Using the
adiabatic theorem, if the evolution begins in the ground state of the initial system,
then it should end in the ground state of the final system, which contains the answer

to a problem that is encoded in it.

In Sec. 2.2.3, the circuit model quantum computer is compared to the adiabatic
quantum computer. It is described that these two models are equivalent in the sense
that both are universal quantum computers; the logic of any computer algorithm can
be simulated on their circuits. On the other hand, a circuit model quantum computer
is experimentally difficult to realize, whereas an adiabatic quantum computer has an
inherent noise resistance, which makes it an experimentally realizable model. A circuit
model quantum computer is known to be exponentially more efficient than a classical
computer for some problems. However, the power of an adiabatic quantum computer

is not determined. These issues are described in more details in Sec. 2.2.4.

In Chapter 3, the Ising spin glass model is described, which is a system of spins
with long range random interactions in an external field. Finding the ground state

of this complex system is computationally intractable. We use this model for AQC,
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where the final Hamiltonian is one of a spin glass, and the initial Hamiltonian is
constructed so that its ground state can be easily prepared. Although the Ising spin
glass is known not to be universal, a very large class of problems, like factorization
of integer numbers, can be solved with it. In Sec. 3.2, we write the multiplication
circuit for integer numbers in binary representation, and derive some constraints that
relate the input bits to the output bits. We show that a penalty function can be
written in terms of the bits, such that its minimum satisfies the constraints. This
penalty function is then converted into an Ising spin glass Hamiltonian. In this way,
the factorization problem is encoded in the spin glass, where the ground state (all

constraints satisfied) represents the answer to the problem.

In this work, we solve some instances of integer factorization using AQC to find
the scaling of the computation time with the problem size. Note that we use the
terms “computation time”, and “annealing time” interchangeably. These terms de-
note the time required to time-evolve the system from the ground state of the initial
Hamiltonian to some final state of the final (problem) Hamiltonian. We will consider
various interpolation (annealing) paths. The annealing time will be largely governed
by the target fidelity, usually taken to be 0.9. That is, we will anneal the system
slowly enough to obtain a 0.9 probability for the final state to be found in the ground
state of the final Hamiltonian. We show that, although naive AQC fails to reveal an
exponential speedup over the classical case, there are optimal annealing paths that
can exponentially improve the computation time. We solve some instances of the
factorization problem with simulations of the Ising spin glass. We time-evolve the
Hamiltonian numerically to find the exact final state, and compute the probability of
measuring the system to be in the ground state of the final Hamiltonian. These allow

us to make judgements about the annealing time, and the annealing path.

A one-parameter evolution scheme with a constant speed (the naive AQC) re-
sults in an exponential scaling of annealing time with problem size (Sec. 4.1.1). In
Sec. 4.1.2, by using the Quantum Adiabatic Brachistochrone method, we tune the
speed in the one parameter evolution with the gap, and show that the scaling of the
annealing time with problem size will reduce to a polynomial. (The annealing time is

inversely proportional to the energy gap between the ground and first-excited states.)
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In Sec. 4.1.3, we reduce the evolution times even further by using an optimal interpo-
lation in a one-parameter evolution scheme, with a heuristically-derived parametrised
function. In Sec. 4.2.1, we use a two-parameter evolution scheme, and explore the
two-dimensional gap, where paths with larger energy gaps are derived, while the speed
is tuned with the gap value. In Sec. 4.2.2, we derive two improved parametrised func-
tions that can find larger gaps. In each step (going from one-parameter evolution to
two parameter evolution, and changing the parametrised function to a more suitable
one) the computation time is reduced.

Finally, we conclude with a summary and some comments future work and the

generalisation of our work to problems beyond factoring.



Chapter 2

Adiabatic Quantum Computation

2.1 History

In the beginning of twentieth century, a revolution happened in physics. This was
after new experimental techniques were developed, and scientists could reach the
microscopic domain. It turned out that classical physics could not explain micro-
scopic phenomena. By 1925, Heisenberg and Schrodinger could successfully unite the
experimental findings in to the theory of quantum mechanics. [2]

Not happy with the ideas that were introduced with quantum theory, Einstein,
Podolsky and Rosen [3] used an ingenious thought-experiment (EPR paradox) to show
how unsatisfying the interpretations of quantum mechanics were. Einstein believed
that, based on physical reality, the measurement outcome of an attribute of a particle
should be independent of the outcome of measurements on another particle. After
this argument, known as Einstein’s locality principle, some alternatives to quantum
mechanics theory were proposed. J. S. Bell [4] predicted a testable inequality showing
the disagreement between quantum theory and its alternatives [5]. All these events
led to the perception of quantum entanglement. This phenomenon can be explained
in this example: Consider a particle at rest and with spin 0 decaying into two spin-
% particles. These particles should move in opposite directions to conserve linear
momentum, and to conserve angular momentum the two particle system should have
zero angular momentum. Two experimentalists, A and B, decide to measure the z
component of angular momentum of the two particles separately. If A measures first
and reports a spin up, then B should report a spin down. Quantum entanglement
says, no matter how far apart these two particles are, the measurement of A has
instantaneous effect on the measurement outcome of B. [6]

At the same time, some developments also happened in computer science. In
1965, Moore predicted that every two years the number of transistors that can be

placed on an integrated circuit doubles, it is now known as Moore’s law. Amazingly,

4
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his prediction held true since the 1960s. Scientists realized that this trend will end
in the first decades of the twenty-first century, because, as electronic devices become
smaller and smaller, quantum phenomena become more effective in the functionality
of devices. After this, a theory of quantum computation was developed, where instead
of classical physics, quantum mechanics is used to perform computation. [7]

In 1994, Peter Shor wrote a quantum algorithm [1]that factorizes integer numbers
in polynomial time, where on classical computers the best algorithms for integer
factorization run in super-polynomial time [8]. This exponential speed up of quantum
computers over classical ones made them so promising and pursuable. The power of
quantum computer is said to be a direct result of entanglement between quantum

states [9].

2.1.1 Circuit Model Quantum Computation

In classical computers, the basic unit of information used for computation is the bit.
In quantum computers, an analogous concept is used, where it is called a qubit. A
bit is a state that can be 0 or 1; the corresponding states for quantum computers
(qubit) are |0) and |1). The difference between a bit and a qubit is that a qubit can

be in a linear superposition of states, e.g.,

W) = |0) + B]1)

Where o and 3 are complex numbers. In classical computation, one can measure a
bit to see if it is a 0 or 1. When measuring qubits one can get 0 with a probability
of |af* and 1 with a probability of |3]>. We therefore require that |a|® + |> = 1.
This strange property of qubits that they can be in a continuum of states until being
observed, plays an important role in the power of quantum computers. As does
entanglement, whereby a two-qubit state can exist in a non-classical, non-separable
state such as \% (|01) —[10)).

The NAND gate is a universal gate for classical computers; it can be used to
compute any function. A universal set also exists for quantum computation, where
an arbitrary function can be computed with a quantum circuit using these gates.
This set consists of the Hadamard, Phase, CNOT, and 7 /8 gates. Note that this uni-

versal set is not unique. The Hadamard, Phase, and 7/8 are single qubit gates, this
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means they act on one qubit. The matrix form of these gates can be written as follows:

Had J 1 1 1
adamar —
V21 -1
1 0
Phase
0 4
T 1 0
8 0 eim/4

As an example, if in a quantum circuit the Hadamard gate (H) is applied to a qubit

state |¥) = a|0) + S3|1), the result will be:

a+ - B
7 v§|U

The new qubit state has a different probability of being in state |0) and |1).

Hwy =220y + 2

In computation theory, controlled gates are in this form: ‘If A is true, then do B,
where they act on two qubits. CNO'T is a controlled gate, a very useful quantum gate
with two input qubits; a control qubit A, and a target qubit B. The action of CNOT
gate is as follows: If the control qubit is set to |1) then the target qubit is flipped,
and if the control qubit is set to |0) then the target qubit is not flipped. The matrix

representation of this gate is:

100 0

0100
CNOT

0011

0010

If the CNOT gate is applied to a qubit in state |®) = a|01) + 5]10) then the new
state is:

CNOT|®) = a|01) + £|11)



7

In quantum computation, these universal gates are combined in a quantum circuit
to approximate arbitrary functions to arbitrary accuracy. Sophisticated problems
need more complex quantum circuits, and because of the non-intuitiveness of the
quantum states, making an efficient quantum algorithm is a really hard task.

Utilizing these quantum gates, two efficient fundamental classes of algorithms have
been discovered so far. The first class, which has an exponential speed up over the
best known classical algorithms, is based on Shor’s quantum Fourier transform. It
provides algorithms for factoring and discrete logarithm problems. The second class,
which has a quadratic speed up over the best possible classical algorithms, is based
on Grover’s search algorithm. This algorithm is important because so many classical
algorithms are based on search techniques, therefore fast quantum analogs can be
made with Grover’s algorithm. For a more in-depth description, on circuit model

quantum computation, see [10]

2.1.2 Physical realization

In order to build a quantum computer, at least three criteria must be satisfied.

The first one is scalability; we must be able to have as many qubits as needed in
the system without exponentially increasing the resources. One of the main obstacles
in making practical quantum computers is that it is difficult to use so many qubits and
at the same time have a controllable system. As the number of qubits increases the
perseverance of coherence becomes more and more difficult in the quantum system.

The second criteria is universal logic; we must be able to perform an arbitrary
computation with a quantum computer. We should be able to perform arbitrary
transforms which could be done by the set of universal gates. For this we should be
able to implement the set of logical gates on the suggested hardware fault tolerantly.
An alternative way of doing the computation which doesn’t need the gates and is
as powerful as the circuit model is adiabatic Quantum computation, which is the
primary focus of this dissertation.

The third criteria is correctability; we need to be able to perform quantum error
correction in which we initialize the states and then measure them to detect the effect
of the environment. So correctability means the ability of preparing an initial state

and the ability of measuring the state. Sometimes measuring the state is equivalent
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to preparation of initial state. These kind of measurements are called Quantum non
demolition measurements [11]. By QND measurement, the state doesn’t change after

performing the measurement and therefore one needs to prepare fewer initial states.

A universal quantum computer must have all of these three conditions together,
and while performing the computation, the state should be coherent. This is some-
what challenging due to technological limitations, because all systems exhibit some
amount of decoherence [12]. Therefore, simultaneously initiating, computing, and
measuring an scalable system in an isolated situation from the environment, where
there is decoherence, is an experimentally difficult job. Technological improvements

are making this job more realizable each day.

Some physical systems have been investigated to become the future quantum com-
puter. Scientists are using any advancement in technology to improve their models,
and make a practical quantum computer. Photonic quantum computation is one
of those models [13], where photons are used as qubits. A photon’s state does not
interact strongly with the medium so it does not face decoherence. Photons can
be produced by lasers and detected by photomultipliers. Single qubit gates can be
implemented by using beamsplitters and phase shifters. For creating entanglement
between two photons in order to perform a CNOT gate, nonlinear media were first
used. Atom-photon interactions in optical cavities was used later to further reduce
absorption losses due to optical nonlinearities. A breakthrough was made, when it
was found that the computation could be done by one photon source and detector
without ever needing a nonlinear media [14]. Afterwards the focus directed toward
finding efficient photon sources and detectors for the purpose of making a scalable

quantum computer.

Another model is trapped ion quantum computers [15], where ionic states are
used as qubits. Their states conserve a good coherence, which is needed for compu-
tation. Ionic qubits can be initialized by optical pumping, and can be measured by
florescence. The ions are trapped via electric fields, and entangled states are created
by ionic interaction. Qubits can be coupled via the collective ionic motion induced
by laser pulses. In this way, the qubits are manipulated for computation. If this
system is scaled to a larger number of qubits, handling the collective motion of ions

becomes difficult. One method to improve on this problem is to separate the ions
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from each other and couple them by photonic interactions [16]. This model can be
made in the same manner with atoms too. In this case, the atoms are trapped by
counter-propagating laser beams, creating an optical lattice. By using laser beams,

the geometry can be precisely defined [17].

Another model is nuclear magnetic resonance quantum computers [18], where the
spin of the nucleus is used as the qubit. The spin state of nucleus has a long coherence
time and therefore could be a good candidate for a qubit. It can be initialized by
freezing the spin state of nucleus with a strong magnetic field. By applying magnetic
field pulses, the spins can be controlled, and as a result single qubit gates can be
implemented. Entanglement is provided by outer shell atomic interactions, therefore
allowing two qubit operations. The measurements can be made by the currents,

induced from the magnetic moments.

Quantum dots are used as qubits as well [19]. There are electrostatic and self
assembled dots that can be used as a qubit. In the case of electrostatic dots, there
can be an array of dots defined by controlled voltages, in which each of them has an
electron inside. The spin of the electron defines the qubit. The sate of the qubit can
be manipulated by changing the electrostatic voltage and therefore a computation can
be performed. The spin can be measured by the ability of an electron to tunnel into
the dot [20]. In this model, the nuclear spin of the semiconductor produces a magnetic
field which causes the coherence time of the system to decrease. It is better to use
semiconductors which don’t have nuclear spin, namely silicon and germanium. There
has been so much development in introducing new ways to create and manipulate

dots in efficient ways.

In each proposed model, by increasing the number of qubits there should be enough
coherence time that the computation can be done fault tolerantly. For a particular
problem, the important factors are, a) the kind of quantum error correction that
is needed, b) the number of states that are needed to be initialized and measured
for that error correction, c¢) the number of gates that are needed for a particular
computation. Therefore, the required coherence time that is needed for a particular
computation can be estimated. The coherence time available for each introduced
hardware puts a limit on the problem size. Each day, with the progress of technology,

new improvements are being achieved by working on each model [21].
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2.2 Adiabatic Quantum Computation (AQC)

2.2.1 Adiabatic Theorem

This is a very important theorem of quantum mechanics. It states that if a system is
initially in one of its instantaneous eigenstates and if its Hamiltonian evolves slowly
enough with time and if there is a gap between the eigenvalue and the rest of the
Hamiltonian’s spectrum during the evolution, it will be found at a later time in the
same eigenstate of the new Hamiltonian. In this phenomena, the Hamiltonian changes
slowly with time, so time dependent perturbation theory can be used to calculate the
transition probability of the system going from one eigenstate to another.

The Hamiltonian for time dependent perturbation theory can be written as H (t) =
Hy + V(t), where Hj is the initial Hamiltonian, and V(¢) is changing slowly from 0
to t, and it changes very little in the interval 0 < ¢’ < t.

H()[W(1)) = E()[a(t))

Where FE,(t) are the instantaneous eigenvalues and the W, (¢) are the instantaneous

eigenstates. The solutions of the time independent Hamiltonian Iflo are known.
HO’\Ijn> = En’\pn>
The Schrodinger equation for the time evolution of the system can be written as

d|\1;1(tt)> = (I + V) ()

The effect of V(t) on the system is to make it eventually undergo a transition from

th

one eigenstate to another, by either absorption or emission of energy. According to
the adiabatic theorem if there is a big enough energy gap between the instantaneous
eigenstate of the system and the other eigenstates, the probability of this transition
should be low. We can write the transition probability of this system from the time

dependent perturbation theory to calculate this probability.
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P is the first order transition probability of going from initial unperturbed state
|W;) to another unperturbed state |Uy), E; and E are the corresponding eigenvalues.

After an integration by part the transition probability becomes

R A L
5=5) b (et

In accordance to adiabatic theorem V(t) should be small and it changes very little

in the time interval so that the term (W |V (#)|W;)/dt' can be considered constant,

and it can be taken outside of the integral

4h2 0 ~
m a(‘I’f\V(tﬂ‘Ifﬁ
f— 7

The transition probability will be small if the changes in the Hamiltonian is small

Py ~

2
o ((Ef—E)t
sin <—2h

compared to the energy difference Fy — E;. We see that when the perturbation
is adiabatic no transition occurs. It should be mentioned that two approximations
were used here, the perturbation and the adiabatic. When the perturbation is not
weak, the system could still change adiabatically. This adiabatic approximation was
made with a Hamiltonian that was split in to two parts. There are more general
approximations that can be found in literature [22] [23]. If we assume H(s) is the

general Hamiltonian, where s = and 7T is the evolution time, then the adiabatic

,
approximation can be written as
ma | (U ()| %] ¥,(s))|
2
Imin

Where ¢y, is the minimum energy gap between the eigenstates |W¥;(s)), |¥s(s)),

< T

during time-evolution.

The theorem that was explained here is the basis of Adiabatic Quantum Compu-
tation. In the next section we are going to explain how the adiabatic theorem is used
as an instrument for doing quantum computation. However, in our work we do not
rely on this approximation, and that is because we solve the Schrodinger equation

directly.

2.2.2 Adiabatic Quantum Computation

Circuit model quantum computers work with gates, where a number of unitary opera-

tors act on individual qubits. In AQC, the whole system is time-evolved adiabatically,
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from the initial state to the final state, which contains the answer.

Solving problems using AQC requires two non-commuting Hamiltonians: A final
Hamiltonian Hy, whose ground state encodes the answer to the intended problem,
and an initial Hamiltonian H;, whose ground state is already known and easily pre-
pared. Then one should time-evolve the initial Hamiltonian to the final Hamiltonian
beginning in the ground state of the initial Hamiltonian. The Quantum Adiabatic
Theorem states that if the evolution is adiabatic, and if it begins in the ground state
of the initial Hamiltonian, then it should end in the ground state of the final Hamil-
tonian, which is the answer to the problem we intended to solve. The Hamiltonian

H (%) that is evolved can be written as
H(5) = X, (3) o+ X (4) Hy 21)

where X; (0) =1, X5(0) =0, X1(1) =0, X5(1) =1, and H (%) should be
evolved from ¢ = 0 to t = 7. Therefore 7T is the annealing time or the time that it
takes to find the answer to a problem that is encoded in Hy.

We can define a parametrised time s = %, and by substituting it in Equation 2.1,

write the Schrodinger equation as follows:

() = H($)W(s))

In this work, we do not worry about the adiabatic approximation. Because we solve
the Schrodinger equation numerically, and make sure that the final state is the ground
state of H; as a component. In this procedure, no information will be gained about
the adiabaticity of evolution. Our objective is to make 7 small enough (ie, maximise
the speed of the computation) while retaining an appreciable probability of remaining
in the ground state (ie. minimising the error). Adiabaticity in and of itself is of little

concerin.
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2.2.3 AQC and Circuit Model Quantum Computing

The circuit model quantum computers are universal when equipped with a universal
set of logic gates; the logic of any computer algorithm can be simulated on their cir-
cuits. On the other hand, any quantum circuit can be simulated with AQCs with no
more than polynomial overhead [24]. In this sense, the Adiabatic Quantum Computer
is at least equivalent to a circuit model quantum computer and it can be considered

a Turing machine, or a universal quantum computer.

Making a commercial quantum computer is a challenging task for the scientists.
Up to this date, there is no quantum computer based on circuit model with more
than a handful of qubits. The record is 14 qubits, where a controlled entanglement
was achieved in an ion trap system [25]. It is not practically a quantum computer,
but can be considered as a quantum register suitable for gate operation. The main
difficulty in making a circuit model quantum computer is that the quantum states
tend to decay into an incoherent state as a result of interaction with the environment.
Scientists are constantly making advancements in the physical realization of circuit
model quantum computing, and in the near future a commercial quantum computer
may be made.

Unlike the gate model, making hardware that AQC can be implemented on, is ex-
perimentally more realizable. This is because, as the system evolves, the energy gap
provides an inherent resistance to noise [26]. If the environment’s energy is kept lower
than the gap energy then there is a proportionally lower probability for the system
to transit to a higher state. Therefore, the AQC construction is more realizable than
the circuit model.

The D-Wave company has constructed a hardware chip based on superconducting
electronics. These superconducting structures shield themselves from the environ-
ment interference, providing a suitable situation for quantum effects. It was shown
that the D-Waves system anneals quantum mechanically for 8 qubits [27]. Later they
made a 16-qubit version, and now they have a system that uses a 128 qubit proces-
sor. Although there is no proof available yet that their large machine works quantum

mechanically, but they have solved a few problems with it.
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2.2.4 Efficiency of AQC

The factorization of integer numbers is not tractable on traditional computers if they
are the product of big prime numbers, for example if the integer is the product of two
300-digit primes [28]. A circuit model quantum computer if implemented can solve
this problem efficiently using Shor’s algorithm. If integer numbers can be factorized
efficiently, then the cryptographic systems in use today can be decrypted. The quan-
tum database search, Grover’s algorithm, also provides a polynomial speedup, which
will have a great impact on computational power.

The computational power of AQCs is not determined yet. It is mainly because
the Hamiltonian of the AQC model is intractable, and consequently there is no rigid
formulation that can relate the AQC’s computation time with the problem size. How-
ever, we know that entanglement is the key ingredient to the quantum computation
power [29], and AQC directly uses the entangled qubits to anneal the system. There
are some arguments about the power of this machine in literature. In a paper by Vazi-
rani [30], it is stated that AQC can be used to gain quadratic speedup over classical
search algorithms, and later the Grover bound was recovered for AQC [31]. There
is even hope that AQCs has the potential to solve NP-complete problems polynomi-
ally, where people solve random instances of NP-complete problems in polynomial
time [32] [33]. In these works the AQC was simulated on a traditional computer, and
the NP-complete problems that were solved with the simulated AQC, were limited
to small sizes. Later, in several other similar works, it was shown that conventional
AQC fails to provide an exponential speedup for solving NP-complete problems.

In this dissertation, we similarly simulate AQC (the spin glass Ising model AQC),
with which we solve integer factorization instances (noting that instead of using the
adiabatic approximation, we evolve the Hamiltonian in time and find the exact state
of the system). Although we are limited in the problem size, we show that even if
the conventional AQC fails to provide an exponential speedup, one can find optimal
annealing paths that can exponentially improve the computation time. The Hamilto-
nian we use is the one implemented by D-Wave. This Hamiltonian is known to not be

universal. However, a very large class of problems can be solved with Hamiltonian,
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including the important problem of integer factorization, and this is the problem on

which we will focus.



Chapter 3
Ising Spin Glass AQC

3.1 Ising spin glass

The Ising model was introduced by Ising in his 1924 PhD thesis [34]. His aim was to
show a phase transition in this model. The one-dimensional Ising model was solved
by Ising, where he could not see phase transition, and he thought this model is not
capable of explaining phase transition. Later it was found that in 2 dimensions or
more this model does exhibit a phase transition.

The model consists of spins that have states of either +1 or —1. The spins
are arranged in a lattice, and each spin interacts with its nearest neighbour. The

Hamiltonian of this model can be written as:

H=— Z CijOi0; — Zhjaj
<ij> J
Where o = £1 assigns the spin value to each site, ¢;; is the interaction strength be-
tween adjacent sites < ij >, and h; is an external field. The one and two dimensional
Ising model is exactly solvable and it’s partition functions are known [35].

The Ising spin glass is the Ising model with random long range two spin interac-
tions. Our objective in solving the Ising spin glass is to find the spin configuration for
which the enegy is minimum (the ground state). Many useful problems like factor-
ization can be encoded in an Ising spin glass, where the ground state of the spin glass
encodes the answer to the problem. In Sec 3.2, we explain the details of encoding
foctorization problems into an Ising spin glass Hamiltonian.

We choose the system to be annealed in AQC, to be a spin glass, because not only
can it encode useful problems, but also there is evidence that quantum annealing
can be experimentally performed on this system. It was shown that, for probing the
lowest energy configuration of a two-dimensional spin glass, quantum annealing is

much faster than classical annealing [36].

16
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The final Hamiltonian of Eq. 2.1 that encodes the problem is chosen to be a spin
glass:

Hy = —Zcijafaj - Zhiaj (3.1)

i j i

Where 07 is the Pauli matrix in z-direction, and the ¢;; and h; are chosen to solve a

specific problem. In AQC we need two non-commuting Hamiltonians, so the initial

Hamiltonian H; should not commute with the final Hamiltonian H;. This is because

the initial state (the ground state of the initial Hamiltonian) can be written as a

superposition of all the eigenstates of the final Hamiltonian. This way the initial

state contains all the possible answers, and after annealing it converges to the ground

state of the final Hamiltonian. The ground state of the initial Hamiltonian should

also be easily prepared. We choose the initial Hamiltonian as:

N
Hi: E O'im
i=1

Where N is the number of spins used in the problem, and ¢* is the Pauli matrix in
x-direction. The Pauli matrices do not commute [0%, 0] = 2i0?, therefore H; and H;
do not commute. The ground state of H; is a spin configuration polarized in negative
x-direction, because all o* terms have a positive sign. The N-body ground state of H;
is a simple tensor product of each spin in the state |—z) = \/Li (|0) —11)). Therefore
the initial state is a superposition of all possible configurations of spins, and it is easy

to prepare.

3.1.1 Tractability of the Ising spin glass

The infinite two-dimensional Ising Hamiltonian on a square lattice, with all interac-
tions equal to 1, and without an external field, was solved by Onsager in 1944 [35].
But a two-dimensional glass with more general interactions or an external field has
not been solved yet. The ground state of a graph with n spins, can be found among 2"
possible spin configurations. If one should check each spin configuration individually
to find the ground state, then the number of possibilities grow exponentially with
problem size. Problems like this are considered intractable. Barahona [37] reduced
an NP-hard problem to the problem of finding the ground state of a spin glass on

a planar cubic lattice with each vertex of degree three, within an external field, and
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proved that this problem is NP-hard. In the same paper, he reduced another NP-
hard problem to the three-dimensional spin glass on a two-level grid with interactions

restricted to -1, 0, 1, and proved its NP-hardness.

3.2 Factoring with the Ising Hamiltonian

In this section we are going to explain how the factoring problem is encoded to an
Ising spin glass Hamiltonian [38]. To factor p as a product of a and b, we represent
the numbers in binary, and write the Boolean circuit for the multiplication of a and
b. The binary output of this multiplication is equal to the binary representation of
p. By running the circuit in reverse we can get the unknown inputs from the known
outputs.

We are going to derive some constraints with which the spin glass Hamiltonian of
the problem can be constructed. As an example, consider the multiplication of two

4-bit integers (ag, as, a1, ag) and (bs, by, by, bo):

as a9 aq Qo
b3 ba by by

asby asby aiby apby

asby azby aiby agb;
Cl3b2 asby  ayby a0b2

asbs agsbs aibs apbs

Pt Ps Ps Ps D3 b2 4! Po

The first bit of output is pg = agby, which imposes a constraint between inputs
ag, by and the output pg. This constraint has the logic of the A (and) gate and the
truth table is given in Table 3.1, which lists the allowed combinations of inputs and
outputs. This constraint can be written as a Boolean valued function Cy(a, b, ¢), that
evaluates to true for combinations that satisfy the A gate, and false otherwise.

The next bit of output is p; = (a1bp +apb1) mod 2 = (t+1t') mod 2, where ¢ and
t' come from C,(ay, by, t) and Cp(ag, by, ") respectively. We additionally need a carry
bit ¢ to be passed on to the next bit ps, because t + t' can be as large as 2. We can
define ¢, ¢’ as inputs and p;, ¢ as outputs. The logic is that of the Half Adder gate,
shown in Table 3.1. It enforces the constraint ¢ + ¢’ = p + 2¢, which can be denoted
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t ¢ t"|p c|
0 0 0]0 0
la bpllt Y|p cllo o 1|1 0
0 0]0l[0 0[O0 0]/0 1 0|1 0
o 1/0llo 11 0ll0o 1 1]0 1
1 ololl1 ol1 ofl1 0 o1 0
1111 1]0 1][1 0o 1]0 1
1 1 00 1
11 1]1 1

Table 3.1: Truth tables for multiplication. The left one is the A gate, the middle one
is the Half adder, and the right one is the Full adder

as Cou(t, ', p,c). Therefore, p; can be defined with this condition:
Coa(t,t',p1,c) A Calar, by, t) A Calag, by, t)

The condition on the next bit py is ¢t + ' + t” = p + 2¢, it can be denoted as
C3a(t,t',t",p, c), has the logic of the Full Adder shown in Table 3.1. Then ps and its
carries are determined by t+t'+t"+c, where Cy(az, by, t) ACh(a1,b1,t") ACr(ag, be, t").
By introducing (r = t+t'+t”) mod 2, the condition on p, can be written with Full-

and Half-adders as follows:
C3A (t> tla t”> T, C/) A CZA (Ta C, P2, CH)

These constraints enforce t +¢' +t" 4 ¢ = py +2(¢' +¢”), where ¢’ and ¢” are the carry
bits that will be passed to the next bit.

We can extract constraints for the rest of the bits in the same manner, and this
way the relationships between the input bits and output bits and the intermediate
bits can be derived.

For each constraint C'(x) that was defined over a set of Boolean variables z, a

penalty function F(z) can be defined, such that

P(r) = { 0 if C'(x)

>o0+1 if =C(x)

If the set of Boolean x satisfy the constraint, then the penalty function’s output
is 0, otherwise the penalty function’s output is at least o + 1. Therefore, P(z) is

minimised for all set of x that satisfy the constraints. The constraints C, Co4, C3a
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can be turned into penalty functions Pn, Py, P34 as follows:

=)
—_
|
[\
s

P, (a,b,p) = (a b p) 00 s :
00 3 D
1 2 =2 —4 "
Poa(t,t',p,c) = (t v op c) 01 —2 —4 Y
00 1 4 »
00 0 4
122 -2 —4 ;
01 2 -2 —4 Y
Pttt pe) = (¢ ¢ pc)loo1 —2-a|]|e
000 1 4 »
000 0 4 .

Note that the choice of penalty functions is not unique. We can test one of these
functions after simplifying, and considering that the quadratic terms can be reduced
to linear terms for binary variables (eg, a> = a for a = 0, 1). The penalty function of

P, and P54 can be written as:

P, (a,b,p) =a—2ab—2b+ 3p

Poa (t,t',p,c) =t + 2tt' — 2tp — dtc+t' — 2t'p

—4t'c+p +4pc + 4c

Next, the penalty functions can be considered as energy functions. Assuming a, b, p,
t, t', ¢ are spin qubits in the Ising glass model. The energy functions of P, and Py

can be written as:

Ex(a,b,p) = o, — 20,0, — 204 + 30,
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/ _ z z _Z z __Z z __Z z z _Z
Eaa (t,t,p,c) = of +20{0; — 20/0, — do{0o; + 0 — 2070,

—dojo; + o0, +40,0, + 4o,

The penalty functions were chosen to have at most two-body interactions. Thus,
the field h; and coupling ¢;; terms enforcing these two constraints in the spin glass
Hamiltonian are determined. The eigenvalue of z-Pauli matrix for state |0) is 1, and
for |1) is -1. Therefore the energy of E, and Es4 is 0 = 0 for spin configurations that
satisfy the A gate and the half adder respectively. And o > 1 for spin configurations
that do not satisfy these conditions, which are listed in Table 3.1. In order to make
a Hamiltonian that can factor two 4-bit integers, there are more constraints, where
an energy function can be written for each of them. These energy functions are
then added together, so that the constraints are satisfied together. The final Ising
spin glass Hamiltonian that can factor the two 4-bit integers will be determined by
deriving the field and coupling terms with the method that we described here.

In this work, we prepared the field and coupling terms that were required to
factor 4-bit by 2-bit and 3-bit by 3-bit multiplications. In order to factor these 6-bit
numbers, 17 bits are required, accounting for all the carry bits and the partial sum
bits. To implement these Hamiltonians on the D-wave hardware, some intermediate
connecting bits are additionally required to couple the bits that are physically far
from each other on the chip. In Appendix A, the field and coupling terms of the 4-bit

by 2-bit multiplication of 14 x 3 is shown as an example.



Chapter 4

Optimal Annealing Paths

4.1 One-Parameter Evolution Scheme

In this chapter, we are going to focus on the functional forms of X; and X, (see
Eq. (2.1)), and the relationship of 7 to these functional forms. We define a path to
be some curve in the X;-X5 plane, parameterised by time, along which the system
evolves from H; to Hy. Therefore, a linear path means X; = 1—X,. The Hamiltonian

of a linear path can be written as
H(s)=(1—-X(s)Hi+ X (s)Hy (4.1)

where X (0) =0, X (1)=1ands = =.
Now that the path is chosen to be linear, it is time to think of possible functional
forms of X (s). Conventionally, the function is chosen to be linear X (s) = s, but
there are other possibilities that might be interesting to investigate. In the following
sections we will look at different functional forms of X, and it will be shown that the

choice of X will have a dramatic effect on the computational time 7.

4.1.1 Linear Function

It was mentioned that adiabatic theorem guarantees that the final state will be the
ground state of the final Hamiltonian given sufficiently large 7 and gap A. It is known
that as the system evolves from s = 0 to s = 1 there is a probability of being in the
ground state of the final Hamiltonian. Therefore, if we want the final state to have a
100% probability of being in the ground state of the final Hamiltonian, the evolution
should be completely adiabatic. As explained in Sec. 2.2.1, the Hamiltonian should
change slowly enough during the evolution, and there should be a gap between the
ground state energy of the Hamiltonian and the rest of the eigenvalues. It is proven

that if 7 — oo, and a path chosen such that the gap doesn’t close, these conditions

22
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are satisfied and the evolution is adiabatic and consequently the final state will be

the ground state of the final Hamiltonian [39].

We should view the limit 7 — oo as an upper bound on the computation time,
particularly if we seek only some finite probability of measuring the correct answer.
As explained in Chapter 2, the Hamiltonian can be evolved by numerically solving
the Schrodinger equation. And as described in Sec. 3.2, different problems such as
factoring could be encoded in the final Hamiltonian. Having all the tools available
let us try to solve a factoring problem. As an example, to find the factors of 1, the
final Hamiltonian could be made to have the factors of 1 in its ground state. Evolving
the system numerically, from the initial Hamiltonian to the final Hamiltonian with
annealing time 7, the final state could be obtained. The probability P could be
calculated by taking the modulus squared of the inner product of the final state
|W (7)) and the ground state |Wgg) of the final Hamiltonian, which we call fidelity
F.

F=[{¥(T) |Ves)|?

In Fig. 4.1, the crossed points are calculated numerically and the lines are a natural
cubic spline between the points. A natural cubic spline is provided by calculating the
coefficients of a set of third-order polynomials, which pass through a set of points and
the second derivative of each polynomial is set to zero at each point. One can see in
Fig. 4.1, P ~ 1 for T > 60. T — oo is an upper limit to the adiabaticity condition.
As also shown in the same figure, to factor 13 into 13 x 1, the annealing time needed
is again finite but it is larger than the annealing time needed to factor 1.

It is a good time to think about the minimum annealing times needed to solve
specific problems. In literature it is well known that according to the Landau-Zener
theory [40] if 7 ~ 672, there is a high probability of finding the ground state of
final Hamiltonian at the end of evolution. ¢ is the minimum energy gap between the
ground state and the first excited state energies during evolution.

The minimum energy gap J plays a crucial rule in finding annealing times needed
to solve problems. Landau-Zener theory suggests that if 6 — 0 , then 7T — oc.
That is, if there is a zero minimum gap then the evolution time should be infinitely
large. It is important to look at the instantaneous energy gap A during evolution. At

each s the Hamiltonian’s matrix could be diagonalized using Lanczos methods. The
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Figure 4.1: Probability of finding the ground state of the final Hamiltonian. The red
line is for finding the factors of 1, And the green line is for finding the factors of 13.

instantaneous ground state and the first excited state energies could be numerically
evaluated, and the difference between them will be called A.

In Fig. 4.2, the instantaneous energy gap of the Hamiltonian which was used to
factor 1 and 13, is plotted throughout the evolution. Thus it must be clear that the gap
values during the evolution play an important role in the probability values of finding
the answer at certain evolution times. Evolving the Hamiltoninans numerically will
give the exact final states, which allow us to have a far better description of the
system than what we could get from just looking at the minimum gap. From now on
the gap values and the final states will be the only things that we are going to look at.
By evolving the system numerically and finding the exact final state, we don’t need
to be worried about the adiabatic condition. This way we avoid the approximations
that theories such as Landau-Zener include.

AQC is a probabilistic computation, in a sense that the answer it finds has a
probability of being the actual answer to the problem that it intends to solve. When

dealing with probabilistic computers one should be careful about accuracy. However
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Figure 4.2: Instantaneous energy gap of Hamiltonians during evolution.

we are not going to explore this aspect of AQC. From now on we will only look at
the answers that have 90% precision. Instead of P = 1 we are going to care about P

=0.9.

As described in Sec. 3.2, the factoring problems could be encoded in an Ising
Hamiltonian. For this task some carry qubits are needed. It was shown that to factor
a 6 bit number, 17 bits are needed in total: 6 bits represent the factors (either a 3-bit
and a 3-bit number or a 4-bit and a 2-bit number) and 11-bits for the carry bits. The
field and exchange terms of the 14 x 3 circuit (4-bit x 2-bit), is shown in Appendix A.
Using our numerical simulation, we evolved the systems for different annealing times
and found the annealing times for which the probability of finding the answer at the
final state was 0.9. In Table 4.1, the different problems that were picked and their
annealing times are listed. Note that these annealing times are obtained using a one-
parameter evolution scheme. In this Table there are groups of one bit, three bit, four
bit, five bit, and six bit numbers. In each group of numbers the yellow coloured box
shows the annealing time of the problem that took the longest to solve. For instance
in problems with size five, the hardest to factor was 21, because its annealing time is

bigger than the rest of the five bit problems. In Figure 4.3 we can see the probability
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’ Size ‘ Circuit ‘ Number ‘ Annealing Time ‘
| 1Bit | 3by3bits |[1=1x1 |[26.018 |
gy | 4Py 2bits [5=5x1 24.859
Yol 4by2obits |[T=Tx1 19.601
3by 3 bits [9=3x3 27.096
4 Bit | 4by 2 bits | 11 =11x 1 | 38.447
4 by 2 bits | 13 =13x1 | 47.960
3by 3bits [16=4x4 | 116.383
4 by 2 bits | 20 =10 x 2 | 30.931
Aby 2 bits | 21=7x3 | 215
< Bir | 4 by 2bits | 22=11x2 | 15.856
3by 3bits [25=5x5 | 168.264
4 by 2 bits | 26 = 13 x 2 | 16.325
Aby 2bits |27 =9x3 | 34.772
4 by 2 bits | 28 =14 x 2 | 11.462
A by 4 bits | 33=11x3 | 27.803
6 pit | 4 by 2bits | 39 =13x3 | 65.420
4 by 2 bits | 42 =14 x 3 | 1885.5
3by 3bits |49 ="7x7 |31.728

Table 4.1: Annealing times for fidelity of 0.9 using a one-parameter evolution scheme
with constant speed. The largest annealing time is highlighted in each bit sector.

plot of the hardest problems of each size. One can see that the probability increases
as the annealing time increases, and for some problems this increase is faster than

the others.

Shor’s algorithm can factor integers in polynomial time. This was one of the great-
est examples that showed quantum computers could be exponentially more efficient
than classical computers. It is notable that Shor’s algorithm is for circuit model quan-
tum computers with quantum logic gates. However, for an algorithm that factorizes
integer numbers on an Adiabatic quantum computer, which operates without using
quantum logic gates, there is still no way to show how the computational time will
scale with respect to the problem size. It is not clear whether an adiabatic quantum
computer could be exponentially more efficient than a classical computer. The main
issue seems to be that in the case of AQC, there is no explicit expression that can
express the relationship between the annealing time needed to find the answer, and
the size of the system. Having such an expression requires solving the time dependant

Schrodinger equation for any large size Ising Hamiltonian. As described in Sec. 3.1.1,
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Figure 4.3: Probability of finding the ground state of the final Hamiltonians. Purple:
The worst case of the problems with size 1. Blue: The worst case of the problems
with size 3. Green: The worst case of the problems with size 4. Yellow: The worst
case of the problems with size 5. Red: the worst case of the problems with size 6

this problem is itself intractable.

Despite the lack of analytical scaling results, it is nevertheless interesting to look
at the same relationship for the small size problems that we could numerically solve.
It is sensible that for our purpose which is looking at the scaling of the computational

time with the problem size, we pick the hardest problem of each size.

The red points in Fig. 4.4 are the yellow colored annealing times in Table 4.1
versus their size. As mentioned above the yellow colored boxes show the annealing
times needed to solve the hardest problems in each group with 90% accuracy. The
red solid line in Fig. 4.4 is an exponential fit of the form ae®™ + c¢. Where N is the

size of products (bits) and the a, b and ¢ values are taken from Table 4.2.
It is noticeable that the computational time values that are reported here, as it

was mentioned before, are just the annealing times or the times that the physical

system is evolved from H; to Hy. In the fitted plot, the annealing times that are
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Figure 4.4: Scaling of the computation time with the problem size using a linear
function of time along a linear path

reported are for solving problems with an accuracy of 90%. If there is a claim that
an algorithm can factorize the integers in polynomial time, and the algorithm is a
probabilistic one, then that algorithm should be able to factorize the integers with
any accuracy in polynomial time. In this respect, there are some rigorous arguments

about accuracy versus run time for quantum search [41].

The scaling that is talked about in the literature is for N— oo. The exponential
scaling we derived was derived for problems up to N= 6. One might say, if a com-
putational time scales polynomially or exponentially up to a certain size, it does not

mean it is going to scale in the same manner afterwards. Therefore, the scaling that

rms of residuals : 2.8803
variance of residuals : 8.29614

’ Final set of parameters ‘ Asymptotic standard error ‘

a = 0.00210702 | +0.000229 (10.87%)
b = 228179 | £0.01792 (0.7852%)
c 25.6102 | £1.802  (7.036%)

Table 4.2: Parameter values for approximating the worst annealing time points as an
exponential function.



29

was derived here is just valid for sizes up to 6. It cannot be claimed that this algo-
rithm scales exponentially or polynomially, because we could not look at larger sizes.
By using this numerical approach nothing could be claimed about the scaling of the
algorithm. Although, it is interesting to see if it is possible to reduce the exponential
fit into a polynomial fit in this small range of sizes. In the following sections, we will

introduce a modified algorithm that can make this happen.

4.1.2 Euler Function

In the previous Section, by using AQC simulations, a number of factoring problems
in the range of sizes from 1 to 6 bits were solved. It was shown that the computation
time scaled exponentially with respect to the problem size, where a one-parameter
evolution scheme was used. In this section, we are going to use an optimisation
method to find optimised interpolation functions. We will see that, by using opti-
mised functions, the computation time of problems will be reduced, and will scale
polynomially with respect to the sizes.

In the Quantum Adiabatic Brachistochrone (QAB) by Rezakhani et al. [42], a
variational method was used to minimise the annealing time. In this method, an
optimal interpolation will give rise to an optimal annealing time. From Eq. (2.1),
recall the dimensionless parameter s in X (s), the linear function is simply X (s) = s.
After using the QAB method and optimizing X (s), the optimal function will not
be linear anymore. If we assume that along the path %ﬁf” determines the speed,
then a linear function has a constant speed. QAB finds the optimal X (s) by tuning
the speed, such that when there is a smaller gap along the path, X (s) changes more
slowly with respect to s. The formulation of this theory can be derived as follows. We

start from the adiabatic condition, which can be written in the following form [43]:

1452

A% (s)

<e V se]0,1] (4.2)

Where the norm is the Hilbert-Schmidt norm defined as ||A|| = /Tr[AfA]. Taking

v(s) = %, the adiabatic condition can be written as:

dH (s
v (s) |92

XGRS
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We know that the time needed to transverse a path is given by 7 = fo ) , there-

fore the adiabatic time functional can be defined as T = fo - ds

3 where v,4 is the
“adiabatic speed”. From QAB, which is inspired from the adiabatic condition, the

adiabatic speed can be defined as:
eA? (s)
| dH(s)

Therefore the time functional can be written as follows:

Vaa (8) =

d
| Iy

T=) &

(4.3)

In order to find the optimal function(s), one needs to minimise the time. This can
be done by minimising the integral of Eq. 4.3. Assuming that the integrand is a
Lagrangian, one can solve the Euler-Lagrange (EL) equations to find the function(s)

for which the integral is minimised. The Lagrangian can be written in this way:

aX(s) o [y

g X ="m® e

where the elements of X (s) are the control parameters that tune the interpolation.
After some calculation, the EL equations for a general Hamiltonian can be written

as:

L0X; 0, (\OHp O°H, | OA OHp oM, 0A OHy oM,
O*X; OH{ OH!
+2A 852 0XZ 8XJ N 0,

where we have used the summation convention (repeated indices imply summation),
and H{ = (a|H|b). Solving these coupled non-linear partial differential equations
is numerically hard. We should note that this optimisation is based on heuristics,
and it does not guarantee an optimal path, because it does not minimise the actual
annealing time.

In this section we intend to find the optimal function using a one-parameter in-
terpolation X (s). By substituting the Hamiltonian of a one-parameter interpolation,
from Eq. 4.1. One can see that the Lagrangian will reduce to:

Sl — Hi + Hy|

L="x (X)
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One can derive this Lagrangian, and by solving the EL equations, directly solve for
X. This would be a numerical process since the gap values can only be calculated
numerically. Instead of solving EL equations, which is computationally hard, one can

find X from the time functional integral:

. 19X
|- H;,+ H — 9 __(
Tl =iy | i ds
Solving the EL equations for X is equivalent to finding an X for which the integral

is minimised. The integral will be minimised if its integrand is made constant. This

means that the numerator and the denominator should be proportional:
— =alA?(X) (4.4)

Where « is a proportionality constant. Using QAB we can show that for a one-
parameter evolution, an optimal interpolation is one whose speed along the path
is proportional to the gap squared. It makes sense because as the gap gets small
the adiabatic condition is hindered, and one can compensate by slowing down near
those gap values. We will find the optimal functions for the factoring problems that
were investigated in the previous section. To do this we must integrate the following

integral to find the X values for different s values:

[aom [ ws

1 dx
0 AZ(X)*

To calculate the integral, all we need is the A (X) function. Plots of A (X) can

where for s = 1, X = 1 therefore the normalization constant o =

be seen in Fig. 4.5. In this Figure, the gap values of five different problems can be
seen. It will be shown that these problems are the most difficult problem of each
size after using the optimal functions to solve them. As we look at Fig. 4.5 (a), (b),
(¢), (d), (e) in order, we can see that the minimum gap gets smaller in these plots.
These are all plotted together in Fig. 4.5 (f). In the previous section, it was explained
that using a constant speed, the problems with smaller minimum gaps need a larger
annealing time to be solved. This is intuitive from the adiabatic condition, because
as the gap gets smaller one should change the Hamiltonian more slowly to favour the
adiabaticity.

In the previous section, we used a linear interpolation with a constant speed. So

for a specific problem the speed should be low enough to make up for its minimum
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Figure 4.5: Instantaneous energy gap of Hamiltonians as a function of X values.

gap, and to provide lower speeds we needed larger annealing times. Now, by having
Eq. (4.4), instead of having a constant speed we can have a dynamic one, and change

the Hamiltonian faster when the gap is bigger. On the other hand in this case, it is

ox

5 is another
S

not just the larger annealing time that favours the adiabaticity, but also

factor (this factor was previously just a constant).

By using the gap values and calculating the integral of Eq. (4.5), we found the
optimal functions for the problems shown in Figure 4.5. These optimal functions can

be seen in Fig. 4.6. One can see that at those X values, where the gap is minimum,
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Figure 4.6: Optimal functions for a linear path, using EL equations.

the X (s) slope is gradual. If one looks at Fig. 4.6 (a), (b), (¢), (d), (e) in order, it
can be seen that the function slope becomes more and more gradual in these plots.

These are all plotted in Fig. 4.6 (f) for a better comparison.

We assume that a particular algorithm in AQC is a particular interpolation with
its speed, from which the initial Hamiltonian is driven to the final Hamiltonian.
Therefore the optimised interpolation represents a modified algorithm where instead
of evolving the system with a constant speed, it is evolved with optimised interpola-

tions, which are derived by EL equations.
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Figure 4.7: Instantaneous energy gap of Hamiltonians as a function of s.

It is interesting to look at the gap as a function of s. By looking at the plots of
X (s) in Fig. 4.5, one expects the gap to be small at those s values, where X has
a gradual slope. In Fig. 4.7, the gaps are plotted as a function of s, for the same
problems that we looked at in this section, with the same order. As expected, the X
function derived from the EL equations, is designed so that whenever gap is small,
it has a gradual slope. This can be easily seen, if one compares the A (s) plot of a

problem with its X (s) plot.



| Size | Circuit | Number | Linear T | EL T |
| 1Bit|3by3bits [1=1x1 [26018 [184 |
spic | 4by2bits [5=5x1 [24859 [274
4by 2bits | 7T=T7x1 19.601 | 27.8
3by3bits [9=3x3 [27.096 |[449
4Bit | 4by 2bits | 11 =11x1 | 38.447 | 32.1
4by 2bits | 13 =13x1 |47.960 |35
3by 3bits | 16 =4x4 [ 116.383 |474
4by 2 bits | 20=10x2 | 30.931 | 195
Aby 2bits |21 =7x3 |215 90.3
e gy | 4Dy 2bits | 22=11x2 | 15856 | 221
3by 3bits |25 =5x5 | 168.264 |43.0
4by 2 bits | 26 =13x2 | 16.325 | 19.1
A4by 2 bits | 27=9x3 |34772 |27.1
Aby 2bits |28 =14x2 | 11462 |118
Aby 4 bits |33 =11x3 [27.803 [121
6 pit | APy 2bits | 39=13x3 | 65420 | 234
4by 2 bits |42 =14x3 | 18855 | 150.8
3by 3bits |49=7x7 |31.728 |118

35

Table 4.3: Annealing times for fidelity of 0.9 using EL functions in the one-parameter
scheme. The largest annealing time is highlighted in each bit sector.

So when A (s) is small, %—f is also small. As it was explained, to maintain the

adiabatic condition one should keep the ratio in the inequality of Eq. (4.2), as small
as possible. A (s) is in the denominator of this ratio, therefore when A gets small

0X

the ratio becomes bigger. When we used the linear function (% = const.), the only

way to compensate for this was to increase the annealing time. Now, instead of
increasing the annealing time, we are decreasing %—f, which appears in the numerator
and reduces the ratio.

Using QAB, one can find optimal functions that are adjusted with the gap values
throughout the evolution. This adjustment is made to keep the evolution adiabatic
with the goal of a smaller annealing time. Using the QAB optimal functions, some
of which are shown in Fig. 4.6, we annealed the systems to find the annealing time
required to obtain a fidelity of 0.9. This was done for the same problems that were
treated in Sec. 4.1.1. The results are shown in Table 4.3. The yellow colored boxes

are the most difficult problem of each size. As one can see 12 out of 18 problems were

improved. The QAB method performed, on average, about 33% more efficiently than
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the linear function. In the same Table, if one compares the linear and EL annealing
times needed for factoring 21 = 7 x 3 and 42 = 14 x 3, it can be seen that the
EL annealing times are dramatically improved. The major enhancement of the EL

function over the linear one is that it solves the hardest problems in a very short time.
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Figure 4.8: Probability of finding the ground state of the final Hamiltonian. The
crossed lines show the probabilities using EL functions. The square lines show the
probabilities using a linear function

In Fig. 4.8, the plots of probability as a function of annealing time are shown.

These are the same problems whose gap and EL functions were shown in the previous
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Figures of this section. As is evident from Table 4.3, these are the most difficult
problems of each size. The crossed and the square points are the actual probabilities
calculated using EL and linear functions respectively. A natural cubic spline was used
to connect the points that were numerically calculated. It can be seen that for some
problems such as 7 x 1 and 3 x 3, using a linear function always results in higher
probabilities of finding the ground state of the final Hamiltonian. On the other hand
for some problems like 14 x 3, if one compares the probability plots of linear and EL
function, for lower annealing times the linear function gives higher probabilities, and
for higher annealing times the EL function gives higher probabilities. The reason that
the linear function sometimes does better than the EL functions is that the actual
adiabatic condition cannot be written as an integral. The QAB is just a heuristic for
the adiabatic condition and a better result is not guaranteed.

A better comparison between linear and EL functions can be made, by looking
at the scaling of the computation time with the problem size, which is plotted in
Fig. 4.9. This is a plot of the yellow colored annealing times in Table 4.3 versus
their size. The red points and their approximation to an exponential function was
shown in the previous section. The violet points, which were calculated using EL
functions, were better fitted to a polynomial function of the form aN® + ¢, where N

is the size of products (bits) and a, b and ¢ values are taken from Table 4.4. In the

rms of residuals : 3.57396
variance of residuals : 12.7732

’ Final set of parameters \ Asymptotic standard error ‘

a = 0.210153 | +£0.1109 (52.77%)
b = 3.60734 | £0.2892 (8.017%)
¢ = 17.026 | £3.224 (18.93%)

Table 4.4: Parameter values for fitting the worst annealing time points to a polynomial
function, where EL functions in the one-parameter scheme were used.

previous section the computational time scaled exponentially with problem size. In
this section, the same problems were solved using our simulations, but instead of using
a linear function in the evolution, we used the optimal EL functions. Utilizing this
improved algorithm, the exponential scaling is reduced to a polynomial one. Although

we investigated problems up to size 6, and this scaling cannot be generalized to
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Figure 4.9: Scaling of the computation time with the problem size. Red points:
using linear function of time. Violet points: using EL function. Red solid line: an
exponential fit to red points. Violet solid line: a polynomial fit to violet points
(Parameters given in Table 4.4).

bigger sizes, one should notice that hard problems could be solved much faster using
these new functions. If AQC fails to be efficient when using linear function in a one
parameter interpolation, one should consider optimal functions like EL to improve

the efficiency.

One should also note that in spite of the fact that QAB can find algorithms that
are much faster than the naive AQC, there is a price to pay. Finding these optimal
algorithms requires knowing the gap along the evolution. Calculating the gap is
intractable, it is essentially as hard as solving the original problem. The problems

that we solved here had small sizes. Therefore, it was possible to find the optimal
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algorithms for them. As the problem gets bigger in size, this approach will not be
practical anymore. In the following sections we will use the evidence that we acquired
here to develop an approach that can find the optimal algorithms heuristically, and
avoid the intractability of calculating the gap. We will also find that these functions

are both easier to calculate, and generally yield superior results over the EL equations.

4.1.3 Sigmoid Function
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Figure 4.10: Optimal functions for a linear path, using optimised sigmoid function.
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In the previous section we found the optimal functions by adjusting the slope
of the function with the gap value. In this section, we are going to find the op-
timised functions by parameter optimisation. We introduce a heuristically-derived
parametrised function and find the optimal parameters that solve the problem in the
shortest time possible.

As shown in Fig. 4.6, the optimal functions that were derived with QAB method,
have a generic form. The main difference between them is that the width and height
of the plateau varies with the problem instance. A tunable function with the same
generic form could be made. This way, one does not need to know the gap func-
tion to find the optimal annealing function. With an iterative process, the optimal
parameters of the annealing function can be found.

In [44] it was shown that functions with vanishing first derivatives at the beginning
and the end of evolution give increased fidelities. Adding this to the knowledge that
we have about suitable functional forms, we choose the parametrized function as

follows:
sigap (s) = %arctan (A exp (B tan <7rs — g)))

where A and B are parameters that should be determined through some optimization
process. We call this function a parametrised sigmoid function. It has vanishing slopes
at s = 0 and s = 1, regardless of the A and B values.

We found the optimised parameters for the same problems that were addressed
in the previous sections. Using a simple steepest descents method we minimised
the annealing time 7 with respect to the parameters A and B for a fixed fidelity
of 0.9. The optimal functions for the hardest problem of each size are shown in
Fig. 4.10. These optimal sigmoid functions are analogous to the functions that were
derived using EL equations. There are slight differences between them throughout the
evolution, the only big difference is that the sigmoid functions have vanishing slopes
at the ends. The minimised annealing times after using optimal sigmoid functions
are listed in Table 4.5. The minimum annealing time of sigmoid functions is always
shorter than the annealing time of linear and EL functions, except for the case of
16 = 4 x 4. This shows the QAB does not provide us with the most optimal functions,
and we can still do better. Even for the one case where the sigmoid function performed

worse than the EL function, there is a good explanation. By looking at Fig. 4.11(d),
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Figure 4.11: Instantaneous energy gap of Hamiltonians as a function of s, over optimal
sigmoid functions.

one can see that there is an unusual bump in the gap function of 4 x 4. We know
that the X function should be tuned with the gap. Unfortunately, our parametrised
function can not adjust itself with the bump, and it is the reason that it could not

improve the EL annealing time.

In order to have a more descriptive picture of the probability, we have plotted the
probability as a function of annealing time in Fig. 4.12. These are the most difficult

problem of each size, as highlighted in the sigmoid time column of Table 4.5. The
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Figure 4.12: Probability density of finding the ground state of the final Hamiltonian.
The crossed lines show the probabilities using sigmoid functions. The square lines
show the probabilities using EL functions.

gap and optimal sigmoid function of these same problems were also plotted in the
previous figures. In this plot, the points are again connected using a natural cubic

spline.

To have a better comparison between the results of linear, EL, and sigmoid func-
tions, we have plotted the largest annealing times for each size (the yellow colored

boxes in Table 4.5) in Fig. 4.13. As one can see, in the worst case scenarios of each



43

| Size | Circuit | Number | Linear 7 | EL T | Sigmoid T |
| 1Bit| 3by3bits [1=1x1 [26018 |184 |12435 |
3 Bit 4by 2bits [5=5x1 24.859 274 ] 11.934
4by2bits | 7T=7x1 19.601 27.8 | 12.082
3by 3 bits [ 9=3x3 27.096 44.9 | 12.584
4Bit | 4by 2bits | 11 =11 x 1 | 38.447 32.1 | 15.604
4by 2 bits | 13=13x1 | 47.960 35 17.131
3by3bits | 16 =4x4 | 116.383 | 474 | 51.427
4 by 2 bits | 20 =10x 2 | 30.931 19.5 | 15.075
4by 2bits |21=7x3 |215 90.3 | 51.011
= Bit 4 by 2 bits | 22 =11x2 | 15.856 22.1 | 10.08
3by 3 bits | 25 =5x5 | 168.264 | 43.0 | 27.180
4 by 2 bits | 26 =13 x 2 | 16.325 19.1 | 9.721
4by 2bits | 27 =9x3 | 34.772 27.1 | 15.101
4by 2 bits | 28 =14 x2 | 11.462 11.8 | 9.302
4by4bits [ 33=11x3 | 27.803 12.1 | 12.022
6 Bit 4 by 2 bits | 39 =13 x3 | 65.420 234 | 18.319
4 by 2 bits | 42 =14x3 | 1885.5 150.8 | 101.007
3by 3 bits |49 =7x7 |31.728 11.8 | 9.714

Table 4.5: Annealing times for fidelity of 0.9 using sigmoid functions in the one-
parameter scheme. The largest annealing time is highlighted in each bit sector.

size, the sigmoid function is always faster than the two other functions. In the previ-
ous sections, it was explained that we fit the red and violet points to an exponential
and a polynomial function respectively. The approximation of the blue points is done
in the same manner, where a polynomial function is a better fit. After fitting the
blue points to aN® + ¢, the fitted values of a, b, and ¢ are listed in Table 4.6.

rms of residuals : 5.05154
variance of residuals : 25.5181

’ Final set of parameters \ Asymptotic standard error ‘

a = 0.0137642 | £0.02068 (150.2%)
b = 491713 | £0.8276 (16.83%)
c = 9.6529 | £4.004 (41.47%)

Table 4.6: Parameter values for approximating the worst annealing time points in to
a polynomial function, where sigmoid functions in a linear path were used.

It should be mentioned again that the scaling is not reliable, because we looked

at the problem sizes from 1 to 6, and we can not generalize our results to bigger
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Figure 4.13: Scaling of the computation time with the problem size. Red points:
using linear function in a linear path. Violet points: using EL function in a linear
path. Blue points: using sigmoid function in a linear path. Red solid line: exponential
fit to red points. Violet solid line: polynomial fit to violet points. Blue solid line:
polynomial fit to blue points.

problem sizes. Although, if one uses optimised sigmoid functions instead of linear or
EL functions, the hardest problems of each particluar size will be solved much faster.
Using sigmoid parametrised functions we could improve the annealing times of the
illustrated factoring problems. Further, in this method we do not need to know the
gap values throughout the evolution. In the real experiment, the system could be
annealed with different parameter sets of sigmoid function, the function that is well
adjusted with the gap will give the answer to the problem with a higher probability,

in a shorter annealing time.
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4.2 Two-Parameter Evolution Scheme

4.2.1 Two Sigmoid Functions

Two-parameter evolution scheme means that the relationship between X; and X, is
not linear anymore. Therefore, our one dimensional search landscape becomes two
dimensional, where a one-parameter evolution represents a straight line in the two

dimensional search space. The Hamiltonian can be written as:
H(s) =X (s)H; + Xz (s) Hy, (4.6)

where X;(0) =1, X;(1) =0, X3(0) =0 and X5(1) = 1.

In this section, we are going to optimise two sigmoid functions, where for X;
and X, in the Hamiltonian of Eq. (4.6), we put X; = 1 — sigap(s) and Xy =
sige,p (s). For the same factoring instances that we have been looking at so far, we
found the optimal parameters of the two sigmoid functions, where the annealing time
was minimised with respect to the 4 numbers A, B, C' and D, at a fidelity of 0.9.
The optimal sigmoid functions for the hardest problem of each size are plotted in

Fig. 4.14. All the functions look alike, but 4 x 4 is different from the others.

We can gain insight into these results by plotting the two-dimensional gap land-
scape as a function of X; and X,. That is, we can assume that each function is a
dimension, this results in having a two dimensional gap space. In Fig. 4.15, we have
plotted the Hamiltonian gaps as a function of X; and X,. The linear path is equiva-
lent to Xo = 1 — X and is plotted with a red line. This line goes through the dark
area of the 2D gap plot, where there are smaller gap values. On the other hand the
two optimal sigmoid functions are plotted with the yellow curve. This optimal path
avoids more of the dark areas. By using two functions, we are capable of annealing
the system through bigger gap values. Our optimised functions go through bigger
gap values, and at the same time adjust the speed with the gap.

We remember from Fig. 4.11, that there was a bump in the gap of 4 x 4. By looking
at the 2D gap landscape of this problem, we can see that the red linear line crosses
two dark areas, therefore it caused the gap function to have that bump in it. Even the
yellow line of the two sigmoid optimal path of 4 x 4 is totally different from the other
problems. This is all due to fact that the 2D gap space of this particular problem is
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different from the others.

The energy gap along the path is plotted in Fig. 4.16. These plots are analogous
to the previous gap plots, but just on a different path. By comparing these plots
with the plots in Fig. 4.14, we see that the slope of X; and X, are small, when gap is
small. Again the gap function of 4 x 4 along the path is different from the others, and

it has extra peaks. For this case, the two sigmoid functions are insufficient, because
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Figure 4.14: Optimal functions for a two-parameter evolution scheme, using two
parametrised sigmoid functions. X; goes from 0 to 1, and X5 goes from 1 to 0.
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Figure 4.15: The two dimensional gap space, where the color represents the gap value.
The red line represents the one-parameter evolution scheme, and the yellow curve is
the path of the two optimal sigmoid functions for each problem in the two-parameter
evolution scheme.

sigmoid functions can not adjust themselves with these extra peaks.
In Fig. 4.17, the plots of probability as a function of annealing time show that at
almost all T's the fidelity is greater when we optimised in the 2D landscape.

We find the minimum annealing times, after optimising the functions for the same

problems that we have been looking at so far. These new annealing times are added to
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Figure 4.16: Instantaneous energy gap of Hamiltonians as a function of s, over the
optimal path, which was derived by two sigmoid functions.

our list in Table 4.7. All annealing times for the fidelity of 0.9 are extremely reduced.
This shows just switching from one dimension to two dimensions has great benefits.
Although, we still do not know if the sigmoid functions are the appropriate functions

to be optimised in two dimensions or not.

For a better comparison between the results of all the optimisation methods used
so far, we have plotted the annealing times of the hardest problem of each size (the yel-

low colored boxes in the Table 4.7) versus problem size in Fig. 4.18. In the worst case
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scenario of each size, using two sigmoid functions always results in shorter annealing
times in comparison with other methods. In the previous sections, the approximation
of points to exponential and polynomial functions was explained. We approximated
the green points in the same manner, where the polynomial function fitted better
than the exponential function. The approximated values of a, b, and ¢ of the function

alN® + ¢ are listed in Table 4.8.
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2 4 6 8 10 o 1 2 3 4 5 6 1

Probability (P)

— T T T
14x3 X
14x3

Annealing Time (T) Annealing Time (T)

Figure 4.17: Probability of finding the ground state of the final Hamiltonian. The
crossed lines show the probabilities using two sigmoid functions. The square lines
show the probabilities using one sigmoid function.
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The annealing time of the hardest problem of size five, which is 4 x 4, is bigger
than the annealing time of the hardest problem of size six, which is 14 x 3. This makes
the function approximation a bit difficult, and the big uncertainties in the approxi-
mation are for the same reason. As we discussed before, because of the distinct gap
landscape of 4 x 4, the sigmoid function is not a suitable optimization function and
consequently the optimised annealing path is not good for this problem. Therefore,

the annealing time is long.

4.2.2 Two Hump Functions

Here I argue that we can look at the 2D gap to find better paths just by knowing
that having a path that goes through bigger gaps gives a shorter annealing time. If
we look at all 2D gaps we can see all the plots are similar, and by tracing a butterfly

wing shape one can avoid very small gaps. This way, we suggest that using two

’ Size \ Circuit \ Number \ Linear \ EL \ Sigmoid \ 2xSigmoid ‘
| 1Bit[3by3bits [1=1x1 [26.018 |184 |12435 |10.147 |
spic | $by2bits [5=5x1 [24859 [274 [11.934 |7.834
4by 2bits | 7T=T7x1 19.601 | 27.8 | 12.082 | 7.500
3by3bits [9=3x3 [27.096 |44.9 [12.584 [7.782
4Bit | 4by 2bits | 11 =11x1 | 38447 | 321 |15.604 | 8420
4by 2bits | 13=13x1 | 47.960 |35 | 17.131 | 9.573
3by 3bits [ 16 =4x4 [ 116.383 | 47.4 |51.427 | 36.643
4by 2 bits | 20=10x2 | 30.931 |19.5 |15.075 | 11.478
Aby 2 bits | 21=7x3 |215 90.3 | 51.011 | 18.017
e gy | 4Dy 2bits | 22=11x2 | 15856 | 221 |10.08 | 7.720
3by3bits [25 =5x5 | 168.264 | 43.0 |27.180 | 14.452
4by 2 bits | 26 =13x2 | 16.325 | 19.1 |9.721 | 7.473
4by 2 bits | 27=9x3 |34772 | 271 |15.101 | 7.809
4by 2bits |28 =14x2 | 11462 | 11.8 |9.302 | 7.034
4by 4bits |33 =11x3 [27.803 | 121 |12.022 |[6.752
6 pit | 4Py 2bits | 39=13x3 | 65420 | 234 | 18319 | 8231
4 by 2 bits | 42 =14x3 | 1885.5 | 150.8 | 101.007 | 31.870
3by3bits [49=7x7 |31728 |118 |9.714 |7.710

Table 4.7: Annealing times for fidelity of 0.9 using two sigmoid functions. The largest
annealing time is highlighted in each bit sector.
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rms of residuals : 10.5373
variance of residuals : 111.036

’ Final set of parameters \ Asymptotic standard error ‘

a = 0.215425 | +£1.173 (544.4%)
b = 2.75864 | £2.957 (107.2%)
¢ = 6.67011 | £10.73 (160.9%)

Table 4.8: Parameter values for fitting the worst annealing time points to a polynomial
function, where two sigmoid functions in the two-parameter evolution scheme were
used.
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parametrised “hump” functions could be a better choice. Finally, we present the
results of this path and compare it to the previous ones.

In the previous section, we traversed the two dimensional landscape using two sig-
moid functions, and the annealing time was reduced compared to linear trajectories.
In this section, we are going to use heuristics again, and derive another parametrised
function, which is more suitable for our 2D landscapes. For reference, the plots of all
2D gaps for the problems that we have been dealing with are shown at the end, in
Fig. 4.24, Fig. 4.25, Fig. 4.26.

All the gap landscapes have a butterfly shape. So we could make a function that
can be adjusted with the gap shapes. In order to do that, we must be careful about
three things. First, we have to find the paths where the gap values are bigger. These
paths are found on the edge of the butterfly wing. Second, we must adjust the speed
along the path, where in case of smaller gaps we need lower speeds. And third, we
should have vanishing slopes at the beginning and the end of evolution. Therefore,
we must derive two functions that have a hump shape, and satisfy the other needed
conditions. We consider the following two functions that also satisfy the required

boundary conditions:

—_1)2 2 _ _
Xlz(s 1)” (3s 222_11+2A(28+1))—|—B(S—1)482

(4.7a)
3s* —4s% (C'+ 1) + 6Cs?
Xy =
20 -1
The functions X; and X, are placed in the Hamiltonian of Eq. (4.6). These are the

+ Ds*(s — 1)

two new functions, which we call hump functions. For each problem, there are four
parameters to be optimised. For the same factoring instances that we have been
looking at so far, we found the optimal parameters of the two hump functions, where
the annealing time was minimised at a fidelity of 0.9. The optimal hump functions
for the most difficult problem of each size are plotted in Fig. 4.19. Note that these
functions are in principal unbounded; only their end points are fixed.

In Fig. 4.20, we have plotted the optimal paths in the 2D gap landscape for the
most difficult problem of each size. The range that the sigmoid function could cover
was 0 < X; <1, where i = 1,2. The hump functions provide a compromise between

path length and speed. Beyond a certain path length, the increase in the size of
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the gap (and hence the allowable speed) is not sufficient to overcome the increased
distance which must be traversed. In these plots we see that the optimal hump paths
account for these requirements so nicely.

In Fig. 4.21, the gap functions along the optimal hump paths are plotted. These
gaps are bigger than the gaps of the other paths. Specially the gap along the optimal
path of 1 x 1 is much bigger than what it was before. Although the gap functions
have more peaks now, the two hump functions have adjusted peaks so that the speed

is matched with the gap value.

’ Size ‘ Circuit ‘ Number ‘ Linear ‘ EL ‘ Sig ‘ 2xSig ‘ 2><Humﬂ
| IBit| 3by3bits [1=1x1 |26.018 |18.4]12.435 | 10.147| 2.082 |
spi | APy 2bits [5=5x1 24.859 | 27.4]11.934 | 7.834 | 4.837

Aby 2bits | T=Tx1 19.601 | 27.8 | 12.082 | 7.500 | 1.274
3by 3bits [9=3x3 27.096 | 44.9[12.584 | 7.782 | 5.828
4 Bit | 4by 2bits | 11 =11x1 | 38.447 | 32.1 | 15.604 | 8.420 | 6.539
4by 2bits | 13=13x1 |[47.960 |35 |17.131 | 9.573 | 6.114
3by 3bits | 16 =4x4 [ 116.383 | 47.4 | 51.427 | 36.643 | 21.069
4by 2bits | 20=10x2 | 30.931 | 19.5| 15.075 | 11.478 | 5.885
4by 2bits |21=7x3 |215 90.3 | 51.011 | 18.017 | 9.931
s pit | 4 by 2bits | 22=11x2 | 15856 | 22.1 | 10.08 | 7.720 | 0.748
3by 3bits | 25 =5x5 | 168.264 | 43.0 | 27.180 | 14.452 | 7.416
4by 2bits | 26 =13x2 | 16.325 | 19.1|9.721 | 7.473 | 1.185
4by 2bits | 27=9x3 |34.772 | 27.1|15.101 | 7.809 | 5.396
4by 2bits | 28=14x2 |11.462 | 11.8]9.302 | 7.034 | 0.385
Aby 4 bits | 33=11x3 [27.803 | 12.1]12.022 | 6.752 | 3.681
6 pit | 4Dy 2bits | 39 =13x3 | 65420 | 234 18319 | 8231 | 6.578
4 by 2 bits | 42 =14x3 | 1885.5 | 150.8 101.007| 31.870 | 34.921
3by3bits |49=7x7 |31.728 |11.8|9.714 | 7.710 | 3.267

Table 4.9: Annealing times for fidelity of 0.9 using two hump functions. The largest
annealing time is highlighted in each bit sector.

In Fig. 4.22, the plots of probability as a function of annealing time show that at
almost all T's the probability of finding the answer is greater, when the two optimal
hump functions are used in the evolution.

We find the minimum annealing times, after optimising functions for the same prob-
lems that we have been looking at so far. These new annealing times are added to
our list in Table 4.9. All annealing times for the fidelity of 0.9 are extremely reduced.

This shows that using two sigmoid functions in 2D landscape is not the best option,
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rms of residuals : 2.50451

variance of residuals :6.27257
’ Final set of parameters \ Asymptotic standard error ‘

a = 0.0429175 | +0.06522 (152%)
b = 3.72259 | +£0.8334 (22.39%)
c = 1.64322 | £2.229 (135.7%)

Table 4.10: Parameter values for approximating the worst annealing time points with
a polynomial function, where two hump functions were used in the evolution.

and there exists better functions like hump function.

For a better comparison between the results of all the optimisation methods used
so far, we have plotted in Fig. 4.23 the annealing times of the most difficult problem
of each size (the yellow colored boxes in the Table 4.9) versus problem size. In the
worst case scenario of each size, using two hump functions always results in shorter
annealing times in comparison with other methods. In the previous sections the
approximation of points to exponential and polynomial functions was explained. We
approximated the yellow points in the same manner, where the polynomial function
fitted better than the exponential function. The approximated values of a, b, and ¢
of the function aN® + ¢ are listed in Table 4.10.

In Table 4.11, the fitting parameters for all the annealing functions that were used
are shown. Getting an actual scaling law is very difficult because we know that the
time can vary a lot depending on the annealing path. However we can say that the
fitting is not exponential for the first six bits.

Our results indicate that there always exists paths with larger gaps, such that
the problem can be solved in shorter annealing time. We have preliminary evidence
that in higher dimensions even better paths can be found. In order to utilize those
dimensions their gap landscape must be viewed, and an appropriate parameterized
function must be found for it. Having access to higher dimensions, allow us to acquire
even more optimal annealing schedules.

The same procedure can be followed for solving problems other than integer fac-
torization. Although we do not have enough evidence, but a generic gap landscape
seems to be general for all problems. Therefore good heuristics might be the key to

efficiently computing on adiabatic quantum computers.
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Figure 4.19: Optimal functions for the two-parameter scheme, using two parametrised
hump functions. X; goes from 0 to 1, and X, goes from 1 to 0.
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Figure 4.21: Instantaneous energy gap of Hamiltonians as a function of s, over the
optimal path, which was derived by two hump functions.
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Method \ Final set of parameters \ Asymptotic standard error ‘

a = 0.00210702

+0.000229 (10.87%)

Linear b = 228179 +0.01792  (0.7852%)

c = 25.6102 +1.802  (7.036%)

a = 0.210153 +0.1109 (52.77%)

Euler b = 3.60734 +0.2892 (8.017%)

¢c = 17.026 +£3.224  (18.93%)
a = 0.0137642 +0.02068 (150.2%)

Sigmoid b = 4.91713 +0.8276 (16.83%)
¢ = 96529 +4.004 (41.47%)

a = 0.215425 +1.173 (544.4%)

2% Sigmoid b = 2.75864 +2.957 (107.2%)
c = 6.67011 +10.73  (160.9%)

a = 0.0429175 +0.06522 (152%)

2x Hump b = 3.72259 +0.8334 (22.39%)
c = 1.64322 +2.229 (135.7%)

Table 4.11: Fitting parameters for all of the annealing functions
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Figure 4.24: The two dimensional gap landscape.
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Figure 4.25: The two dimensional gap landscape.
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Chapter 5

Conclusion

The computational power of circuit model quantum computers is dramatically illus-
rated via Shor’s algorithm for integer factorization, where this quantum algorithm is
exponentially more efficient than any known classical algorithm. On the other hand,
there is no mathematical formulation for adiabatic quantum computers, such that
one can assert any scaling between the problem size and computation time. However,
through a limited number of factorization problems that could be solved numerically,
we demonstrated such scaling. We showed that naive AQC is incapable of provid-
ing an exponential speedup over classical computers, but its unleashed power lies
in the evolution path. Intuitive from the adiabatic theorem, the main ingredients
of the AQC’s speed are larger gaps and slower speeds. We brought conclusive evi-
dence that there exist evolution paths that provide such ingredients. We provided
one-parameter and two-parameter evolution schemes. Utilizing heuristically-derived
parametrised functions, it was shown how these functions could find larger gaps, and
could adjust their speed with the gap value to result in a faster computation. Not
only could AQC factorize integers in polynomial time, but also the degree of the

polynomial can be reduced by optimising the evolution path.

We have preliminary evidence that there exist even more optimal paths in higher
dimensions, although only results for one-dimensional and two-dimensional land-
scapes were shown. We have developed a scheme to penetrate higher dimensions,
in order to find short paths with larger gaps. The generic form of the gap functions
for all the factorization problems allow an iterative process for finding the optimal
parameters. Therefore, AQC has the potential to be not only faster than the classi-
cal computers, but also the circuit model quantum computer. These issues are the

subject of ongoing work.
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Appendix A

The Field and Coupling Terms for Solving 14 x 3

The matrix A, represents the field h; and coupling ¢;; terms of the spin glass Hamil-

toninan Eq 3.1, for solving 14 x 3. A;; = h; and A;; = ¢;; for ¢ # j.

-4 0 0 0 1 1 2 0 0 0 0 0 —4 0 0 0 0
-4 0 1 1 -2 2 0 -2 0 0 -4 O 0 0
—4 1 1 0o -2 2 0 -2 0 0 0 -4 0 0

-2 1 1 0 0 -2 0 0o -2 0 0 0 0

-2 0 -2 -2 -2 0 0 0 0 0 0 0

—-12 2 2 2 -2 -2 -2 -4 -4 -4 0 0

-6 0 0 0 0 0 -6 0 0 0 0

-2 0 -4 0 0 0 -6 0 0 0

A= -2 -4 0 0 0 -6 0 0
0 0 1 6 0 -2 0

0 0 1 6 1 -2

1 0 0 1 0 1

14 0 0 -2 0

7 0 1 -2

7 0 1

-1 -2

65



Bibliography

[1]

[11]
[12]
[13]

[17]
[18]

[19]

Shor P 1994 Algorithms for quantum computation: discrete logarithms and fac-
toring Foundations of Computer Science, 199/ Proceedings., 35th Annual Sym-
posium on pp 124 —134

Zettili N 2001 Quantum mechanics: concepts and applications (John Wiley &
Sons)

Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777-780
Bell J S 1964 Physics 1 195-200
Sakurai J J 1994 Modern Quantum Mechanics (Addison-Wesley)

Townsend J S 2000 A modern approach to Quantum Mechanics (University Sci-
ence Books)

Dan C Marinescu G M M 2004 Approaching Quantum Computing (Pearson Ed-
ucation, Inc.)

Ekert A and Jozsa R 1996 Rev. Mod. Phys. 68 733-753
Vidal G 2003 Phys. Rev. Lett. 91 147902

Michael A Nielsen I L C 2000 Quantum Computation and Quantum Information
(Cambridge University Press)

Ozawa M 1998 Phys. Rev. Lett. 80 631-634
DiVincenzo D 2000 Fortschr. Phys 48 771-783

Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007
Rev. Mod. Phys. 79 135-174

Knill E, Laflamme R and Milburn G J 2001 Nature 409 46-52
Hffner H, Roos C and Blatt R 2008 Phys. Rep. 469 155 — 203

Olmschenk S, Matsukevich D N, Maunz P, Hayes D, Duan L M and Monroe C
2009 Science 323 486—489

Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179-215

Cory D G, Fahmy A F and Havel T F 1997 Proc. Natl. Acad. Sci. USA 94
1634-1639

Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120-126

66



[20]

[21]

[22]

[23]

[24]

[25]

[20]
[27]

[28]
[29]
[30]

67

Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K
2007 Rev. Mod. Phys. 79 1217-1265

Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L
2010 Nature 464 45-53

MacKenzie R, Morin-Duchesne A, Paquette H and Pinel J 2007 Phys. Rev. A
76 044102

Farhi E, Goldstone J, Gutmann S and Sipser M 2000 (Preprint
quant-ph/0001106)

Aharonov D, Dam W v, Kempe J, Landau Z, Lloyd S and Regev O 2005 Adi-
abatic quantum computation is equivalent to standard quantum computation
(Preprint quant-ph/0405098v2)

Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander
M, Hansel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506

Jordan S P, Farhi E and Shor P W 2006 Phys. Rev. A 74 052322

Johnson M W, Amin M H S, Gildert S, Lanting T, Hamze F, Dickson N, Harris
R, Berkley A J, Johansson J, Bunyk P, Chapple E M, Enderud C, Hilton J P,
Karimi K, Ladizinsky E, Ladizinsky N, Oh T, Perminov I, Rich C, Thom M C,
Tolkacheva E, Truncik C J S, Uchaikin S, Wang J, Wilson B and Rose G 2011
Nature 473 194-198

Lenstra A K 2000 Des. Code Cryptogr 19 101-128
Jozsa R and Linden N 2003 Proc. R. Soc. Lond. A 459 2011-2032

Van Dam W, Mosca M and Vazirani U 2001 How powerful is adiabatic quantum
computation? Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on pp 279 — 287

Avron J E, Fraas M, Graf G M and Grech P 2010 Phys. Rev. A 82 040304

Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001
Science 292 472475

Hogg T 2003 Phys. Rev. A 67 022314

Peierls R 1936 Math. Proc. Cambridge 32 477-481

Onsager L 1944 Phys. Rev. 65 117-149

Santoro G E, Martok R, Tosatti E and Car R 2002 Science 295 2427-2430

Barahona F 1985 J. Phys. A 18 L673



[38]

[39]
[40]
[41]
[42]

68

Macready W, Drew-Brook M and Kyriakidis J 2009 Factoring by Quantum An-
nealing (Unpublished)

Kato T 1950 J. Phys. Soc. Japan 5 435-439
Zener C 1932 Proc. R. Soc. London, Ser. A 137 696-702
Rezakhani A T, Pimachev A K and Lidar D A 2010 Phys. Rev. A 82 052305

Rezakhani A T, Kuo W J, Hamma A, Lidar D A and Zanardi P 2009 Phys. Rev.
Lett. 103 080502

Roland J and Cerf N J 2002 Phys. Rev. A 65 042308
Morita S and Nishimori H 2008 J. Math. Phys. 49 125210



