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Abstract 

Forest growth models are important to the forestry community because they provide 

means for predicting future yields and exploring different forest management practices. 

The purpose of this thesis is to develop an individual tree forest growth model applicable 

for the province of Nova Scotia.  The Acadian forest of Nova Scotia is a prime example a 

mixed species forest which is best modelled with individual tree models.  Individual tree 

models also permit modelling variable-density management regimes, which are important 

as the Province investigates new silviculture options.  Rather than use the conventional 

regression techniques, our individual tree growth and yield model was developed using 

neural networks.  The growth and yield model was comprised of three different neural 

networks: a network for each survivability, diameter increment and height increment.  In 

general, the neural network modelling approach fit the provincial data reasonably well.  

In order to have a model applicable to each species in the Province, species was included 

as a model input; the models were able to distinguish between species and to perform 

nearly as well as species-specific models.  It was also found that including site and 

stocking level indicators as model inputs improved the model. Furthermore, it was found 

that the GIS-based site quality index developed at UNB could be used as a site indicator 

rather than land capability.  Finally, the trained neural networks were used to create a 

growth and yield model which would be limited to shorter prediction periods and a larger 

scale. 
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Chapter 1: Introduction 

The purpose of this thesis is to develop an individual tree forest growth and yield model 

applicable for the province of Nova Scotia.  Individual tree models permit the modelling 

of mixed species forests of which the Acadian forest in Nova Scotia is a prime example.  

As the Province investigates new silviculture options, individual tree models also permit 

modelling of variable-density management regimes.  Rather than using the conventional 

regression techniques, our individual tree growth and yield model will be developed 

using neural networks.  There are many species in the Acadian forest and there is not 

enough data to model each of these species separately.  By including tree species as a 

model input a single model can be used for all species of the Acadian forest.  It turns out 

we can take advantage of this to model the less represented species without much loss in 

the ability to model the better represented species. 

In this thesis, we will review different individual tree models, neural networks, and neural 

network approaches to individual tree growth models.  The different model structures 

which were used for the different individual models will be discussed.  Next, we will 

examine the available data for Nova Scotia.  Given the data we have obtained and by 

observing the model structures of other individual tree models, we discuss the reasons for 

having built a growth model that consists of three neural networks: one each for 

predicting tree survivability, diameter growth, and height growth.  The methods by which 

the data was prepared and how the network models were fit will also be presented, 

followed by results for the data fitting.  Methods for using the fitted networks in a growth 

model will be discussed, followed by conclusions and recommendations. 

In this thesis we show that neural networking is an acceptable modelling technique for a 

Nova Scotia growth model.  Using this technique, we show that species can be used as a 

model input in a model applicable to all species as opposed to creating multiple species-

specific models.  We also show that the networks are better fit when we use inputs to 

characterize both the level of stocking and site measurements in the stands.  We 

demonstrate that a GIS-based site measurement is an alternative to land capability 

because, as a model input, it performed better than land capability and it is available for 
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the whole Province.  Finally, we demonstrate that the trained neural networks to develop 

a growth model.  
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Chapter 2: Background 

Forest growth models are important to the forestry community because they provide 

means for predicting future yields and investigating different forest management 

practices.  They provide an efficient way to explore various silvicultural and harvesting 

options and examine the effects they have on the state of the forest (Vanclay, 1994).  

Growth models are especially important in forestry since testing various management 

practices on actual plots of forest is impractical.  Long range planning is an essential part 

of forest resource management; this requires accurate estimates of both current levels and 

expected resource levels after various management alternatives (Belcher, Holdaway, & 

Brand, 1982). 

2.1 Modelling Tree Growth 

Traditionally, forest management has relied on yield tables to estimate expected timber 

harvests and to make management decisions.  Yield tables were developed using pure and 

even-aged stands (Hasenauer, Merkl, & Weingartner, 2001) and are therefore really only 

conducive to stands harvested by clear-cutting.  The province is committed to enhancing 

the Acadian forest which is typically uneven aged and of mixed species (Nova Scotia 

Department of Natural Resources, 2008).  Overall, we would like to shift away from 

clear-cutting practices which causes stands to consist of trees with a variety of ages and 

species. 

There are many different approaches to growth modelling in forestry.  In addition to 

stand-level models, growth models may also be developed at the individual tree-level.  

Although stand-level approaches are quite simplified, they have been robust.  Stand-level 

parameters such as stocking, basal area and volume are used to predict growth of the 

stand (Vanclay, 1994).  Because there is no prediction for the individual tree, stem size 

distributions are often used for better comprehension of the stand.  But, similar to yield 

tables, stand models are unable to easily represent uneven-aged and multi-species stands 

and do not easily lend themselves to test different thinning or planting patterns.  Along 

with ever-improving computing abilities, there has been increased development of tree-

level growth models (Porté & Bartelink, 2002). 
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Although there are many factors that affect tree growth, individual tree models must 

know, at the very least, the size of each tree in a stand to make growth predictions.  As 

will be reviewed in the literature, many modellers choose to model tree growth using a 

variety of tree and stand characteristics.  Aside from the level of resolution, forest growth 

models may be empirical or mechanistic, deterministic or stochastic, and spatially 

dependent or independent (Vanclay, 1994; Porté & Bartelink, 2002).  Initially, growth 

models were developed from data (empirical); but in the interest of developing tree 

growth theory, growth models were made based on the underlying physical and chemical 

processes influencing tree growth (mechanistic).  Mechanistic models are typically used 

for research purposes (i.e. the effects of climate change) rather than forest resource 

management (Porté & Bartelink, 2002).  Deterministic growth models estimate the 

expected amount of growth in a tree or stand given certain initial characteristics.  

Stochastic growth models attempt to account for the natural variation of tree growth 

because, in reality, the growth of trees with similar characteristics will vary.  This being 

stated, a single stochastic prediction is not useful as it is only one experiment outcome of 

a variety of possibilities; a series of stochastic experiments must be completed to provide 

understanding of the nature of forest growth (Vanclay, 1994).  Spatially dependent 

models use the distance between trees to understand the interactions amongst adjacent 

trees.  However, tree-location data is not always available and spatially independent 

models must then be used (Porté & Bartelink, 2002).  There will be no discussion as to 

what type of model is best since the model type is clearly dependent on what the model 

will be used for and what information is available for developing the model. 

2.2 Forests and Forest Modelling in Nova Scotia 

The majority of the forest in Nova Scotia is Acadian Forest, with a small amount of 

Boreal Forest in the Cape Breton Highlands (Mosseler, Lynds, & Major, 2003).  The 

Acadian Forest is characterized by its shade-tolerant species; these species include, but 

are not limited to, red spruce, balsam fir, eastern hemlock, white pine, yellow birch, sugar 

maple and American beech.  The majority of the Acadian forest is occupied by red spruce 

and balsam fir.  Mosseler, Lunds and Major (2003) state that much of the old growth 

from the region has been cleared within the last few centuries for agriculture and timber 

harvesting, thus leaves a very young forest in Nova Scotia.  The Acadian Forest has since 
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been heavily managed which accounts for the many plots in the province that are 

currently even-aged and less than 100 years old (Townsend, 2004). 

In Nova Scotia, the two areas of interest driving the need for growth models are 

economics and sustainability.  From an economic standpoint, reliable growth models are 

required to predict outcomes of different silviculture and harvesting practices to obtain 

the best yields (note that unharvested stands do not supply the highest yield of timber).  

From a sustainability point of view, a reliable growth model is required to develop new 

silvicultural and harvesting practices which promote a healthy forest.  The Nova Scotia 

Department of Natural Resources (NSDNR) has developed growth models for both 

hardwood and softwood stands.  These models are only applicable to single-species even-

aged stands and may only undergo previously researched treatments (O'Keefe & 

McGrath, 2006).  Although these models may be useful for many current stands, they 

will only continue to be useful if future stands remain pure and even-aged.  As the 

province moves away from clear-cutting practices to meet economic and sustainability 

demands, these models become less applicable.  Therefore, NSDNR requires tree-level 

models for Nova Scotia. 

2.3 A New Modelling Approach for Nova Scotia 

Individual tree models are commonly non-linear regression models fit for a single species 

(Peng & Wen, 1999).  In Nova Scotia, there are many different tree species and, as a 

result, there exist stands that include many different tree species.  To model a multi-

species stand, each tree species in the stand would typically require a different model.  

Fitting models for every species in the forest is very challenging because there would 

need to be a sufficient amount of stratified data available for each species.  This is 

especially difficult in the Acadian Forest because it encompasses so many types of 

species.  In Nova Scotia, there are considerable tree data available through the 

Department of Natural Resources.  First, there is an inventory database of permanent 

sample plots (PSPs) which gives a good representation of the forest.  There are also 

research PSPs established by the province for testing different treatments; these plots lack 

the variation of the inventory PSPs.  Together, these data sets are well suited for 

modelling the most abundant species in the province (i.e. red spruce or balsam fir) since 
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there are plenty of data available to do so.  However, there are many species that are not 

well represented in the database (i.e. red oak) and there is insufficient data for developing 

a growth model for these species.  A description of the gaps in the data set will be 

discussed in Chapter 4.  In effect, the NSDNR data set is only sufficient to enable 

species-specific regression models for a few species. 

Thus we are left with the problem of how to create a model that can represent all trees in 

the province, including the infrequent species.  One way of doing this is to use the full 

spectrum of species to develop a single model rather than having separate models for 

each species.  Considering that tree growth for all species depends upon the same factors 

(we discuss these factors in Chapter Chapter 5:), we can assume that all trees grow 

somewhat similarly but they are influenced by their species.  If we include species as a 

model input, it will allow for all trees to be represented within the same model and still be 

capable of differentiating between species.  

By including species as a model input, the concept of the traditional growth model has 

changed and the fitting of the data becomes more challenging.  In regression modelling, 

the modeller would be now responsible for finding basis functions to include each of the 

species inputs.  Neural networking is a modelling approach that can be used when there is 

understanding of which factors influence an output, but it relieves the modeller of the 

responsibility of determining basis functions for the model.  As long as the modeller does 

not require a nice equation for the model, neural networks can be a useful modelling tool. 

In this project, we will develop an individual-tree based neural network model based 

upon the NSDNR’s data to model individual tree growth. 
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Chapter 3: Literature Review 

For this project, it is important to review well-regarded individual tree models for the 

purpose of building the neural network models.  Clearly, in order to build a neural 

network model it is also important to review the theory behind neural network modelling.  

Different applications of neural networks in growth modelling will also be reviewed 

along with the advantage and disadvantages of neural network modelling. 

3.1 Individual Tree Models 

Although our data does not support the development of species-specific regression 

models Nova Scotia, it is very helpful to understand them for the purpose of building the 

neural network model.  There are a wide variety of individual tree models available for 

review, a few of which will be reviewed.  The United States Department of Agriculture 

Forest Service uses the Forest Vegetation Simulator (FVS) as its framework for growth 

modelling.  FVS is an individual-tree and distance-independent growth simulator.  It is 

actually a group of growth simulation models that vary by geographic region (United 

States Department of Agriculture Forest Service).  Two well-known growth models 

included in FVS are Prognosis and STEMS; these models will be reviewed in sections 

3.1.1 and 3.1.2, respectively.  Both of these models use data at the beginning of a growth 

period to predict tree characteristics at the end of a specified growth period.  It is also 

worth examining Monserud’s PROGNAUS model for Austria, since there has been 

plenty of forest research done in Europe.  PROGNAUS also predicts future tree 

characteristics from initial data and will be reviewed in section 3.1.3.  All three of these 

individual tree models will be compared in section 3.1.4. 

3.1.1 Prognosis 

Prognosis is a widely accepted distance-independent, individual-tree, forward-projection 

growth model.  It was originally developed for the northwestern states by Albert Stage in 

1973 and modified by William R. Wykoff in 1983 (Peng & Wen, 1999).  The Prognosis 

model is intended to provide a unified growth modelling approach applicable to all types 

of stands: the model applies to stands of single- or mixed-species and a variety of age and 

size.  Prognosis was first implemented for the lodgepole pine since data was readily 

available and there were stand-level models available for comparison (Stage, 1973). 
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According to Stage (1973), a robust stand-growth prediction should consist of three main 

parts: (i) a model to represent the development of individual trees, (ii) a model to 

represent the regeneration (including ingrowth) of the stands, and (iii) a model to 

represent the transition from regeneration to individual trees.  As the latter two parts still 

required much research, Stage’s focus of the Prognosis model was solely on the 

development of individual trees. 

The Prognosis model breaks down tree development into diameter increment, height 

increment, crown dimensions, and mortality rates.  These model components depend on a 

combination of tree size, vigour, competition with other trees, and site characteristics; 

each of these model components is developed for a single species.  Tree and stand 

characteristics are determined directly or indirectly from a tree list which is presented to 

the model (Wykoff, Crookston, & Stage, 1983); the tree list is a record of each tree and 

its attributes within a stand.  In practice, tree lists exclude smaller trees and saplings by 

only measuring trees exceeding a minimum diameter (Nova Scotia Department of 

Natural Resources, 2002).  Apart from offering characteristics for each tree in the list, the 

tree list may be used to calculate the density of a stand.  Stand density can be used to 

understand the competition within a stand without knowing the exact locations of each 

tree (Vanclay, 1994). 

The Prognosis model depends on a variety of measurements and classifications.  The 

most basic tree measurement is tree size.  Tree size is defined by diameter at breast height 

(DBH) and height (HT).  If height for a tree is missing, Prognosis uses the diameter-

based equation to get an estimate for height: 

 �� � 	 ������� �
������ � 	��� (1)  

where C0 and C1 are species-specific coefficients.  Crown ratio (CR) is used as an 

indicator of tree vigour; if crown ratio is missing from the data it is also estimated.  

Competition with other trees is measured by the sum of the basal areas of larger trees 

(BAL), the percentile of the tree in the stand basal area distribution (PCT), and crown 

competition factor (CCF).  Crown competition factor is an estimate of the percentage of 

an acre that would be covered by the crown if it were openly grown; CCF is species-
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dependent and is estimated from DBH and stand density.  Finally, stand measurements 

required by the model are slope (SL), aspect (ASP) and elevation (EL).  Classifications of 

habitat (HAB) and location (LOC) are also used in Prognosis. 

The diameter increment (ΔDBH) model does not directly model diameter increment.  In 

fact, ΔDBH is calculated from the modelled squared inside-bark diameter increment 

(ΔDBHib
2
).  The reason the model predicts the increment of inside-bark squared diameter 

rather than diameter is because, according to Stage, the relationship between the 

logarithms of ΔDBHib
2
 and DBH is linear and the residuals of this relationship discretely 

vary homogeneously for the range of the relationship.  This homogeneous variance of the 

residuals, or homoscedasticity, is required for regression analysis (Sachs, 1984).  Thus, 

the model predicts ln(ΔDBHib
2
) for each tree based upon ln(DBH) as well as many 

aforementioned variables: 

 ���	���	

�	 � �
� � ��
 � �� 
���
��� ��

� �� �
��
��� �� � ���� � �
��� � ����
� ����� � 	���

������ � �� �������
� 	��
� � ���
�� � 	 �����
������
� �������	 

(2)  

where b1 through b12 are species-specific coefficients.  If available, Prognosis will use the 

data from the previous growth period to calibrate the model.  ΔDBH may also be 

calibrated using the measurements of increment core samples from the trees. 

As previously discussed, Prognosis uses a species- and diameter-dependent height 

equation to obtain missing height measurements (Equation 1).  Using the differential of 

this equation, one can derive a relationship for height increment (ΔHT) based upon 

height, diameter, and diameter increment.  With a few modifications, Prognosis predicts a 

ten year height increment according to: 

 ���	����� � �
� � ��� � 	�� ������
� 	�� �������� 	�� ���	������� 	�
��� 

(3)  
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where HAB and SPP are habitat and species dependent intercepts, b2 is a species-specific 

coefficient, and coefficients b3 and b4 are habitat dependent.  For smaller trees, however, 

Prognosis uses another height increment equation because it is better for calibration 

purposes; this equation does not include ΔDBH because taking increment cores from 

very small trees can be detrimental to the tree.  Unfortunately, regardless of the tree size, 

there is discontinuity between the two ΔHT equations; therefore, Prognosis uses 

switching functions are used to transition between the two equations. 

Crown ratio is the ratio of the height of the tree crown to the total height of the tree.  

Although crown ratio changes slowly over time (Wykoff, Crookston, & Stage, 1983), 

crown ratios should be updated after each growth period since crown ratio is required to 

update diameter and height (Equations 2 and 3).  Wykoff, Crookston and Stage (1983) 

acknowledge that due to the subjectivity involved crown measurement the availability of 

consistent crown ratio data is limited (this will be discussed in more detail in Section 

3.1.3).  This makes modelling changes in crown ratio rather difficult and imprecise.  In 

light of these problems in modelling crown ratio, Prognosis still predicts the new crown 

ratio according to: 

 ���
�� � �
� � 	���
 � 	���
� � ������
���


�
� 	��

�� � 	�����

��� 	�����
� 	������ � ���������� �����
� 	������ � ���������� ����
�
� ��
����
�� 

(4)  

where b1 through b14 are species-dependent regression coefficients. 

Prognosis uses a couple of equations to predict mortality, both of which calculate a 

mortality rate.  Mortality rate is the percentage of trees that die in a stand over a specific 

period; in Prognosis, mortality rates are computed on an annual basis (Wykoff, 

Crookston, & Stage, 1983).  The simplest equation for mortality predicts the mortality 

rate (Rd) based on diameter only: 
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 �� � 	 �

� � ��
��
�����
������ (5)  

where b1, b2, and b3 are species-specific coefficients.  Rd is appropriate in most situations; 

however, in instances where mortality is increased by competition and suppression, the 

diameter-based equation underestimates the mortality rate.  Therefore, Prognosis also 

uses a density-dependent mortality equation: 

 � � � � �� �
�� � ����� ���� (6)  

where S0 is the current stocking density, in stems (number of trees) per acre, and S10 is 

the predicted stocking density after 10 years.  Wykoff, Crookston and Stage (1983) 

consider that stands may be densely stocked by either the number of stems or its basal 

area.  Therefore, Prognosis uses two methods of calculating S10 depending on whether 

stand wants to return to normal stocking levels, or whether the stand is approaching its 

maximum basal area.  Prognosis uses the measurements of tree diameter, stand basal 

area, and maximum stand basal area to determine which mortality rate (or combination of 

mortality rates) to use. 

Finally, the Prognosis model calculates stem volume from diameter and height according 

to: 

 � � �� � ���������� � 	���������	 (7)  

where b0, b1, and b2 are species-dependent coefficients. 

3.1.2 STEMS 

The United States Department of Agriculture developed a Stand and Tree Evaluation and 

Modeling System (STEMS) for the states in the Great Lakes region.  It is an individual-

tree distance-independent model.  STEMS consists of two FORTRAN programs: one to 

project the tree growth and the other to create user-defined output files and summary 

tables (Belcher, Holdaway, & Brand, 1982).  Only the forward projection program of the 

model will be reviewed.   
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The STEMS growth model predicts annual diameter growth, probability of mortality, and 

crown ratio growth for each tree.  The model also includes a tool in which different 

management options can be applied to the stands and a regeneration decision tree to bring 

new trees into the stand; the regeneration decision tree is determined from data.  Belcher, 

Holdaway and Brand (1982) only had sufficient data to model regeneration for the initial 

growth after a stand has been clear-cut.  Therefore, regeneration for uneven-aged stands 

was not modelled. 

The annual diameter growth is estimated as a fraction of the potential diameter growth of 

the tree.  The potential diameter increment is the expected annual diameter growth if the 

tree was free to grow without competition from its neighbours.  This potential change in 

diameter is then multiplied by a modifier component which estimates competition in the 

stand. 

 
�����		��� � ���������		���	 � �!�"��# (8)  

The potential diameter increment equation depends upon diameter, crown ratio code 

(CRC) and site index (SI) of the plot: 

 ���������		���		 � �� � 	�����
� � 	�
�$ � 
�
 � ���
� (9)  

where b1 through b5 are species specific regression coefficients.  The competition 

modifier component is comprised of a series of functions: 

  �!�"��# � � � ���� ��
��� � �
�
 �
�

�

 

�� � "���� ���%%%%%%⁄ � � '����%%%%%%� 
"���� ���%%%%%%⁄ � � ���� � �
���� ����������⁄ 	�� � �
 

'����%%%%%%� � 	 (�����%%%%%% � ����  

(10)  

where BAmax is the maximum basal area per acre expected for the species, BA is the 

current basal area, ���%%%%%% is the average diameter of the stand, and b1, b2, b3, b4, c1, c2 are 

regression coefficients.  Trees on less dense stands will have larger modifier values. 
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Having a measurement for crown ratio is important for the model to respond to changes 

in stand density and to measure competition in the stand.  As referred to in the diameter 

increment equation, STEMS uses a crown ratio code.  CRC is simply the classification of 

crown ratio based on estimates of crown ratio percentages; STEMS uses ten different 

crown ratio classes: 0-10%, 10-20%,..., 80-90%, 90-100%.  These estimates for crown 

ratio percentage are classified according to: 

 
�
 � 	 ��
� � ���
%%%% � 	 ���� � ��
������ 
� (11)  

where ��%%%% is the average stand basal area per acre over 10 years, b1 through b4 are species 

specific regression coefficients, and CF is a correction factor. 

STEMS predicts the probability of mortality, P, for an individual tree for a 1-year period 

based upon tree size (DBH) and vigour (ΔDBH); similar to Equation 5, mortality is 

predicted using a logistic function: 

 � �
�

� � ��
��	
��������	
���� � �� (12)  

where b1 through b5 are species-specific coefficients.  Once calculated, STEMS uses the 

probability of mortality in two different ways, where the choice is user-defined.  For 

probabilistic mortality, a random number is generated from a uniform distribution 

between 0 and 1 and if the tree’s probability of mortality is larger than this number then 

the tree is killed in the simulation.  In deterministic mortality, the number of trees per 

acre that the tree represents, also known as the expansion factor, is reduced by the 

probability of mortality.  If the expansion factor is reduced to 1 tree per acre, then the 

mortality type is switched to probabilistic so that the tree cannot represent less than one 

tree per acre.  Both mortality methods should give the same outputs for a large amount of 

plots and shorter projection periods.  For longer projection periods, although the 

probabilistic mortality is less computationally challenging, it may eventually produce 

unrealistic results.  Recall that Prognosis calculates mortality rates on a stand basis and is 

thus limited to modelling deterministic mortality.  Because STEMS represents tree 
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mortality on an individual tree basis it is able to use both probabilistic and deterministic 

mortality. 

3.1.3 PROGNAUS 

Monserud has been involved in many aspects of tree modelling including growth models, 

harvesting models, and validation testing (Monserud & Sterba, 1996).  He has 

incorporated many of these models in the development of the PROGNAUS model: the 

Prognosis for Austria individual-tree growth model.  Components of this model include 

predictions for basal area and height increments, crown ratio and tree mortality. Together 

with Sterba, Monserud developed a basal area increment model and an individual tree 

mortality model (Monserud & Sterba, 1996; Monserud and Sterba, 1999).  With 

Hasenauer, he developed a height increment model and a crown ratio model (Hasenauer 

& Monserud, 1996; Hasenauer & Monserud, 1997). 

Similar to Prognosis, Monserud and Sterba chose to use a logarithmic model for basal 

area increment because of its homoscedastic relationship with the logarithm of DBH; 

PROGNAUS predicts the logarithm of basal area increment over 5 years by a function of 

tree size, competition and site characteristics: 

 ���	�
� � � � 	�� �������� 	������ � �� ���
��
� (��
� � (�

� � ) � �$�� 

(13)  

where a, b1, b2, b3, c1, c2, and s are mostly species specific coefficients.  Tree size is 

represented by the diameter and crown ratio measurements; the squared diameter term is 

useful because (if b2 is negative) it prevents unlimited growth for large diameter trees.  

Because it is easier to have spatially-independent data, competition is limited to spatially-

independent variables.  Therefore, only stand density and rankings are possible.  Again, 

similar to Prognosis, PROGNAUS uses two variables to represent competition: the sum 

of basal areas of larger trees and crown competition factor.  Site characteristics include 

both qualitative and quantitative site measurements; for example: elevation, slope, aspect, 

soil group, and vegetation type (Monserud & Sterba, 1996). 

Hansenauer and Monserud’s crown ratio model is important because crown ratio will be 

indicative of tree vigour and will also be used to update the tree measurements.  Crown 



 

15 

 

ratio is related to tree vigour because it is closely related to crown length; some consider 

crown length to be a measure of the photosynthetic potential of a tree (Hasenauer & 

Monserud, 1996).  Overall tree growth can be attributed to photosynthates and hormones 

which are produced only in the crown; therefore, crown length and crown ratio reflect a 

tree’s growth potential.  Hasenauer and Monserud also point out the difficulty of 

modelling crown ratio because of its subjectivity; this is especially true for asymmetric 

crowns because it is tricky to identify the base of the crown.  Furthermore, obtaining 

accurate measurements for height is often difficult in itself (Hasenauer & Monserud, 

1997).  Again, despite the problems of modelling crown ratio, PROGNAUS models the 

crown ratio proportion with a logistic function where crown ratio ranges from 0 (no 

crown) to 1 (full crown).  Crown ratio is dependent upon size, competition and site: 

 
� � 	 �

� � �����
�� �! �
��"�
���������#$��� %&���'����()"*  (14)  

Here, tree size is represented by both height and diameter.  The height/diameter ratio 

(H/D) was also considered useful since H/D is an indicator for the taper of a tree.  Both 

the taper of the tree and the crown ratio respond to increasing stand density, therefore 

crown ratio is related to taper in the sense that trees with more taper have a higher crown 

ratio than those with less taper.  Again, for simplicity, competition measurements are 

restricted to distance-independent measures.  Similar to the diameter increment model, 

BAL and CCF are used.  Site measurements are meant to reflect the topography of the 

plot only and include elevation above sea level, slope, and azimuth measurements. 

Just as in the model for crown ratio, height increment prediction for 5 years is based upon 

the assumption that height growth is a function of tree size, competition and site: 

 ��	�	��� � 	� � 	�� �������� 	����� � ���� � (�

�
� (��
� � ! � �$�� 

(15)  

where a, b1, b2, b3, c1, c2, and d are mostly species specific coefficients.  Regression 

analysis was done for the logarithm of height increment to stabilize the variance 

(Hasenauer & Monserud, 1997). 
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Similar to STEMS, PROGNAUS’s mortality model uses the logistic equation to model 

the probability of mortality for each tree, P.  With inputs describing tree size, vigour, and 

competition, PROGNAUS uses maximum likelihood methods to fit data to a non-linear 

equation for the P: 

 � � 	 �

� � 	 �
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 (16)  

where b0 through b5 are species-specific coefficients.  Although there are other factors 

which can contribute to the mortality or survivability of a tree, Monserud and Sterba 

(1999) attempted to keep independent factors to a minimum to avoid 

overparameterization.  They state that diameter alone is a reliable measure of a tree’s 

size.  Mortality greatly depends on tree size (specifically diameter) because the larger the 

tree, the greater its chances are for competing for resources; this would indicate that 

mortality of a tree decreases as the tree diameter increases.  In an older forest, the oldest 

trees may begin to die of senescence and it is therefore possible that tree mortality rates 

can increase at the largest diameter classes.  The size of the tree can also be recognized as 

the tree’s response to site and age and a model containing diameter will implicitly 

consider site and age effects.  BAL is important in mortality prediction because it gives 

an understanding of competition with other trees.  CR is important to consider in tree 

mortality because it is an indicator of the vigour of the tree. 

3.1.4 Comparison of the Different Growth Models 

By comparing the each of the reviewed individual growth regression models – Prognosis, 

STEMS and PROGNAUS – it is apparent that each of the models relies on many species-

specific coefficients that must be derived from complex parameter estimation techniques.  

These parameters are typically estimated from large data sets.  A good data set will 

include a reasonably large number of observations for each class of diameter, height, age, 

etc.  Similarly, a good data set will include an acceptable number of observations for each 

species.  Data collected for inventory purposes will inherently only have sufficient data 

for the most abundant species in the forest.  In effect, the models are only suitable for the 

abundant tree species.  This means that the less abundant species are regularly left with 

insufficient data to generate a reliable model. 
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Prognosis, STEMS, and PROGNAUS each forward project diameter, mortality and 

crown ratio as part of their model components.  Both the Prognosis and PROGNAUS 

models also predict height increment while the STEMS model does not have a height 

increment component. 

Diameter predictions were all made by modelling diameter increments directly or 

indirectly.  In their diameter increment models, Prognosis and PROGNAUS use 

logarithmic equations to calculate a squared diameter increment from which diameter 

increment may be calculated; justification for modelling squared diameter instead of 

diameter increment was made because of the homoscedastic relationship between the 

logarithms of diameter and squared diameter increment.  On the other hand, STEMS uses 

a non-linear relationship to predict potential diameter change and then modifies it.  In the 

STEMS literature, there was no mention of the possibility for modelling squared diameter 

increment.  Similar inputs for all three models include initial diameter, crown ratio, 

competition with respect to basal area, and site measurements. 

Only Prognosis and PROGNAUS include height increment components for their models.  

Just as in the diameter increment models, both programs use logarithmic relationships to 

predict height increment.  Similar inputs for each of these models include initial size 

(height and basal area), a measure for vigour (crown ratio or diameter growth rate) and 

some form of site measurements. 

Prognosis, STEMS, and PROGNAUS each contain a crown ratio prediction equation; 

each of these equations are non-linear and have quite different structures than one 

another.  Of these three equations, only PROGNAUS models crown ratio directly.  

Prognosis predicts the change in crown ratio while STEMS predicts the range of crown 

ratio range by classifying the expected crown ratio by percentage.  Both the developers of 

Prognosis and STEMS admit that crown ratio is difficult to model over time and that 

crown ratio of a tree changes slowly in time (Belcher, Holdaway, & Brand, 1982; 

Wykoff, Crookston, & Stage, 1983).  They also state that crown ratio is a measurement 

for which extensive data is hard to get.  However, the developers agree that crown ratio is 

important to model because it is important to have a measure of vigour to model tree 

growth. 
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Despite having acknowledged the difficulties of modelling mortality (these are further 

discussed in Section 5.2.1), the developers of Prognosis, STEMS, and PROGNAUS each 

use a mortality prediction component as mortality (or survivability) is necessary in 

growth modelling.  PROGNAUS and STEMS predict the probability of mortality for an 

individual tree over a growth period using a logistic function with common inputs of 

initial diameter and vigour measurements (crown ratio and previous diameter increment).  

Depending on the stand characteristics, Prognosis has a few different equations for 

predicting annual mortality rate of a stand.  Similar to the other growth models, the 

Prognosis mortality models depend on the initial diameter of the tree. 

3.2 Neural Networks 

Neural network modelling is a method of approximating an input-output process.  A 

neural network essentially outputs a linear combination of functions based upon a set of 

inputs.  Through optimization methods, referred to as training in the neural network 

literature, neural networks have the ability to learn the shape of very complex response 

surfaces by minimizing the error between the actual and the modelled outputs.  To 

understand how neural networks are trained, it is important to first understand the general 

structure of neural networks  
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Figure 1 General structure of feed-forward neural network 

A basic feed-forward neural network (Smith, 1993) consists of multiple layers where the 

nodes in the adjacent layers are fully connected (Figure 1).  There exist many other 

configurations of neural networks; however, these configurations will not be reviewed in 

this thesis since they will not be used.  In the basic feed-forward neural network, 

normalized data enters the network through the input layer where there is typically an 

input node for each input to the model.  The middle and output nodal layers are 

comprised of computational nodes – they are called the hidden and output nodes, 

respectively.  The model outputs leave the network via the layer of output nodes for 

which there is an output node for each model output. The number of hidden nodes may 

vary depending on the complexity required by the model.  Every connection in the 

network has a strength, or weight, and each computation node also has an offset, or bias 

weight.  This bias weight can simply be considered as a weight on a constant input.  

Consider a network with I input nodes, J hidden nodes, and K output nodes.  Each hidden 

node calculates a weighted sum of the input values (Equation 17) and passes it through a 

function, f (Equation 18): 

 �, *	��, +,�	,-	
)

	-�
 (17)  
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 ., * "��,	 (18)  

where uj is the weighted sum at hidden node j, xi is the input of input node i, a0j is the bias 

weight at the hidden node j, aij is the connection weight from input node i to hidden node 

j, and yj is the output of hidden node j.  The function, f, is generally a sigmoid function, 

for example, a logistic function or a tan-sigmoid function (Equation 19 and Figure 2).  A 

sigmoid function is an S-shaped curve with upper and lower bounds, is always 

increasing, and is differentiable (Smith, 1993).  Other options for f include linear and unit 

step functions. 

 "��� * 	 �. / ��.

�. + ��. (19)  

 

Figure 2 The tan-sigmoid function 

Similar to the hidden nodes, the output nodes calculate the weighted sum of the hidden 

node outputs (Equation 20), and then pass it through a function, g (Equation 21): 

 0/ *	��/ +,�,/.,
0

,-�
 (20)  

 1/ * '�0/� (21)  

where vk is the weighted sum at output node k, b0k is the bias weight at the output node k, 

bjk is the connection weight from hidden node j to output node k, and zk is the output of 
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output node k.  Function g is also often a sigmoid function, but is not required to be the 

same as f.  Both functions f and g may be referred to as activation functions. 

This forward process through the network is called the mapping mode.  Given the 

appropriate weights, the mapping function can take on many shapes, and it is because of 

this flexibility that neural networks are capable of approximating nonlinear or noisy 

response surfaces (Barton, 1998).  Also, because these mapping functions are so versatile, 

neural networks have many applications including function approximation, pattern 

recognition, and classification (Jain, Mao, & Mohiuddin, 1996). 

Clearly, a very important task in fitting neural network models is finding the best possible 

weights; this can be done by fitting the network with a data set of known input-output 

values (with N samples).  A conventional way of measuring the data fit is by mean 

squared error (MSE); when using MSE as a measure of network fit, the goal of network 

fitting would be to find the set of weights that minimizes the mean squared error:  

  ��		 ∑ ∑ �1/1 � �/1��2
/-�

3
1-� 34  (22)  

where zkn is the network output and tkn is the target output at output node k and sample n.   

Initially, the network weights are assigned small random numbers and the inputs are 

mapped through the network.  The error with respect to the network output (5� 51⁄ ) is 

simply the difference between the modelled and known outputs.  Using partial 

derivatives, the error with respect to the weights connected to the output nodes (5� 5�⁄ � 

can be calculated by the chain rule: 

 5�5� �
5�51 5150 505� (23)  

This is rather simple since the error on these weights (b0k and bjk) is affected only by error 

from a single output node.  However, the rest of the weights (a0j and aij) are affected by 

the error from each of the output nodes and the error from each output node must be 

propagated back to each weight a0j and aij: 
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(24)  

This is done for each input-output sample in the data set where the error at each weight is 

accumulated with every example.  This process of propagating the error back through the 

network is called backpropagation.  Given the accumulated error at each weight, the 

direction and magnitude of change that is made to each weight is derived by search 

algorithms such as Conjugate Gradient or Levenberg–Marquardt in order to minimize the 

error. 

It is the process of mapping inputs through the network, comparing the network outputs 

to the desired output, backpropagating the error through the network, and changing the 

weight accordingly that comprises a neural networking iteration. These iterations are 

executed until a target minimum mean squared error is attained or until a maximum 

number of iterations are performed.  At this point, the network may be used for mapping 

inputs to estimate output values. Once a neural network is trained, a new set of data is 

often used to evaluate how well the model performs (Smith, 1993).  

The first step of building a neural network model is to determine the structure of the 

network.  For each quantitative model input, there should be an input node in the 

network. In the case of qualitative or categorical data (i.e. species), the inputs must be 

represented numerically to be input in the network.  In the case where there is more than 

one category, there must be an input node for each category represented in the data (for 

example, each species group will require an input node), and the data must be represented 

by a binary vector (Brouwer, 2004).  If the categorical data is represented by only one 

input node, a categorical scale will be used and the network assumes the variable is 

continuous.  This is unwise if there is no meaningful relationship between the categories.   

Similar to the input nodes, each quantitative output variable can be represented by an 

output node.  However, classification output variables will require a different approach 

since the output will be a continuous variable (Smith, 1993).  One way to adapt this 
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continuous output variable into a binomial one is to have a threshold where one outcome 

will be distinguished from another.  This is especially difficult when the training data 

contains examples of similar inputs producing different outputs because outputs will 

often not be clearly distinguishable.  To account for this noise, the threshold may be 

randomly generated (Belcher, Holdaway, & Brand, 1982).  The problem with doing this 

is that when a classification model is used to predict a binomial outcome, it is only one 

experiment of many possibilities; the model would need to be run many times to get a 

proper understanding of the model behaviour.  For example, if a coin is flipped only a 

few times, one can easily have three identical outcomes and misunderstand the expected 

behaviour of flipping a coin; the more times the experiment is performed, the better the 

expected behaviour may be understood.  Therefore, the output of a classification matrix is 

often interpreted as a probability of occurrence (Smith, 1993). 

In the case where there are multiple outputs, the modeler must make the decision to have 

either a single model with several outputs (Figure 1) or multiple models with a single 

output each.  The advantage of using a single model with multiple outputs is if the 

modeler still intends to develop a classification network.  Otherwise, with continuous 

outputs, there is an advantage to using multiple single output networks because each 

network will be focused on achieving the best possible fit for its output. 

Determining the number of hidden nodes is a slightly more complicated process.  The 

network can better model a complex relationship with the more hidden nodes that are in 

the network.  However, the modeller must be careful to not overparameterize the data 

with too many hidden nodes or else the model will begin to fit the noise in the data set 

and the network will not be appropriately applied to data in general.  If the training is 

allowed to continue for too many epochs, the network may begin to fit the noise in the 

data.  Therefore, there must be a balance between the number of hidden nodes and 

maximum number of training epochs. 

3.3 Applications of Neural Networks in Growth Models 

Neural networks have become a modelling technique used in a variety of different areas 

of forest resource management including land classification, spatial data analysis, and 

forest growth and dynamics.  Because modelling in forest resource management often has 
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qualitative components and other complexities, there was a drive to find alternative 

modelling techniques to the traditional statistical modelling approaches.  Since mortality 

modelling has proven difficult to model, it is for this reason that in growth modelling 

neural networks have been mostly applied to mortality modelling (Peng, C., and Wen, X., 

1999).  There are problems with this that we will discuss in Chapter 8. 

Guan and Gertner (1991) and Hasenauer et al. (2001) have both created neural network 

single species mortality models and compared them to conventional regression models.  

Both studies found that neural networks could better fit the data and predict mortality 

probabilities according to tests like the mean squared error and chi-squared.  It was thus 

concluded that neural network mortality models were viable alternatives to the 

conventional methods.  Both of these models used only a few input parameters.  

Hasenauer et al. (2001) remind us that with the increase of input parameters, the network 

model can only improve, because if the added inputs are not useful for improving the 

model fit, the training process inherently ignores the added inputs by assigning their 

weights with very small numbers. 

3.4 Advantages and Disadvantages of Using Neural Networks in Growth Models 

Especially for the Acadian forest, one great advantage of using neural networks to model 

growth is that species may be included as a model input while relieving the modeller of 

the responsibility of determining basis functions which would be required for a statistical 

model; this is especially advantageous with a complex data set.  Also, we would expect 

the neural network models to more or less match the performance of regression models.  

Another important advantage of neural networks is that they are capable of modelling 

complex and less understood relationships such as individual tree mortality. 

Other advantages of using neural networks are as follows (Tu, 1996):  

• Although regression methods can describe complex relationships, these 

complexities must be identified by the modeller; therefore, complex relationships 

can often be left unrecognized.  Since neural networks automatically adjust the 

network weights to reflect the relationship between the independent and 
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dependent variables, the neural network inherently detects any complex nonlinear 

relationships.  

• As the number of input variables are desired to be used in the model increase, the 

number of possible interactions between inputs increase.  This can become quite 

overwhelming when testing a regression for all possible two way interactions, 

while neural networks detect these interrelationships with the hidden layer of 

nodes. 

• There are a variety of training algorithms available to create a neural network.  

Some algorithms can offer improved convergence and convergence time.  

• Neural networking may be used for modelling various relationships.  This is 

useful when the nature of the data is unknown.  

• Oftentimes, nonlinear regression analysis is very complex, especially with noisy 

data sets.  Because neural networks are capable of fitting noisy data sets, difficult 

regression analysis is avoided by using neural networking. 

Disadvantages of using neural networks are as follows:  

• Causal relationships are not easily defined in neural networks, and there are no 

discrete interpretations of the network weights.  This causes neural networks to 

effectively be ‘black boxes’ whereas regression models are able to identify causal 

relationships between independent and dependent variables.  Therefore, networks 

are not recommended when the goal of the model is to define interactions 

between variables.  

• Training of neural networks can be quite expensive.  Years ago, the computational 

time required for a network to converge could take up to weeks.  With the 

improved computing power within the last decade, however, computational time 

is no longer a critical issue. 

• Because neural networks are so effective at modelling complex nonlinearities, 

they may overfit the training data and perform poorly on other data.  Available 

techniques should be used to avoid overparameterizing the network.  

• Neural networks are still a fairly new modelling technique.  Lack of formal 

statistical model evaluation techniques can trigger doubt in the model.  
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• Neural network models are more difficult to use in the field than regression 

models.  To apply regression models, one must simply use the equation derived 

from the regression.  To use a trained network, a copy of the trained network must 

be available as software or the weight matrix must be used to calculate outputs; 

although this is not a serious disadvantage, neural networks are less portable than 

an equation. 
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Chapter 4: The Nova Scotia Data Sets 

The data used for creating the model was obtained from Dr. John Kershaw at the 

University of New Brunswick (UNB) which had been collected by the Nova Scotia 

Department of Natural Resources (NSDNR).  The Province has a well-established system 

of permanent sample plots in place for measuring both inventory and for research 

purposes.  These data sets will both be described.  We have also received data from Dr. 

Fan-Rui Meng, also of UNB, who, together with Dr. Charles Bourque and their research 

group, have developed site quality estimates for the entire Province. 

4.1 Inventory Permanent Sample Plots 

The purpose of the establishment of inventory plots in Nova Scotia has been to determine 

mortality and growth of the natural forest and to estimate merchantable volume in the 

forest (Nova Scotia Department of Natural Resources, 2002).  The database was 

established for inventory purposes but, because it is extensive, has many other potential 

uses: biodiversity, ecosystem management, forest inventory, forest protection, wildlife 

habitat. 

Beginning in 1965, plot locations were randomly selected throughout the province by 

latitude and longitude.  By 1970, the province of Nova Scotia had established 1765 forest 

inventory plots.  The program expanded in 1996, and by 1999 the province was 

monitoring 3250 inventory plots.  These more recently established plots were selected by 

randomly generating grids in GIS and adding the grid to the database if it was classified 

as forested.  The database therefore includes all ownership type of lands, for example, 

crown, private, and parks. The inventory plots are circular and identified by a centre-

stake and boundary trees.  When possible, the centre-stake was established by the pre-

selected location.  If there were no trees in the pre-selected plot, the centre-stake was 

established at the nearest location that would allow for a forested plot.  With a radius of 

11.35m from the centre stake, boundary trees and rocks were marked with paint; each 

plot covers 1/10
th

 of an acre.  All merchantable trees within the plot – trees that are at 

least 9.1cm at breast height (1.3 m above ground) – were painted and tagged with an 

identification number.  Established plots are meant to be used as they would have 

otherwise been used, so land owners were instructed not to treat them specially. 
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For each marked tree, data for species, diameter at breast height (DBH), height, living 

status, crown class and health were collected.   Some of the more recent measurements 

also include the tree height to the base of the crown.  Diameter measurements were 

obtained at breast height, to the nearest millimeter using diameter tape.  Height 

measurements were obtained to the nearest 0.1 meter.  Since tree height estimates depend 

on the angle observed from tree top to base, the measurement was always attempted at 

least the tree height away from the tree.  The living status of the tree was classified as 

either (i) live, (ii) dead and standing, (iii) ingrowth, (iv) cut, or (v) dead and down.  The 

crown class was classified to get an idea of how dominant the tree is in the stand (i.e. 

dominant, intermediate, or suppressed) (Nova Scotia Department of Natural Resources, 

2002). 

From each plot, three trees were chosen and used to determine the land capability of the 

plot.  Each chosen tree was of the same majority species, was larger than 9.1cm at DBH, 

and did not appear to have any damage.  The total height of each of the chosen trees was 

measured, and increment cores were taken at breast height to determine the age of the 

tree by ring counting (Nova Scotia Department of Natural Resources, 2002).  Using the 

age and height of the trees, land capability can be extracted from the province’s 

established yield curves.  If no suitable trees were available for making land capability 

measurements, a photo interpreted land capability was used.  Photo interpreted land 

capability has been converted from the Canadian Land Inventory’s agricultural soil 

capability classes (established between 1960 and 1985) and additionally adjusted for any 

complexities identified in the photographs (Nova Scotia Department of Natural 

Resources, 2006) (Agriculture and Agri-Food Canada, 2010).  Other site measurements 

in the inventory data include land cover, drainage, slope and aspect. 

Once established, the plots were remeasured every five years. Plots were remarked on 

every visit so that they would not be lost.  Any trees that had grown into the plot were 

included and assigned a new identification number. 

In the database received from Dr. Kershaw, there are 585,271 measurements in the 

inventory data set.  Table 1 lists the attributes which were measured according to 

NSDNR (2002), and the attributes which were in the database received.  Table 1 also 
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presents the number of records which included data for each attribute.  Missing records 

from expansion factor can be filled since each plot is the same size, and missing records 

for tree species can be filled if the tree has already been identified in another sample year.  

Some empty fields for the crown class and height to base of crown data can be attributed 

to dead trees, although much of the height to base of crown data is incomplete. 

Table 1 Measured and received attributes of the NSDNR inventory PSPs 

Measured attributes  Received attributes Number of records (of 585,271) 

Plot, stand and tree  Plot, stand and tree 585 271 

Year  Year 585,271 

Species  DBH (cm) 579,559 

Tree status  Height (m) 533,580 

DBH  Height to base of crown 185,466 

Quadrant location*  Crown class 465,339 

Damage agents  Species 584,965 

Main product for tree*  Expansion factor 584,965 

Height  Stump Age 15,895 

Height to base of crown*  Site Index 8,787 

Health of tree*    

Crown class*    

Land Capability    

Ground cover    

Slope, Drainage, Aspect    

Stump Age    

‘*’ denotes for live trees only 

 

Two important attributes which were described by NSDNR and were not in the data set 

received from Dr. Kershaw were land capability and tree status.  These were obtained 

from an older version of the data set from the summer of 2005; some of the 
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measurements for the newer trees and newly established plots were not in this older data 

set. 

4.2 Research Permanent Sample Plots 

There are also research plot data available from the province.  The research plots were 

established to test different treatments including different thinning and fertilizer 

prescriptions.  The research plots have also been used to develop older growth models for 

the province (O'Keefe & McGrath, 2006).  The plots were selectively chosen in locations 

that were considered to be fully stocked and where treated plots could be located next to 

control plots.  Furthermore, the research plots varied in size and were required to include 

a minimum of thirty trees.  Also, since the research plots were not established for 

merchantable inventory purposes, the research plots include trees as small as 4cm in 

diameter. 

The data from the research plots include the same measurements that were described for 

the inventory plots, with a couple of exceptions.  The research data only include height 

measurements for a sample of 15 trees per plot and do not include site index or land 

capability.  The plots were, however, measured for age.  As the research plots are 

generally fully stocked, mono-specific, and even-aged, land capability and site index may 

be interpolated from the provincial yield curves.  The research data also includes specific 

treatment data, such as thinning (i.e. basal area removed) and fertilizer amounts. 

In total, there are 277,413 records in the data set received from Dr. Kershaw.  Table 2 

lists the attributes included in the research PSP data set as well as how many 

measurements are filled for each attribute.  Most attributes of interest are, for the most 

part, complete; although, height and crown class data is only available for some trees in 

the research PSPs. 

4.3 Site Quality Index 

Dr. Meng and Dr. Bourque have estimated a site quality index (SQI) using data in GIS.  

The benefit of developing this index is that it will provide estimates of the site capability 

for the entire Province and could possibly be used in the place of site index or land 

capability.  Building upon work done by Bourque et al. (2000), SQI captures the 
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controlling mechanisms for tree growth through physical features of the landscape, 

temperature profiles, precipitation data, solar radiation maps, soil nutrient regime and soil 

moisture regime.  From Dr. Meng, we have received SQI estimates for the inventory 

PSPs only. 

Table 2 Attributes received for the NSDNR research PSPs 

Received attributes Number of records (of 277,413) 

Plot, stand and tree number 277,413 

Year 277,413 

DBH (cm) 277,413 

Height (m) 90,135 

Crown class 146,268 

Species 277,413 

Expansion factor 273,103 

Stump Age 277,375 

Breast Height Age 277,413 

Basal Area removed (m2/ha) 64,601 

Residual Basal Area (m2/ha) 3,987 

Nitrogen fertilizer treatment (kg/ha) 222,943 

Potassium fertilizer treatment (kg/ha) 222,943 

Phosphorus fertilizer treatment (kg/ha) 222,943 

Year of treatment 218,349 

 

4.4 Data Overview 

Together, the inventory and research PSPs provide 862,684 tree measurements.  For our 

model, we require measurements of the trees for two consecutive samples in order to 

determine any growth that occurred between measurements.  From these records, there 

are 397,242 consecutive tree records from which our network models can be developed.  

The consecutive pairs were sampled approximately five years apart; this means that, on 

average, there are five growing seasons between samples.  However, depending on which 
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month in which the samples were actually taken, the number of growing seasons can 

range from four to six.  Unfortunately, these sampling dates were also not included in the 

current data set and had to be obtained from the 2005 version of the data set.  Because the 

dates were obtained from the older database, sampling dates for the newest measurements 

are missing.   

The research plots are generally quite different from the inventory plots. The majority of 

these differences can be attributed to the different processes by which the PSPs were 

selected and, in general, it can be found that the trees in the research plots are less varied 

than those of the inventory plots.  Table 3 outlines the main differences between the 

inventory and research PSPs.  In the research data set that we obtained from Dr. Kershaw, 

there were no tree status data for the research plots.  Again, we had to go back to an older 

version of the database to obtain tree status for as many research plots as possible.   

Table 3 Differences between Inventory and Research PSPs (O'Keefe & McGrath, 2006) 

Database Attribute Inventory PSP Research PSP 

Plot Selection Random Selective 

Plot Size Fixed round plots Variable 

Minimum Tree Size 9.1cm 4cm 

Height Measurements All heights measured Sample of 15 heights 

Plot Condition (age, species, basal Variable Generally Uniform 

Treatments Unknown Known 

Site Quality Index Known Unknown 

 

With respect to modelling, one issue with this data set is that it is not well stratified.  

Considering the consecutive pairs of measurements which are required for our model 

development, in Figure 3 we can see that species such as Balsam Fir (bf) and Red Spruce 

(rs) are very well represented in the data while species such as Red Oak (ro) and Eastern 

Hemlock (eh) are not well represented in the data (a list of all species group abbreviations 

is available in Table 6).  Table 4 shows the data distribution for Red Spruce over different 

diameter classes and stand stocking levels; from Table 4 we can observe that for Red 
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Spruce there are many combinations of diameter and stocking for which there are not 

much data.  Table 5 shows a similar distribution for Red Oak.  In Table 5 we can observe 

that most classes of Red Oak are underrepresented in the data set. 

 

Figure 3 Distribution of data, assembled by growth species groups 

Table 4 Data distribution over diameter and stocking factor classes, Red Spruce 

 Stocking factor 

DBH 

(cm) <0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2. ≥1.2 

<10 2061 1762 1653 1137 717 233 63 

10-20 5324 16174 17145 8985 3797 917 142 

20-30 647 2666 4417 3672 1389 291 26 

30-40 82 356 889 1045 433 88 16 

40-50 7 62 160 247 94 20 3 

50-60 1 10 29 40 21 3 0 

≥60 0 0 6 10 1 0 0 
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Table 5 Data distribution over diameter and stocking factor classes, Red Oak 

 Stocking factor 

DBH 

(cm) <0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2. ≥1.2 

<10 37 19 13 10 2 0 0 

10-20 331 583 798 232 104 28 1 

20-30 17 106 205 165 76 20 1 

30-40 2 23 22 46 27 10 1 

40-50 0 2 2 3 2 1 1 

 

One final issue with this data set is that it is, by nature, a very noisy data set.  Given trees 

with the same or similar inputs, there are many possible growth outcomes.  For example, 

tree with certain characteristics could live through the next growth period while another 

tree with the exact same characteristics could die.  Furthermore, we need to consider that 

what we observed in the data was only one outcome of many possibilities.  Therefore, it 

is important to understand that it is not possible to make accurate predictions at the tree 

level.  We will really only be able to model average tree survivability and growth which 

is only applicable on a larger scale.   
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Chapter 5: Model Design 

The general design of our individual tree model is based upon inputs for the individual 

tree models discussed in Chapter 3 and modified to include species as a model input. 

5.1 Model Structure 

A complete tree growth model will require three different models: (i) a model to 

represent the development of trees, (ii) a model to represent the regeneration of the stand, 

and (iii) a model to represent the transition from regeneration to tree phase (Stage, 1973).  

Similar to the Prognosis model, the model developed in this thesis will only attempt to 

model the development of individual trees. 

In our model, the development of trees will be characterized by predicting the tree 

survivability and growth over a certain period; tree growth will be represented by 

diameter and height increments over a certain period.  Unlike the representations of tree 

development as seen by Prognosis, STEMS and PROGNAUS, we will model growth 

with neural network models; diameter increment, height increment, and probability of 

survival will each be modelled with its own network (Figure 4).  With each output having 

its own network, future sensitivity analysis would be more straightforward.  Again unlike 

the conventional growth models, tree species will be included as a model input rather 

than creating different sets of networks for each species. 

 

 

 

 

 

 

 

 
Figure 4 General Structure of proposed model 
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It should be noted that while each of the Prognosis, STEMS, and PROGNAUS models 

include a crown ratio component, our proposed model will not.  One reason each of these 

models requires a crown ratio component is because crown ratio is an input for the other 

model comonents; crown ratio must be modelled and updated if tree development is to be 

predicted past one growth period.  Recall that crown ratio is used as an input to the 

growth model because it indicates vigour and competition.  Crown ratio is also desirable 

to predict because it gives an idea of merchantable timber.  Unfortunately, crown ratio is 

difficult to measure for each tree and is thus hard to come by – especially over large land 

areas.  Unlike the Province’s PSPs, most tree data is obtained from aerial photography 

where it can be difficult to determine height, let alone crown ratio.  Since our growth 

model is meant to be simple and usable over a broad land base, we will not use crown 

ratio in our model.  Crown ratio is not necessary for indicating competition if we use a 

measure like basal area larger.  Tree vigour may also be measured by other means, such 

as the diameter increment of the previous growth period.  To get diameter increment of 

the previous growth period in the model, the data used for training the networks would 

need to be sacrificed.  Also, if we consider the application of a growth model, it would 

not be realistic to know the previous diameter increment for all of the trees being 

modelled.  Therefore, in the interest of keeping as much data as possible for network 

training and to keep the model simple, we will not consider tree vigour in our model.  

Thus, for this thesis, we have limited ourselves to modelling tree diameter, height and 

survivability.  With these model components, we should still get a good average growth 

model. 

5.2 Model Outputs 

5.2.1 Survivability 

Growth predictions are very sensitive to the survivability component of the model, which 

becomes less reliable over larger growth periods.  Although it is critically important in 

growth modelling, survivability – or mortality, as it is often modelled – is still the least 

understood component of growth models.  For stand-level models, mortality prediction 

was much simpler because it required only a prediction for mortality rates in the overall 

stand.  With the shift to individual tree models, however, mortality has become much 
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more difficult to predict at the tree-level; survivability modelling has been identified as 

one of the most difficult tasks in growth models (Hasenauer, Merkl, & Weingartner, 

2001). 

One difficulty of modelling survivability is that tree survival is a binary variable; 

typically, when a tree is alive it has a value of 1 and when it is dead it has a value of 0.  

Some survivability models will classify a tree to be alive or dead at the end of each 

growth period (Hasenauer, 2006); this is also known as probabalistic mortality (described 

in Section 3.1.2).  Neural networks are capable classifying data, and could be used for 

classifying trees as alive or dead at the end of a growth period.  However, we need to be 

aware that if we create a classification network, it is only one outcome of a number of 

possibilities.  For example, if we observe 100 trees with similar characteristics and 95 of 

them survive to the next period, it is reasonable to portray the frequency of survival as a 

probability and say that the probability of survival is 0.95 for trees in this class.  One 

must recall, however, that this is only one outcome.  Consider the situation where a fair 

coin is flipped 100 times and 46 heads are observed; if we derived probability from the 

frequency of occurrence, then we would say that the probability of flipping a head is 

0.46.  Knowing that the probability of flipping a head on a fair coin is 0.5, we can 

understand that this method of deduction is slightly flawed.  To better understand what 

the average outcome would be, the survivability model would need to be simulated many 

times.  One way to avoid this situation altogether is to stay away from using classification 

networks or probabilistic mortality.  If we instead predict the probability of mortality and 

use it to model deterministic mortality (described in Section 3.1.2), then we can 

understand the expected outcome without having to run a number of simulations.  

Similarly, we must consider that our data is only one example of many possible 

outcomes.  In order to capture as many different scenarios as possible, we require a very 

large data set from which we can develop the model. 

Another difficulty in modelling mortality is model calibration.  Mortality is a relatively 

rare event, and may occur for various different reasons; for example, trees die from 

competition with other trees, extreme weather events, forest fires, disease, and insects.  
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To gather enough data to capture enough mortality events and their various causes we 

will again require a very large amount of tree data (Hasenauer, 2006).  

One final difficulty in modelling mortality is model validation.  It is impossible to 

validate continuous outputs with discrete data sets.  From stand-level modelling, we 

know a rather realistic method of capturing mortality is to determine average mortality 

rates, which can be partitioned by size or site.  An advantage to partitioning mortality 

rates by size is that we know the expected general behaviour.  For most species, the 

smaller trees have a very high mortality rate since smaller trees are less competitive than 

larger trees; the mortality rate should decline rapidly as the diameter class of the tree 

increases.  This trend, however, does not apply indefinitely.  Because the size of a tree is 

related to the age of a tree, trees that will die of “old age” will generally be on the larger 

side and it can therefore also be expected that after a certain point, the mortality rate will 

increase with size classes (Monserud & Sterba, 1999).  This being said, the forests of 

Nova Scotia are relatively young and will likely not show the high mortality rates at very 

large diameters as hypothesized by Monserud and Sterba.  For example, the maximum 

life of a hemlock trees is approximately 400 years, and harvest rotations in the province 

are less than 100 years.  By partitioning the average mortality rates by diameter, we may 

compare the modelled mortality rates to the actual mortality rates.   

For our model, we will use a neural network to predict the probability of survival for each 

tree based upon a set of independent variables.  These probabilities will then be used to 

determine mortality rates, partitioned by size, for several species to examine the mortality 

behaviour and to compare with the actual mortality rates.  To further examine the 

survivability network, confidence intervals for different categories of data will be 

determined and compared to the actual number of trees survived. 

5.2.2 Diameter Increment 

Aside from modelling it directly, diameter increment may also be determined from other 

different model outputs such as basal area increment, future diameter, or future basal 

area.  As all of these options are mathematically related, it may be argued that there 

should be no preference between these modelling approaches and that each approach 

should perform equally well.  However, some argue that modelling basal area increment 
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is more representative of tree growth (Vanclay, 1994).  Both Prognosis and PROGNAUS 

models predict basal area increment and defend this approach because it because the 

relationship between the logarithms of squared diameter and DBH has homogeneous 

variance.  STEMS models the diameter increment directly. 

In our early work, we attempted to model diameter increment directly.  A suggestion 

from Dr. Kershaw (personal communication, September 28, 2009) made us realize that 

basal area increment was what Stage used and was likely to perform better.  To better 

understand the nature of the diameter and basal area data, tree diameter and basal area 

from the end of a growth period were plotted against the same measurements at 

beginning of the growth period (Figure 5 and 6, respectively).  In Figure 5, the variability 

decreases with diameter increase.  In Figure 6, we observe the homogenous variance that 

Stage and Monserud reference when justifying basal area increment model outputs.  Also, 

the basal area plot shows a tighter relationship between old and new measurements than 

the diameter plot does.  Therefore, just as was done in Prognosis and PROGNAUS, this 

model will predict growth in diameter by means of a basal area increment neural 

network. 

Basal area can be estimated from the DBH measurements by approximating trees to have 

circular cross sections: 

 �
 � 8 ����
�
�� (25)  

This is an idealized measurement since most trees do not have perfectly circular cross 

sections.  In this thesis, when we refer to basal area, we are actually referring to the 

idealized basal area. 
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Figure 5 Diameter at the end versus the beginning of the growth period 

 

Figure 6 Basal area at the end versus the beginning of the growth period 

Recall from Section 3.2, the goal of fitting a neural network is to find the weights for 

which the mean squared error between the actual and modelled outputs is minimized.  

Therefore, we will use the mean squared error as a measure of goodness of fit.  Keeping 

in mind that during the training process of the neural networks the weights are initialized 

with random numbers, it must be understood that the mean squared errors can vary if they 
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are not initialized with the same numbers.  Therefore, the mean squared errors may only 

be comparable if we ensure that the seed for the random number generator is the same for 

every training run. 

5.2.3 Height Increment 

Tree height is a much more difficult attribute to measure than DBH.  Both Prognosis and 

PROGNAUS model height increment.  Recall that the error associated with the height 

measurements in our data set are measured within 0.1m.  With respect to height, this is a 

very reasonable amount of error since tree height can only be measured indirectly.  

However, with respect to height increment, an error of 0.1m is much more significant.  

Therefore, height increment data can have quite a large coefficient of variation and can 

be much more difficult to model. 

In a similar approach to modelling basal area increment instead of diameter increment, 

we have come to realize that volume increment could be modelled rather than height 

increment.  First, we require volume measurements in which to do this.  Although there 

are widely accepted species-specific equations for tree volume based on height and 

diameter (Wykoff, Crookston, & Stage, 1983), in our model we want to avoid using 

species-specific equations and we also want to keep the model as simple as possible.  

Therefore, we have idealized the tree volume to be a cone in the same spirit that basal 

area is idealized as a circle: 

 ��� �
�� � �


�
 (26)  

Just as we have done with basal area, volume is an idealized measurement since the shape 

of trees are not perfectly conical.  In this thesis, when we refer to the volume of the tree, 

we are referring to the idealized volume. 

To better understand the nature of the height and volume data, the trees at the end of a 

growth period were plotted against the trees at the beginning of the growth period for 

both height (Figure 7) and volume (Figure 8).  For the volume measurements, we observe 

a more homogenous variance and tighter relationship than we do with height 
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measurements.  This model will predict growth in height by means of a volume 

increment neural network.  

 

 

 

Figure 7 Height at the end versus the beginning of the growth period 

Figure 8 Volume at the end versus the beginning of the growth period 
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5.3 Model Inputs 

In general, each network model will be fit using the same inputs.  If the network output is 

not very dependent on a specific input, the network will inherently ignore the input by 

assigning its associated weights with very small values during the training process.  For 

the most part, our inputs resemble those used for the Prognosis, STEMS and 

PROGNAUS growth models.  An important difference is the use of species as an input 

vector. 

5.3.1 Tree-Level Inputs 

5.3.1.1 Tree Size 

One major influence of the growth of a tree is its size.  Larger trees tend to compete 

better for nutrients and light and are, in general, more likely to survive than smaller trees.  

Two common measurements of tree size are DBH and height.   

All three of Prognosis, STEMS and PROGNAUS use initial diameter and squared initial 

diameter as a model inputs.  These models use squared diameter terms to prevent 

unlimited growth for large diameter trees (Monserud & Sterba, 1996).  For simplicity, we 

only want one measure for tree diameter in our model; therefore, we will use initial basal 

area according to Equation 25.  Similarly, rather than use height as an input, the idealized 

volume will be calculated (Equation 26) and used instead.  The main reason for choosing 

basal area and volume as inputs over diameter and height is simply because their 

respective relationships with basal area and volume increment are tight, as we had 

observed in Sections 5.2.2 and 5.2.3. 

5.3.1.2 Competition 

Similar to Prognosis, STEMS and PROGNAUS, we need an input that indicates 

competition between the trees.  Because the data do not contain exact spatial coordinates 

of the trees, the model is restricted to using a distance-independent competition 

measurement.  Knowing that larger trees compete better for nutrients, competition 

between can be represented by calculating the sum of the basal areas of the trees that are 

larger (BAL) than the individual tree.  BAL is meant to give an idea of crown cover, or 

shading, for a tree and, in many ways, is analogous to available light (Vanclay, 1994).  
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BAL essentially ranks the tree on its ability to compete given the total stand cover is 

known.  Both hardwood and softwood BAL should be represented separately since they 

have much different crowns and, thus, crown cover (Figure 9). 

 

Figure 9 Hardwood (left) and Softwood trees (Image courtesy of Glen Nicholson) 

5.3.1.3 Growth Species Vector  

There are approximately fifty different species included in the database.  Although it is 

desirable to include species as an input to the networks, to add fifty inputs for each 

network would be excessive especially since many of these have very little representation 

(recall Figure 3).  Therefore, all Acadian Forest species will be classified into one of 

eighteen ‘growth species’ groups where species of similar growth characteristics were 

grouped together (Table 6).  The classification was meant to match the growth species 

groups being used by Dr. John Kershaw and his research group at UNB.   

Grouping the species means that the network model will require 18 input nodes to 

account for the different growth species.  A binary growth species vector will be assigned 

to each tree where all inputs will be 0 except at the node which represents the tree’s 

growth species, where the input will be 1. 
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5.3.2 Stand-Level Inputs 

5.3.2.1 Stand Cover 

Total basal areas give an idea of the total crown cover of the stand.  Again, because 

hardwood and softwood trees have much different crowns, stand basal areas are best 

divided into hardwood and softwood.  Together with the BAL indicators, total basal area 

of the stand gives an idea of the ability of an individual tree to compete. 

5.3.2.2 Site Measurement 

Tree survivability depends greatly on the genetic makeup of the tree as well as the tree’s 

environment.  Because genetic data is not often available and cannot be made widely 

available, modellers ignore the genetic makeup of the trees out of necessity.  Modellers 

also tend to ignore extreme environmental factors.  Extreme environmental effects such 

as wind, drought, insects and disease have a large effect on the survivability of trees but 

are not predictable at the stand level.   

In both Prognosis and PROGNAUS, site is reflected only by elements of topography such 

as elevation, slope and aspect.  These land characteristics are important to tree growth 

because they affect the controlling mechanisms of tree growth such as soil water content 

and incident solar radiation, among other environmental conditions.  However, including 

these topographical details alone in a growth model will not provide much insight into the 

nature of the environmental mechanisms controlling tree growth because much 

information (i.e. precipitation, soil nutrient levels, and solar radiation) is not included 

(Bourque, Meng, Gullison, & Brigland, 2000).  Recall that the SQI from UNB includes 

topographical information as well as solar, nutrient, and climate information.   

In both the NSDNR data and the STEMS model, the controlling mechanisms of the stand 

are captured by characterizing the growth of the dominant trees on that specific stand.  

The site of the stand is typically characterized by land capability (LC) or site index (SI).  

LC is a measure of the volume of wood that may be produced by a hectare of land in one 

year without degrading the land while SI is a measure of the height of the dominant 

tree(s) at age 50 (Nova Scotia Department of Natural Resources, 1993).  LC and SI are 

determined for a single species and are generally based upon a single species stand.  As  
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Table 6 Growth species groups (Nova Scotia Department of Natural Resources, 2002) 

Species Group Group Symbol Included Species Common Name 

ash ash 
Fraxinus nigra black ash 

Fraxinus americana white ash 

beech be 
Fagus sp. beech 

Fagus grandifolia american beech 

balsam fir bf Abies balsamea balsam fir 

black spruce bs Picea mariana black spruce 

eastern hemlock eh Tsuga canadensis eastern hemlock 

miscellaneous pine mp 

Pinus banksiana jack pine 

Pinus resinosa red pine 

Pinus sylvestris Scotch Pine 

poplar po 

Populus balsamifera balsam poplar 

Larix sp. larch 

Populus tremuloides trembling aspen 

red maple rm Acer rubrum red maple 

red oak ro Quercus rubra red oak 

red spruce rs Picea rubens red spruce 

sugar maple sm Acer saccharum sugar maple 

tamarack tl 
Larix decidua european larch 

Larix laricina tamarack 

white birch wb 
Quercus robur grey birch 

Betula papyrifera white birch 

white pine wp Pinus strobus white pine 

white spruce ws Picea glauca white spruce 

yellow birch yb Betula alleghaniensis yellow birch 

miscellaneous hardwood mh 

Alnus rugosa Alder (speckled) 

Ailanthus altissima ailanthus 

Malus sp. apple 

Prunus serotina black cherry 

Prunus virginiana choke cherry 

Cornus sp. dogwood 

Betula populifolia english oak 

Crataegus sp. hawthorn 

Ostrya virginiana ironwood 

Sorbus Americana mountain ash 

Acer spicatum mountain maple 

Prunus pensylvanica pin cherry 

Amelanchier sp. serviceberry 

Acer pensylvanicum striped maple 

Ulmus americana american elm 

Salix sp. willow 

miscellaneous softwood ms 

Larix kaempferi japanese larch 

Picea abies Norway spruce 

Picea strobus sitka spruce 

‘-’ denotes unclassified 
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hardwoods and softwoods grow differently, LC and SI are classified by softwood and 

hardwood.  The determination of LC and SI requires physical property data from each 

stand, and is really only useful for the stand for which the LC and SI were measured.  

Yield curves from which LC and SI can be determined in Nova Scotia are shown in 

Figure 10. 

 

 

Since LC is available for a majority of the PSPs in the NSDNR data, the growth models 

can be trained including LC as a model input, and compared to growth models trained 

without any site measurement at all.  Similarly, with the SQI data obtained from UNB, 

growth models will be trained using SQI as a site measurement rather than LC.  As there 

are no site measurements immediately available for the research plots, research PSP data 

will not be used for models comparing site measurements. 

5.3.2.3 Stand Age 

Although we must assume that our stands are uneven-aged, it is still useful to have an 

idea of the general age of the stand.  Stand age is useful to know since the growth of the 

Figure 10 SW and HW yield curves for Nova Scotia (Nova Scotia Department of Natural Resources, 1993) 
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stand will slow down with older trees.  On the other hand, if the trees in the stand are 

younger, the growth of the stand will be relatively fast. 

Given that we know that LC is calculated from dominant height measurements, if we 

have the dominant height and site quality measurement for a stand, we can understand if 

we are working with a younger or older stand.  In the yield curves in Figure 10, we can 

see that with a tree height and stand LC, a tree age can be interpolated.  Therefore, to get 

an idea of stand age, we will use dominant height as a model input. 

5.3.2.4 Number of Growth Seasons 

Survivability, diameter increment, and height increment are each time dependent 

measurements which are determined from consecutive measurements of trees.  Recall 

that in our data set measurements were taken every five years, however the number of 

growth seasons between measurements may vary depending on the dates on which the 

samples were taken.  For example, if a plot was measured in November of one year and 

then remeasured in April five years later, the survivability rates and growth increments of 

the trees are for four growth seasons.  To account for the variations in time between 

sampling dates, the number of growth seasons between samples will be estimated and 

used as a model input.  It was assumed that trees in Nova Scotia grow evenly from May 

through August, so the months May through August each count as a quarter of a growth 

period; this was done so that partial growth seasons could be estimated.  In our data set, 

the number of growth seasons in our data set range from 4 to 6. 

5.3.2.5 Stocking of the Stand 

To generally understand how well a stand is stocked, we will use a somewhat arbitrarily 

created stocking factor.  The level of stocking in the stand could be useful for the 

survivability network since well-stocked stands are expected to have higher mortality 

rates than poorly stocked stands.  Because hardwoods and softwoods have different 

crowns and compete differently, the hardwood and softwood stands also have different 

maximum levels of stocking.  On average, the maximum basal area for a hardwood stand 

is approximately 30m
2
/ha (Nova Scotia Department of Natural Resources, 2000) while 

the maximum basal area for a softwood stand is approximately 60m
2
/ha (Nova Scotia 
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Department of Natural Resources, 1993).  Therefore, the proportion of the stand that is 

fully stocked can be approximated by: 

 )��(9��'	"�(��# � 	 �
�
��	 :�

��; � 	 �
�
��	 :�

��;  
(27)  

One problem with Equation 27 is that these full stocking estimates are not based on 

mixed-species stands, and therefore stocking factor will likely not be as accurate for 

mixed-species stands.  
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Chapter 6: Building the Model Components 

Given the data that has been received from the NSDNR, there was still much data 

preparation that was required before the neural networks could be trained.  The 

approaches of data preparation and network training are discussed in this chapter. 

6.1 Data Preparation 

The Nova Scotia inventory and research PSP data sets were obtained in a Microsoft 

Access database from Dr. John Kershaw of UNB.  The received database had undergone 

some initial data cleaning at UNB.  To prepare the data for neural network training, a 

combination of Visual Basic for Applications (VBA) subroutines and Structured Query 

Language (SQL) statements were used. 

Idealized basal area and volume were estimated from diameter and height measurements 

according to equations 25 and 26.  Each tree was also assigned a growth species 

classification vector, depending on the species of the tree.  Then, based upon the growth 

species vector, the total stand basal areas for softwood and hardwood trees were 

calculated for each sample year; to allow for stands of different sizes to be comparable, 

total basal area was estimated on a per hectare basis.  The sums of hardwood and 

softwood basal areas of trees larger than the individual trees were then determined for 

each sample year and were also estimated on a per hectare basis.  Stocking factor was 

calculated using the total softwood and hardwood basal areas according to Equation 27.  

Dominant height was determined by simply taking the average of the tallest three trees of 

the stand in each sample year. 

Next, the trees were classified as going to live or die (LOD) in its upcoming growth 

period.  Determining LOD for a tree in the data was fairly straightforward because tree 

status observations were made.  If a tree existed in the database for two consecutive 

sampling periods, and it was observed to be living for both samples, it was deemed to 

have lived over the growth period and assigned an LOD value of 1.  If a tree existed in 

the database for two consecutive sampling periods, where it was observed to be living 

during the earlier sample and dead for the later sample, then it was deemed to have died 

over the growth period and assigned an LOD value of 0.  All other data, including trees 

that had been cut over the growth period, were ignored. 
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Of all the trees which were marked as having lived, the proportional basal area increment 

and volume increment were calculated.  Since each of these increments may occur over 

slightly different growth periods, the number of growth seasons were also estimated to 

the nearest growing month.   

Finally, data sets were organized into three tables for each network, and then further 

divided into training data and check data; three-quarters of the data were used for training 

purposes, while the remaining data were used for checking the networks.  Any 

increments that were within 10
-4

 of zero were assigned increments of zero.  Any negative 

or impossibly large growth increments were ignored.  All trees from the research plots 

with DBH less than 9.1cm were ignored to be consistent with the inventory data; it 

should be mentioned that these smaller trees were ignored only after they were 

considered for total stand basal area estimates.  Cleaning of the data is described in more 

detail in Appendix A.  Once the data sets were partitioned and cleaned, they were 

exported to MATLAB for neural network training. 

6.2 Training the Networks 

MATLAB contains a straightforward and relatively inexpensive neural networking 

package.  In general, the data was normalized, the network parameters were defined, and 

the networks were trained with the normalized training data.  Both the normalized 

training and check data were then run through the trained networks and then 

unnormalized.  Each network was fit, or trained, using the error backpropagation method 

(described in Section 3.2) with the Conjugate Gradient algorithm to minimize the error 

space (Demuth & Beale, 2004).  Although MATLAB offers search algorithms which can 

converge faster than Conjugate Gradient methods (i.e. Levenberg–Marquardt and Quasi-

Newton), they could not be used in training of our networks because our data set is too 

large and demands too much memory. 

The objective used in training the networks in MATLAB is to find the best network 

configuration which minimizes the mean squared error.  As stated in Section 5.1, it was 

decided that tree growth was to be characterized by multiple single output networks.  The 

number of input nodes, hidden nodes, and maximum training epochs must still be 

determined.  Including the 18 unit species vector, each network could have from 26 to 28 



 

52 

 

inputs, depending on whether stocking factor and/or land measurements are used as 

model inputs.  To determine the number of hidden nodes to use in each network, the 

mean squared error of both the training and check data were observed and compared for 

networks with varying numbers of hidden nodes; the training MSE indicates how well the 

model fits the data and the check MSE indicates how well the model works for data 

which was not used in training.  Effectively, the check MSE gives an indication as to how 

well the network generalizes. 

To be consistent, each network was trained with the same maximum number of epochs.  

Figure 11 shows the typical training performance for networks having a maximum of 

1000 epochs (note that the performance is a normalized MSE).  In this figure we can 

observe that the majority of the convergence occurs within the first 50 epochs, therefore, 

we assumed that 1000 epochs were a sufficient training period in which we can observe 

the majority of the convergence. 

 

With an assumed standard for maximum training epochs, different network 

configurations of various input and hidden nodes will be trained and compared by their 

mean squared errors.  The best fit network configuration should have the smallest MSE.  

Given the chosen network configuration, different maxima of training epochs will be 

tested to be sure that 1000 epochs is still a sufficient amount of training. 

Figure 11 Typical performance of network training (1000 epochs) 
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Once the user-defined model components have been decided, we checked that the model 

is able to perform at the species level.  In the case of the survivability network, the 

mortality rates were be calculated for four different growth species (note from Figure 3 

that these species are the best represented in our data set): balsam fir, red spruce, red 

maple and white spruce.  For the diameter and height models, species-specific networks 

were be trained using only the red spruce data and were compared to the all-species 

network.  Clearly, the all-species model is not expected to outperform the single-species 

model, but we were able to observe whether the all-species model works reasonably well 

for the well-represented species.   

Given the best network configurations, the weights from each of the trained networks 

were used to develop a growth model in Excel.  
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Chapter 7: Results 

In total, thirty-five different networks were trained; from the thirty-five, only three 

networks (one for each survivability, diameter growth, and height growth) were chosen to 

use in the overall growth model.  Most of these networks were allowed to train for a 

maximum of 1000 epochs with a normalized MSE goal of 10
-7

.  The training time for the 

networks ranged from 30 to 45 minutes on an Intel
®

 Pentium
®

 4 CPU 3.2 GHz computer 

– the networks with more nodes and weights took the longest to train.  The activation 

function used at each hidden and output node was a tan-sigmoid function.  To ensure that 

the seed for the random number generator was the same for each run, MATLAB was 

restarted before each training run.  Examples of the MATLAB code used for training the 

neural networks are shown in Appendix B. 

7.1 Survivability Model Component 

Fourteen different configurations for the survivability network were trained; each of the 

networks included the following inputs: (1) individual tree basal area, (2) volume, (3-4) 

the sum of softwood and hardwood basal areas of larger trees, (5-6) total stand softwood 

and hardwood basal areas, (7) dominant height of the stand, and (8-25) the growth 

species vector.  Both together and separately, stocking factor and site quality index were 

tested as model inputs to see if they improved the MSE; land capability was not tested in 

the survivability networks since site quality index was observed to be a reasonable land 

measure (to be discussed later).  The survivability network was also tested with 

configurations of 3, 4, 5, and 6 hidden nodes.  The general structure of the survivability 

model is shown in Figure 12. 
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The MSE was calculated from the error between the modelled probability of survival and 

the discrete survival event.  Table 7 and Table 8 show the MSE for both the training and 

check data for the fourteen different network configurations (each trained for 1000 

epochs).  From these tables, we can observe that the MSE for each network is essentially 

the same at around 0.078.  Although it is expected that each of these networks would 

perform at similar levels, from Tables 7 and 8, we can generally observe the model fits 

improve (MSE decreases slightly) when SQI is included as a model input, therefore, SQI 

will be included in the survivability component of the growth model.  From these tables 

we can also see that there is no apparent trend in the fits when the model includes an 

input for stocking level.  Therefore, the effects of the stocking factor input were further 

investigated using networks with and without stocking factor inputs.  To be consistent, 

the two networks with five hidden nodes were chosen to compare the effects of the 

stocking factor input; although each network is expected to have similar performance, the 

networks with five hidden nodes were chosen because they had the smallest MSEs.   

Mortality rates were calculated based upon basal area and then averaged for different 

diameter classes for balsam fir, red spruce, white spruce and red maple trees; the diameter 

Neural Network 

 

 

 

 

 

3.4.5,6 hidden nodes 

25, 26 or 27 Inputs: 

• Basal Area 

• Volume 

• BAS, BAH Larger 

• Total BAH, BAS 

• Dominant Height 

• 18 Growth Species 

• Stocking Factor 

• Site Quality Index 

 

1 Output: 

Probability of 

Survival 

Mortality Rates 

Figure 12 Outline of survivability model component 
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classes were: 9.1-10cm, 10-20cm, 20-30cm, 30-40cm, 40-50cm and greater than 50cm.  

The purpose of calculating mortality rates were to compare the modelled and actual 

mortality, to observe the trend in mortality, and to check the effects of including the 

stocking factor input.  Therefore, the rates were calculated for the two survivability 

networks with 5 hidden nodes which included the SQI model input; the only difference 

between the chosen network configurations was that one included stocking factor as a 

model input while the other did not.  

Table 7 MSE for various configurations of the survivability network (without stocking factor input) 

Mean Squared Error – without stocking 

Number of hidden nodes 

3 4 5 6 

No land Data 
0.0785 0.0783 0.0783 - 

(0.0816) (0.081) (0.0809) - 

Site Quality Index 
0.0784 0.0779 0.0778 0.0778 

(0.0802) (0.0799) (0.0798) (0.0799) 

The two MSE values are for training data and check data (in brackets) 

 

Table 8 MSE for various configurations of the survivability network (with stocking factor input) 

Mean Squared Error –with stocking 

Number of hidden nodes 

3 4 5 6 

No land Data 
0.0784 0.0784 0.0782 - 

(0.0806) (0.0807) (0.0806) - 

Site Quality Index 
0.0781 0.0781 0.0777 0.0778 

(0.0804) (0.0816) (0.0797) (0.0818) 

The two MSE values are for training data and check data (in brackets) 

 

The average mortality rates were modelled reasonably well by both networks in the sense 

that the modelled and actual average mortality rates were typically quite close (Figure 13 

through Figure 16).  In these figures, we can observe that the model was able to 

distinguish between the different growth species groups; for example, the model was able 

to pick up the generally higher balsam fir mortality rates as opposed to the smaller 

mortality rates of red spruce, red maple, and white spruce. 
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In the case of balsam fir, red spruce, and red maple (Figure 13 through Figure 15), both 

models demonstrate the expected behaviour where the mortality rates decline as the trees 

get larger with one exception: the average mortality rate of the smallest balsam fir trees is 

not higher than the larger balsam fir trees.  This is acceptable because the true mortality 

rate for the smallest diameter class would be higher since we do not include trees smaller 

than 9.1cm DBH in our model.  The mortality rates for white spruce (Figure 16) do not 

exhibit the expected mortality behaviour, but it does follow the mortality trends of the 

data set. 

When we examine the network which includes the stocking factor input, we can see that 

the modelled mortality rates are typically a little smaller than the rates predicted by the 

network which does not include the stocking factor input.  Overall, neither of the 

networks consistently predicted mortality rates better than the other, therefore it does not 

provide further insight as so whether the stocking factor improves the model.  If we 

consider the mortality rates for the trees in the most frequent diameter class of 10-20cm – 

Figure 13 through Figure 16 show the number of available data for each diameter class, 

“# total samples’, as well as the available data specific to the species and diameter class, 

‘# species samples’ – we can see that the mortality rates predicted by the network for 

each species are nearer to the actual mortality rates when they include a stocking factor 

input.  The instances where the stocking factor input does not improve the modelled 

mortality rates are the combinations of species and diameter classes that are much less 

represented in the data.  Therefore, it was decided that including a stocking factor input 

does improve the model.  The growth model will use the survivability network which 

includes stocking factor, SQI and 5 hidden nodes for its survivability component. 
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Figure 13 Observed and predicted mortality rates for different diameter classes, Balsam Fir 

 

Figure 14 Observed and predicted mortality rates for different diameter classes, Red Spruce 
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Figure 15 Observed and predicted mortality rates for different diameter classes, Red Maple 

 

Figure 16 Observed and predicted mortality rates for different diameter classes, White Spruce 
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Finally, given our chosen survivability network, it was tested whether 1000 epochs was a 

sufficient amount of training.  This was examined by training the network for different 

maximum epochs: 500, 1000 and 2000 (Table 9); we observed here that the MSE barely 

changes for the varying training times.  Therefore, we can assume that 1000 epochs is a 

sufficient amount of training. 

Table 9 MSE for the chosen survivability network configuration at various maximum epochs 

Mean Squared Error 

Maximum Epochs 

500 1000 2000 

0.078 0.0777 0.0776 

(0.0798) (0.0797) (0.0801) 

The two MSE values are for training data and check data (in brackets) 

 

To further examine the survivability network, confidence intervals for different 

categories of data will be determined and compared to the actual number of trees 

survived.  In order to calculate the confidence intervals for different categories of the 

data, the mean and variance for each category had to be determined.  In a category of n 

trees, each tree has a probability of survival, pi, where i = 1,2,…,n.  If each tree’s 

survivability is treated as a Bernoulli random variable, its mean is pi and its variance is 

pi(1-pi) (Gunn & Nelson, 2005).  Therefore, the number of trees expected to survive in 

the category, E(x), and its variance, V(x), may be calculated from the sum of n Bernoulli 

random variables (Equations 28 and 29). 

 ��-� � 	,<	
	

 (28)  

 ��-� � ,<	
	

�� � 	<	� (29)  

The data was partitioned into several different categories: small diameter trees (DBH < 

15cm), medium trees (15cm≤DBH≤30cm), large trees (DBH>30cm), hardwoods and 

softwoods.  Given that n for each category is large enough, we can assume a normal 

distribution.  With a normal distribution, mean, and variance for each category, the 
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confidence intervals were calculated using the survivability network outputs (Table 10).  

The actual number of trees that survived for each category was also calculated. 

Table 10 Confidence intervals for survivability predictions of different categories of data  

Category E(X) V(X) Confidence Interval Actual Survived 

Small trees 220145 19045 

80%: (219968,220322) 

95%: (219875,220415) 

99%: (219790,220500) 

219875 

  

Medium trees 60485 4676 

80%: (60397,60573) 

95%: (60351,60619) 

99%: (60309,60661) 

60226 

  

Large trees 3867 123 

80%: (3853,3881) 

95%: (3845,3889) 

99%: (3838,3896) 

3811 

  

Hardwood 96022 4573 

80%: (95935,96109) 

95%: (95889,96155) 

99%: (95848,96196) 

95735 

  

Softwood 188475 19271 

80%: (188297,188653) 

95%: (188203,188747) 

99%: (188117,188833) 

188177 

 

Table 10 shows that for both the small trees and the softwood trees, the actual number of 

survived trees falls within the 99% and 95% confidence intervals, respectively.  Although 

the actual number of survived medium, large and hardwood trees do not fall within the 

99% confidence intervals, they each miss the lower bound by at most 0.7%.  This is not 

surprising since the confidence intervals are very narrow due to the large sample sizes 

used in each category. 

Considering that tree survivability is very complex, the observed mortality rates and 

confidence intervals for different categories of the data show that the trained network 

models tree survivability reasonably well. 
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7.2 Diameter Growth Model Component 

To model diameter growth, nine different configurations of basal area increment 

networks were trained; each of the models included the following inputs: tree basal area, 

volume, the sum of softwood and hardwood basal areas of larger trees, total stand 

softwood and hardwood basal areas, dominant height of the stand, the growth species 

vector and stocking factor.  The purpose of building these basal area increment networks 

was to test whether the site measurements (land capability and UNB’s site quality index) 

improved the model fit and, if so, to determine if the SQI is a reasonable replacement for 

land capability.  The basal area increment network was also tested with different numbers 

of hidden nodes (3, 4, or 5) to determine how many hidden nodes give the best fit.  The 

general structure of the diameter growth model is shown in Figure 17. 

 

Figure 17 Outline of diameter growth model component 

Using the modelled increment, the basal areas at the end of the next growth period were 

calculated.  The mean squared error was calculated for each network by comparing the 

modelled new basal area to the actual basal area at the end of the following growth 

period.  Similar to the survivability networks, these networks were each run for 1000 

epochs.  Rather than present the MSE, Table 11 shows the root mean squared error 

(RMSE) for both the training and check data for the nine different network 

configurations; RMSE was presented instead of MSE so that the error could be 
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considered in terms of basal area.  In general, we can observe in Table 11 that the RMSE 

for each network is roughly the same at around 24cm
2
 (this translates to roughly 5cm 

DBH).  Since RMSE is an average error measurement, 24cm
2
 error was compared to the 

basal area of an average size tree (we would expect error to increase and decrease with 

tree size).  From the provincial Forestry Field Handbook (Nova Scotia Department of 

Natural Resources, 1993), we can figure that an averaged age tree (50 years old) on a 

fully stocked average capability stand (land capability of 5) will have a diameter of 15cm.  

This average sized tree has a basal area of nearly 180cm
2
; this translates to a reasonable 

error of about 14%. 

Although the RMSEs in Table 11 are essentially the same, we can, however, observe that 

for each configuration land measurement network inputs slightly improve the RMSE; 

furthermore, we can observe SQI improves the fits slightly more than LC.  Another 

observation which can be made is that for each configuration of inputs, the networks with 

4 hidden nodes yielded slightly better RMSE – although it is not possible that 4 hidden 

nodes can get a lower MSE than 5 hidden nodes, the networks with 5 hidden nodes likely 

require more training time.   Overall, the configuration of the best fit network included 

SQI as a model input and had 4 hidden nodes.  At this point, it is tempting to conclude 

that SQI is a reasonable site measurement replacement for land capability.  However, 

from the diameter growth networks alone, we cannot make this conclusion because site 

measurements are so related to tree heights (recall that site index and land quality 

measurements are derived from stand dominant height).  Therefore, the height increment 

model component will need to be considered before making any decisions regarding SQI. 

Given that the best diameter growth network includes SQI as a model input and has 4 

hidden nodes, it was tested to ensure that 1000 epochs was sufficient training.  This was 

done by using a different number of maximum epochs: 500, 1000 and 2000 (Table 12).  

When the training was doubled from 500 to 1000, the RMSE was reduced by 1.8%. 

When we then doubled the training again to 2000, the RMSE was reduced by only 0.8%.  

Although we might expect the MSE to improve with even more training, it is not 

expected to improve significantly.  Therefore, the training time of 1000 epochs for the 

nine networks was considered reasonable. 
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Table 11 RMSE for various configurations of the diameter growth network (training = 1000 epochs) 

Root Mean Squared Error – New Basal Area (cm
2
) 

Number of Hidden Nodes 

3 4 5 

No land data 
24.44 24.37 24.55 

(26.75) (26.70) (26.89) 

Site Quality Index 
23.64 23.53 23.66 

(26.27) (26.14) (26.24) 

Land Capability 
23.85 23.59 23.81 

(26.55) (26.15) (26.34) 

The two MSE values are for training data and check data (in brackets) 

 

Table 12 RMSE for the chosen diameter growth network configuration at various maximum epochs 

Root Mean Squared Error – New Basal Area (cm
2
) 

Maximum number of epochs 

500 1000 2000 

23.96 23.53 23.33 

(26.67) (26.14) (25.95) 

The two MSE values are for training data and check data (in brackets) 

 

Using the predictions from the chosen basal area increment network, the new basal areas 

for each individual tree were calculated.  The modelled new basal areas were sorted and 

plotted with the basal areas that actually occurred.  When the modelled and actual basal 

areas were compared, it was found that there was a lot of noise in the data.  Therefore, to 

get an understanding of the trends in the data, the noise in the data was reduced through 

standard exponential smoothing (also referred to as low pass filtering): 

 )� � 	 -� 

)4 � 	=-4�� � �� � =�)4�� � ! � 

(30)  

where xt is the original data and st  is the smoothed data.  Figure 18 shows the new basal 

areas for the data, the smoothed data, and the modelled basal areas (sorted by the 

modelled values).  To observe any bias in the model, the data was plotted against the 

modelled basal area (Figure 19).  These figures are representative of the check data only.  

In the plots, we can see that the trend of the data fits quite well with the modelled values 
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for new basal area.  Furthermore, there does not appear to be a significant bias in the 

model. 

 

Figure 18 Modelled and actual new basal areas for the check data only, sorted by modelled values 
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Figure 19 Modelled versus actual new basal areas - for the check data only 

 

To be sure that the model is able to perform at the species level, the red spruce data was 

run through our all-species basal area increment network; this resulted in an MSE of 

551.34 cm
4
.  The outputs of this model were plotted against the outputs of a network 

model trained only with red spruce data (Figure 20).  The MSE of the red spruce trained 

network was 519.99 cm
4
.  Clearly, judging by the MSEs, we can tell that the red spruce 

network models the red spruce trees better – this was to be expected.  In Figure 20, we 

can see that our all-species model slightly underestimates the new basal area compared to 

the red spruce network (this is most obvious for the larger trees) however the model 

outputs are still reasonably close.  Therefore, the all-species model appears to be capable 

of reasonably modelling a well-represented species. 
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Figure 20 Comparing the new basal areas as modelled by the red spruce and the all-species networks 

 

7.3 Height Growth Model Component 

Similar to the diameter growth model, height growth was modelled by training nine 

different configurations of volume increment networks; each of the networks included the 

following inputs: tree basal area, volume, the sum of softwood and hardwood basal areas 

of larger trees, total stand softwood and hardwood basal areas, dominant height of the 

stand, the growth species vector and stocking factor.  Again, the purpose of building each 

of these networks was to test whether the site measurements improved the model fit and 

to determine if SQI is a reasonable replacement for land capability.  The height increment 

network was also tested with a various number of hidden nodes (3, 4, or 5) to determine 

the best number of hidden nodes to use in the model.  The general structure of the 

diameter increment model is shown in Figure 21. 
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Figure 21 Outline of height increment model component 

From the volume increment network outputs, the volume expected at the end of the next 

growth period was calculated.  For each network, the mean squared error was calculated 

by comparing the modelled new volume that actually occurred at the end of the growth 

period.  Table 13 shows the RMSE for both the training and check data for the nine 

different network configurations; these networks were each run for 1000 epochs, just as 

was done with the survivability and diameter growth networks.  Overall, the RMSE was 

roughly 16,000 cm
3
 in each of the networks.  Again, we will compare this error to an 

average sized tree.  Continuing with the average sized tree from section 7.2, from the 

Forestry Field Handbook (Nova Scotia Department of Natural Resources, 1993) we can 

also find that an average aged red spruce tree on an average stand will be roughly 16m 

high.  This average sized tree has a volume of approximately 94000cm
3
; this translates to 

a tolerable error of about 17%. 

Although the RMSEs in Table 13 are essentially the same, a network to use for the 

growth model had to be identified.  In general, observations of the results in this table are 

not as simple as they were in the survivability and diameter growth networks.  There is 

no obvious pattern as to what number of hidden nodes or which land measure works best.  

First, because it is such a widely available measure, preference was given to the SQI 

networks.  Since we can observe that the SQI network with five hidden nodes had not 

Neural Network 
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achieved an RMSE as low as the network with four, it indicates that the network with 

five hidden nodes should have been trained for a longer time and was therefore not used.  

Finally, the SQI network with 4 hidden nodes was chosen for the growth model since it 

had a lower RMSE than the network with 3 hidden nodes. 

Table 13 RMSE for various configurations of the height growth network 

Root Mean Squared Error – New Volume (x10
4
cm

3
) 

Number of Hidden Nodes 

3 4 5 

No land data 
1.66 1.61 1.62 

(1.75) (1.72) (1.74) 

Site Quality Index 
1.62 1.59 1.64 

(1.74) (1.71) (1.76) 

Land Capability 
1.62 1.61 1.59 

(1.74) (1.74) (1.69) 

The two MSE values are for training data and check data (in brackets) 

 

Again, having chosen a network configuration, it still needed to be confirmed that 1000 

epochs was a sufficient training length; the network was therefore tested for different 

maximum epochs: 500, 1000 and 2000 (Table 14).  When the training was doubled from 

500 to 1000, the RMSE was reduced by 4.8%.  When the training was doubled again to 

2000, the RMSE did not reduce at all.  Therefore, 1000 epochs was deemed to be an 

acceptable amount of training. 

Table 14 RMSE for the chosen volume increment network configuration at various maximum epochs 

Root Mean Squared Error – New Volume (x10
4
cm

3
) 

Maximum number of epochs 

500 1000 2000 

1.67 1.59 1.59 

(1.80) (1.71) (1.71) 

The two MSE values are for training data and check data (in brackets) 

 

The modelled volumes were sorted and plotted with the actual volumes of the following 

growth period (Figure 22).  Again it was found that there was a lot of noise in the data, 

and exponential smoothing was used (Equation 30).  To observe any bias in the model, 
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the data was plotted against the modelled new volume (Figure 23).  These figures are also 

representative of the check data only.  In the plots, we can see that the trend of the data 

fits quite well with the modelled values for new volume.  Furthermore, there does not 

appear to be a significant bias in the model. 

 

Figure 22 New volumes (modelled, smoothed, actual) sorted by modelled values, using site quality index 

 

To be sure that the model is able to perform at the species level, the red spruce data was 

run through our all-species volume increment network; this resulted in an MSE of 

2.698x10
8
 cm

6
.  The outputs of this model were plotted against the outputs of a network 

model trained only with red spruce data (Figure 24).  The MSE of the red spruce trained 

network was 2.469x10
8
 cm

6
.  Judging by the MSEs, we can tell that the red spruce 

network better models the red spruce data; again, this was to be expected.  In Figure 24, 

we can see that the volume outputs from each of the models are quite close and we can 

conclude that the all-species network is capable of modelling at the species level. 
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Figure 23 Modelled new volume versus actual new volume, using site quality index 

 

 

Figure 24 Comparing the new volumes as modelled by the red spruce and the all-species networks 
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Chapter 8: Growth Model 

Recall that the purpose of building the survivability, diameter increment, and height 

increment networks was to unite them to create a growth model.  The general idea of the 

growth model is to provide a tree list to the model, grow the trees over a certain time, and 

update the tree list using the model predictions.  For simplicity, the tree lists will be 

presented in a Microsoft Excel workbook and updated using VBA subroutines.  All 

weights, as well as the maxima and minima to be used for normalization, were exported 

from MATLAB to Excel.  Detailed code for this model is shown in Appendix C. 

8.1 Implementing the Growth Model 

The tree list presented to the model will include all trees in the stand with a DBH of at 

least 9.1cm (to match the data used in the training of the networks).  The original tree list 

should include the diameter, height and species of each individual tree.  The area and SQI 

of the stand must also be known.  Information on which species are included in each 

growth species groups should also be accessible to the program.  Given all of this 

information, each of the tree-level and stand-level model inputs can be determined.  

Along with the weights of the previously trained networks, the maximum and minimum 

of each network input were imported into Excel so that the data can be appropriately 

normalized, passed forward through each network, then appropriately unnormalized. 

Simulating the growth of the tree list is straightforward for the first growth period 

because it was known that each tree was alive when the list was acquired and therefore 

the calculations of the network inputs is clear.  However, using the model predictions 

from the first growth period to update some of the inputs for the next growth period was 

not as straightforward.  The difficulty lies in understanding how to properly use the 

model predictions of survival.  Since our approach is deterministic, we do not want to 

classify a tree to have lived or died; instead, we assume that the probability of survival is 

the portion of the tree that survives and we are essentially working with partial trees.  

Clearly, unchanging attributes such as tree species and site quality indices are carried 

forward to the next period.  Although we are only growing parts of trees over time, basal 

area and volume will simply be updated by using the increment network predictions for 

the previous growth period.  The probability of survival must be considered, however, 



 

73 

 

when inputs are determined from aggregated measures.  Cumulative inputs such as total 

basal area, basal area larger, and stocking factor will be calculated by using the sum of 

the products of survival probability and tree-level basal areas.  Since dominant height is 

only based on the heights of a few trees in the stand, the probability of survival is not 

considered when it is updated.  The model assumes a growth period of five years, to the 

nearest month.  Finally, the growth model only considers the trees that were in the 

original tree list and does not have a function to bring new trees into the stand.  

Therefore, new growth that actually occurred in the stands was ignored. 

8.2 Results of the growth model 

Five different inventory stands were selected to observe the modelled and actual stand 

basal areas over several growth periods
1
.  Inventory stands were selected since they only 

included trees of 9.1cm DBH or greater.  To make observations on various types of 

stands, the five stands chosen included (i) a poorly stocked
2
 stand with mostly hardwood 

trees, (ii) a poorly stocked stand with mostly softwood trees, (iii) a well-stocked
3
 stand 

with mostly hardwood trees (iv) a well-stocked stand with mostly softwood trees and (v) 

a moderately stocked
4
 stand with a mixture of hardwoods and softwoods.  In order to 

maximize the number of growth periods observed in the data, only stands established 

before 1970 were selected.  Of the stands that fit in the outlined criteria, the chosen stands 

were randomly selected.  

Figures Figure 25 through Figure 29 show the actual and modelled stand basal area (both 

hardwood and softwood) for each of the aforementioned stand types.  Considering that it 

is highly unlikely that any individual stand will match the model, the modelled basal 

areas were generally reasonably close to the actual basal areas.  Overall, the softwood 

predictions were within 20% of the actual basal areas and the hardwood predictions were 

typically within 40%, except in cases of extreme change as we can observe for the actual 

                                                 
1
 The modelled growth period is assumed to be 5 years, the actual growth period may vary slightly 

2
 Poorly stocked stand: stocking factor <0.2 

3
 Well-stocked stand: stocking factor > 0.8 

4
 Moderately stocked stand: stocking factor = 0.4-0.6 
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softwood basal area in Figure 28.  These differences become smaller as the prediction 

period becomes shorter.  As might be expected, the poorly stocked and moderately 

stocked stands show growth trends (where trees of that type initially existed).  The well-

stocked hardwood stand demonstrated a decrease in stand basal area while the well-

stocked softwood stand showed basal area growth. 

We can further examine the growth model at the tree level.  Appendix E shows the tree 

list for the moderately stocked mixed species stand and its growth over the first growth 

period.  As would be expected from the younger trees of Nova Scotia, we can observe 

that the larger trees generally have a larger probability of survival.  We can also observe 

that the model differentiates between tree species; for example, grey birch typically has a 

larger probability of survival than trembling aspen. 

 

Overall, the growth model performs reasonably well for a couple of growth periods using 

these smaller scale inventory plots.  Because we are using deterministic survivability and 

are therefore only predicting average growth, the model would be expected to perform 

better on a larger scale.  The model might also be expected to perform better and if it 

included a function to include new growth in the model.  
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Figure 25 Actual and modelled BA growth for a poorly stocked HW stand 

 

Figure 26 Actual and modelled BA growth for a poorly stocked SW stand 
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Figure 27 Actual and modelled BA growth for a well stocked HW stand 

 

Figure 28 Actual and modelled BA growth for a well stocked SW stand 
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Figure 29 Actual and modelled BA growth for a moderately stocked mixed stand 
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Chapter 9: Conclusions 

Overall, we were able to create a limited growth model with neural network components 

that model tree survivability, diameter growth and height growth.  The growth model 

could be used to represent average stand evolution with no ingrowth and with 

characteristics similar to those used in the network training (for example, Acadian forest 

stands with trees of DBH ≥ 9.1cm).  Shorter-term predictions (within a few growth 

periods) are best.  Although there are limitations to the growth model, the individual 

neural network components proved to fit the data quite well. 

Of the fourteen different survivability network configurations tested, the best 

survivability network had 27 inputs, 5 hidden nodes, and 1 output.  We were able to 

observe that when stocking levels were represented in the model inputs, the networks 

were able to predict mortality rates better for the most abundant diameter classes than 

when stocking levels were not included.  We also found that including SQI as a model 

input improved the model when compared to having no land data input at all.  From the 

survivability networks we were able to observe that the model could distinguish between 

growth species with the growth species input vector; this is important since, in Nova 

Scotia, the nature of our data requires us to consider a single model for all species rather 

than multiple species-specific models.  Finally, upon the calculation of different 

confidence intervals for different categories of trees, it was found that the observed 

number of trees survived in the category was either within or very near to the 99% 

confidence interval. 

Next, in preparation for training the diameter increment network, we observed from the 

nature of the data that diameter increment would best be modelled indirectly by having 

idealized basal area increment as the network output.  Of the nine different diameter 

increment network configurations tested, the diameter increment network chosen for the 

growth model had 28 inputs, 4 hidden nodes, and 1 output.  Of the nine different 

networks, the RMSEs were all roughly the same and seemed reasonable when compared 

to the basal area of an average sized tree in Nova Scotia.  In comparing the nine 

networks, we could observe that site measurement inputs (land capability and site quality 

index) improved the model fits from using no site measurement data; furthermore, we 
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found that site quality index improved the fits more than land capability.  Considering 

that site quality measurements are available for the whole province, SQI is recommended 

for use over land capability.  Finally, when the modelled new basal areas were compared 

to the exponentially smoothed data, we could see that the trends of the data were the 

same as that of the model. 

As for the height increment network, many of the observations made were similar to the 

diameter increment network.  Due to the nature of the data, height increment would best 

be modelled indirectly by predicting volume increment and calculating height by using 

the predicted basal area.  Again, there were nine different network configurations 

modelled from which we could observe the RMSEs were essentially the same for each 

network.  When compared to an average sized tree in Nova Scotia, the RMSE for the 

volume networks were adequate.  Favouring site quality index as a model input over land 

capability, the chosen height increment network had 28 inputs, 4 hidden nodes and 1 

output although the network configuration with the best fit was with a land capability 

input.  Finally, when the modelled new basal areas were compared to the exponentially 

smoothed data, we could see that the trends of the data were the same as that of the 

model. 
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Chapter 10: Discussion 

Although it is not possible to use a data set that does not exist, it should be acknowledged 

that there would be improvements to the network fits if the data set was better designed 

for growth modelling.  As discussed in Chapter 4:, there were many species, diameter 

classes, and stocking levels which were underrepresented in the data.  It is expected that 

the model would perform better for all species, sizes and stocking levels if the data is 

stratified.  It would also be good to obtain site quality indices for the research plots so 

that more data could be used for the training of the final networks. 

Recall that during the preparation of the data approximately 75% of the data was used for 

training, while the remaining 25% was used as check data.  It is recommended that a 

larger portion of the data be used for training.  Given that there could be more training 

data available, it would be worth exploring the effects of using previous diameter 

increment model input as a measure of tree vigour attribute.  Since vigour is an important 

indicator of tree survivability, it may possibly improve the fit of the survivability 

network; this would, however, depend on whether the intended user had access to 

previous diameter increment data for the trees to be modelled.  Since stocking level was 

rough calculation and its contribution to the model was not overly convincing, it might 

also be interesting to consider other ways of characterizing stocking levels of a stand. 

The performance of basal area and volume increment networks could be further analyzed 

by determining the RMSEs for different size classes to determine the relative error on 

each size class.  This would be more indicative than the RMSE values observed in this 

thesis which applied to the full spectrum of tree sizes. 

It would also be worthwhile to explore different optimization techniques used in the 

neural network training process.  The scaled conjugant gradient method was used in this 

thesis; however, there are much more sophisticated search methods.  Although there were 

different search methods available in MATLAB (such as Levenberg–Marquardt) they 

could not be used because our data set was too large.  Implementation of other 

optimization techniques will require manipulation of the MATLAB code or use of 

another neural networking tool.  
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Finally, there is still a lot to consider for the Excel growth model.  From what we can tell, 

it is only appropriate for modelling reasonable tree growth for, at most, a few growth 

periods.  These observations were made on the smaller scale inventory plots, and it would 

be interesting to observe the growth model on a much larger stand (this was not available 

in our current data set).  For longer-term predictions, the growth model will also require a 

function to bring new growth into the stand.  Further examination of how to aggregate 

dominant height may also be useful.  
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Appendix A  Data Cleaning 

The first step in cleaning up the data set was to ignore the plots in the research data for 

which there was no expansion factor recorded (or plot area).  Since inputs such as stand 

basal areas and basal areas larger were calculated on a per hectare basis, trees from plots 

for which we had no areas were unusable.  Again in the research plots, there were 

occasionally two samples taken in a year.  For simplicity, only the first measurements of 

that year were used for determining tree growth. 

Next, the gaps in the species data where the trees had been measured at another time were 

filled.  There were a couple of cases where the species of the tree was unknown; these 

measurements were ignored since they would not have been useful in the total basal areas 

and basal areas larger measurements because the tree type (hardwood or softwood) would 

have been unidentifiable.   

When the consecutive tree samples were paired to determine whether a tree lived or died, 

the progression of diameter growth for each tree was examined.  In tree growth, we 

expect that while a tree is alive, the diameter will continue to increase.  If it was found 

that the diameter was shrinking by more than 0.001cm for more than two growth periods, 

the tree was added to a list of bad trees to be ignored in the data.  The VBA code for this 

procedure is run in Access: 

Sub I_LiveOrDie1() 

 Dim SQL1 As String 

 SQL1 = "CREATE TABLE BadTrees(PlotID Integer, Tree Integer)" 

 Call CurrentDb.Execute(SQL1) 

  'Open Connection 

 Dim Connection As New ADODB.Connection 

 Set Connection = CurrentProject.Connection 

 Dim m, plotID1, plotID2, tree1, tree2 As Integer 'm is indicator for bad data 

 Dim dbh1, dbh2 As Single 

 'Open LiveOrDie table as recordset 

 Dim rsBad As ADODB.Recordset 

 Set rsBad = CreateObject("ADODB.Recordset") 

 With rsBad 

  .Source = "BadTrees" 

  .ActiveConnection = Connection 

  .CursorLocation = adUseServer 

  .CursorType = adOpenKeyset 

  .LockType = adLockOptimistic 
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  .Open 

 End With 

  

Dim rsCheck As ADODB.Recordset 

 Set rsCheck = CreateObject("ADODB.Recordset") 

 With rsCheck 

  .Source = "SELECT * FROM Tree_Information ORDER BY PlotID, tree, year" 

  .ActiveConnection = Connection 

  .CursorLocation = adUseServer 

  .CursorType = adOpenKeyset 

  .LockType = adLockOptimistic 

  .Open 

 End With 

 m = 0 

  

 Do While rsCheck.EOF = False 

  plotID1 = rsCheck("PlotID") 

  tree1 = rsCheck("tree") 

  dbh1 = rsCheck("dbh") 

  rsCheck.MoveNext 

  If rsCheck.EOF = True Then 

    Exit Do 

  End If 

  plotID2 = rsCheck("PlotID") 

  If plotID1 = plotID2 Then 

   tree2 = rsCheck("tree") 

   If tree1 = tree2 Then 

    dbh2 = rsCheck("dbh") 

    If dbh2 - dbh1 < -0.001 Then 

     m = m + 1 

    End If 

   Else 

    If m > 1 Then 

     rsBad.AddNew 

     rsBad("PlotID") = plotID1 

     rsBad("tree") = tree1 

     rsBad.Update 

    End If 

     m = 0 

   End If 

  Else 

   If m > 1 Then 

    rsBad.AddNew 

    rsBad("PlotID") = plotID1 

    rsBad("tree") = tree1 

    rsBad.Update 

   End If 

     m = 0 

  End If 
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 Loop 

 rsBad.Close 

 Set rsBad = Nothing 

  rsCheck.Close 

 Set rsCheck = Nothing 

 Connection.Close 

End Sub 

 

Any basal area or volume increments that were within 10
-4

 of zero were assigned 

increments of zero.  Any negative growth was also ignored.  The VBA code for this 

cleaning is: 

Sub R_CleanUpData(ByVal TableName As String) 

Dim SQL1 As String 

Dim SQL2 As String 

Dim SQL3 As String 

SQL1 = "DELETE FROM " & TableName & " WHERE BAchange is NULL" 

SQL2 = "DELETE FROM " & TableName & " WHERE BAchange < 0" 

SQL3 = "UPDATE " & TableName & " SET BAchange = 0 WHERE abs(BAchange)<0.0001" 

Call CurrentDb.Execute(SQL1) 

Call CurrentDb.Execute(SQL3) 

Call CurrentDb.Execute(SQL2) 

End Sub 

Sub R_ExecuteCleanUpData() 

R_CleanUpData ("DiameterTrain") 

R_CleanUpData ("DiameterCheck") 

End Sub 

 

There were a couple of impossibly large diameter growths (>70cm) that were found in 

the data and they were also removed from the data. 

Finally, once the data were imported into MATLAB, only for the basal area and volume 

networks and the purpose of comparing site measurement inputs, all cases where LC 

and/or SI were null were ignored from the data: 

[r1 c1] = size(HeightTrain); 
[r2 c2] = size(HeightCheck); 

  
for i = c1:-1:1 
    if 
(isnan(HeightTrain(8,i))||HeightTrain(8,i)==0||isnan(HeightTrain(9,i))|
|HeightTrain(9,i)==0) 
        HeightTrain(:,i)=[]; 
        TrainTPY(:,i)=[]; 
    end 
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end 

  
for i = c2:-1:1 
    if 
(isnan(HeightCheck(8,i))||HeightCheck(8,i)==0||isnan(HeightCheck(9,i))|
|HeightCheck(9,i)==0) 
        HeightCheck(:,i)=[]; 
        CheckTPY(:,i)=[]; 
    end 

     
end 
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Appendix B  MATLAB Code for Neural Network Training 

In MATLAB, there were three main network training programs for each of the neural 

networks created.  The MATLAB code for each the survivability, diameter increment and 

height increment networks are respectively shown in this Appendix. 

MortalityModel.m: 

%This program uses imported tree growth data to train a neural network 
and 
%uses more imported tree growth data to check the neural network 
%p is network input 
%t is network output 
%MortalityTrain is the training data 
%MortalityCheck is the check data 

  
%user-defined parameters 
num_nodes = 5; 
max_epoch = 1000; 

  
%determine the number of rows and columns in the matrix 
[r1 c1] = size(MortalityTrain); 
[r2 c2] = size(MortalityCheck); 

  
%define p (input) and t (output) 
p = MortalityTrain(1:(r1-1),:); 
t = MortalityTrain(r1,:); 

  
%normalize data and define network 
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t); 
net = newff(minmax(pn), [num_nodes 1], {'tansig', 'tansig'}, 
'trainscg'); 

  
%initialize weights and biases, according to network definition 
net = init(net); 
net.IW{1,1} = net.IW{1,1}/10;  
net.LW{2,1} = net.LW{2,1}/10;  

  
%set training parameters and train network 
net.trainParam.show = 10; 
net.trainParam.epochs = max_epoch; 
net.trainParam.goal = 1e-5; 
net.trainParam.lr = 0.05; 
net.trainParam.min_grad = 1e-10; 
[net,tr] = train(net,pn,tn); 

  
%simulate neural network and postprocess data 
an = sim(net,pn); 
a = postmnmx(an,mint,maxt); 

  

%use trained network on test values 
p2 = MortalityCheck(1:(r2-1),:); 
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t2 = MortalityCheck(r2,:); 

  

[p2n,minp2,maxp2] = premnmx(p2); 

  
a2n = sim(net,p2n); 
a2 = postmnmx(a2n,mint,maxt); 

  
%MSE 
e = t - a; 
e2= t2-a2; 
MSE = mse(e); 
MSEcheck = mse(e2); 

 

GrowthModel.m: 

%This program uses imported tree growth data to train a neural network 
and 
%uses more imported tree growth data to check the neural network 
%p is network input 
%t is network output 
%DiameterTrain is the training data 
%DiameterCheck is the check data  

  

%user-defined parameters 
num_nodes = 4; 
max_epoch = 1000; 

  
%determine the number of rows and columns in the matrix 
[r1 c1] = size(DiameterTrain); 
[r2 c2] = size(DiameterCheck); 

  

%define p (input) and t (output) 
p = DiameterTrain(1:(r1-1),:); 
t = DiameterTrain(r1,:); 

  
%normalize data and define network 
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t); 
net = newff(minmax(pn), [num_nodes 1], {'tansig', 'tansig'}, 
'trainscg'); 

  
%initialize weights and biases, according to network definition 
net = init(net); 
net.IW{1,1} = net.IW{1,1}/10;  
net.LW{2,1} = net.LW{2,1}/10;  

  
%set training parameters and train network 
net.trainParam.show = 10; 
net.trainParam.epochs = max_epoch; 
net.trainParam.goal = 1e-5; 
net.trainParam.lr = 0.05; 
net.trainParam.min_grad = 1e-10; 
[net,tr] = train(net,pn,tn); 
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%simulate neural network and postprocess training data 
an = sim(net,pn); 
a = postmnmx(an,mint,maxt); 

  
%define input and output for check data 
p2 = DiameterCheck(1:(r2-1),:); 
t2 = DiameterCheck(r2,:); 

  
%normalize the check data (input) 
for r = 1:(r2-1) 
    if (maxp(r) - minp(r))>0 
        p2n(r,:)=2*(p2(r,:)-minp(r)*ones(1,c2))./((maxp(r)-
minp(r))*ones(1,c2))-1; 
    else 
        p2n(r,:)=0; 
    end 
end 

  
%test check data on trained network and postprocess 
a2n = sim(net,p2n); 
a2 = postmnmx(a2n,mint,maxt); 

  
% calculate new ba from proportional change of ba 
a2 = (a2.*p2(2,:) + p2(2,:)); 
a = (a.*p(2,:) + p(2,:)); 
t = (t.*p(2,:) + p(2,:)); 
t2 = (t2.*p2(2,:) + p2(2,:)); 

  

%calculate MSE 
e = t - a;  
e2= t2-a2; 
MSE = mse(e); 
MSEtrain = mse(e2); 

 

 

HeightModel.m: 

%This program uses imported tree growth data to train a neural network 
and 
%uses more imported tree growth data to check the neural network 
%p is network input 
%t is network output 
%HeightTrain is the training data 
%HeightCheck is the check data  

  

%user-defined parameters 
num_nodes = 4; 
max_epoch = 1000; 

  
%determine the number of rows and columns in the matrix 
[r1 c1] = size(HeightTrain); 
[r2 c2] = size(HeightCheck); 

  

%define p (input) and t (output) 
p = HeightTrain(1:(r1-1),:); 
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t = HeightTrain(r1,:); 

  

%normalize data and define network 

  
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t); 
net = newff(minmax(pn), [num_nodes 1], {'tansig', 'tansig'}, 
'trainscg'); 

  
%initialize weights and biases, according to network definition 
net = init(net); 
net.IW{1,1} = net.IW{1,1}/10;  
net.LW{2,1} = net.LW{2,1}/10;  

  

%set training parameters and train network 
net.trainParam.show = 10; 
net.trainParam.epochs = max_epoch; 
net.trainParam.goal = 1e-5; 
net.trainParam.min_grad = 1e-10; 
net.trainParam.lr = 0.05; 
[net,tr] = train(net,pn,tn); 

  
%simulate neural network and postprocess data 
an = sim(net,pn); 
a = postmnmx(an,mint,maxt); 

  
%use trained network on test values 
p2 = HeightCheck(1:(r2-1),:); 
t2 = HeightCheck(r2,:); 

  
%normalize check data 
for r = 1:(r2-1) 
    if (maxp(r) - minp(r))>0 
        p2n(r,:)=2*(p2(r,:)-minp(r)*ones(1,c2))./((maxp(r)-
minp(r))*ones(1,c2))-1; 
    else 
        p2n(r,:)=0; 
    end 
end 

  

%test check data on trained network and postprocess 
a2n = sim(net,p2n); 
a2 = postmnmx(a2n,mint,maxt); 

  
% calculate new vol from percentage change of vol 
a2 = (a2/100.*p2(1,:) + p2(1,:)); 
a = (a/100.*p(1,:) + p(1,:)); 
t = (t/100.*p(1,:) + p(1,:)); 
t2 = (t2/100.*p2(1,:) + p2(1,:)); 

  
%calculate MSE 
e = t - a; 
e2= t2-a2; 
MSE = mse(e); 
MSEtrain = mse(e2);  
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Appendix C  Weights for Trained Neural Networks 

The table below outlines which model inputs were associated with which input node for 

each of the three networks chosen for the model.  Table 22 shows the maxima and 

minima used to normalize the inputs for each network. 

Description of input nodes of the final networks 

Input Node (i) Input Description 

0 Bias weight (not a model input) 

1 Basal Area (cm
2
) 

2 Volume (cm
3
) 

3 BA of softwoods in the stand (m
2
/ha) 

4 BA of hardwoods in the stand (m
2
/ha) 

5 Basal Area larger – softwood (m
2
/ha) 

6 Basal Area larger – hardwood (m
2
/ha) 

7 Dominant Height (m) 

8 Site Quality Index 

9 Number of Growth seasons 

10 ash 

11 be 

12 bf 

13 bs 

14 eh 

15 mh 

16 mp 

17 ms 

18 po 

19 rm 

20 ro 

21 rs 

22 sm 

23 tl 

24 wb 

25 wp 

26 ws 

27 yb 

28 Stocking factor 
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The following six tables show the weights for each the survivability, diameter increment 

and height increment networks. 

Survivability network - weights from input node i to hidden node j 

aij� j�

i� 1� 2� 3� 4� 5�

0� -1.3627� -0.6886� -0.0224� 0.6597� -1.5599�

1� 1.1473� 1.1214� -0.1826� -0.7314� 0.2429�

2� 0.4089� -1.3501� -0.2083� -1.9628� 0.5169�

3� 0.3187� -0.2889� 0.5651� 0.0275� -0.2912�

4� 0.2645� -0.4334� 0.5768� -0.3707� -0.2816�

5� -0.4563� 0.1679� 0.4333� -0.1000� -0.6660�

6� -0.0280� 0.9070� -0.6094� 0.4650� -0.7343�

7� -0.3676� 0.4852� -1.1447� -0.1385� 0.4618�

8� -0.0429� 0.3101� -0.7190� -0.0976� -1.1755�

9� 0.0000� 0.0000� 0.0000� 0.0000� 0.0000�

10� -0.3634� -0.1441� 0.2643� 0.1549� -0.0140�

11� 0.0061� 0.4756� -0.1790� 0.5196� -0.4672�

12� -0.2480� -1.0522� -0.2964� -1.3900� 0.1592�

13� -0.4210� -0.0224� -0.0983� -0.5372� 0.2141�

14� -0.1867� 0.0142� -0.1955� 0.8995� -0.1102�

15� 0.1465� 0.2534� -0.0848� 0.2493� -0.0674�

16� 0.1834� 0.1374� 0.1314� 0.2658� -0.0578�

17� -0.1505� -0.1090� -0.0192� 0.0559� 0.0656�

18� -0.4881� 0.1115� -0.0049� 0.1826� 0.1566�

19� -0.8459� -0.1486� 0.1454� 0.2187� 0.4037�

20� -0.2830� 0.1232� -0.2051� 0.3102� -0.2274�

21� -0.1765� -0.1286� 0.2185� 0.6255� 0.6428�

22� 0.1425� -0.0992� 0.3610� 0.4065� 0.5308�

23� 0.4165� -0.2620� 0.3924� -1.0105� 0.1569�

24� -0.4467� 0.0974� -0.2811� -0.1104� 0.0149�

25� 0.0378� -0.0588� 0.3158� 0.7510� -0.3087�

26� 0.6830� -0.1762� 0.1859� -1.1376� 0.4235�

27� -0.0087� 0.1003� -0.2100� 0.6867� -0.2371�

28� 0.5142� -0.3274� 0.8020� -0.2387� -0.3312�



 

96 

 

 

Basal area increment network - weights from input node i to hidden node j 

aij j 

i 1 2 3 4 

0 -1.3644 0.7059 0.7121 -1.3014 

1 -0.0115 0.6931 0.4252 -0.1421 

2 -0.1474 1.5866 1.7393 -0.7522 

3 0.0538 0.3843 1.0050 0.3077 

4 -0.3044 0.4556 0.0654 0.4455 

5 -0.5014 0.1166 -1.1056 0.0192 

6 0.0865 -0.8899 0.3793 -0.2641 

7 -0.0613 0.1760 0.0546 0.0494 

8 0.0508 0.0080 0.2857 0.7246 

9 0.2523 0.0078 0.0022 0.0019 

10 -0.0996 0.1398 -0.8015 -0.6259 

11 -0.2891 -0.2471 -0.0407 -0.0021 

12 0.0221 -0.3824 -0.1849 -0.2097 

13 -0.2402 -0.4726 -0.1154 -0.2736 

14 -0.0284 -0.3539 0.0063 -0.0230 

15 0.0415 0.1454 -0.3099 -0.1452 

16 -0.1321 -0.5674 0.1436 -0.2677 

17 -0.1360 -0.3177 -0.2640 -0.0610 

18 0.2853 -0.0326 -0.3076 -0.0416 

19 -0.1092 -0.0291 -0.4673 -0.3145 

20 -0.2233 0.1332 -0.2660 -0.0414 

21 -0.0527 -0.4324 0.0331 -0.1496 

22 -0.2131 -0.0992 -0.5288 -0.3053 

23 -0.1443 -0.3834 0.1454 -0.0696 

24 -0.2257 -0.0212 -0.3750 -0.1855 

25 -0.0170 -0.4122 0.0922 0.1829 

26 -0.1563 -0.3915 -0.0816 -0.0512 

27 -0.0498 0.2093 -0.4355 -0.1984 

28 -0.1248 0.6874 0.7516 0.8987 
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Volume increment network - weights from input node i to hidden node j 

aij� j�

i� 1� 2� 3� 4�

0� -1.6428� -0.6410� -0.3975� -1.6669�

1� -1.2238� -0.1202� 0.2751� -1.1785�

2� -1.4863� -1.1864� -1.1745� -1.6438�

3� -1.0606� 0.1011� 0.3340� -0.3591�

4� -0.4358� -0.4768� 0.5333� -0.1439�

5� 0.9926� -0.6501� -0.2295� 0.5386�

6� 0.5665� 0.8835� -0.5347� -0.1601�

7� 0.6173� -0.5485� 0.0185� -0.7639�

8� -0.4012� 0.0637� 0.6719� -0.1326�

9� 0.0379� -0.0204� 0.0094� 0.0045�

10� 0.3797� -0.3485� -0.5111� 0.7090�

11� 0.0790� -0.0634� 0.0525� 0.1289�

12� 0.2676� 0.4520� -0.1766� 0.1174�

13� 0.2001� 0.4402� -0.2059� 0.1802�

14� 0.1566� 0.4504� -0.0173� -0.0987�

15� 0.2769� -0.0380� -0.1232� 0.1315�

16� -0.1414� 0.4476� 0.0102� 0.1063�

17� 0.1772� 0.2035� 0.0179� 0.1828�

18� 0.2981� 0.0797� -0.0571� 0.1491�

19� 0.2100� -0.3169� -0.2132� 0.4115�

20� 0.0809� -0.2234� 0.1349� 0.0370�

21� 0.1488� 0.5339� -0.1255� 0.0677�

22� 0.1490� -0.1205� -0.1814� 0.4433�

23� 0.0307� 0.4337� 0.0468� -0.1197�

24� 0.0826� -0.1633� -0.0619� 0.2809�

25� 0.1422� 0.5378� 0.1080� -0.1370�

26� 0.1375� 0.4445� -0.0313� 0.0766�

27� 0.1601� -0.4294� -0.0864� 0.3467�

28� -1.1481� -0.4369� 1.0739� -0.4737�
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Survivability network - weights from hidden node j to output node k 

bjk� k�

j� 1�

0� -0.6609�

1� 1.5682�

2� -2.0100�

3� -1.1491�

4� 2.1032�

5� -1.2483�

 

Basal area increment network - weights from hidden node j to output node k 

bij j 

i 1 

0 -0.0467 

1 0.7500 

2 -1.7903 

3 -1.8839 

4 1.5436 

 

Volume increment network - weights from hidden node j to output node k 

bjk� k�

j� 1�

0� -0.3071�

1� 1.6618�

2� 0.7942�

3� 1.9847�

4� 1.5019�
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Minima and Maxima at the input nodes for each network 

 Survivability  Basal Area Increment  Volume Increment 

Input 

Node`(i) 
Min Max  Min Max  Min Max 

1 65.03 6461.1  63.61 6461.1  63.61 6461.1 

2 1699 5.28E+06  2168 5.28E+06  2168 5.28E+06 

3 0 70.36  0 70.36  0 70.36 

4 0 50.95  0 50.95  0 50.95 

5 0 70.2  0 70.2  0 70.2 

6 0 50.74  0 50.74  0 50.74 

7 3 27.33  3.66 27.33  3.66 27.33 

8 2 27.4  6.3 27.4  6.3 27.4 

9 0 0  4 6  4 6 

10 0 1  0 1  0 1 

11 0 1  0 1  0 1 

12 0 1  0 1  0 1 

13 0 1  0 1  0 1 

14 0 1  0 1  0 1 

15 0 1  0 1  0 1 

16 0 1  0 1  0 1 

17 0 1  0 1  0 1 

18 0 1  0 1  0 1 

19 0 1  0 1  0 1 

20 0 1  0 1  0 1 

21 0 1  0 1  0 1 

22 0 1  0 1  0 1 

23 0 1  0 1  0 1 

24 0 1  0 1  0 1 

25 0 1  0 1  0 1 

26 0 1  0 1  0 1 

27 0 1  0 1  0 1 

28 0.00268 1.69  0.00268 1.69  0.00268 1.69 
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Appendix D  VBA Code for Growth Model 

The Excel growth model consists of a workbook with several worksheets.  The tree list 

and stand data is entered into a worksheet called ‘Current Tree List’ (see figure below).  

The worksheet called ‘Species’ contains a list of all species of the Acadian Forest which 

has each species classified as hardwood or softwood and associates them with a growth 

species group.  The worksheet ‘MinMax’ contains the minimum and maximum values 

used for variable normalization in the training of the network.  These values were 

imported from MATLAB.  The worksheets ‘MortWts’, ‘BAWts’, and ‘VolWts’ contain 

the weights associated with the survivability, basal area increment, and volume increment 

networks, respectively.  These weights were also exported from MATLAB. 

 

'Current Tree List' worksheet for Excel growth model 

A VBA subroutine called ‘Grow_Trees’ is linked to the button in the ‘Current Tree List’ 

worksheet.  Once clicked, the button activates an input box for the user to input the 

desired number of growth periods over which they will then update the tree list for the 

number of specified growth periods.  The VBA code associated with the subroutine 

‘Grow_Trees’ is included in this Appendix. 
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Option Explicit 
 
'This growth model consists of three neural networks for: (i) modelling 
survivability, (ii) modelling basal area increment and (iii) modelling volume 
increment 
'NNet INPUTS: ba (cm^2), vol (cm^3), BAS (m^2/ha), BAH (m^2/ha), BAS_Above 
(m^2/ha), BAH_Above (m^2/ha), Dominant Height (m), SQI, seasons, 18 growth 
species, stocking 
'NNet OUTPUTS: LOD (probability), deltaba(cm^2)/ba(cm^2), 
deltavol(cm^3)/vol(cm^3 )*100 
 
'counters 
Dim n As Integer 'example index 
Dim i As Integer 'input node index 
Dim j As Integer 'hidden node index 
Dim k As Integer 'output node index 
Dim net As Integer 'network index 
 
'network variables 
Dim ins As Integer 'number of input nodes 
Dim hids As Integer 'number of hidden nodes 
Dim outs As Integer 'number of output nodes 
Dim y() As Single 'hidden node output 
Dim z() As Single 'output node output 
Dim a As Range 'weights between input and hidden nodes 
Dim b As Range 'weights between hidden and output nodes 
 
'input variables: 
Dim rngIn As Range 'input from excel 
Dim p() As Single 'network inputs calculated from user inputs 
Dim maxp() As Single 'max values for normalization 
Dim minp() As Single 'min values for normalization 
 
'output variables (end of each growth period): 
Dim rngMortality As Range 'fraction of tree remaining 
Dim rngDiameter As Range 'new diameter 
Dim rngHeight As Range 'new height 
Dim rngBA As Range 'stand basal areas 
 
Sub Grow_Trees() 
    
 'define variables 
 Dim trees As Integer 'total number of examples 
 Dim m As Integer 'input node index 
 Dim minz As Single 'min value for output normalization 
 Dim maxz As Single 'max value for output normalization 
 Dim bas As Single 'basal area softwood 
 Dim bah As Single 'basal area hardwood 
 Dim stocking As Single 'stocking factor 
 Dim baslarger As Single 'basal area larger - softwood 
 Dim bahlarger As Single 'basal area larger - hardwood 
 Dim sw As Single 'softwood ba variable 
 Dim hw As Single 'hardwood ba variable 
 Dim species() As String 'species vector 
 Dim PlotArea As Single 
 Dim heights() As Single 'vector of height variables 
 Dim domht As Single 'dominant height 
 Dim sp_index As Integer 'species index 
 Dim wsName As String 'worksheet name 
 Dim max_period As Integer 'maximum number of growth periods 
 Dim growth_period As Integer 'growth period index 
 Dim mort() As Single 'probability of survivability 
 Dim s_hids As Integer 
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 Dim d_hids As Integer 
 Dim h_hids As Integer 
    
  
 'define network structure 
 ins = 28 'number of input nodes 
 outs = 1 'number of output nodes 
 s_hids = 5 'number of survivability hidden nodes 
 d_hids = 4 'number of diameter network hidden nodes 
 h_hids = 4 'number of height network hidden nodes 
   
 wsName = "Current Tree List" 
  
 'get initial tree list 
 Set rngIn = ActiveWindow.RangeSelection 
   
 'get user input for total number of growth periods 
 max_period = 1 + Application.InputBox("Number of growth periods (growth 
period = 5 years)") 
  
 'initial growth period 
 growth_period = 1 
  
 'determine number of trees and plot area 
 trees = rngIn.Rows.Count 
 PlotArea = Worksheets(wsName).Range("B2").Value 
  
 'dimension variables 
 ReDim p(trees, ins + 1) As Single 
 ReDim maxp(ins) As Single 
 ReDim minp(ins) As Single 
 ReDim species(18) As String 
 ReDim heights(trees) As Single 
 ReDim mort(trees) As Single 
   
 'create species array 
 species(1) = "ash" 
 species(2) = "be" 
 species(3) = "bf" 
 species(4) = "bs" 
 species(5) = "eh" 
 species(6) = "mh" 
 species(7) = "mp" 
 species(8) = "ms" 
 species(9) = "po" 
 species(10) = "rm" 
 species(11) = "ro" 
 species(12) = "rs" 
 species(13) = "sm" 
 species(14) = "tl" 
 species(15) = "wb" 
 species(16) = "wp" 
 species(17) = "ws" 
 species(18) = "yb" 
  
 'assign some initial network inputs: 
  
 'assign species matrix to each tree 
 For n = 1 To trees 
  For sp_index = 1 To 18 
   If species(sp_index) = 
Application.WorksheetFunction.VLookup(rngIn.Cells(n, 4).Value, 
Worksheets("Species").Range("A2:D83"), 4) Then 
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    p(n, 9 + sp_index) = 1 
   End If 
  Next sp_index 
 Next n 
  
  
 'calculate initial ba and vol 
 For n = 1 To trees 
   
  p(n, 1) = 3.14159 * (rngIn(n, 2) / 2) ^ 2 'initial ba in cm^2 
  p(n, 2) = p(n, 1) * rngIn(n, 3) * 100 / 3 'initial vol in cm^3 
   
  mort(n) = rngIn(n, 1) 'initial tree fraction 
   
  p(n, 9) = 5 'number of growth seasons - assumed to be 5 
   
  p(n, 8) = Worksheets(wsName).Range("B3").Value 'site quatliy index 
(SQI) 
   
  p(n, ins + 1) = n  'tree ID to keep original order 
       
 Next n 
  
  
 'loop through each growth period 
 For growth_period = 1 To max_period 
   
  bas = 0 
  bah = 0 
  baslarger = 0 
  bahlarger = 0 
  sw = 0 
  hw = 0 
  stocking = 0 
   
  'calculate aggregate bas and bah  
  For n = 1 To trees 
   
   If Application.WorksheetFunction.VLookup(rngIn.Cells(n, 
4).Value, Worksheets("Species").Range("A2:C83"), 3) = "SW" Then 
    bas = p(n, 1) * rngIn(n, 1) + bas 
   Else 
    bah = p(n, 1) * rngIn(n, 1) + bah 
   End If 
  Next n 
   
  bas = bas / PlotArea / 10000 
  bah = bah / PlotArea / 10000 
  stocking = bas / 60 + bah / 30 
   
  Set rngBA = Worksheets(wsName).Range("D2:D3") 
  rngBA(1) = bas 
  rngBA(2) = bah 
   
  If growth_period = max_period Then 
   Exit Sub 
  End If 
    
    
  'calculate dominant height 
  For n = 1 To trees 
   heights(n) = rngIn.Cells(n, 3) 
  Next n 
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  Call SortArray(heights) 
  domht = (heights(trees) + heights(trees - 1) + heights(trees - 2)) 
/ 3 
   
  'assign bas, bah, stocking and dominant height to input matrix 
  For n = 1 To trees 
   p(n, 3) = bas 
   p(n, 4) = bah 
   p(n, 28) = stocking 
   p(n, 7) = domht 
  Next n 
  
  'calculate bas and bah larger (credit: Rob O'Keefe, DNR) 
  Dim l As Integer 
  Dim sbg, hbg As Single 
  For n = 1 To trees 
   sbg = 0: hbg = 0 
   For l = 1 To trees 
    If p(l, 1) > p(n, 1) Then 
     If p(l, 12) + p(l, 13) + p(l, 14) + p(l, 16) + 
p(l, 17) + p(l, 21) _ 
      + p(l, 23) + p(l, 25) + p(l, 26) = 1 Then 
      sbg = sbg + p(l, 1) * rngIn(l, 1) 
     Else 
      hbg = hbg + p(l, 1) * rngIn(l, 1) 
     End If 
    End If 
   Next l 
   p(n, 5) = sbg / PlotArea / 10000 
   p(n, 6) = hbg / PlotArea / 10000 
  Next n 
  
  'Create output worksheet 
  wsName = CStr(growth_period * 5) & " years" 
  Worksheets.Add().Name = wsName 
  Worksheets("Current Tree List").Range("A1:D1000").Copy 
  Worksheets(wsName).Range("A1:D1000").PasteSpecial (-4163) 
  Worksheets(wsName).Range("A1:D1000").PasteSpecial (-4122) 
  Worksheets(wsName).Range("A1:D1000").PasteSpecial (8) 
     
  Set rngIn = Worksheets(wsName).Range("A7:D56") 
   
  'define output 
  Set rngMortality = Worksheets(wsName).Range("A7:A56") 
  Set rngDiameter = Worksheets(wsName).Range("B7:B56") 
  Set rngHeight = Worksheets(wsName).Range("C7:C56") 
   
  
  'run normalized data through network and 'denormalize' network 
output to worksheet 
   
  'survivability network: get weights and max/min values for 
normalization 
  Set a = Worksheets("MortWts").Range("C3:G31") 
  Set b = Worksheets("MortWts").Range("J3:J8") 
  hids = s_hids 
  minz = 0 
  maxz = 1 
  For m = 1 To ins 
   minp(m) = Worksheets("MinMax").Cells(2, m + 1) 
   maxp(m) = Worksheets("MinMax").Cells(3, m + 1) 
  Next m 
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  For n = 1 To trees 
    
   Call ForwardPass 
   mort(n) = ((maxz - minz) * (z(1) + 1) / 2 + minz) * mort(n) 
   rngMortality(n) = mort(n) 
      
  Next n 
  
  'diameter network: get weights and max/min values for 
normalization 
  Set a = Worksheets("BAWts").Range("C3:F31") 
  Set b = Worksheets("BAWts").Range("I3:I7") 
  hids = d_hids 
  minz = Worksheets("BAWts").Range("L1") 
  maxz = Worksheets("BAWts").Range("L2") 
  For m = 1 To ins 
   minp(m) = Worksheets("MinMax").Cells(4, m + 1) 
   maxp(m) = Worksheets("MinMax").Cells(5, m + 1) 
  Next m 
   
  For n = 1 To trees 
    
   Call ForwardPass 
   p(n, 1) = ((maxz - minz) * (z(1) + 1) / 2 + minz) * p(n, 1) 
+ p(n, 1) 
   rngDiameter(n) = Sqr(p(n, 1) / 3.14159) * 2 
       
  Next n 
   
  'height network: get weights and max/min values for normalization 
  Set a = Worksheets("VolWts").Range("C3:F31") 
  Set b = Worksheets("VolWts").Range("I3:I7") 
  hids = h_hids 
  minz = Worksheets("VolWts").Range("L1") 
  maxz = Worksheets("VolWts").Range("L2") 
  For m = 1 To ins 
   minp(m) = Worksheets("MinMax").Cells(6, m + 1) 
   maxp(m) = Worksheets("MinMax").Cells(7, m + 1) 
  Next m 
   
  For n = 1 To trees 
    
   Call ForwardPass 
   p(n, 2) = ((maxz - minz) * (z(1) + 1) / 2 + minz) / 100 * 
p(n, 2) + p(n, 2) 
   rngHeight(n) = p(n, 2) * 3 / p(n, 1) / 100 
       
  Next n 
 Next growth_period 
 
End Sub 
 
Sub ForwardPass() 
     
 'Define variables for weighted sums 
 Dim u As Single 
 Dim v As Single 
  
 'Redefine node outputs with dimensions 
 ReDim y(hids) As Single 
 ReDim z(outs) As Single 
      
 'Map the inputs through the network 
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 For j = 1 To hids 
  u = a(1, j) 
  For i = 2 To ins + 1 
   If maxp(i - 1) > minp(i - 1) Then 
   u = u + a(i, j) * (2 * (p(n, i - 1) - minp(i - 1)) / 
(maxp(i - 1) - minp(i - 1)) - 1) 
   End If 
  Next i 
  y(j) = tansig(u) 
   
 Next j 
  
 For k = 1 To outs 
  v = b(1, k) 
  For j = 2 To hids + 1 
   v = v + b(j, k) * y(j - 1) 
  Next j 
  z(k) = tansig(v) 
 Next k 
 
End Sub 
 
 
Function tansig(uv) As Single 
 
 If uv < -88 Then 
  tansig = -1 
 ElseIf uv > 88 Then 
  tansig = 1 
 Else 
  tansig = 2 / (1 + Exp(-2 * uv)) - 1 
 End If 
 
End Function 
 
Sub SortArray(vArray As Variant) 
  Dim lLoop1 As Long 
  Dim lLoop2 As Long 
  Dim lMin As Long 
  Dim lTemp As Single 
  
  For lLoop1 = LBound(vArray) To UBound(vArray) - 1 
 lMin = lLoop1 
   For lLoop2 = lLoop1 + 1 To UBound(vArray) 
  If vArray(lLoop2) < vArray(lMin) Then lMin = lLoop2 
   Next lLoop2 
   lTemp = vArray(lMin) 
   vArray(lMin) = vArray(lLoop1) 
   vArray(lLoop1) = lTemp 
  Next lLoop1 
  
End Sub 
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Appendix E  Growth Model Results for a PSP, an Example 

  Original Tree List  5 year prediction 

Species 
 Tree 

fraction 

DBH 

(cm) 

Height 

(m) 

 Tree 

fraction 

Diameter 

(cm) 

Height 

(m) 

GB  1 9.1 7.5  0.9343 9.6659 8.2371 

GB  1 9.4 7.5  0.9372 9.9871 8.2317 

TA  1 9.4 11.5  0.8872 10.4536 12.5695 

GB  1 9.4 8.5  0.9375 9.9847 9.3243 

WS  1 9.7 3  0.9563 10.6551 3.4467 

GB  1 9.9 9  0.9398 10.5100 9.8512 

TA  1 9.9 9  0.8894 11.0086 9.7951 

TA  1 10.2 10  0.8950 11.3325 10.7992 

WS  1 10.2 5  0.9561 11.1507 5.7092 

TA  1 10.2 10  0.8950 11.3325 10.7992 

GB  1 10.2 8.5  0.9432 10.8289 9.2947 

TA  1 10.4 10.5  0.8967 11.5523 11.3054 

GB  1 10.7 8.5  0.9453 11.3599 9.2818 

TA  1 10.9 9.5  0.8992 12.1104 10.1800 

RM  1 11.2 10  0.9684 12.0738 10.9866 

TA  1 11.2 7.5  0.9014 12.4561 8.0145 

GB  1 11.4 7.5  0.9496 12.1121 8.1791 

WS  1 11.9 5  0.9548 12.9294 5.6571 

GB  1 12.2 7  0.9521 12.9561 7.6139 

TA  1 12.2 10.5  0.9090 13.5324 11.0593 

WS  1 12.4 8  0.9545 13.4251 8.9902 

TA  1 12.7 10  0.9112 14.0712 10.4829 

GB  1 13.2 7.5  0.9549 14.0038 8.1257 

RS  1 13.5 6.5  0.9439 14.5741 7.2279 

TA  1 13.5 10.5  0.9165 14.9307 10.9072 

TA  1 13.7 10.5  0.9186 15.1541 10.8757 

TA  1 14.5 10.5  0.9215 16.0062 10.8061 

WS  1 14.5 7.5  0.9530 15.5957 8.3339 

RS  1 15 5.5  0.9456 16.1442 6.0866 

RS  1 15 5  0.9453 16.1488 5.5376 

RS  1 15 7.5  0.9468 16.1260 8.2740 

WS  1 15.5 7  0.9575 16.6519 7.7446 

TA  1 17.8 12  0.9280 19.4401 12.1182 

WS  1 19 9  0.9549 20.2720 9.8118 

WS  1 19 12.5  0.9537 20.2224 13.5536 

TA  1 19.8 9.5  0.9303 21.5442 9.5345 

BF  1 20.3 9  0.8093 21.6527 9.4947 

WS  1 20.3 10  0.9558 21.5804 10.8384 

RS  1 22.4 13  0.9536 23.6971 13.9314 

RS  1 22.4 9  0.9493 23.7771 9.7307 

RS  1 23.6 12  0.9529 24.9485 12.8711 

RS  1 24.6 12  0.9534 25.9746 12.8696 

TA  1 28.4 10.5  0.9424 30.2224 10.4055 

RS  1 28.4 14  0.9569 29.7298 14.8318 

WS  1 31.2 11.5  0.9401 32.6603 12.2271 

Plot Area = 0.4047 ha, SQI = 13.167 
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Appendix F  Growth Model – Digital Files 

Available in the Department of Industrial Engineering at Dalhousie University is a 

compact disk which includes a digital version of all components used to develop the 

growth model, the growth model that was developed, as well as a digital version of this 

written thesis.  Specifically, the disk includes: 

• An Access database including the multiple VBA subroutines and SQL queries 

used for preprocessing data 

• A MATLAB scprit (.m) files used to train networks with the preprocessed data 

• A MATLAB data (.dat) files which include the parameters for the trained neural 

networks 

• An Excel workbook including the growth model developed 

• A text file outlining the files included on the disk 


