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ABSTRACT

Determining the diet composition of predators is an important ingredient in many areas of

ecology: understanding predator prey relationships, foraging behaviour of predators and

consumption models to name a few. Iverson et al. (2004) developed a method based on the

fatty acid signatures known as quantitative fatty acid signature analysis (QFASA). Fatty

acids are the basic building blocks of most lipids and are indicative of diet, in the sense that

higher level predators have limited ability to modify the fatty acids they ingest.

Billheimer (2001) introduced a Bayesian compositional receptor model, where he ap-

portioned the air pollution recorded a receptor site in Juneau Alaska into two components,

woodstove smoke and automobile emissions. Building on this model we add components

to allow for predator biosynthesis and differential fat content and also introduce a model

which allows for design effects.

Additionally we give some interesting results on the multi–modality of the logistic normal

distribution. We also generalize the test of stationarity proposed by Priestley and Subba

Rao (1969), based on evolutionary spectral ideas, as an alternative way of assessing when a

MCMC sampler has reached its stationary distribution.
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CHAPTER 1

INTRODUCTION

1
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The diet composition of predators is crucial in understanding many complex ecological

systems, however, for most predators direct observation of feeding is difficult, if not

impossible, particularly for marine predators. Iverson et al. (2004) gives details of a

relatively new method, quantitative fatty acid signature analysis (QFASA) , of estimating

the diet composition based on the fatty acid profiles of the predator and their potential prey.

The method is based on a variant of mass balance model, that is, the fatty acid profile of

the prey is essentially laid down in the fat stores (adipose tissue) of the predator in a very

predictable fashion. In a nutshell, you are what you eat.

Fatty acids are the basic building blocks of most lipids and typically are not degraded

during digestion and those not used for energy are deposited in adipose tissue. We refer

to fatty acids by the standard nomenclature of the carbon chain length:number of double

bonds, and the location (n-x) of the double bond nearest the terminal methyl group (see

Iverson et al., 2004; Budge et al., 2006, and the references therein for more details). For

example, 22:1n-11 would be a fatty acid with 22 carbons and one double bond located 11

carbon atoms from the methyl group. There are well over 70 distinct fatty acids that can

be identified depending on the analytical methods used and the gas chromatograph (GC)

column used, however, the details of which are beyond the scope of the present work. The

interested reader is referred to Iverson et al. (2004); Budge et al. (2006).

Cook (1991) states that a relatively limited number of fatty acids can be biosynthesized

by animals, this allows one to separate fatty acids into dietary and non–dietary components.

Thus, we only consider those fatty acids that are indicative of diet, however, we also consider

the possibility that some components maybe be biosynthesized in small amounts or may

exhibit some type of modified deposition . With this in mind Iverson et al. (2004) developed

the concept of calibration coefficients to account for potential predator biosynthesis. This

was done through several controlled feeding studies of captive animals that were fed the

same diet for extended periods of time. The calibration coefficient is then defined as the

ratio of the fatty acid signature of the predator, at the end of feeding, to the fatty acid

signature of the diet. Thus, calibration coefficients differing from one would indicate

predator biosynthesis and less than one would indicate reduced deposition.

There are two other indirect methods of diet reconstruction used in ecology: digestive

resistant hard part analysis and stable isotope analysis. We discuss each briefly.

Digestive hard part methods (Gaston and Noble, 1985; Peirce and Boyle, 1991) have
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several potential biases: soft bodied prey are difficult to identify, the so called diagnostic

hard parts of prey may not be eaten by the predator, the hard parts maybe eroded during

digestion and finally these methods only give a snapshot of the most recent kill (see Iverson

et al., 2004). A particular difficulty with stomach hard parts is that the animal has to be

sacrificed making longitudinal studies of diet impossible. A practical difficulty with fecal

analysis is that they can only be collected on land. Therefore, to be useful for marine

predators, the species has to spend some duration of its life cycle in a terrestrial setting.

Additionally, the hard parts may be further damaged by erosion process compared to those

obtained from stomach samples as the hard parts have to travel the whole length of the

digestive track.

Stable isotope methods typically use carbon and nitrogen isotopes and are also based on

a chemical mass balance model. Phillips (2001); Phillips and Gregg (2001); Ben-David

and Schell (2001); Phillips and Koch (2001); Phillips and Gregg (2003); Lubetkin and

Simenstad (2004); Phillips et al. (2005) plus numerous other authors have developed

statistical approaches that are very similar in flavour to Iverson et al. (2004), which is not

surprising due to their similar underpinnings. Moore and Semmens (2008); Jackson et al.

(2009); Semmens et al. (2009) develop a Bayesian linear mixing model for stable isotopes

which has some similarities to the methods proposed here. However, stable isotopes usually

only give the trophic level of the predator and not the species composition of the diet (see

Hobson, 1993; Gilmore et al., 1995; Koch et al., 1995; Iverson et al., 2004).

Figure 1.1 gives mean fatty acid profiles for the 28 species thought to be potential prey

items of Harbour seals on Sable Island for a subset of 37 fatty acids of the approximately

70 that can be identified by gas chromatography. The fatty acid profiles of the species

are somewhat similar, that is, species tend to have large concentrations of similar fatty

acids. This will make the problem of apportioning the diet of the predator to the individual

species difficult. Figure 1.2 gives the fatty acid profiles of 23 adult male Harbour seals. The

Harbour seals are remarkably similar in their fatty acid profiles, which could be indicative

of similar foraging strategies among individual males. The Harbour seal data will be used

as an illustrative example (see chapter 6).

The goal of the thesis is to develop a Bayesian approach to the QFASA method developed

by Iverson et al. (2004) as an alternative method of inference to the bootstrapping approach

developed there and further refined by the PhD work of Connie Stewart (see Stewart, 2005).
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Prey fatty acid signatures
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Figure 1.1: The mean fatty acid profiles for the 28 species of potential prey of the Harbour

seals. See chapter 6 for details on the species names.
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Figure 1.2: The fatty acid profiles of the 23 adult male Harbour seals that were equipped

with a National geographic critter cams (see Bowen et al., 2002).
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We begin with a brief description of the previous work on QFASA given in Iverson et al.

(2004); Stewart (2005).

1.1 QFASA Methods

In this section we briefly present the work of Iverson et al. (2004) which outlines the basic

QFASA model and the PhD work of Stewart (2005) which considers traditional statistical

inference for composition, specifically confidence intervals and hypothesis tests.

1.1.1 Diet Point Estimates: Review of Iverson et al. (2004)

The Iverson et al. (2004) model is described below:

Let yi denote the a–vector of fatty acids, or the fatty acid profile of the ith predator, let

xjk denote the fatty acid profile from the kth prey of the jth prey type, let p represent the

number of prey types and let nj be the number of samples from the j type. The fitted value

for the diet of the ith predator is given by

ŷi =

p∑

j=1

α̂ijxj

where αi = (αi1, . . . , αip) is the diet composition for the ith individual, α̂ is the estimated

diet composition and xj is the mean vector for the jth prey type given by

xj =
1

nj

nj∑

k=1

xjk

where the summation is done over the fatty acid profiles (vectors). The primary goal is the

estimation of α which is carried out conditional on the observed prey fatty acid profiles.

This formulation can be seen as a variant of chemical mass balance models (see Henry

et al., 1984). Iverson et al. (2004) considered distance based methods, that is, they chose the

composition α̂ which minimized the distance between the actual predator and the predicted

predator subject to the constraints that components must be between zero and one and

also sum to one. They considered several distance measures but eventually settled on the

following

KL(x,y) =
∑

j

(yj − xj) log(yj/xj)
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which is a variant of the Kulback-Liebler (KL) distance (actually a combination of the

forward and backward Kulback–Liebler) Encyclopedia of Statistics (1983). They also

considered the squared distance, the squared relative error and the squared error distance of

the logs. Thus for each distance, they find the estimates of αi that minimize the distance,

denoted by α̂i using a constrained nonlinear optimizer, since each of the components of α̂i

must lie between zero and one and also sum to one.

To capture the large amount of variability in the prey profiles, a bootstrapping procedure

was implemented to compute standard errors for their point estimates of the diet composition

vectors α̂i.

As previously mentioned the fatty acid composition of the diet isn’t deposited directly in

the fat stores of the predator, that is, biosynthesis and deposition effects happen on some

fatty acids no matter their trophic level. To assess the effect of predator metabolism Iverson

et al. (2004) carried out a long term captive feeding experiment on juvenile grey(n=8) and

harp seals(n=5) fed a stable diet of herring for at least 5 months. At the end of the sampling

period a blubber biopsy was taken from each of the predators and 30 herring were saved for

subsequent analysis. The samples were analyzed according to the methods described in

Iverson et al. (2004). The effect of predator biosynthesis was computed by taking the 10%

trimmed mean of the ratio of each predator to each prey, giving a calibration coefficient

vector κ = (κ1, . . . , κa) as shown in the following equation

κk = trimmed meanky
c
ik/x

c
jk

where the ratio is taken over all possible (i, j) pairs.

The fat content of the potential prey items was also taken into account, but we delay

discussion of this till the next section.

In order to investigate the performance of their estimation procedure a large simulation

study was carried out to determine the effect of the following factors: fatty acid set

(dietary vs extended), choice of distance(KL, squared distance, etc), amount of noise, diet

composition and sample size.

They found that the method performed quite well in the simulation studies, in that, it

was able to reconstruct the true signature diet quite well and also decided that the Kulback–

Liebler distance performed the best under most conditions. They also verified their method

with two captive experiments and 23 free ranging harbour seals equipped with critter cams.
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1.1.2 Interval Estimates of Diet: Stewart (2005)

The major thrust of Stewart (2005) was to provide interval estimates for the QFASA method

proposed by Iverson et al. (2004) and to investigate alternative estimation strategies. This

section will outline this work.

Iverson et al. (2004) used the mean of each prey type to represent the prey fatty acid

profile. Stewart (2005) explored alternative ways of summarizing the prey, including the

following:

• The random sampling method replaces the mean for the jth prey type with a randomly

selected sample of that type. Rather than fit all possible random selections, a smaller

number of possible random configurations are run and the estimates are recorded for

each.

• Considering each prey type as a random sample from a multivariate distribution,

Stewart (2005) defines multivariate quantiles for each prey type based on the work

of Chakraborty (2001). The distance minimization is then performed for a random

selection of the quantiles. The following quantiles were used for each prey type 0.25,

0.5, 0.75.

• The KL quantile method, consists of computing the Kulback-Liebler distance from

each predator to each individual prey of a given type, then using a univariate quantile

of this distribution and then choosing appropriate quantiles as above. The estimation

is carried out on a random sample of the selected quantiles. Note that unlike the other

methods, the actual predator is used in determining the chosen quantile.

Billheimer et al. (2001) and Stewart (2005), among others, discuss some difficulties in

interpreting log–ratios on the transformation scale (see section on compositions). Stewart

(2005) goes to great lengths to justify the choice of an appropriate measure of location,

however, Billheimer et al. (2001) gives a cleaner interpretation provided work is performed

on the simplex (see section on compositions).

Stewart (2005) makes the following statement which gives their rationale for confidence

interval construction:

Developing confidence interval (CI) methods for the true diet of a predator or

common diet of a group of predators based on QFASA essentially required
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an examination into ways of parametric modeling the QFASA diet estimates,

“parametrizing” the true diet, and and estimating the standard error of the diet

estimates.

With this in mind, one of the challenges faced by Stewart (2005) was dealing with the

essential zeros (see Martin-Fernández et al., 2003) encountered in the diet estimates. She

based her confidence intervals on marginal distributions of each diet component rather

than confidence regions since the number of components can be rather large. She used

mixture distributions, as suggested by Martin-Fernández et al. (2003), to sub–divide the

diet estimates into populations and then modeled the populations. This was then followed

by modeling of the non-zero components as advocated by Aitchison (2003).

Stewart (2005) considers four broad classes of confidence intervals: large sample in-

tervals, which were based on asymptotic normality of the diet estimates; parametric and

semi–parametric intervals which were based on the properties of the additive logistic and

the multiplicative logistic distributions; finally, non-parametric intervals, based on the

bootstrap, one based on the percentile method and one based on inverting a test statistic.

The predators were generated under the null hypothesis and bootstrap p–values were then

computed.

Stewart (2005) carried out a simulation study with two known diets, and two distances,

Kulback-Liebler and the Aitchison distance (see section 2.1). On the basis of these simula-

tions the basic percentile confidence intervals perform best.

Stewart (2005) also examined a goodness of fit statistic, that was loosely based on the

usual regression R2 statistic, called PVE (proportion of variability explained). The sum

of squares of error is the final distance (AIT or KL), while the total sum of squares, was

based on randomly assigning prey fatty acid signatures a species label. Simulation studies

verified that the PVE had desirable properties. She also studied a “backward elimination”

procedure based on the bootstrap.

Stewart (2005) considered permutation tests for changes in diet or changes in fatty acid

signature of groups of independent samples and also for changes in fatty acid signature

over time. She also considered the power of such tests via simulation.
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1.2 Thesis Outline

Compositions are central to the development of the thesis. We say a a–dimensional vector

x is a composition if xi > 0 and
∑a

i=1 xi = 1.0, in other words, it lies in the a–dimensional

simplex. John Aitchison spent much of his long career warning of the follies that can

arise if one ignores the unit sum constraint inherent in data of this type. He stresses that

at best compositions give you relative amounts and not absolute amounts, motivating

the consideration of ratios and their logarithms. Chapter 2 gives a brief summary of the

vast literature of compositional data taken mostly from the work of Aitchison (2003) and

Billheimer (2001); Billheimer et al. (2001).

One difficulty associated with the Bayesian approach is that the computations are often

more difficult than their classical counterpart, when they both exist. This difficulty has

plagued the application of Bayesian approaches for many decades, however, during the

1990’s the Bayesian approach gained much ground with the advent of Markov Chain Monte

Carlo (MCMC) methods. Chapter 3 gives a short review of the basic MCMC algorithms

and gives some references to more theoretical results.

Chapter 4 gives the details on a test for stationarity of a time series that we present

as an approach to determine if the MCMC outputs have, in fact, reached their stationary

distributions which is crucial for valid inference to be drawn.

Chapter 5 gives a Bayesian approach to the linear mixing models that are used as

the building blocks of a slightly more complicated model which we apply to the diet

composition problem. Of note is the effect of collinearity among the sources in the mixing

models and how the Bayesian approach deals with this problem.

Chapter 6 gives the Bayesian approach to the diet reconstruction problem. We adapt the

linear mixing model developed in Chapter 5 to account for multiple populations, predator

biosynthesis, and prey fat content. We illustrate the methods with several synthetic data

sets and one captive study on birds and 23 free ranging Harbour seals that were equipped

with National Geographic critter cams.

Chapter 7 presents some concluding remarks and some directions for further work.

A brief introduction to the Bayesian paradigm and Directed Acyclic Graphs (DAGs) are

given in Appendix A . The MCMC algorithms used for the constant and individual diet

models are given in Appendix B. Appendix C gives a list of the statistical distributions

used in the thesis.



CHAPTER 2

INTRODUCTION TO THE THEORY OF

COMPOSITIONAL DATA

10
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2.1 Introduction

In many fields of scientific study, the data collected are known to satisfy certain constraints.

For example, the mass of an object must be positive or the temperature of an object must be

greater than -273◦ Celsius. Compositional data, by their nature being parts of some whole

are subject to a positivity constraint and a constant sum constraint. More formally, let z

be a D dimensional vector subject to zi > 0 and
∑D

i=1 zi = c (where c is some arbitrary

constant), then we say that z is a composition. Without loss of generality we assume that

c = 1.

Data of this sort, arise quite naturally in a number of applied settings, for example, in

geochemistry z might represent the chemical composition of rocks; in economics, z might

represent the proportional household expenditure on a number of different commodity types.

Fatty acid profiles are compositional in nature as each profile represents the proportional

contribution of each fatty acid. Much of the early work on compositional data analysis was

set out by John Aitchison (Aitchison, 1982, 2003).

The sample space for compositional vectors is the d–dimensional unit simplex given by

Sd =

{
(z1, . . . , zD) : zi > 0 (i = 1, . . . , D),

D∑

i=1

zi = 1

}
,

where d = D − 1. Thus, the unit sum constraint forces the compositional vector to

lie in smaller dimensional surface. Aitchison (2001) notes that many analyzes are still

carried out ignoring the distinction between Rd and Sd, which leads to many spurious

results, particularly correlational results. Aitchison makes it clear in much of his work that

compositional data should be interpreted with caution and stresses that compositions give

only relative magnitudes of the components.

2.1.1 Ternary Diagrams

Consider a compositional vector, z = (z1, z2, z3), how would one depict this? Ternary

diagrams (Aitchison, 2003) allow one to graphically display 3–part compositions as a

equilateral triangle, by virtue of the unit sum constraint. Consider the following three

points: z1 = (1/3, 1/3, 1/3), z2 = (0.1, 0.1, 0.8) and z3 = (0.01, 0.01, 0.99), which are

depicted in figure 2.1. The labeling of the ternary diagram is a bit non–traditional, typically

the vertices of the equilateral triangle are label, however, we have labeled the edges. The
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Figure 2.1: Ternary diagram with 3 points with increasing values of the third com-

ponent, specifically the points are z1 = (1/3, 1/3, 1/3), z2 = (0.1, 0.1, 0.8) , z3 =
(0.01, 0.01, 0.99). The point z1 = (1/3, 1/3, 1/3) is the “center” of the simplex also

known as the compositional zero.

traditional labeling scheme would correspond to shifting the labels clockwise to the nearest

vertex. Note that the zero for the first coordinate corresponds to the edge labeled 3, and the

one is the vertex given by edges 1 and 2.

With the help of the grid, which divides each axes in to 10 equally spaced divisions,

we can read the coordinates of any point in the ternary diagram, for example the point

labeled 2, as follows: locate the fraction of the distance from the base of the opposite

the appropriate vertex and locate the fraction of the distance between the base and the

vertex. This operation, only needs to be done for two of the three dimensions as the third is

determined by the unit sum constraint.

Ternary diagrams very quickly lose their ability to help us depict compositions of higher

dimensions as is the case in more general Euclidean spaces. However, they still have a role

to play when depicting sub–compositions.
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2.2 Compositional Algebra

This section gives some of the basic compositional algebra results, for more details see

Aitchison (2003); Billheimer et al. (2001). The closure operator, for a positive vector

u = (u1, . . . , uD), such that uj > 0 for all j is defined as follows:

z = C(u) =

(
u1∑D
j=1 uj

, . . . ,
uD∑D
j=1 uj

)
.

This transforms a vector u defined on RD
+ to a vector z defined on the simplex Sd. For

example, assume that uj represents the amount of prey of type j in kilograms that a predator

consumed in a given year, then z = C(u) would then represent the diet composition of said

predator for that year.

The perturbation operator, denoted by ⊕, for composition u perturbed by a composition

v is defined as:

z = u ⊕ v = C(u · v)

where z , u and z ∈ Sd and u · v ≡ (u1v1, . . . , uDvD), is the usual elementwise multipli-

cation of two positive vectors. Note that the perturbation vector v is not strictly required

to lie in the simplex, however, we require vi > 0 for all i = 1, . . . , D. Perturbation on the

simplex is analogous to translation (addition/subtraction) on Euclidean spaces. It is quite

easy to show that the perturbation operator obeys the usual laws of addition: commutative

(u⊕ v = v⊕u ) and associative ((u⊕ v)⊕w = u⊕ (v⊕w) ). The inverse perturbation

operator is defined as follows:

u ⊖ v ≡ u ⊕ v−1,

where v−1 = (1/v1, . . . , 1/vD) and the zero perturbation element

JD = (jD) /D

where jD is a D–dimensional column vector of ones.

Billheimer et al. (2001) also defines the scalar multiplication of a composition u by a

scalar b, through the power transformation, given by

z = C(ub) = C(ub
1, . . . , u

b
D)
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which plays the role of scalar multiplication in the simplex. The power transformation is

useful in defining linear models on the simplex introduced later. Also, we can show that the

power transformation and the perturbation operator form a complete inner product space.

Consider two compositional vectors u,v residing in Sd and define the following matrix

Nd = Id + Jd

where Id is a d× d dimensional identity matrix and Jd = jdj
′

d and d = D− 1. The inverse

is given by

N−1
d = Id −

1

D
Jd.

Billheimer et al. (2001) define the inner product as follows:

〈u,v〉 = φ(u)
′

N−1φ(v)

where φ is the additive logratio transformation defined in the next section . The norm is

given by

‖u‖ = 〈u,u〉1/2.

Billheimer et al. (2001) notes that the inclusion of N−1 ensures that the inner product and

norm are invariant to permutations of the components of u and v. It is also noted that this

function satisfies the requirements of compositional metric given by Aitchison (1992). The

distance, ∇, between two compositional vectors u and v is given by

∇(u,v) = ‖u ⊕ v‖.

For illustration consider the three points plotted in the ternary diagram of figure 2.1. The

norms for each of the compositions z1 , z2, z3 are 0, 1.698 and 3.752 respectively. Since z1

is the center or zero of the simplex the distance between it and the other points is identical

to their norms and the distance between points 2 and 3 is 3.752. Thus, we can see that even

though the euclidean distance between points z1 and z2 is greater than euclidean distance

between z2 and z3, in the simplex, the opposite is true.

2.2.1 Transformations

Aitchison (2003) defines several transformations from Rd to Sd which we discuss in this
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section. The central idea behind these transformations is to provide a one–to–one and onto

(bijective) mapping between the simplex Sd and the real space Rd. Consider the additive

logistic transform denoted by, φ−1(.)

zD = φ−1(y) =






exp yi

1+
Pd

j=1
exp yi

i = 1, . . . , d

1

1+
Pd

j=1
exp yi

i = D

The inverse of this transformation is the additive logratio (alr) transformation, which we

denote by φ(.)

y = φ(z) = log
z−D

zD

where y ∈ Rd and z ∈ Sd and z−i is vector z with the ith component deleted. We can also

write this transformation in matrix notation as follows

z = F log z

where F is a d × D dimensional matrix given by the following

F = [Id : −jd].

The multiplicative logistic transformation, z = φ−1
M (y) with the inverse transform y =

φM(z) with elements given by

zi =






exp yi/
(∏i

j=1 (1 + exp yi)
)

(i = 1, . . . , d)

1/
(∏i

j=1 (1 + exp yi)
)

(i = D).

and

yi = log

(
zi

1 −∑i
j=1 zj

)
.

In matrix notation we have

x = G log z

where

G = ID − D−1JD.
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Aitchison (2003) also introduces the centered logratio given by

φC(z) = log

(
z

g(z)

)

where g(z) = (z1z2 . . . zD)1/D, the usual geometric mean. This mapping is from simplex

Sd to RD and isn’t bijective as the other transformations are. The reason for introducing this

transformation is the apparent lack of symmetry in the additive and multiplication logratio

transformations. Egozcue et al. (2003) introduced an isometric logratio transformation

to deal with the non-symmetry issue. This transformation was not pursued further in the

sequel.

The following properties can be established for the additive logratio transformation,

where u,v ∈ Sd, a ∈ R

φ(u ⊕ v) = φ(u) + φ(v)

φ(ua) = aφ(u)

φ(jd/d) = 0d

and 0d is a d vector of zeros.

2.2.2 Vector and Hilbert Spaces

Billheimer et al. (2001) prove the following results which demonstrate that the operations

on the simplex defined in the previous section form a Hilbert space.

Theorem 2.1. Sd is a vector space with addition defined by the perturbation operator and

scalar multiplication by the scalar a.

Theorem 2.2. Let u and z be elements of the d dimensional simplex Sd. Then, 〈u,v〉 =

φ(u)
′N−1φ(v) is an inner product.

Theorem 2.3. Sd is a Hilbert space ( a complete, inner product space).

The proofs are given in the appendix of Billheimer et al. (2001). Also note that

Pawlowsky-Glahn and Egozcue (2002) showed similar results.
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2.2.3 Parametrizations of the Covariance Matrix

Aitchison (2003) gives three equivalent covariance relationships for the simplex, relying on

logratios of components( log (zi/zj) ).

Definition 2.1. The covariance structure of a D–part composition z is the set of all

σij.kl = cov{log(zi/zk), log(zj/zl)}

as i,j,k,l run through the values 1, . . . , D, generating D4 covariances.

Clearly, these values are dependent on each other and Aitchison (2003) gives several

dependencies among the covariances, such as

σij.il = σij.kj = σij.ij = 0.

Definition 2.2. For a D–part composition z the D × D variation matrix

T = [τij] = [var {log(zi/zj)} : i, j = 1, . . . , D] .

The elements of the covariance structure σij.kl can be expressed in terms of the τij as

follows:

σij.kl =
1

2
(τil + τjk − τij − τkl)

The logratio variances are trivially zero on the diagonal and also have a symmetry

property (τij = τji), which leads to a reduction in the effective number of parameters

required from D2 to 1
2
dD.

Definition 2.3. For a D–part composition z the d × d logratio covariance matrix

Σ = [σij] = [cov{log(zi/zD), log(zj/zD)}; i, j = 1, . . . , d].

The elements of the covariance structure σij.kl can be expressed in terms of the σij as

follows:

σij.kl = (σij + σkl − σil − σjk)
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This parametrization requires 1
2
dD parameters rather than d2 due to the symmetry

considerations (σij = σji ).

Definition 2.4. For a D–part composition z the D×D centered logratio covariance matrix

Γ = [γij] = [cov{log(zi/g(z)), log(zj/g(z))}; i, j = 1, . . . , D]

where g(z) = (z1z2 . . . zD)1/D. The elements of the covariance structure σij.kl can be

expressed in terms of the γij as follows:

σij.kl = (γij + γkl − γil − γjk)

This parametrization requires 1
2
D(D + 1) parameters rather than D2 due to the sym-

metry considerations (γij = γji ). However, this matrix is singular, and requires D more

parameters than the logratio covariance matrix.

Aitchison (2003), gives expressions for relating the various matrix formulations, for

example

T → Σ : Σ = −1

2
FTF

′

.

and

Γ → Σ : Σ = FΓF
′

.

The information contained in the different covariance matrices are equivalent, however,

the logratio covariance matrix has the properties that are most similar to the usual covariance

matrices. Additionally the logratio covariance matrix will be used in the parametrization of

the logistic normal distribution.

2.3 Permutational Invariance

As we noticed in the previous section, the logratio variance specifies a component (ie the

last) and uses it as the divisor in all subsequent definitions of the variance. In this section,

we determine if the determinant of the variance covariance matrix and the quadratic form

(to be used in the definition of the Logistic Normal Distribution) are invariant to the order

of the components of the composition. Consider a permutation matrix P , a square matrix

that has exactly one 1 in each row and column and 0’s elsewhere. For example, consider a
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vector x = (1, 2, 3) and the following permutation matrix

P =





0 0 1

1 0 0

0 1 0





thus xp = Px = (3, 1, 2) Permutation matrices have some very simple properties

• permutation matrices are orthogonal PP
′
= I = P

′
P

• the inverse P−1 = P
′

• P = P1 . . . Pm where each of thePi consist of elementary permutations, that is, only

two off-diagonal elements are 1’s.

• det P = (−1)m where m is the number of elementary permutations.

Recall the additive logratio transformation for a composition z

y = log(z−D/zD) = F log z,

and the centered logratio transformation

x = log(z/g(z)) = G log z,

where the matrices F and G are defined in section (2.2.1).

Aitchison (2003) shows the following relationship between the additive and multiplicative

logratio transformations:

y = Fx

x = F
′

(FF
′

)−1y = F
′Py

where N = FF ′ = Id + jdj
′

d = Id + Jd.
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First consider the centered logratio transformation x = Gz and consider a general

permutation, P, applied to this vector.

zP = Pz

xP = Px

Now

xP = Px

= PG log z

= P [ID − JD/D] log z

= [P − JD/D] log z

= [ID − JD/D]P log z

= [ID − JD/D] log Pz

= G log zP

Now consider the additive logratio transformation. As before we let y be the non–permuted

vector and yP represent the permuted vector.Then

y = FxP

= FPx

= FPF
′Py

Aitchison (2003) proves the following proposition

Proposition 2.1. Define QP = FPF
′P . If P is any D × D permutation matrix and a

zP = Pz then yP and ΣP are given by

y = QPy

ΣP = QP ΣQ
′

P
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The following proposition due to Aitchison (2003) is key to our results in section (2.5)

for the logistic normal distribution.

Proposition 2.2. For any permutation P of the parts of a D–part composition z the

following relationships hold

1. |ΣP | = |Σ|

2. y
′

P Σ−1
P yP = y

′
Σ−1y

That is, what we choose as a divisor does not affect the quadratic form of the logistic

normal distribution that will be introduced in a subsequent section.

2.4 Sub–compositional Invariance

Given a D–dimensional compositional vector, z, it is often of interest to examine a subset

of the components. Following Aitchison (2003) we define the following.

Definition 2.5. If S is any subset of the parts, 1, . . . , D of a D–part composition z, and zS

is the sub–vector formed from the corresponding components of z, then C(zS) is termed the

sub–composition of the parts S.

The following definition gives a matrix definition of a sub–composition.

Definition 2.6. A selection matrix S is any matrix or order C × D, with C elements equal

to 1, one each row and at most 1 in each column, with the remaining elements 0.

Therefore, the selection matrix S gives rise to a new composition as follows

zS = Sz

Application of the these two definitions leads to a mapping from the d-dimensional simplex

to the c = C − 1 dimensional simplex.

CS : Sd → Sc.
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The ratio of any two components of a sub–composition is the same as the ratio of the

corresponding two components in the full composition. If s = C(zS) then

si/sj = zi/zj (i, j ∈ S).

The above result is known as sub–compositional invariance.

2.5 Compositional Distributions

2.5.1 Dirichlet

Given the nature of the simplex, the most obvious choice of a distribution would be the

Dirichlet, Dd(δ), which has density given by

Γ(δ1 + . . . + δD)

Γ(δ1) . . . Γ(δD)

D∏

i=1

zδi−1
i (z ∈ Sd) (2.1)

where δ ∈ RD
+ .

Aitchison (2003) states the following properties of the Dirichlet distribution.

Proposition 2.3 (Aitchison). If z has a Dd(δ) distribution and δ+ =
∑D

i=1 δi then

(a) E(zi) = δi/δ+,

(b) var(zi) = δi(δ+ − δi)/
{
δ2
+(δ+ + 1)

}
,

(c) cov(zi, zj) = −δiδj/
{
δ2
+(δ+ + 1)

}
(i 6= j),

(d) corr(zi, zj) = −
√

δiδj/
√

(δ+ − δi)(δ+ − δj) (i 6= j),

Thus, all covariances between components in the Dirichlet class are negative and hence

are not appropriate for compositional data where there are positive associations.

Definition 2.7. A variable w is said to have a Gamma(δ, β) distribution if its density

function is given by

βδwδ−1 exp−βw

Γ(δ)
w > 0

where δ > 0 and β > 0



23

Proposition 2.4 (Aitchison). Every Dirichlet composition may be visualized as the com-

position of independent, equally scaled gamma-distributed components. That is, if wi(i =

1, . . . , D) are independently distributed as Gamma(δi, β) then z = C(w) has a Dd(δ)

distribution.

Definition 2.8. Let

0 = a0 < a1 < . . . < ac < aC = D.

The partition based on the separation of the D–part composition z into C subsets by the

divisions

(za0+1, . . . , za1
|za1+1, . . . , za2

| . . . |zac+1, . . . , zaC
)

is termed a general partition of z. If

ti = zai−1+1 + . . . + zai
(i = 1, . . . , C)

si = C(zai+1, . . . , zai
) (i = 1, . . . , C)

then we denote the general partition as

P(z) = (t; s1, . . . , sC)

Proposition 2.5. Let P(z) = (t; s1, . . . , sC) be a general partition, as specified in the pre-

vious definition, of order c of a Dd(δ) composition. Then t, s1, . . . , sC are independent and

distributed as Dc(γ), Dd1(β1), . . . ,DdC (βC), respectively, where P(δ) = (δ; β1, . . . ,βC)

These propositions imply very strong independence for the Dirichlet class and hence

it is not very practical for modeling data with more structure, as is apparent in actual

compositional data (Aitchison, 1982, 2003)

2.5.2 Logistic Normal

The multivariate normal distribution has a very rich history and is the most commonly used

multivariate distribution (Anderson, 1984; Morrison, 1976; Srivastava and Khatri, 1979).

The multivariate normal density is given by

p(y|µ, Σ) = N (µ, Σ) =

(
1

2π

)p/2

|Σ|−1/2exp

{
−1

2
(y − µ)

′

Σ−1(y − µ)

}
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where y is a d–dimensional vector, E(y|µ, Σ) = µ and var(y|µ, Σ) = Σ.

Consider the the additive logistic transformation φ−1 which maps a point in y ∈ Rd into

a point z ∈ Sd. The Jacobian of this transformation is given by 1/
∏D

i=1 zi. Thus if we

assume that y ∼ N (µ, Σ) then the transformation φ−1(y) induces the following density

on the vector z ∈ Sd

p(z|µ, Σ) =

(
1

2π

)d/2

|Σ|−1/2

(
1

∏D
i=1 zi

)
exp

{
−1

2
(φ(z) − µ)

′

Σ−1(φ(z) − µ)

}

which we call the additive logistic normal, denoted by Ld(µ, Σ). Proposition (2.2) demon-

strates that the additive logistic normal is permutation invariant, that is, the density function

is invariant to reorderings of the elements of the composition. Billheimer et al. (2001) gives

the following interpretation of the location parameter µ. Consider applying the additive

logistic transformation φ−1(.), specifically

ξ = φ−1(µ), where ξ ∈ Sd

Billheimer et al. (2001) states that the interpretation of ξ is more direct on the simplex

than for µ on the multivariate logit scale. However, some of the statistical properties are

lost. They state that µ is the mean and mode of the multivariate normal logit, however,

the φ−1(.) does not preserve these properties. Since φ−1(.) is monotone in each of the d

components of µ, the transformation is order preserving. Thus, they interpret ξ = φ−1(µ)

as a component–wise multivariate median for the Logistic Normal distribution in Sd.

There is a close relationship between the logistic normal class and the additive logistic

normal class. We have the following definition of a multivariate lognormal distribution

Definition 2.9. A D dimensional vector w ∈ RD
+ has a multivariate lognormal distribution

with mean ξ and covariance matrix Ω denoted by ΛD(ξ, Ω) if log w has a MND(ξ, Ω).

The connection between the additive logistic normal distribution and multivariate lognor-

mal is established by the following proposition proved in Aitchison (2003).

Proposition 2.6. If a vector w has a ΛD(ξ, Ω) distribution then its composition x = C(w)

has a Ld(µ, Σ) distribution, where

µ = Fξ, Σ = FΩF
′
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We will have occasion to use the following special case of this general result. Take

ξ = c and Ω = σ2I which corresponds to uncorrelated lognormal distributions with the

same mean, c, and the same variance, σ2, this gives a logistic normal distribution with

mean µ = 0 and covariance matrix Σ = σ2FF
′

= σ2N. We use this result in the

Metropolis–Hastings algorithms developed in subsequent chapters.

2.5.3 Multi–Modality

There is an interesting relationship between the covariance matrix of the logistic normal

distribution and the number of modes of the distribution. This has implications for assigning

prior distributions as we shall discuss later. The logistic normal density is given by

Ld(z|µ, Σ) = (2π)−d/2 |Σ|−1/2

(
1

∏D
i=1 zi

)
exp

{
−1

2
(φ(z) − µ)

′

Σ−1(φ(z) − µ)

}
.

We consider the special case where the logistic normal distribution arises from the closure

of independent log–normal distributions with zero means and constant variances σ2 (see

proposition 2.6 ). This implies the mean is µ = 0d and the covariance matrix is

Σ = σ2 (Id + Jd)

where Id is the d×d dimensional identity matrix and Jd is a matrix of ones. The determinant

of this matrix is σ2dD. The precision matrix or Σ−1 also has a simple form given by

Σ−1 =
1

σ2

(
Id −

1

D
Jd

)
.

The exponent in the numerator is given by

−1

2
φ(z)

′

Σφ(z) = − 1

2σ2
φ(z)

′

(
Id −

1

D
jj

′

)
φ(z)

= − 1

2σ2




d∑

i=1

φ(z)2
i −

1

D

d∑

i=1

φ(z)2
i −

2

D

∑

1≤i,j≤d,
i<j

φ(z)iφ(z)j





= − 1

2Dσ2



d

d∑

i=1

φ(z)2
i − 2

∑

1≤i,j≤d,
i<j

φ(z)iφ(z)j



 .
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The logistic normal under consideration can be written as follows

f(z) = (2π)−d/2(σ2dD)−1/2

exp





− 1

2Dσ2



d

d∑

i=1

φ(z)2
i − 2

∑

1≤i,j≤d,
i<j

φ(z)iφ(z)j



−
D∑

i=1

log zi






The modes of the distribution are located at the critical points of the function, f(z). Note

the following partial derivatives

∂ log φ(z)i

∂zi

=
zD + zi

z1zD

,

∂ log φ(z)i

∂zj

=
1

zD

,

and
∂ −∑D

i=1 log(zi)

∂zi

=
zi − 1 +

∑d
i=1 zi

zizD

Now taking partial derivatives of log f(z) with respect to each of the zi, i = 1, . . . , d and

substituting zD = 1 −∑d
j=1 zi gives:

∂ log f(z)

∂zi

=
dφ(z)i − d

∑
j 6=i (ziφ(z)j − zjφ(z)i) + (d − 1)ziφ(z)i

Dσ2zizD

+

∑
j 6=i

∑
k 6=i zjφ(z)k −

∑
j 6=i (φ(z)j + ziφ(z)j) − zD + zi

Dσ2zizD

To find the critical points we solve the system of equations
∂ log f(z)

∂zi
= 0 for zi. This

system has no closed form solutions with the exception of z = jD/D. However, numerical

methods can be employed to find approximate solutions of any other modes to arbitrary

accuracy. This is very similar to Aitchison (2003)’s statement that closed form solutions for

the moments of the logistic normal distribution do not exist.

Figures 2.2 and 2.3 give graphical representations of the logistic normal distribution for

D = 2 and D = 3 respectively for σ2 = (0.5, 1.0, 1.5, 2.0). For σ2 = 0.5 both densities

are uni–modal with a peak at the compositional zero. When σ2 = 1.0 the two-dimensional

logistic normal has a less well defined peak and the three dimensional logistic normal has 3

modes located away from the compositional zero. For the larger variances both distributions
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Figure 2.2: Probability density plots of the 2 dimensional logistic normal distribution for

σ2 = 0.5, 1.0, 1.5, 2.0 and µ = 0.

are clearly multi–modal with the modes moving further away from the compositional zero.

This indicates that in order for the variance to increase beyond some threshold the logistic

normal distribution has to move its mass away from zero and this results in multi–modality.

The form of the density suggests this, in that, for larger variances σ2 the density is

dominated by term
∏D

i=1 zi which appears in the denominator compared to the term

exp

{
− 1

2σ2
φ(z)

′

(
Id −

1

D
Jd

)
φ(z)

}
.

Thus while the term in the denominator dominates, the density behaves like (
∏D

i=1 zi)
−1

which increases as one of the zi goes to one and the remainder go to zero. Or more formally,

we conjecture that d terms go to ǫ and the remaining term goes to 1 − dǫ and the density

behaves like ǫd(1−dǫ) for large σ2 . The logistic normal distribution is a proper distribution,

this implies that eventually the exponential term dominates and the tails of the distribution

decay to zero. Unfortunately, the distribution is sufficiently complex that analytically

solutions are not possible. So we resort to numerical solutions or approximations. Figures

2.2 and 2.3 and the functional form of the logistic normal distribution indicate that there is
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Figure 2.3: Probability density plots of the 3 dimensional logistic normal distribution for

σ2 = 0.5, 1.0, 1.5, 2.0 and µ = 0. The distortion in the lower left corner of the plots is due

the method of plotting.
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a critical σ2 that controls the uni–modality of the distribution. Logistic normal distributions,

of the restricted class under consideration, with σ2 smaller than this critical value are

uni–modal while distributions with σ2’s larger than the critical value would be multi–modal.

The goal is to show this fact numerically, to this end we solve the first order conditions

∂ log f(z)
∂zi

= 0, for zi.

Are there values of σ2 such that the logistic normal distribution is uni–modal a critical

value of σ2 to indicate uni-modality, in fact, there is no such break point due to the continuity

of the logistic normal distribution with respect to σ2. We are using the term break–point in

a heuristic sense not in a formal mathematical one.

Definition 2.10. The critical σ2, denoted by σ2
c , is the largest σ2 such that the critical point,

denoted by zc
σ2 , is within δ of 0, for some δ . More formally,

σ2
c = arg max

σ2

(
arg max

i
|zc

σ2| < δ
)

where arg maxi |x| is the largest element of the vector x in absolute value.

We solve for the critical points for dimensions ranging from 2 to 32 (32 is the largest

dimension of interest in the application), σ2 varies from 0.001 to 1 by 0.001 and from 1.01

to 5 by .01. Starting values of 0.0, -0.5, -1.0, -2.0, -4.0 and -8.0 were used for of the d

components. The results of applying definition 2.10 with δ = 0.00001 are given in table

2.1. By our heuristic definition its apparent that as the dimension increases, uni–modality

requires a much smaller σ2 of the generating log–normal distribution for the induced logistic

normal distribution to be uni–modal. In fact, it appears to decrease at an exponential rate.

For logistic normal distributions with σ2 > σ2
c , it is of interest to locate the additional

modes. Figure 2.4 plots the modes, on the additive logistic scale, by dimension for 5 selected

values of σ2 (0.5,1.0,1.5,2.0,2.5). The second panel of the plot shows that the compositional

center is dwarfed by the modes as they approach the boundaries of the simplex as measured

by log density units. In fact, the compositional center actually becomes a local minimum of

the function.

The logistic normal distribution when generated as the closure of independent log–normal

distributions with common σ2 displays some very interesting multi-modal behaviour. This

is an artifact of how a distribution with limited support, in this case confined to the simplex,

must change its shape to accommodate larger variation. The modes move further from the
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dimension σ2
max dimension σ2

max dimension σ2
max

2 0.998 13 0.378 24 0.241

3 0.915 14 0.358 25 0.234

4 0.802 15 0.340 26 0.228

5 0.712 16 0.324 27 0.222

6 0.639 17 0.309 28 0.217

7 0.580 18 0.296 29 0.212

8 0.531 19 0.285 30 0.207

9 0.490 20 0.274 31 0.203

10 0.455 21 0.265 32 0.199

11 0.426 22 0.256

12 0.400 23 0.248

Table 2.1: Values of σ2
c by dimension for the logistic normal distribution.

compositional center proportional to both the variance and the dimension as evidenced by

our numerical results.

2.5.4 Generalizations

Azzalini and DallaValle (1996) introduced a generalization of the multivariate normal distri-

bution known as the multivariate skew–normal distribution. We say that the d dimensional

vector y follows a multivariate skew–normal distribution, denoted by SN d(µ, Σ, β), if its

density function is given by

2(2π)−d/2|Σ|−1/2 exp

[
−1

2
(y − µ)

′

Σ−1 (y − µ)

]
Φ(β

′

Ω−1(y − µ)),

where Φ(.) is the standard normal distribution function and Ω is the square root of diag(Σ)

and diag(Σ) is the diagonal matrix of Σ. The vector β controls the shape of the distribution

and determines the direction of maximum skewness. If β = 0 the skew–normal reduces to

the Multivariate normal distribution.

For illustration, consider the univariate skew–normal given by

2(2π)−1/2σ−1/2 exp

[
− 1

2σ2
(y − µ)2

]
Φ(βσ−1(y − µ)),

Figure 2.5 shows the univariate skew-normal density for selected values of β.

Azzalini and Capitanio (1999) gives a number of properties of the multivariate skew–

normal distribution. For example, it is closed under linear transformation and quadratic
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Figure 2.4: Logistic normal modes a) Location of the modes on the additive logistic scale

as a function of dimension and variance. b) The difference in log density units at the mode

in graph a) and the compositional center (local mode).

forms of skew–normal vectors follow χ2 distributions.

Subsequently (Mateu-Figueras et al., 2005; Mateu-Figueras and Pawlowsky-Glahn,

2007) introduced the additive logistic skew–normal distribution(alsn), denoted by SL. A

D–part composition z is said to have alsn distribution when the vector y = φ(z) has an

SN d(µ, Σ, β) distribution. We denote this distribution by SLD(µ, Σ, β) and its density

function is given by

2(2π)−d/2|Σ|−1/2

(
D∏

i=1

zi

)−1

exp

[
−1

2
(φ(z) − µ)

′

Σ−1 (φ(z) − µ)

]
Φ(β

′

Ω−1(φ(z)−µ))

Mateu-Figueras et al. (2005) gives a number of properties of this distribution. Specifically

the class of alsn distributions is closed under perturbation and scalar multiplication, sub–

compositions remain in the alsn class, it is permutation invariant, plus numerous others.

2.5.5 Zero components

Strictly speaking a compositional vector z must have all non-zero components, ie zj > 0,∀j.

Martin-Fernández et al. (2003) discuss this problem at length, and describe two types

of zeros, random zeros and essential zeros. Random zeros are ones that might be below

detection limits while essential zeros would represent the complete absence of a component.

In order to overcome the random zero problem, Martin-Fernández et al. (2003), discuss

three approaches: The first method described, first described by Aitchison (2003), the



32

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

x

0
0.5
1
4
10
100

Figure 2.5: Density functions for 6 different skew normal distributions ranging from β = 0
the standard normal distribution to β = 100, essentially the half normal distribution.

so called additive zero-replacement strategy, consists of the following. Let z be the p

dimensional composition with zeros and the new zero corrected composition be, r, defined

as follows:

rj =

{
δ(q+1)(p−q)

p2 : xj = 0

xj − δ(q+1)q
p2 : xj > 0

where, q is the number of zeros, and δ is a small value, less than a given threshold.

The second method discussed is the simple replacement strategy. In this strategy the

zeros are replaced by some small non-zero constant and then the whole vector is subjected

to the closure operator C. The strategy is described by:

rj =






1

1+
P

k|xk=0
δ̂k

δ̂j : xj = 0

1

1+
P

k|xk=0
δ̂k

xj : xj > 0

where, δ̂j is the imputed value on the part xj . This method was employed by Iverson et al.

(2004).

Finally, the method that Martin-Fernández et al. (2003) recommend is the multiplicative
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replacement strategy, which can be described as follows:

rj =





δj : xj = 0(
1 −∑k|xk=0 δk

)
xj : xj > 0

There doesn’t appear to be a generally accepted strategy for dealing with essential zeros but

see proposed methods.

2.5.6 Other Compositional Results

Pawlowsky-Glahn and Egozcue (2001, 2002) work along similar lines to that of Billheimer

et al. (2001) and define a vector space on the simplex. They use this to define best linear

unbiased estimates on the simplex and also the metric variance and metric center. In fact,

they show that the metric center is the Closure of the geometric mean on each component

of the composition and the metric variance as defined previously.

Egozcue et al. (2003) also consider the simplex space as a metric space and define the

isometric transformation to be the one which preserves all metric properties. They also

show its relationship to the additive log–ratio (alr) and centered log–ratio transformations.

2.6 Compositional Models

2.6.1 Billheimer

Billheimer et al. (2001) considers modeling the effect of co–variates, motivated by the work

given in Aitchison (2003). To fix ideas, let µ, be the location parameter and consider a

scalar covariate xj , where j indexes the observations. Consider the following linear model

for µj

µj = β0 + β1(xj − x̄)

where β0 and β1 are vectors in Rd. Thus, we can interpret β0 as the location when

xj = x̄ and β1 as the change in location for a unit change in x. Apply the additive logistic

transformation, φ−1(.) , to both sides of the above equation to give

φ−1(µj) = φ−1(β0) ⊕ φ−1(β1)
(xj−x̄).
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Which we can write as follows

ξj = ξ ⊕ γuj .

where ξj = φ−1(µj), ξ = φ−1(β0), γ = φ−1(β1) and uj is the centered covariate. ξ is the

location in the simplex when the covariate is at its mean value ( xj = x̄). The regression

parameter, γ, indicates the amount the location, ξ, is perturbed for a unit change in the

covariate uj = 1. Also, deviations in γ from the identity composition, indicate direction

and the magnitude of the change of the perturbation. Figure 2.6,gives a graphical depiction

of the curves ξj = ξ ⊕ γuj for five different values of the regression composition γ.

Note that the full regression model would be written as follows:

φ(yj) = µj + ǫj

= β0 + β1(xj − x̄) + ej
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and now applying the additive logistic transformation to both sides yields

yj = φ−1β0 ⊕ φ−1(β1)
(xj−x̄) ⊕ ej

= ξ ⊕ γuj ⊕ ǫj.

The interpretation of the parameters would be the same as above, however, we now see that

the actual observation is modeled as a perturbed version of ξj = ξ ⊕ γuj .

2.6.2 Bandeen–Roche

Aldershof and Ruppert (1987) describes an EPA study on the atmospheric effects of wood

stove smoke and vehicle emissions. Specifically, they collected 50 ambient air samples

near Juneau, Alaska. Each observation is time averaged daily air composition vector of

five chemicals (fluoranthene, benzoanthracene, chrysene, benzofluoranthene and pryene).

The goal of the study was to estimate the fraction of wood stove smoke in each of the air

samples.

Bandeen-Roche (1994) uses this problem as a motivation for a more general model which

is described below. Of a known number m of source components of dimension p, r are

predetermined and the remaining m − r are of unknown composition. The predetermined

compositions are denoted by x1,x2, . . . ,xr and the unknown compositions θ1, θ2, . . . θm−r.

Bandeen-Roche (1994) defines the following model:

E[Y|y] = y (2.2)

Y =
r∑

k=1

αkxk +
m∑

k=r+1

αkθk−r, α ∼ G

with, xkj ≥ 0,
∑p

j=1 xkj = 1 for all j, k and α = (α1, α2, . . . , αm) ∼ G for some distribu-

tion G defined on the simplex. Also,Y represents the unobserved compositions, while y rep-

resents what they actually observed, ie the 50 samples actually collected. More specifically,

G(a) = P (α1 ≤ a1, . . . , αm−1 ≤ am−1). For a given sample they assume that {α} are

independent and identically distributed (iid), it then follows that the collection {y} are iid

random vectors with a distribution denoted by H. The parameter space associated with H is

the product space θ×Γ where θ = {(θ1, . . . ,θm−r} : θlj ≥ 0,
∑p

j=1 θlj = 1, for each l, j}
and Γ = {G : G is a distribution with support constrained on the m simplex}

Note that the number of parameters increases with the sample size n, which was first
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discussed by Neymann and Scott (1948) and further by Kiefer and Wolfowitz (1956).

However, in the present context, it is of equal importance to estimate the relative amounts

of each source component, the α’s, as the unknown source components θ. That is, the

incidental parameters as described by Neymann and Scott (1948) and Kiefer and Wolfowitz

(1956) are on equal footing to the structural parameters.

The above assumptions give the following distribution for the observations:

FY (z) =

∫
F0(z|y)dH(y) (2.3)

where, F0 denotes the conditional distribution of Y given y and satisfies
∫

zdF0(z|y) = y.

Hence it captures the measurement error that leads us to observe Y instead of y (Bandeen-

Roche, 1994).

Bandeen-Roche (1994) give some formal conditions for the identifiability issues ad-

dressed by Neymann and Scott (1948) and Kiefer and Wolfowitz (1956), which they show

hold for their particular example.

Bandeen-Roche (1994) chose the Dirichlet class of distributions to model composi-

tions, despite the problems associated with this distribution as noted by Aitchison (2003).

Bandeen-Roche (1994) favours the Dirichlet class for the chief reason that the parameters of

interest are modeled directly, not as transformations. Vectors formed by permuting the data,

restandardizing a subset of components, or aggregation all have Dirichlet distributions.

Combining 2.2 with the Dirichlet distribution given in equation 2.1 with some additional

assumptions gives

fY (z) =

∫
f0(z|δ(α))

Γ(Λ)∏m
k=1 Γ(λk)

m∏

k=1

αλk−1
k dα (2.4)

where

δ(α) =

[
r∑

k=1

αkxk +
m∑

k=r+1

αkθk−r

]

and f0(.|.) is the density defined by equation 2.3 assuming it exists.

2.6.3 Aitchison and Bacon–Shone

Aitchison and Bacon-Shone (1999) consider the following problem: to determine the
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distribution of the D–part composition y, formed as a convex linear combination

y = cvx(x, π) = π1x1 + . . . + πCxC

where x = [x1, . . . ,xC ] is the C × D matrix of independent D–part compositions with

known distributions and π is a vector of non–negative mixing proportions. This model

is very similar to the one proposed by Bandeen-Roche (1994), however, in this model no

source components are known exactly. The issue of identifiability isn’t addressed.

Aitchison and Bacon-Shone (1999) consider the following example: A Scottish loch

is supplied by 3 rivers. At the mouth of each river, 10 water samples have been taken

at random times and analyzed into 4–part compositions of pollutants. Also taken are 20

samples at each of three fishing locations. The aim of the study is to determine if the

fishing locations can be modeled as convex mixtures of compositions of the 3 sources.

The independence of the sources is assumed since the sampling was done randomly and

separately in each of the 3 rivers.

Aitchison and Bacon-Shone (1999) are interested in finding the distribution of the D–part

composition y, where the D–part compositions x1, . . . ,xC are independently distributed

as LD(ξ1,T1), . . . ,LD(ξC ,TC), where Ti = [τjk]. However, they state that there is no

simple closed form solution to this problem and then proceed to consider 3 approximations

which are given below.

Approximation 1. The distribution y = π1x1 + . . . + πCxC where x1, . . . ,xC are

independently distributed as LD(ξ1,T1), . . . ,LD(ξC ,TC), is approximately LD(η,Θ),

Θ = [θij] and

η =
C∑

b=1

πbξb, θij = −1

2

C∑

b=1

D∑

k=1

D∑

l=1

GbijkGbijlτbkl

where,

Gbijk = ρbi(δik − ξbk) − ρbj(δjk − ξbk), ρbi = πbξbi/ηi

and δik is the Kronecker delta, equal to 1 when k = i and 0 otherwise.

Approximation 2: The distribution of cvx(x, α,Ω), that is of y = π1x1 + . . . + πCxC ,

where x1, . . . ,xC are independently distributed as LD(ξ1,T1), . . . ,LD(ξC ,TC), and π is
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distributed as LC(α,Ω), is approximately LD(κ,Λ) where

κ =
C∑

b=1

αbξb, λij = −1

2

C∑

b=1

D∑

k=1

D∑

l=1

HbijkHbijlτbkl −
1

2

C∑

a=1

C∑

b=1

BaijBbijωab,

where

Hbijk = χbi(δik − ξbk) − χbj(δjk − ξbk), χbi = αbξbi/κi, Bbij = χbi − χbj.

Consider the following alternative model

y = cvx(x, π) ⊕ u

where, u is a compositional perturbation distributed as LD(e,Ψ), where e is the identity

perturbation. This leads to the third approximation:

Approximation 3. The distribution of cvx(x, π) ⊕ u is approximately LD(η,Θ + Ψ) ,

where Θ and Ψ are as given in Approximation 1.

2.6.4 Billheimer – Mixing

Billheimer (2001) considers a Bayesian approach to the problem considered by Bandeen-

Roche (1994), which allows the inclusion of prior knowledge of the pollution sources.

The model he proposes is the following (assuming a fixed number of sources, p):

E[Yi] =

p∑

j=1

αjiθj = [θ1|θ2| . . . |θp]





α1i

α2i

...

αpi




= Θαi

where, Yj is a vector of concentrations of k chemical species, αi is a p–vector of mixing

coefficients, and θj (j = 1, 2, . . . , p ) is a k–vector describing the chemical profile for

source j. Note that Yj and θj are compositional vectors as defined previously.

The complete model specification is given by:

Yi = Θαi ⊕ ǫi

Billheimer (2001) casts the specification of θj and αi in a Bayesian hierarchical framework.
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He assumes that each source profile θj is described by an informative prior distribution

describing the partial knowledge of the relative likelihoods of its chemical components. He

assigns a diffuse prior to the mixing proportions, αi.

π(Θ, αi, ǫi, µα,Γ,Σǫ) = π(αi|µα,Γ)π(ǫi|Σǫ)π(µα)π(Γ)π(Σǫ)π(Θ)

where

ǫi|Σǫ ∼ Lk−1(0k−1,Σǫ); Σ−1
ǫ ∼ IW(aN , ρ)

θj ∼ Lk−1(µθj
,Σθj

)

αi ∼ Lp−1(µα,Γ); µα ∼ N p−1(η, Ψ); Γ−1 ∼ IW(bN , δ)

The joint posterior distribution is given by the following:

π(θ1, θ2, . . . ,θp, α1, α2, . . . ,αn, µα,Γ,Σǫ|y) ∝
n∏

i=1

{
|Σǫ|−1/2

k∏

t=1

[yi]
−1
t exp

{
−1

2
[φ(yi) − φ(Θαi)]

′

Σ−1
ǫ [φ(yi) − φ(Θαi)]

}

×
p∏

j=1

|Γ|−1/2α−1
ij exp

{
−1

2
[φ(αi) − µα]′Γ−1[φ(αi) − µα]

}}

× exp

{
−1

2
(µα − η)

′

Ψ−1(µα − η)

} p∏

j=1

exp

{
−1

2
[φ(θj) − µθj

]
′

Σ−1
θj

[φ(θj) − µθj
]

}

× π(Γ) × π(Σǫ)

Variants of this model form the basis of the predator diet model.
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Bayesian inference has long struggled to reach the mainstream of statistical practice

despite its inherent theoretical advantages. The major stumbling block has largely been

computational. Specifically how to evaluate high dimensional non-analytically tractable

integrals that constitute posterior distributions resulting from most statistical applications.

For many decades the Bayesian analyst had to rely on restricting attention to conjugate

families of prior and likelihoods or using numerical approximations that broke down in

high dimensional problems.

We focus our attention on Monte Carlo methods, however, several alternative methods

have been suggested. Numerical integration techniques have been successfully applied to

low dimensional posterior distributions, however they suffer from the so called curse of

dimensionality. That is, the number of function evaluations increases exponentially with

the dimension of the problem. Evans and Swartz (2000) give an excellent description of

these techniques. Laplace approximations (Robert and Casella, 2004) are essentially second

order Taylor series approximations to the posterior distribution. They tend to work well

in moderate dimensional problems and when the posterior is log–concave but also don’t

perform well in higher dimensional situations.

We begin with a short review of several Monte Carlo methods before turning to Markov

Chain Monte Carlo methods. The main distinction between these two simulation based

approaches is that Monte Carlo methods typically give uncorrelated samples, while Markov

chain methods give correlated samples. Therefore, more care must be taken to process the

resulting MCMC samples.

3.1 Monte Carlo Methods

3.1.1 Monte Carlo Integration

Consider the following integral

Eπ[f(x)] =

∫
f(x)π(x)dx, (3.1)

where f(x) is a deterministic function, and π(x) is a continuous probability density function.

The integral represents the expected value of the function f(x). Assume that the distribution

of f(x) is such that the integral is not available in closed form, however, we can sample
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directly from π(x). The method of Monte Carlo integration approximates Eπ[f(x)] by the

following

f̄n =
n∑

i=1

f(xi)

where(x1, . . . , xn) is a sample from π(x). The strong law of large numbers gives

lim
n→∞

f̄n
a.s.→ Eπ[f(x)]

One can also establish a central limit theorem, when Eπ[f(x)2] < ∞, since we can calculate

the variance of f̄n

var(f̄n) =
1

n

∫
(f(x) − Eπ[f(x)])2π(x)dx

and therefore,
(f̄n − Eπ[f(x)])√

var(f̄n)

L→ N(0, 1)

and we can estimate var(f̄n) by

vn =
1

n2

n∑

i=1

(f(xi) − f̄n)2

We can extend this method to vector valued random variables x without difficulty provided

we can generate samples from π(x). Robert and Casella (2004) give several generic

methods for generating samples from an arbitrary density function π(x), such as the inverse

probability transform, accept–reject methods.

3.1.2 Importance Sampling

Consider the original integral given by equation (3.1) and consider the following modifica-

tion

Eπ[f(x)] =

∫
f(x)

π(x)

h(x)
h(x)dx.

provided the support of π(x) is subset of the support of h(x). This is a necessary condition

otherwise we introduce singularities into the integration process. We then consider the

following approximation:

f̄ ∗
n =

1

n

n∑

i=1

π(xi)

h(xi)
f(xi)
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We can show that f̄ ∗
n converges almost surely to Eπ[f(x)] by the Law of Large Numbers.

There is great flexibility in the choice of the importance function h(x), however, can we

say that some choices are better than others? Robert and Casella (2004) give some results

about the choice of importance function which minimize the variance of f̄ ∗
n.

The crux of this method, is that the density h(x) is easier to generate random samples

from and also the support of h(x) is greater than π(x). This can be difficult to find in

practice, particularly in higher dimensional problems.

3.1.3 Random Sample Generation

We have not mentioned how one would generate samples from the distribution of interest,

π(x). There are numerous methods that are employed, for example, the inverse cdf method,

transformation methods, ratio of uniforms and accept–reject methods to name but a few

of the many methods. Robert and Casella (2004) give an introduction to several of these

methods. In addition there are several classic texts on the subject (Hammersley and

Handscomb, 1964; Knuth, 1964; Ripley, 1987, and the references therein).

We briefly mention a few of the methods as they have connections to the MCMC methods

to be introduced in the next section. Accept–reject methods can be seen as a special case of

the so called fundamental theorem of simulation, which states

Theorem 3.1. (Fundamental Theorem of Simulation) Simulating

X ∼ f(x)

is equivalent to simulating

(X, U) ∼ U{(x, u) : 0 < u < f(x)},

where U is a uniform over the [0, 1] interval. To see this consider the following

f(x) =

∫ f(x)

0

du.

We have seemingly made the simulation problem more difficult by introducing an auxiliary

variable U , however, it turns out the simulation is more tractable for a certain class of

problems. This fundamental theorem is the basis of the slice sampler, which has some

connections to the Gibbs Sampler as well.
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The basic accept–reject algorithm is based on the following corollary of the fundamental

theorem

Corollary 3.1. Let X ∼ f(x) and let g(x) be a density function that satisfies f(x) ≤
Mg(x) for some constant M ≥ 1. Then, to simulate X ∼ f , it is sufficient to generate

Y ∼ g and U |Y = y ∼ U(0, Mg(y)),

until 0 < u < f(y).

And the accept–reject algorithm is given by

1. Generate X ∼ g and U ∼ U[0,1]

2. Accept Y = X if U ≤ f(X)/Mg(X)

3. Otherwise repeat step 1.

It is always possible to find a dominating distribution Mg(x) for all x, however, if we

have to choose M excessively large then a lot of steps of the algorithm must be performed

to generate a single sample.

3.2 Markov Chain Monte Carlo (MCMC)

We now turn our attention to Markov Chain Monte Carlo methods, which have an interesting

history which we briefly describe. Metropolis et al. (1953)’s paper on the statistical

mechanics of particles introduced the method of Markov Chain Monte Carlo (MCMC)

to the world of physics. Hammersley and Handscomb (1964) describes the method in a

more rigorous statistical framework in terms of Markov chains. Hastings (1970) provided a

generalization of the original Metropolis algorithm to allow for non-symmetric proposal

distributions. While Geman and Geman (1984) used the Gibbs sampler on the Bayesian

image restoration problem, the work of Gelfand and Smith (1990) illustrated how the Gibbs

sampler could be used to help Bayesians solve a much wider class of problems. Till this

point, most Bayesian approaches used modal approximations, numerical methods which

tended to break down in higher dimensional problems, or restricted themselves to classes

of problems with conjugate priors.
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The key difference between importance sampling or the usual Markov simulation strate-

gies and MCMC methods is that MCMC methods produce Markov chains and hence there

is a form of dependence among the samples generated during the sampling. This is both a

blessing and a curse as we shall see.

The following definition taken from Robert and Casella (2004) gives a general description

of Markov Chain Monte Carlo algorithms

Definition 3.1. A Markov Chain Monte Carlo (MCMC) method for the simulation of a

distribution f is any method producing an ergodic Markov chain (Xt) whose stationary

distribution is f .

There are two main building blocks of most MCMC algorithms: the Metropolis–Hastings

algorithm and the Gibbs sampler. They are often combined to form Metropolis–within-

Gibbs. We describe these basic building blocks, discussing their basic structure and some

of their convergence properties. We also give details on the Metropolis–within–Gibbs

algorithm. Finally, we discuss the relatively new area of adaptive algorithms which have

taken off in the past decade. The adaptive algorithms are typically applied in Metropolis–

Hastings algorithms, but have also been applied in various other settings.

3.3 Metropolis–Hastings

The original Metropolis algorithm was applied in statistical mechanics to simulate the

distribution of particles (Metropolis et al., 1953). We are concerned with its applications to

statistical problems, more specifically the evaluation of analytically intractable posterior

distributions. To make the development slightly more general, we assume a general

continuous probability density function denoted by f(x) from which we wish to generate

samples, known as the target distribution. To fix ideas think of the target distribution as the

posterior distribution of interest.

The Metropolis–Hastings algorithm requires the objective or target distribution f(x) be

known up to a constant of proportionality, that is, the functional form of the posterior must

be known. The key ingredient, is the proposal distribution q(.|x), a conditional density

which is easy to simulate from and is also known up to a constant of proportionality that

does not depend on x. If the proposal distribution is symmetric, that is q(y|x) = q(x|y),

then the algorithm simplifies to the Metropolis algorithm (Metropolis et al., 1953). The
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acceptance probability of a new point y given that the chain is currently in state x is given

by

ρ(x, y) =






min
{

f(y)q(x|y)
f(x)q(y|x)

, 1
}

, iff(x)q(y|x) > 0

1, otherwise

The algorithm proceeds in the following manner.

0. Given a starting value xt.

1. Generate yt ∼ q(y|xt).

2.

xt+1 =





yt with probability ρ(xt, yt)

xt with probability 1 − ρ(xt, yt)

Rewriting the acceptance probability ρ(xt, yt) as follows

f(yt)/q(yt|xt)

f(xt)/q(xt|yt)

reveals that yt’s that increase the numerator relative to the denominator will always be

accepted. In addition, there is a probability that it will accept yt’s that lower this ratio and

hence move to regions of lower support of the distribution f(x). This allows the algorithm

to potentially transverse lower probability regions. In contrast with the accept–reject

methods, the Metropolis–Hastings algorithm stays in the current state if the proposed state

is not accepted.

The algorithm in its current form is too general in that it applies for all f ’s and q’s.

Robert and Casella (2004) impose the following regularity conditions on f and q, to ensure

that the limiting distribution of the constructed Markov chain is in fact f . We restrict our

attention to distributions f with connected supports, denoted by E as unconnected supports

can invalidate the Metropolis–Hastings algorithm.

In addition we need the following definition,

Definition 3.2. We say the support of f is truncated by q, if there exits A ⊂ E such that

∫

A

f(x)dx > 0 and

∫

A

q(y|x)dy = 0, ∀x ∈ E .
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If q truncates f , then the Markov chain induced by the MH algorithm cannot have f as its

limiting distribution since the chain never visits the set A unless it happens to be initialized

in A. We need the following minimally necessary condition

⋃

x∈ supp f

supp q(.|x) ⊂ supp f

to ensure that f is the limiting distribution for induced Markov chain.

The transition kernel of a Markov chain is given by the following definition

Definition 3.3. If K = {K(x, A), x ∈ X , A ∈ B(X )} is such that

(i) for each A ∈ B(X ), K(., A) is a non–negative measurable function on X and

(ii) for each x ∈ X , K(x, .) is a probability measure on B(X ), then we call P a transition

probability kernel or Markov transition function.

Essentially, the transition kernel for a Markov chain gives the probability of being in a

set A at the next time step given that the chain is at state x at the current state.

The transition kernel for the Metropolis–Hastings algorithm is given by

K(x, y) = ρ(x, y)q(y|x) + r(x)δx(y)

where

δx(y) =





1 if y = x

0 otherwise

is the usual Kronecker delta function and r(x) = 1 −
∫

ρ(x, y)q(y|x)dy. The first term

ρ(x, y)q(y|x) is the probability of transition out of the current state x and r(x) is the

probability that the chain remains in the current state x.

The detailed balance or reversibility condition is given by

f(x)ρ(x, y)q(y|x) = ρ(y, x)q(x|y)f(y)

or

K(y, x)f(y) = K(x, y)f(x).

We have the following theorem from Robert and Casella (2004)
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Theorem 3.2. Let (Xt) be the chain produced by the above algorithm. For every conditional

distribution q(y|x) whose support includes E ,

1. the kernel of the chain satisfies the detailed balance condition with f ;

2. f is a stationary distribution of the chain.

For almost any proposal distribution q the resulting Markov chain will have f as its

limiting distribution.

Chib and Greenberg (1995) give an excellent description of the Metropolis–Hastings

algorithm. There are numerous other descriptions of the Metropolis–Hastings algorithm

and the reader is referred to Robert and Casella (2004) and the references therein.

3.3.1 Variants of the Metropolis–Hastings Algorithm

Chib and Greenberg (1995) give the following five variants of the Metropolis–Hastings

algorithm:

1. random walk chain originally proposed by Metropolis et al. (1953),

2. independence chain (Tierney, 1994),

3. Tierney (1994) suggests generating proposals from a vector auto–regressive order

one process,

4. candidate–generating density by exploiting the form of f(x) (Chib and Greenberg,

1994),

5. use an accept–reject method with a pseudo–dominating density (Tierney, 1994).

Each of these variants have had, to varying degrees, their theoretical properties studied.

The reader is referred to Robert and Casella (2004) and the references therein for details

of these algorithms. However, it is important to point out that we can establish that the

independence chain is uniformly ergodic provided the proposal distribution matches the

target distribution closely enough. Unfortunately we cannot establish the uniform ergodicity

of the random walk chain, however, Mengersen and Tweedie (1996) have shown that for

log–concave target distributions meeting certain conditions, geometric ergodicity can be

established.
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We implement the general Metropolis–Hastings algorithm as our proposal distribution

do not match any of the above variants. There do not appear to be any results establishing

the ergodicity of the general MH algorithm.

Hastings (1970) give the following example of a univariate MH algorithm for generation

of univariate normal distribution.

Example 3.1. Consider the generation of samples from a standard normal distribution

using a random walk MH algorithm with q uniform on [−δ, δ]. The acceptance probability

is given by

ρ(x, y) = min
{
exp{(x2 − y2)/2}, 1

}

Figure 3.1 gives trace plots, auto–correlation plots and histograms of the MH algorithm

for three of the δ values used. Table 3.1 gives the estimated means and variances, also

indicates the number of rejections and the integrated auto–correlation times (see equation

3.2) for the 20,000 replications of the MH algorithm. The table and figure clearly display

the so called “Goldilocks principle”, a term coined by Jeffrey Rosenthal. δ’s that are too

low lead to highly correlated chains by making very small proposals which are almost

always accepted. While δ’s that are too large lead to highly correlated chains by proposing

larger moves that are not accepted very often and hence the chain stays in one state for

longer periods of time.

δ mean variance Number of Integrated auto–

acceptances correlation time

0.1 0.1996 0.736 19635 1113.1

0.5 0.0342 1.031 17972 58.70

1.0 -0.0223 1.053 16081 16.97

2.0 0.0266 0.990 12658 6.88

5.0 -0.0037 1.006 6317 4.65

10.0 0.0126 1.012 3123 10.07

20.0 -0.0104 0.9963 1524 19.10

Table 3.1: Estimates of the mean and variance of the 20,000 samples from the N (0, 1)
generated using a random walk on [−δ, δ]. The number of acceptances and the integrated

auto–correlation time are also given for each of the proposed samplers.

Chib and Greenberg (1995) consider the following bivariate normal example.
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Figure 3.1: Trace plots (a-c), auto–correlation functions(d-f) and histograms(g-i) of the

20,000 samples produced by the MH algorithm using a random walk on [−δ, δ] for three

selected δ’s. The first column corresponds to δ = 0.1, the second column δ = 1.0 and the

last column δ = 20.0. Overlayed on the histogram is the density of the standard normal

distribution and also displayed are the cumulative mean estimates

Example 3.2. Let f(x) be a bivariate normal density with mean vector µ = (1, 2)
′

and

covariance matrix

Σ =

(
1 .9

.9 1

)

Chib and Greenberg (1995) consider four proposal densities, we consider just their first.

They use a random walk proposal distribution, y = x + z, where z is a bivariate uniform

distribution over [−δ, δ] × [−δ, δ]. The acceptance probability can be written as follows

ρ(x,y) = min

{
exp[−1

2
(y − µ)

′
Σ−1(y − µ)]

exp[−1
2
(x − µ)′Σ−1(x − µ)]

, 1

}
, x,y ∈ R2

Table 3.2 gives the estimated means, variances, covariance, number of acceptances and the

integrated auto–correlation times for the 20,000 samples generated using varying values of

δ. It is clear that there is an optimal δ in the vicinity of δ = 2.0. Figure 3.1 shows trace

plots, auto–correlation functions and a bivariate scatter plot.
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δ mean1 mean2 var1 cov var2 No. Accept IACT1 IACT2

0.1 0.925 1.899 0.799 0.670 0.751 18640 1514.168 1344.215

0.5 1.086 2.088 0.986 0.902 1.015 13919 91.129 90.546

1.0 1.055 2.054 1.058 0.966 1.068 9429 41.378 41.372

2.0 0.987 1.987 1.063 0.958 1.040 4624 22.111 22.409

5.0 1.061 2.057 1.021 0.882 0.958 1139 34.818 41.052

10.0 1.140 2.095 0.768 0.695 0.831 260 117.987 128.837

20.0 0.903 1.986 1.476 1.327 1.472 84 525.504 512.207

Table 3.2: Estimates of the means, variances and covariance of the 20,000 samples from the

bivariate normal distribution described in example 3.2 generated using a bivariate random

walk on [−δ, δ] × [−δ, δ]. The number of acceptances and the integrated auto–correlation

times for each dimension are also given for each of the proposed samplers.

3.4 Acceptance Rates

The Metropolis–Hastings algorithms just considered all have great flexibility in the form

of the proposal distribution and also the parameters of the chosen proposal distribution.

However, this leads to the question of what form of the proposal to choose and also once the

functional form of the proposal distribution is chosen how should we choose the parameters

of that distribution. In practice, the proposal distribution is usually limited to distributions

that are easy to simulate from, for example, the multivariate normal or multivariate t-

distributions are common choices. However, there is still the issue of what covariance one

should choose. Unfortunately, this is still a relatively unanswered question.

Roberts et al. (1997) showed that for a particular class of target distributions the “optimal”

acceptance rate, as the dimension goes to infinity, is 0.234 for a random walk Metropolis–

Hastings algorithm. Roberts and Rosenthal (2001) also consider the question of optimal

scaling, however, they approach it from a efficiency perspective. They first define the

integrated auto–correlation time, for an arbitrary square–integrable function g, by

τg = 1 + 2
∞∑

i=1

Corr(g(X0), g(Xi)) (3.2)

where X0 is assumed to distributed according to the stationary distribution f . If generated

samples were uncorrelated, then τg = 1 , thus τg is a measure of the dependence in the
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Figure 3.2: Trace plots of components 1 and 2 are shown in panels a and c respectively and

auto–correlation functions in panels (b,d) for the bivariate normal described in example

3.2 for the 20,000 samples produced by the MH algorithm using a random walk on

[−2.0, 2.0] × [−2.0, 2.0]. Panel (e) shows a bivariate plot of the samples, along with 90%,

95% and 99% probability contours.

Markov chain. Roberts and Rosenthal (2001) state that if a central limit theorem for X and

g exits then the variance of the estimator is

n∑

i=1

g(Xi)/n.

They also define the acceptance rate and propose to estimate it by

ρ =

∫
ρ(x,y)f(x)q(x|y)dxdy

= lim
n→∞

n−1#{accepted moves}

They showed that for a random walk Metropolis–Hastings algorithm acceptance rates in

the range of 0.1 to 0.4 are optimal for a smooth target distribution. In addition, they list

several references that detail work of a similar nature.

Both Roberts et al. (1997) and Roberts and Rosenthal (2001) show that the optimal
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proposal variance is related to the Fisher’s expected information.

3.5 Gibbs

The Gibbs sampler first appeared in the statistics literature with the work of Geman and

Geman (1984) on image reconstruction. However, it wasn’t till the seminal work of Gelfand

and Smith (1990), that the ideas took hold and revolutionized Bayesian computational

methods. Till then, the problems that could be solved were relatively low dimensional in

nature, mainly due to the coarse approximation methods in use. Numerical integration

methods were hampered by the curse of dimensionality, and it was difficult to assess the

accuracy of the modal approximations (i.e. Laplacian approximation methods).

Robert and Casella (2004) develop the Gibbs sampler by the following progression: the

slice sampler and the fundamental theorem of simulation, the two stage Gibbs Sampler and

finally the general Gibbs sampler. Due to space constraints, we just present the general

case and refer the reader to Robert and Casella (2004) for more details, however, we will

indicate some of the connections and convergence results as required.

Suppose that for some p > 1 that the joint distribution X ∈ X can be decomposed into p

components as follows:

X = (X1,X2, . . . ,Xp),

where the length of the vector, Xi, is pi ≥ 1, i.e., the components can be potentially be

multivariate. We assume the full conditional distributions f1, . . . , fp can be simulated from

as follows

Xi|x1, . . . ,xi−1,xi+1, . . . ,xp ∼ fi(xi|x1, . . . ,xi−1,xi+1, . . . ,xp),

for i = 1, . . . , p. The Gibbs sampler consists of the following algorithm.

0. Initialize the vector x0 = (x1,0, . . . ,xp,0)

1. Simulate x1,t+1 ∼ f1(x1|x2,t, . . . ,xp,t),

2. Simulate x2,t+1 ∼ f2(x2|x1,t+1x3,t, . . . ,xp,t),

p. Simulate xp,t+1 ∼ fp(xp|x1,t+1, . . . ,xp−1,t+1).
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To illustrate ideas we consider the following examples.

Example 3.3. The is a continuation of Example 3.2, a bivariate normal with mean µ =

(1, 2)
′

and covariance matrix

Σ =

(
1 .9

.9 1

)

The full conditionals are univariate normal and are given by

x1,t+1|x2,t ∼ N (1 + 0.9(x2,t − 2), 1 − 0.92)

x2,t+1|x1,t+1 ∼ N (2 + 0.9(x1,t+1 − 1), 1 − 0.92)

The Gibbs sampler was run for 20,000 iterations and does a very good job of reproducing

the means of the distribution, 1.003 and 2.001 respectively. It also does a reasonable job of

recovering the variances and covariances, 0.965, 0.967 and 0.956 respectively, however, it

under estimates the variances and inflates the covariance. The integrated auto–correlation

times for the two dimensions are 182.8 and 183.4 respectively, which are substantially

higher than the appropriately scaled two–dimensional MH algorithm. Figure 3.3 shows

trace plots, auto–correlation functions and a scatter plot. The scatter plot reveals that the

Gibbs sampler produces samples that are much more correlated than required (ρ = 0.989).

The example shows quite clearly the dependence issues that can occur when the Gibbs

sampler is employed on problems with high dependence between the components. Alterna-

tive strategies such as blocking are typically used to avoid this problem (see Robert and

Casella, 2004, and the references therein).

Example 3.4. Normal distribution with unknown mean µ and unknown precision ω with

samples given by y = (y1, . . . , yn) and joint prior distribution π(µ, ω) = ω, (the so called

Jeffrey’s prior). We have the following posterior,

π(µ, ω|y) ∝ ωn/2+1 exp{−ω

2

n∑

i=1

(yi − µ)2}

∝ ω(n+1)/2−1 exp{−ω

2

n∑

i=1

(yi − µ)2}
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Figure 3.3: Trace plots of components 1 and 2 are shown in panels a and c respectively and

auto–correlation functions in panels (b,d) for the bivariate normal described in example 3.3

for the 20,000 samples produced by the Gibbs sampler. Panel (e) shows a bivariate plot of

the samples, along with 90%, 95% and 99% probability contours.
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The conditional distributions are

p(µ|ω,y) ∼ N (ȳ, nω),

p(ω|µ,y) ∼ G
(

(n + 1)/2,
1

2

n∑

i=1

(yi − µ)2

)
.

The Gibbs sampling proceeds as follows:

1. select starting values µ0 and ω0

2. generate µt ∼ N(ȳ, nωt−1)

3. generate ωt ∼ G(n/2, 1
2

∑n
i=1(yi − µt)

2)

Definition 3.4. Given a probability density f , a density g that satisfies

∫

Z

g(x, z)dz = f(x)

is called a completion of f .

The idea of completion can, in certain situations, make the implementation of the Gibbs

sampler more straightforward. This idea is related to the data augmentation ideas of Tanner

and Wong (1987). For example, completion is used in Bayesian approaches to mixing,

where with the addition of the group membership the Gibbs implementation becomes

straightforward (see Robert and Casella, 2004; Diebolt and Robert, 1994; Celeux et al.,

2000).

The Markov chain induced by the systematic scan (sweep) algorithm is not reversible,

that is, it does not satisfy the detailed balance(reversibility) condition that the Metropolis–

Hastings algorithm enjoys by construction as showed in Chib and Greenberg (1995). This

lack of reversibility leads to some technical difficulties, most notably the lack of a central

limit theorem. Fortunately, there is a relatively straightforward fix to the lack of reversibility.

The following Reversible Scan Gibbs sampler is reversible

0. Initialize the vector x0 = (x1,0, . . . ,xp,0)

1. Simulate x∗
1 ∼ f1(x1|x2,t, . . . ,xp,t),

2. Simulate x∗
2 ∼ f2(x2|x∗

1,x3,t, . . . ,xp,t),
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p-1. Simulate x∗
p−1 ∼ fp−1(xp|x∗

1, . . . ,x
∗
p−2,xp,t).

p. Simulate xp,t+1 ∼ fp−1(xp|x∗
1, . . . ,x

∗
p−1).

p+1. Simulate xp−1,t+1 ∼ fp−1(xp|x∗
1, . . . ,x

∗
p−2,xp,t+1).

2p-2. Simulate x2,t+1 ∼ f2(x2|x∗
1,x3,t+1, . . . ,xp,t+1),

2p-1. Simulate x1,t+1 ∼ f1(x1|x2,t+1, . . . ,xp,t+1),

The major disadvantage of the reversible scan Gibbs algorithm is that the first p− 1 steps

of the algorithm don’t get used, however, they do guarantee the reversibility of the resulting

chain.

An alternative way to guarantee reversibility of the induced Markov chain is to use

a random scan Gibbs proposed by Liu et al. (1995), however, it was also suggested by

Metropolis et al. (1953). The most straightforward variant is given by the following

algorithm where Gp is a distribution producing permutations of the integers 1 . . . , p.

1. Generate a permutation σ ∈ Gp

2. Simulate xσ1,t+1 ∼ fσ1
(xσ1

|xj,t, j 6= σ1);

p+1. Simulate xσp,t+1 ∼ fσp
(xσp

|xj,t, j 6= σp).

Alternative algorithms have been suggested in the literature, where at each step only

one of the conditional distributions is updated and also have a potentially non–uniform

distribution G. This modification allows more frequent updates for conditional distributions

that are more difficult to sample from.

Geman and Geman (1984) introduced the Gibbs sampler to the image reconstruction

literature, though its roots can be traced to the Hammersley-Clifford theorem, which states

that the joint distribution is completely determined by its full conditional distributions. The

theorem can be stated as follows

Theorem 3.3 (Hammersley—Clifford). Under the positivity condition, the joint distribution

g satisfies

g(y1, . . . , yp) ∝
p∏

j=1

glj(ylj |yl1 , . . . , ylj−1, y
′

lj+1
, . . . , y

′

lp
)

g
′

lj
(y

′

lj
|yl1 , . . . , ylj−1, y

′

lj+1
, . . . , y

′

lp
)

for every permutation l on {1, 2, . . . , p} and every y
′ ∈ Y .



58

Here positivity is defined as follows

Definition 3.5. Let (Y1, . . . , Yp) ∼ g(y1, . . . , yp) and let g(i) denotes the marginal distri-

bution of Yi. If g(i)(yi) > 0 for every i = 1, . . . , p, implies that g(y1, . . . , yp) > 0, then g

satisfies the positivity condition.

Robert and Casella (2004) give a proof when the positivity condition holds. Besag (1994)

and subsequently Hobert et al. (1997) give other versions of the theorem under more general

conditions.

3.6 Metropolis–Hastings–Within–Gibbs

Chib and Greenberg (1995) draw attention to the fact that Hastings (1970) introduces

the so called “block–at–a-time” or “variable–at–a–time” variants of his extension to the

Metropolis algorithm. In essence, the original proposal consisted of updating the target

conditionally rather than all the variables at once. The Gibbs sampler is a variant of this

algorithm, where the full conditionals are actually available to sample directly. The so

called Metropolis–Hastings–within–Gibbs (MHWG) algorithm is also a special case of this

algorithm where some of the full conditionals are available to sample directly and others are

only available to be updated by the Metropolis–Hastings algorithm. Chib and Greenberg

(1995) argue that we should revert to the original terminology in Hastings (1970), however,

we shall continue to used the the flawed terminology as it seems to have taken hold in the

literature.

Müller (1991, 1993) proposed doing a Metropolis–Hastings step for each of the difficult

conditional distributions. The MHWG algorithm is virtually identical to the Gibbs sampler

already described. However, when the full conditional distribution isn’t available to be

sampled a Metropolis–Hastings step is used. This isn’t the only approach, Gilks and Wild

(1992) introduce adaptive rejection sampling for difficult to sample conditional distributions.

This approach and its improvements are implemented in WinBUGS (Lunn et al., 2000).

The MH–within–Gibbs algorithm is given by the following

0. For i = 1, . . . , p given (x1,t+1, . . . ,xi−1,t+1,xi+1,t, . . . ,xp,t):

1. Generate yi ∼ qi(yi|x1,t+1, . . . ,xi−1,t+1,xi+1,t, . . . ,xp,t)
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2.

xi,t+1 =





yi with probability ρi

xi,t with probability 1 − ρi

where

ρi = 1 ∧






fi(yi|x1,t+1,...,...,xi−1,t+1,xi+1,t,...,xp,t)

qi(yi|x1,t+1,...,xi−1,t+1,xi+1,t,...,xp,t)

fi(xi,t|x1,t+1,...,...,xi−1,t+1,xi+1,t,...,xp,t)

qi(xi,t|x1,t+1,...,xi−1,t+1,xi+1,t,...,xp,t)






The algorithm proceeds doing a single step of the Metropolis–Hastings algorithm for each

full conditional that is difficult to sample from directly. The Metropolis–Hastings step isn’t

approximating the full conditional distribution fi(xi|x−i), in fact, only a single step is used.

Further details are given in Robert and Casella (2004) and Chen and Schmeiser (1998).

Müller (1993) suggests a further modification of the MHWG algorithm by running

a single acceptance step after each of the p conditionals are simulated. This can be

more time consuming as the full update may be rejected, however, it can be written as a

simple Metropolis–Hastings algorithm. It also has the added advantage of producing a

global approximation to the distribution of interest rather than local approximations of the

conditional distributions.

3.6.1 Theoretical Details

The theoretical details of MCMC algorithms have received considerable attention over the

past 20 years and it is beyond the scope of the current work to summarize these results.

Rather we give some brief results and direct the reader to several classic references.

For many Markov chains much effort is spent deriving the stationary distribution of the

Markov chain induced by a given transition kernel. In MCMC applications, by contrast,

the stationary distribution is known and we construct transition kernels, that have desirable

properties. The transition kernels are typically chosen from some small subset of algo-

rithms that we have discussed. The challenge in MCMC applications is showing that the

Markov chain induced by a particular kernel has certain convergence properties. The most

important being, an ergodic theorem and a central limit theorem. The ergodic theorem is a

generalization of the law of large numbers to dependence situations, and guarantees the

convergence of sample averages to the required expectations.

Meyn and Tweedie (2009) and Nummelin (1984, 2002) give many of the required

technical conditions and Robert and Casella (2004) summarize the area effectively and
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gives numerous references to other technical results. Numerous other authors give results

for particular cases, most notably for our purposes, Roberts and Rosenthal (2006) show

that Metropolis–within–Gibbs algorithms are Harris recurrent, a key ingredient to establish

the various forms of ergodicity.

3.7 Adaptive MCMC

Examples 3.1 and 3.2 showed quite clearly that the properties of Markov chain resulting

from a given Metropolis–Hastings algorithm depend greatly on having chosen the correct

scale for the proposal distribution. The choice of the correct scale can become quite

daunting in higher dimensional problems as there are a number of scale parameters to

choose. Roberts and Rosenthal (2001) showed that the optimal scale factors depend on

the shape of the target distribution. Effectively, a posterior modal approximation is carried

out and the resulting Hessian is used to approximate the covariance matrix. However,

modal approximations can be difficult, if not impossible, to carry out in high–dimensional

problems.

Adaptive algorithms, in other words algorithms that learn from the past states they have

visited, have a relatively long history with the first ones suggested by Gelfand and Sahu

(1994); Gilks et al. (1994). Gilks et al. (1998) considered updating the Metropolis–Hastings

at the regeneration times of the chain to avoid the potential problem of updating too

frequently as Gelfand and Sahu (1994) caution against. Regeneration times, for discrete

state spaces, occur when the chain returns to a state it has already visited. At the regeneration

times the Markov chain can be thought of as starting over probabilistically. Nummelin

(1984) and numerous others have generalized the concept of regeneration times to general

state spaces, however, we did not pursue this method as they become difficult to find in high

dimensional problems. Gilks et al. (1998) give several examples illustrating the theoretical

basis of their method.

The two articles by Haario et al. (1999, 2001) sparked considerable interest in the area of

adaptive algorithms. They considered random walk Metropolis–Hastings algorithms with

multivariate normal proposal distributions, thus, the proposal distribution is completely

determined by the covariance matrix. They suggested that the proposal covariance could

be updated using the past values of the states. On the surface, this violates the Markovian

nature of the chain, as the proposal variance depends on the complete past and not just the
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most immediate past.

Andrieu and Thoms (2008) give an excellent review of the theory and algorithms for

adaptive MCMC and Roberts and Rosenthal (2009) give several examples of adaptive

MCMC. To guarantee the asymptotically validity of adaptive algorithms a number of tech-

nical conditions must be met. The most important is the so called vanishing or diminishing

adaption condition. Specifically, as stated in Roberts and Rosenthal (2009), the diminishing

adaption condition is

lim
n→∞

sup
x∈X

||KΓn+1
(x, .) − KΓn

|| = 0 in probability

where ||.|| represents the total variance norm, X is the state space and KΓn
is the transition

kernel from Xn to Xn+1, with the proviso that each of the transition kernels has the

stationary distribution of interest. Note that KΓn
depends on the past states of the Markov

chain. The diminishing adaption condition states that eventually the algorithm does not

depend on the immediate past. Essentially, the adaptive algorithm behaves as though it was

generated from a non-adaptive algorithm in the limit, roughly speaking.

Andrieu and Thoms (2008) give several adaptive algorithms which are variants of the

Haario et al. (2001) adaptive metropolis algorithm. To fix ideas consider the following

algorithm

Algorithm 1 Base Adaptive Algorithm

Input: Initialize X0 µ0 and Σ0

Output: An adaptive Markov chain Xi, i = 1, . . . , n
1: At iteration i + 1, given Xi, µi and Σi

2: Sample Xi+1 ∼ qSRWM
µi,Σi

(Xi, .)
3: Update

µi+1 = µi + γi+1 (Xi − µi)

Σi+1 = Σi + γi+1

(
(Xi+1 − µi)(Xi+1 − µi)

′ − Σi

)

Andrieu and Thoms (2008) give guidelines for how one should chose, γi, the amount

of adaption in the algorithm. We shall only discuss the deterministic choice of step sizes,
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specifically they recommend sequences γi that meet the following two conditions

∞∑

i=1

γi = ∞

and ∞∑

i=1

γ1+λ
i < ∞

for some λ > 0. That is, the sequence should go to zero, but not too fast. They state that

the first condition ensures that any point of Θ can be reached while the second ensures that

the noise is contained and does not prevent convergence of the algorithm. They suggest

using γi = C/iα for α ∈ [(1 + λ)−1, 1]. We follow their advice as well as advice given in

Andrieu and Robert (2001) and chose α = 0.7, however, very little guidance is given on

the choice of the constant C, and take it as 1.

Roberts and Rosenthal (2009) suggest using the following adaptive algorithm, which

is more in line with the original proposal of Haario et al. (2001). Use this proposal when

n ≤ 2d

Qn(x, .)N(x, (0.1)2Id/d)

and the following when m > 2d

Qn(x, .)(1 − β)N(x, 2.382Σn/d) + βN(x, (0.1)2Id/d).

Σn is then updated using recursions very similar to algorithm 1 with γi+1 = 1
n+1

.

We give details of the adaptive algorithm used in the application chapter 6.

3.8 Convergence Diagnostics

A key aspect of any Markov Chain Monte Carlo run is determining if the chain has reached

its stationary distribution and whether therefore one can use the samples of the chain as

samples from the desired posterior distribution. As discussed in the previous chapter, there

are several theoretical results that show that the MCMC’s are ergodic and have central limit

theorems. However, these methods are typically very conservative, and the conditions for

the theorems are difficult to establish with reasonably complex models.
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There are numerous methods that authors have proposed to assess the empirical con-

vergence of MCMC output. However, they all leave us in an unsatisfactory position, in

that, they can only tell us if the chain has not converged but not whether it actually has

converged.

There are well over 30 diagnostic tests that have been suggested since the early 1980’s.

Note some methods were originally employed for other purposes, which were discovered

before the explosion of MCMC methods, then found new uses in the MCMC literature.

Additionally, there have been at least three review articles: Cowles and Carlin (1996),

followed by Brooks and Roberts (1998) and most recently Mengersen et al. (1999). Robert

and Casella (2004) include a comprehensive review chapter in their book on Monte Carlo

methods. We do not attempt to conduct another review, however, we do propose a new

method of assessing convergence in the next chapter based on evolutionary spectra theory

and therefore present some of the basic information on empirical convergence diagnostics.

Robert and Casella (2004) categorize the convergence diagnostics into two broad cat-

egories: monitoring the convergence to the stationary distribution and monitoring the

convergence of averages. Essentially the first class of methods considers when the chain

has forgotten its initial conditions and has reached the stationary distribution. The second

aspects considers how long we should run the chain once we have reached the stationary

distribution to get reasonably good estimates of posterior moments, for example. Of course,

this broad generalization is a gross simplification of the individual methods.

The test we propose, in the next chapter, would naturally fit in the first category, that is,

determining if there is any evidence that the chain has not reached its stationary distribution

as yet. In general these methods use time series based methods to determine if there is

any evidence that the chain has not reached its stationary distribution. However, other

methods are based on renewal theory and small sets which can be difficult to implement

in large dimensional problems, as we consider here. Other methods are based on distance

calculations but these are also difficult to implement in practice. One method that stands out

is the so called missing mass method (Robert and Casella, 2004), which in theory, is ideally

what we should strive for, however, it is also difficult to implement with large dimensional

problems.

The second class of estimates are also useful and we employed several of the standard

methods available in the R package, CODA (Plummer et al., 2006) to assess the convergence
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of averages.



CHAPTER 4

A TEST FOR STATIONARITY:

ASSESSING MCMC CONVERGENCE
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4.1 Univariate Test of Stationarity

Priestley and Subba Rao (1969) proposed a test for stationarity of a time series employing

the so called evolutionary spectrum. Subba Rao and Tong (1972) consider a variation of this

test for time–dependence of the transfer function in open loop systems. We propose using

this test for monitoring the convergence of MCMC output to determine if the stationarity

distribution of the chain has been reached. We also propose a multivariate generalization of

the test for monitoring several parameters at once.

We begin with a short review of stationarity and spectral representations, taken from

Priestley (1988), for more details the reader is referred to classic texts of Priestley (1981)

or Brillinger (1981).

Let {X(t)} be a real valued process (time series) measured at discrete time intervals

(t = 0,±1,±2, . . .). For example, {X(t)} could represent the hourly temperature measured

at a recording station. Let µ(t) represent the mean of the process at time t, that is,

µ(t) = E[X(t)]

where the expectation is across all potential realizations of the process at time t. Similarly,

we can define the variance of the process

σ2(t) = E[(X(t) − µ(t))2]

and the auto–covariance function

cXX(t + u, t) = E[(X(t + u) − µ(t + u))(X(t) − µ(t))].

With a single realization of the process, as is typical in most applications, we don’t have

enough information to estimate the time varying properties of the process. Thus, we make

some further restrictions on the process, specifically consider the following definition:

Definition 4.1 (Strict Stationarity). The process {X(t)} is to be strictly(completely) station-

ary if, for any admissible t1, t2, . . . , tn and any k, the joint distribution of {X(t1), X(t2), . . . , X(tn)}
is the same as the joint probability distribution of {X(t1 + k), X(t2 + k), . . . , X(tn + k)}.

A weaker form of stationary, which doesn’t require equivalence in distribution is given

in the following definition:
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Definition 4.2 (Second Order Stationarity). The process {X(t)} is said to be second order

stationary (Weakly Stationary) if, for any admissible t1, t2, . . . , tn and any k, all the joint

second order moments of {X(t1), X(t2), . . . , X(tn)} exist and equal the corresponding

moments of {X(t1 + k), X(t2 + k), . . . , X(tn + k)} .

Or equivalently:

• µ(t) = µ ∀t,

• σ2(t) = σ2 ∀t,

• cXX(t + u, t) = cXX(u) ∀t.

In other words,none of the first or second order moments of the distribution depend on the

time origin.

Note that weakly stationary processes are not necessarily strictly stationary, however, the

reverse is true.

We can establish the following properties of the auto–covariance function, cXX(u), of a

second order stationary process

• cXX(0) = σ2.

• |cXX(u)| ≤ cXX(0),∀u.

• cXX(u) = cXX(−u), provided {X(t)} is real valued.

• cXX(u) is positive semi–definite meaning that for any set of points t1, t2, . . . , tn and

all real z1, z2, . . . , zn
n∑

r=1

n∑

s=1

cXX(tr − ts)zrzs ≥ 0.

4.2 Spectral Analysis of Univariate Process

Brillinger (1981) defines the power spectral density of a weakly stationary process {X(t)}
with auto–covariance function cXX(u) as follows:
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Definition 4.3. The power spectral density function, denoted by h(ω) is defined as the

discrete Fourier transform of the auto-covariance function cXX(u) as follows

hXX(ω) =
1

2π

∞∑

u=−∞
e−iωucXX(u), −π ≤ ω ≤ π,

provided that
∑∞

u=−∞ |cXX(u)| < ∞.

Priestley (1981) defines the power spectral density to be

h(ω) = lim
T→∞

[
E

{ |GT (ω)|2
2T

}]

where,

GT (ω) =
1√
2π

T∑

t=−T

X(t)e−iωt

GT (ω) is the discrete Fourier transform of the process X(t). Priestley (1981) gives an

excellent interpretation of the spectral density h(ω)dω as the average (over all realizations)

of the contribution of the total power from components in X(t) with frequencies between

ω and ω + dω.

Also, consider the inverse Fourier Transform of hXX(ω), that is, we can write

cXX(u) =

∫ π

π

eiωuhXX(ω)dω u = 0,±1,±2, . . .

Thus, the auto–covariance function of a stationary process can be written as the Fourier

transform of the power spectral density function h(ω).

The Wiener–Khintchine theorem (Priestley, 1981) allows one to write cXX(u) as a

generalized Fourier transform, even when cXX(u) does not decay fast enough for h(ω) to

exist, as follows:

cXX(u) =

∫ π

−π

eiωudH(ω), (4.1)

where H(ω) is a non–decreasing function with H(−π) = 0, H(π) = σ2 and is called the

integrated spectrum. If we invert the above equation (Priestley, 1988), we have:

H(ω) = σ2

(
ω + π

2π

)
+

1

2π

[ −1∑

u=−∞
+

∞∑

u=1

]
e−iuω

−iu
cXX(u).
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When h(ω) exists we have dH(ω) = h(ω)dω and

H(ω) =

∫ ω

−π

h(θ)dθ

There is a spectral representation for {X(t)}, as for cXX(u) given in (4.1), when E[X(t)] =

0, given by

X(t) =

∫ π

−π

eiωtdZ(ω), t = 0,±1,±2, . . . , (4.2)

where Z(ω) is a (complex–valued) stochastic process with orthogonal increments, i.e.

E[dZ(ω)dZ∗(ω
′

)] = 0, ω 6= ω
′

, (4.3)

where (*) denotes complex conjugate.

It is instructive to consider the following. Define the auto–covariance function for

complex–valued series by

cXX(u) = E[X(t)∗X(t + u)].

and substitute the spectral representation for X(t) (equation 4.2) into the above definition,

cXX(u) = E

[∫ π

−π

∫ π

−π

e−iωteiω(t+u)dZ∗(ω)dZ(ω
′

)

]

=

∫ π

−π

∫ π

−π

e−iωteiω
′
(t+u)E

[
dZ∗(ω)dZ(ω

′

)
]
.

Since, {X(t)} is a stationary process, cXX(u) is a function of u only, thus the right hand

side must be a function of u only. This is guaranteed by the condition given in equation 4.3.

Thus, we now have

cXX(u) =

∫ π

−π

eiωuE [dZ∗(ω)dZ(ω)] ,

which gives the following relationship between dZ(ω) and H(ω) by equating the above

equation with equation (4.1) as given below

E[|dZ(ω)|2] = dH(ω) (4.4)

Equation (4.2) is known as the spectral representation of {X(t)} (see Brillinger, 1981;
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Priestley, 1981, for more details). The spectral representation is a key result in that any

stationary discrete parameter process {X(t)} can be represented as a “sum” of sines and

cosines over a continuous range of frequencies (−π, π), with random amplitudes, |dZ(ω)|,
and phases, arg{dZ(ω)}. Equation (4.4) provides us with a rough physical interpretation

of dH(ω) as follows: dH(ω) is the mean–squared amplitude of the component of {X(t)}
with frequency ω. If we think of {X(t)} as representing a stationary physical process, H(ω)

is a measure of the average total power, where the averaging is done across realizations of

the process. Additionally, dH(ω)(= h(ω)dω) represents the average contribution to the

total power from the components of {X(t)} with frequencies between ω, ω + dω. Thus,

h(ω), the power spectral density, represents the distribution of power over frequency.

4.2.1 Estimation of Univariate Spectra

Given a sample record of our discrete parameter process {X(t)}, measured at time points

t = 0, . . . , T − 1, how does one estimate the power spectral density? Consider the finite

Fourier transform, d
(T )
X (ω), given by

d
(T )
X (ω) =

T−1∑

t=0

e−iωtX(t).

Theorem 4.4.2 of Brillinger (1981) gives the following asymptotic sampling properties of

d
(T )
X (ω)

NC
1 (0, 2πThXX(ω)) if ω 6= 0 (mod π)

N1(Tµ, 2πThXX(ω)) if ω = 0,±2π, . . .

N1(0, 2πThXX(ω)) if ω = ±π,±, 3π, . . .

where µ is the mean of the series, NC
1 denotes a complex valued normal distribution and

N1 indicates a one dimensional normal distribution. This leads us to consider the following

estimate of the spectrum hXX(ω), known as the periodogram

I
(T )
XX(ω) =

1

2πT
|d(T )

X (ω)|2 (4.5)

=
1

2πT
|

T−1∑

t=0

e−iωtX(t)|2 (4.6)
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Brillinger (1981) shows that

E[I
(T )
XX(ω)] = hxx(ω) +

1

2πT

[
sinTω/2

sinω/2

]
µ2

x + O(T−1)

where the O(T−1) term is uniform in ω. Thus as T → ∞ the second and third terms vanish,

leading to the result that I
(T )
XX(ω) is asymptotically unbiased, provided ω 6= 0 (mod 2π)

Consider the following theorem given in Brillinger (1981)

Theorem 4.1. Let X(t), t = 0,±1,±2, . . . , be a real valued series and let IT
XX(ω) be the

periodogram defined by equation (4.5). Let r, s be integers with r, s, r±s 6= 0 (mod T ).Let

ω = 2πr/T , λ = 2πs/T . Then

var[IT
XX(ω)] = hXX(ω)2 + O(T−1)

cov[IT
XX(ω), IT

XX(λ)] = O(T−1)

where the O(T−1) terms are uniform in ω, λ of the indicated form.

Although, the periodogram is asymptotically unbiased, it is not consistent as the variance

of the estimator does not vanish as T → ∞. Thus, we cannot improve our estimates by

taking a larger sample of the time series.

Also, of importance is the following theorem from Brillinger (1981)

Theorem 4.2. Let X(t), t = 0,±1,±2, . . . , be a real valued series. Let sj(T ) be an

integer with ωj(T ) = 2πsj(T )/T tending to ωj as T → ∞ for j = 1, . . . , J . Suppose

2ωj(T ), ωj(T ) ± ωk(T ) 6= 0 (mod 2π) for 1 ≤ j < k ≤ J and T = 1, 2, . . .. Let

IT
XX(ω) be the periodogram defined by equation (4.5). Then IT

XX(ωj(T )), j = 1, . . . , J are

asymptotically independent hXX(ωj)χ
2
2/2 variates. Also, if ω = ±π,±3π, . . ., IT

XX(ω) is

asymptotically hXX(ω)χ2
1 independently of the previous variates.

Following Brillinger (1981), let s(T ) be an integer with 2πs(T )/T near the frequency

of interest ω. We have by the previous theorem, that the (2m + 1) adjacent periodogram

ordinates IT
XX(2π(s(T ) + j)/T ), j = 0,±1, . . . ,±m are approximately independent

hXX(ω)χ2
2/2 variates, if 2[s(T ) + j] 6= 0 (mod T ), j = 1,±1, . . . ,±m. Thus, these

(2m+1) values all provide estimates of hXX(ω), giving rise to an estimator of the following
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form

h
(T )
XX(ω) = (2m + 1)−1

m∑

j=−m

IT
XX

(
2π[s(T ) + j]

T

)
if ω 6= 0 (mod π).

We also need to consider the following special cases. Firstly, consider ω = 0,±2π,±4π, . . .

or if ω = 0,±π,±3π, . . . and T is even

h
(T )
XX(ω) = m−1

m∑

j=1

IT
XX

(
ω +

2π + j

T

)
,

and finally if ω = 0,±π,±3π, . . . and T is odd,

h
(T )
XX(ω) = m−1

m∑

j=1

IT
XX

(
ω − π

T
+

2π + j

T

)
.

Brillinger (1981) shows that this estimate is also asymptotically unbiased and more impor-

tantly, the asymptotic variance of our estimator is given by

var
(
h

(T )
XX(ω)

)
=

hXX(ω)2

2m + 1
+ O(T−1) if ω 6= 0 (mod π)

=
hXX(ω)2

m
+ O(T−1) if ω ≡ 0 (mod π)

and the covariance between spectral ordinates is asymptotically zero. Also, note that if

we look at the variance of the log spectral estimate Brillinger (1981) shows via the delta

method that

var
(
log h

(T )
XX(ω)

)
=

1

2m + 1
if ω 6= 0 (mod π)

Brillinger (1981) considers the general class of consistent estimators

h
(T )
XX(ω) =

2π

T

T−1∑

s=1

W (T )

(
ω − 2πs

T

)
I

(T )
XX

(
2πs

T

)

where W (T )(α),−∞ < α < ∞, T = 0, 1, 2, . . . is a family of weight functions that weight

2mT + 1 periodogram ordinates in the vicinity of ω. In order for variance of this estimator

to diminish as T → ∞, we also require mt → ∞. That is, we require an increasing number

of periodogram ordinates to be averaged as T → ∞. However, to remain unbiased, we also
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require mT /T → 0 as T → ∞.

Brillinger (1981) considers a sequence of scale parameters BT , T = 1, 2, . . . with the

properties BT > 0, BT → 0, BT T → ∞ as T → ∞ and sets

W (T )(α) =
∞∑

j=−∞
B−1

T W (B−1
T [α + 2πj]) −∞ < α < ∞,

where W (β),−∞ < β < ∞ is a fixed function satisfying

∫ ∞

−∞
W (β)dβ = 1

and ∫ ∞

−∞
|W (β)|dβ < ∞

If W (β) is zero for |β| > 2π, then we can see that the estimate is a weighted average of

2BT T + 1 periodogram ordinates in the range (ω − 2πBT , ω + 2πBT ) and we make the

connection mT = BT T .

Various choices for window, W (T )(α), are available such as the Bartlett, Parzen, Tukey,

Tukey–Hamming to name a few. However, for our purposes we consider the Daniel window,

which weights each of the 2m + 1 periodogram ordinates equally.

Tapering and pre–whitening are methods that are routinely used to improve spectral

estimates, the reader is referred to Brillinger (1981) and Bloomfield (2000); Priestley (1981)

for excellent descriptions. Pre-whitening consists, typically, of finding best fitting auto-

regressive process (the order chosen by AIC) and the spectrum of the residuals from the

best fitting auto–regressive is estimated using the methods already described. The spectral

density of an auto–regressive process is completely determined by its coefficients. And

using the properties of the spectral representation of stationary time series the “recolored”

spectrum can then be reconstructed.

Tapering is a method to reduce leakage of the power from one frequency band to another.

This happens when the spectra has several peaks and through the averaging process power

from one of the peaks tends to leak into neighboring frequency bands. The split cosine bell
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window is the most commonly used taper and consists of the following

wp(x) =






1
2
(1 − cos 2πx/p), 0 ≤ x < p/2,

1, p/2 ≤ x < 1 − p/2,

1
2
(1 − cos 2πx/p), 1 − p/2 ≤ x ≤ 1

where x = t/T and p is the proportion of data that is tapered, we use p = 10%. Brillinger

(1981); Bloomfield (2000) give excellent descriptions of tapering and its effects on the

asymptotic variance of the resulting estimator. Tapers are also known as data windows

which we employ in the estimation of the evolutionary spectra given below.

4.3 Evolutionary Spectra

Spectral theory decomposes stationary processes into combinations of sines and cosines.

These functions also give us the physical concepts of frequency and amplitude or energy.

However, the complex exponentials are themselves stationary and it is not surprising that

these functions do not allow one to represent a non–stationary process. Thus the question

becomes, is there a similar concept to the spectral representation theorem for non–stationary

processes? Priestley (1965) introduces the concept of evolutionary spectra, which extends

the spectral ideas to non–stationary processes, by using different non–stationary basis

functions. Priestley (1996) discusses the relevance of an alternative set of basis functions to

those considered here, namely wavelets.

Following Priestley (1988), let {X(t), t = 0,±1,±2, . . .} be a discrete parameter

stochastic process, with

E[X(t)] = 0

E[|X(t)|2] < ∞,∀t

cXX(s, t) = E[X∗(s)X(t)]

If cXX(s, t) is function of u = |s− t| only, then we have representations as before given by

equations (4.1) and (4.2). If this is not the case, then these representations do not apply,

however, as given in Priestley (1981), we can represent cXX(s, t) by a class of expansions

called “general orthogonal expansions”, provided the usual complex exponentials are
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replaced by a more general family of functions {φt(ω)}.

Let us restrict our attention to non–stationary processes that have covariance functions

cXX(s, t) that can be represented in the following way,

cXX(s, t) =

∫ π

π

φ∗
s(ω)φt(ω)dµ(ω) (4.7)

where the measure dµ(ω) is defined on the real line.

For the variance of {X(t)} to be finite, φt(ω) must be mean squared integrable with

respect to µ for each t. Priestley (1981) shows that by the general orthogonal expansion

theory, when the representation cXX(s, t) given by equation (4.7), the underlying process

{X(t)} has a representation given by

X(t) =

∫ π

−π

φt(ω)dZ(ω)

where Z(ω) is an orthogonal increment process with E[|dZ(ω)|2] = dµ(ω). Thus the

measure µ(ω) plays an analogous role as the integrated spectrum for stationary processes.

We further restrict our attention to families φt(ω) that have the following form

φt(ω) = At(ω)eiθ(ω)t

where we assume that for a given ω, φt(ω) has a generalized Fourier transform whose

modulus has an absolute maximum at frequency θ(ω) and thus φt(ω) behaves like an

amplitude modulated sine wave. Also, the modulating function At(ω) is assumed to have

an absolute maximum at zero frequency, that is, it is slowly varying. Priestley (1981) calls

φt(ω) an oscillatory function if it can be written as above and if At(ω) is given by

At(ω) =

∫ π

−π

eitθdKω(θ)

with |dKω(θ)| having an absolute maximum at θ = 0. Provided we satisfy some further

technical conditions (see Priestley (1988) ), we can now write,

cXX(s, t) =

∫ π

−π

A∗
s(ω)At(ω)eiω(t−s)dµ(ω)
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and a spectral representation is given by

X(t) =

∫ π

−π

At(ω)eiωtdZ(ω), t = 0,±1,±2, . . . , (4.8)

where

E
[
|dZ(ω)|2

]
= dµ(ω)

Any process which admits such a representation will be call an oscillatory process.

If {X(t)} admits a representation given in equation (4.8) for the family of functions

given by F = {φt(ω)} = {At(ω)eiωt}, the evolutionary power spectrum at time t with

respect to the family F is

dHt(ω) = |At(ω)|2dµ(ω), −π ≤ ω ≤ π.

If the measure dµ(ω) is absolutely continuous with respect to Lebesgue measure, as we are

assuming throughout, we have

dHt(ω) = ht(ω)dω

where ht(ω), exists for all ω ∈ (−π, π), and is called the evolutionary spectral density

function.

Priestley (1988) goes into detail about the properties of the families, which are not

directly applicable to the current discourse.

4.4 Evolutionary Power Spectra Estimation

For estimation of evolutionary power spectra, Priestley (1965) suggests using a so called

“double–window” technique, which can be described as follows. Let {X(t)}, t = 0, . . . , T−
1 represent a sample from a discrete parameter process. Choose a filter (or window) {g(u)}
which is square summable and normalized such that

2π
∞∑

u=−∞
|g(u)|2 =

∫ π

−π

|Γ(ω)|2dω = 1,
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where,

Γ(ω) =
∞∑

u=−∞
g(u)e−iuω

is the transfer function of the filter {g(u)}. Now, for any given frequency, ω, we define

U(t, ω) =
∞∑

u=−∞
g(u)X(t − u)e−iω(t−u).

this is the complex demodulate of the series {X(t)}, see Bloomfield (2000)

We then choose a second filter (window), wT ′ (t), that satisfies the following conditions

1. wT
′ (t) ≥ 0 ∀t, T

′
,

2. wT ′ (t) decays to zero as |t| → ∞,∀T
′
,

3.
∑∞

t=−∞ wT
′ (t) = 1,∀T

′
,

4.
∑∞

t=−∞ wT
′ , (t)2 < ∞,∀T

′
,

5. there exists a constant C such that

lim
T

′→∞

{
T

′

∫ π

−π

|WT
′ (λ)|2dλ

}
= C,

where

WT
′ (θ) =

∞∑

u=−∞
e−iθtwT

′ (u).

Then we may estimate ht(ω) by

ĥt(ω) =
∞∑

v=−∞
wT ′ (v)|U(t − v, ω)|2.

Priestley (1965) derives the approximate mean of this estimator

E[ĥt(ω)] ≈
∫ π

−π

h̄t(ω + θ)|Γ(θ)|2dθ

where

h̄t(ω + θ) =
∞∑

u=−∞
WT

′ (u)ht−u(ω + θ).
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Priestley (1965) also derives the sampling variance of ĥt(ω)

var(ĥt(ω)) ≈ h̃2
t (ω)

{∫ π

−π

|WT ′ (θ)|2dθ

}{∫ π

−π

|Γ(θ)|4dω

}
(1 + δ0,±π(ω))

where

h̃2
t (ω) =

∑∞
u=−∞ h2

t−u(ω)WT ′ (u)2

∑∞
u=−∞ WT ′ (u)2

,

and

δ0,±π(ω) =





1 if ω = 0 or ω = ±π

0 otherwise

We can further simplify the expression for the variance by making use of the limit given in

assumption 5 above to give.

var(ĥt(ω)) ≈ (C/T
′

)h̃2
t (ω)

{∫ π

−π

|Γ(θ)|4dω

}
ω 6= 0

Priestley and Subba Rao (1969) make one further approximation, by assuming that (i) if the

“bandwidth” of |Γ(θ)|2 is small compared with the “frequency domain bandwidth” of ht(ω)

and (ii) if the “bandwidth” of WT ′ (u) is small compared with the “time–domain bandwidth”

of ht(ω), then it can be shown that

E{ĥt(ω)} ≈ ht(ω)

and

var(ĥt(ω)) ≈ (C/T
′

)h2
t (ω)

{∫ π

−π

|Γ(θ)|4dω

}
ω 6= 0 (4.9)

Priestley and Subba Rao (1969) give the following example of windows {g(u)} and

W
′

T (t) in the continuous parameter process case,

g(u) =






1
2
√

hπ
|u| ≤ h

0 |u| > h
,

and

WT
′ (t) =






1
T

′ , −1
2
T

′ ≤ t ≤ 1
2
T

′
,

0, otherwise
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which are both Daniel windows in the time domain.

Then

Γ(ω) =

∫ h

−h

1

2
√

hπ
e−iωudu

=
1

2
√

hπ

∫ h

−h

e−iωudu

=
1

2
√

hπ

∫ h

−h

[cos ωu − i sin ωu]du

=
sin hω

ω
√

hπ
.

Therefore,

|Γ(ω)|2 =
sin2 hω

πhω2

which corresponds to the Bartlett frequency domain window. Also,

∫ ∞

−∞
|Γ(θ)|4dθ =

∫ ∞

−∞

sin4 hθ

π2h2θ4
dθ

=
1

π2h2

∫ ∞

−∞

sin4 hθ

θ4
dθ

=
2h

3π

where the third line follows from the fact that
∫∞
−∞

sin4x
x4 dx = 2π/3.

Then

WT
′ (λ) =

∫ ∞

−∞
e−iλtwT

′ (t)dt

=
1

T ′

∫ T
′

−T
′
e−iλtdt

=
1

T ′

∫ T
′

−T
′
[cos λt − i sin λt]dt

=
2 sin λT

′

λT ′ ,
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and

lim
T

′→∞

{
T

′

∫ ∞

−∞
WT

′ (λ)dλ

}
= lim

T ′→∞

{
T

′

∫ ∞

−∞

2sin2λT
′

λ2T ′2
dλ

}

= lim
T

′→∞

{
1

T ′

∫ ∞

−∞

2 sin2 λT
′

λ2
dλ

}

= lim
T

′→∞

{
1

T ′2

∫ ∞

−∞

2 sin2 u

(u/T ′)2
du

}

= lim
T

′→∞

{∫ ∞

−∞

2 sin2 u

u2
du

}

=

∫ ∞

−∞

2 sin2 u

u2
du

= 2π.

Plugging these two results into equation (4.9), gives

varĥt(ω) ≈ 4h

3T ′ h
2
t (ω)

Finally, Priestley (1966) gives expressions for the covariance between ĥt1(ω1) and ĥt2(ω2).

However, for our purposes, we just need the following, that states when the covariance will

be approximately 0 when .

• |ω1 ± ω2| ≫ bandwidth of |Γ(ω)|2 or

• |t1 − t2| ≫ “width” of the function WT ′ (u)

Priestley (1981), chapter 11, states that if WT
′ (u) has a rectangular form, then the

double window technique is essentially equivalent to the “averaging of time blocks”. For

computational ease, we implemented the evolutionary spectral estimation in this manner.

Specifically, we take non–overlapping blocks in the time domain and apply the spectral

estimation methods mentioned in the subsection 4.2.1.

4.4.1 Form of the Test for Stationarity

Priestley and Subba Rao (1969) propose a test of stationarity based on the evolutionary

spectral ideas presented in the previous section. The details of the test for a single time

series are developed in the sequel and we will also generalize the test to multiple time series

in the following section.
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Specifically, let X(t) denote the potentially non–stationary series of interest. We assume

it comes from an oscillatory process as developed in section 4.3. Let ht(ω) denote the

evolutionary spectral density of the given time series and denote the estimate of this spectral

density by ĥt(ω). As noted in Jenkins and Priestley (1957), the logarithmic transformation

tends to stabilize the variance of the spectral estimates for a stationary process. We use this

fact here and apply it to the locally stationary process.

We now let

Yt(ω) = loge ĥt(ω).

Applying the delta method, it follows that

E[Yt(ω)] ≈ loge ht(ω)

and

varYt(ω) = σ2(ω 6= 0, π)

where

σ2 = (C/T
′

)

{∫ ∞

∞
|Γ(θ)|4dθ

}

which does not depend on ω or t.

Consider writing the above in a slightly different form as follows,

Yt(ω) = loge ht(ω) + ǫt(ω)

where

E[ǫt(ω)] ∼ 0 ∀t, ω

var[ǫt(ω)] ∼ σ2 ∀t and ω 6= 0, π

Now, assume that we have estimated the evolutionary spectrum ht(ω), by computing

ĥt(ω) from a sample from t = 0, . . . , T − 1. Now choose a set of times t1, t2, . . . , tI and

frequencies ω1, ω2, . . . , ωJ which satisfy the conditions for zero covariance mentioned in
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the previous section. Now, if we let

Yij = Yti(ωj)

fij = hti(ωj)

ǫij = ǫti(ωj) i = 1, . . . , I, j = 1, . . . , J,

we have a more traditional two–way analysis of variance model,

Yij = fij + ǫij, i = 1, . . . , I, j = 1, . . . , J.

Priestley and Subba Rao (1969) note that only the first two moments of the process have

been used, however, they argue heuristically that the logarithmic transformation also makes

the distribution approximately normal for stationary series and argue that a similar result

should hold for the estimator ĥt(ω), at least approximately. They use this argument to

justify that ǫij has an approximately normal distribution. With this assumption the above

two–way analysis of variance model is now complete with the the error distribution assumed

to be approximately normal. Note that since the sampling variances ĥt(0) and ĥt(π) are

equal to 2σ2, they should be omitted from the choice of frequencies, or an adjustment must

be made to the usual analysis of variance.

Finally, the two–way analysis of variance is written more traditionally as

M : Yij = µ + αi + βj + γij + ǫij i = 1, . . . , I, j = 1, . . . , J.

Now, consider a stationary process {X(t)}. We know that the spectral density function

does not depend on time t, therefore

E[loge ĥt(ω)] ∼ loge h(ω)

Thus, the model for this process would be

M1 : Yij = µ + βj + ǫij i = 1, . . . , I, j = 1, . . . , J.

A comparison of models M and M1 gives a test for stationarity of a process {X(t)}.
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As a further test, consider the following model

M2 : Yij = µ + αi + ǫij i = 1, . . . , I, j = 1, . . . , J.

If we compare this to model M then we have a test for complete randomness, that is, a test

that determines whether or not the spectra differs across frequency.

It is instructive to consider the interpretation of the interaction term γij . Consider the

following model

M3 : Yij = µ + αi + βj + ǫij i = 1, . . . , I, j = 1, . . . , J,

where {αi} and {βj} are the main effects of frequency and time respectively. This is a

model which on the log scale is additive in terms of both frequency and time. Thus, we

have

E[Yij] = µ + αi + βj

loge ht(ω) = µ + αi + βj

ht(ω) = exp (µ + αi + βj)

ht(ω) = c2
t h(ω)

for some functions c(t) and h(ω). Priestley and Subba Rao (1969) state that if ht(ω) is of

the form given above, then {X(t)} must be of the form

X(t) = c(t)Xo(t)

where Xo(t) is a stationary process with spectral density function h(ω). Such processes

are known as uniformly modulated processes (Priestley, 1965). Therefore, the test for

interaction corresponds to a test for whether or not the process under consideration is a

uniformly modulated process.

To perform the tests mentioned above we construct the analysis of variance given in table

4.1 where as usual, the means are defined by
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Item Degrees of Freedom Sum of Squares

Times I − 1 SST = J
∑I

i=1(Ȳi. − Ȳ..)
2

Freqs J − 1 SSF = I
∑J

j=1(Ȳ.j − Ȳ..)
2

Int+Res (I − 1)(J − 1) SSI+R =
∑I

i=1

∑J
j=1(Yij − Ȳi. − Ȳ.j + Ȳ..)

2

Total IJ − 1 SS0 =
∑I

i=1

∑J
j=1(Yij − Ȳ..)

2

Table 4.1: Frequency by time analysis of variance

Ȳ.. =
1

IJ

I∑

i=1

J∑

j=1

Yij,

Ȳi. =
1

J

J∑

j=1

Yij,

Ȳ.j =
1

I

J∑

i=1

Yij.

Priestley and Subba Rao (1969) then suggest the following testing order, which is

analogous to the usual testing that is done in analysis of variance, with the caveat that σ2 is

known, and hence significance results are compared to χ2 rather than F distributions.

1. First determine if the process is uniformly modulated, that is, does γij = 0∀i, j. This

is done using the following test statistic SSI+R/σ2 ∼ χ(I−1)(J−1)2 . If this result is

significant, we conclude the process is non–stationary and non–uniformly modulated

and would then stop at this point.

2. If the result of step 1, is insignificant, we can conclude the process is uniformly

modulated and then test for stationarity by testing βj = 0, ∀j, using the test statistic

SST /σ2 ∼ χ2
(I−1).

The comparison of models M and M1 is accomplished by the following test statistic.

(SST + SSI+R)/σ2 ∼ χ2
(I−1)J .
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4.5 Simulation Study

In this section we describe the performance of the univariate test of stationarity proposed

by Priestley and Subba Rao (1969) and described in the previous sections. Specifically, we

examine the Neyman–Pearson properties of the test, that is, the type I error rate for known

stationary processes and the power of the test under models that are non–stationary. Ten

thousand realizations of the following models were generated for t = 0, . . . , 99, 999.

• Gaussian White Noise

X(t) = ǫ(t), ǫt ∼ N(0, σ2
W ),

where σ2
W = 1. The spectral density given by

hXX(ω) =
σ2

W

2π

• Four auto–regressive order one models

X(t) − φX(t − 1) = ǫ(t), ǫt ∼ N(0, σ2
W )

with φ = 0.3, 0.5, 0.7, 0.9. The spectra of each of these series is given by

hXX(ω) =
σ2

W

2π(1 − φ cos ω + φ2)

• An auto–regressive order two model (discussed by Priestley and Subba Rao (1969))

X(t) − 0.8X(t) + 0.4X(t − 2) = ǫ(t), ǫt ∼ N(0, σ2
W ).

The spectra of this series is given by

hXX(ω) =
σ2

X

2π

{
0.792

1.4 − 3.136 cos ω + 2.24 cos2 ω

}

where, σ2
X =

(1+φ2)σ2
W

(1−φ2)(1−φ1+φ2)(1+φ1+φ2)
and φ1 = −0.8 and φ2 = 0.4. For this

particular case, σ2
X = 1.33σ2

W .

The following non–stationary processes were used:
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• Random walk process,

X(t) − X(t − 1) = ǫ(t), ǫt ∼ N(0, σ2
W ).

which corresponds to an auto–regressive model with φ = 1. However, we cannot

simply apply the formula for the spectral density as in this case the auto–covariance

function cXX(s, t) = |t − s|σ2
W does not decay as |t − s| goes to infinity, which is

required.

• uniformly modulated version of the auto–regressive order two series discussed above.

Z(t) = exp

{(
t − 50000

20000
√

2

)2
}

X(t)

The evolutionary spectral density of this series is given by

hZZ(t, ω) = exp

{(
t − 50000

20000
√

2

)2
}

hZZ(ω)

Figure 4.1 gives example time series plots of each of the eight time series. Visually, the

first 6 processes look stationary, while the last 2 are obviously non–stationary, though of

different character.

We employ the time blocking technique to estimate the evolutionary spectra for each

of the eight series considered. The block length was chosen to be 1000 and the length of

the spectral Daniel smoothing window was 101. We chose 5 Fourier frequencies that were

essentially independent according to the previous sections. We also chose to investigate the

impact of pre–whitening, which was done in each block of 1000. That is, the best fitting

auto–regressive model was chosen via AIC and the resulting residuals were subjected to

the usual spectral estimation procedure. The effect of tapering was also investigated by use

of a 10% split cosine bell taper applied at the block level. Finally, the effect of detrending

and demeaning within the block was also considered.

Table 4.2 gives the number of rejections in 10,000 trials of each model. As the effect

of detrending and demeaning has very little effect on the level of the test, the following

discussion applies equally to whether or not they are employed or not. Pre–whitening has

some interesting effects on the level of the test, the effect of time is too liberal while the
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Figure 4.1: Time Series plots for each of the eight simulated series. a) White noise, b)

AR1 (φ = 0.3 ), c) AR1 (φ = 0.5 ), d) AR1 (φ = 0.7 ), e) AR1 (φ = 0.9 ), f) AR2

(φ1 = −0.8, φ2 = 0.4 ) g) AR2 (φ1 = −0.8, φ2 = 0.4 ) uniformly modulated, h) Random

Walk. The scaling on the y–axis is different for each plot.
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Pre Demean=F & Detrend=F Demean=T & Detrend=T

Series Whiten Taper Freq Time Int T+I Freq Time Int T+I

WN N 0 502 693 616 698 606 707 629 716

10% 497 731 579 667 605 732 598 685

Y 0 209 1507 0 0 170 1517 0 0

10% 233 1171 0 0 196 1173 0 0

AR(1) N 0 10000 782 728 875 10000 805 747 895

φ = 0.3 10% 10000 774 667 811 10000 777 671 824

Y 0 10000 1778 0 0 10000 1779 0 0

10% 10000 1343 0 0 10000 1361 0 0

AR(1) N 0 10000 965 1091 1308 10000 986 1113 1317

φ = 0.5 10% 10000 960 999 1198 10000 979 1007 1213

Y 0 10000 1733 0 0 10000 1741 0 0

10% 10000 1380 0 0 10000 1365 0 0

AR(1) N 0 10000 1604 2495 3101 10000 1629 2531 3172

φ = 0.7 10% 10000 1484 2378 2918 10000 1500 2396 2938

Y 0 10000 1744 0 0 10000 1751 0 0

10% 10000 1359 0 0 10000 1367 0 0

AR(1) N 0 10000 7709 9818 9954 10000 7783 9836 9953

φ = 0.9 10% 10000 6565 9817 9930 10000 6528 9809 9933

Y 0 10000 1788 0 0 10000 1794 0 0

10% 10000 1403 0 0 10000 1406 0 0

AR(2) N 0 10000 1598 2253 2828 10000 1630 2314 2890

10% 10000 1467 2056 2574 10000 1471 2111 2624

Y 0 10000 2028 0 0 10000 2066 0 0

10% 10000 1508 0 0 10000 1525 0 0

AR(2) N 0 10000 10000 2343 10000 10000 10000 2382 10000

UM 10% 10000 10000 2173 10000 10000 10000 2198 10000

Y 0 10000 10000 0 10000 10000 10000 0 10000

10% 10000 10000 0 10000 10000 10000 0 10000

RW N 0 10000 10000 10000 10000 10000 10000 10000 10000

10% 10000 10000 10000 10000 10000 10000 10000 10000

Y 0 10000 970 5 21 10000 901 4 20

10% 10000 868 7 15 10000 828 8 23

Table 4.2: The number of rejections in 10,000 trials of the univariate test procedure for

each of the 8 processes described in the text. The factors considered are: pre–whitening,

tapering and detrending/demeaning for each of the 4 factors of the basic model: frequency,

time and their interaction, plus the combined effect of time and interaction.
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test for interaction is too conservative. One possible explanation for this curious effect is

that the order of the auto-regressive model chosen via AIC was very variable. For example,

the following table gives the percentage of time each order was chosen for the white noise

process

order 0 1 2 3 4+

71.33% 11.23% 5.74% 3.43% 8.28%

The maximum order chosen was 30. The performance of the estimation of the order of

the auto–regressive model could be improved if the block length was increased. However,

we must assume that the process is stationary over a longer duration. Priestley (1965, 1966)

make similar observations with regards to the estimation of the evolutionary process by the

double window technique.

There are several other issues associated with pre–whitening, the uncertainty in the

auto–regressive order and the estimation error in the model parameters is not reflected in

the final estimate of the spectrum. Pre–whitening will not be considered further.

In the absence of pre–whitening, the level of the tests for the white noise series is

approximately correct, however, it tends to be slightly liberal. This potentially due to the

delta method to find the variance of the log periodogram, which is only asymptotically

correct. The level of the tests get progressively more liberal as φ → 1, this is not surprising

as the auto-regressive process does tend to exhibit more non–stationary like behaviour as

φ → 1. However, for moderate φ’s the processes are still stationary and should not result in

increased levels.

One particular difficulty with testing for stationarity with auto–regressive processes, is

that the φ parameter does not behave like a a usual effect size. In the sense that, strictly

speaking, all AR(1) processes with φ < 1 are stationary and should not be rejected.

However, once φ = 1 they are non-stationary, thus the power function should in theory be a

step function.

For the two non–stationary processes, the test for Time behaves exactly as it should,

however, for the uniformly modulated process there should not be any evidence of an

interaction, however, the observed level is approximately 22%. Thus, we would mis–

characterize the nature of the non–stationarity.

With the above problems in mind, we propose a slight variation on the previous tests.

The modification is only possible in very specific situations, and isn’t at all practical when



90

Item DF SS MS EMS

Times I − 1 SST SST /(I − 1) σ2 + JK
I−1

∑I
i=1 α2

i

Freqs J − 1 SSF SSF /(J − 1) σ2 + IK
J−1

∑J
j=1 β2

j

Int (I − 1)(J − 1) SSI SSI/(I − 1)(J − 1) σ2 + K
(I−1)(J−1)

∑I
i=1

∑J
j=1 γ2

ij

Res IJ(K-1) SSR SSR/(IJ(K − 1)) σ2

Total IJK − 1 SS0

Table 4.3: Frequency by time analysis of variance with K replicate realizations.

one only has a single realization available. Specifically the modification is aimed at MCMC

users where there are multiple chains available. The variant is considered in the next

section.

4.6 Variant: Multiple Realizations

We consider the following variant of the test considered in the previous sections. Specifically,

assume we have multiple realizations of the process under study available. Using the same

notation as before, we have

M : Yijk = µ + αi + βj + γij + ǫijk i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.

where K is the number of realizations(replicates) available. We generalize the other models

under consideration in the obvious way. We are now led to the following ANOVA table.
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where

SST = JK
I∑

i=1

(Ȳi.. − Ȳ...)
2,

SSF = IK

J∑

j=1

(Ȳ.j. − Ȳ...)
2,

SSI = K

I∑

i=1

J∑

j=1

(Ȳij − Ȳi.. − Ȳ.j. + Ȳ...)
2,

SSR =
I∑

i=1

J∑

j=1

K∑

j=1

(Yijk − Ȳij.)
2,

SS0 =
I∑

i=1

J∑

j=1

K∑

j=1

(Yijk − Ȳ...)
2

The asymptotic variances derived are, of course, large sample results and it is not entirely

clear how large T needs to be for the results to apply. This is compounded in the non–

stationary case as the block size is the determining factor for the sampling results. There

is a trade off between choosing block lengths that are long enough for the large sample

results to apply but on the other hand short enough for the assumption of stationarity to

be reasonable. In the current case, where multiple realizations are available, we can now

separate the interaction from the replication error and hence get an estimate of the variance

which is appropriate for the particular sample of interest. Thus, we now replace the χ2–tests

with the more traditional F–tests used in ANOVA models.

4.6.1 Simulation Study

A very similar simulation study was performed as in the previous section. However, we

only consider the effect of tapering, without pre–whitening and we consider the situation

where we have two realization of each of the processes.

The results of the simulation study are given in Table 4.4. The results clearly show

that having the second realization improves the level of the test, with the exception of the

random walk process. However, if we use tapering the test has much better properties,

rejecting the random walk as being stationary almost 45% of the time. Tapering has the

added benefit of improving the level slightly for all other processes. Also, the power
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Series Taper Freq Time Int T+I

WN 0 501 627 471 513

10% 499 633 481 506

AR(1) 0 10000 618 456 518

φ = 0.3 10% 10000 579 443 481

AR(1) 0 10000 664 480 525

φ = 0.5 10% 10000 640 474 511

AR(1) 0 10000 645 441 488

φ = 0.7 10% 10000 617 469 459

AR(1) 0 10000 943 507 630

φ = 0.9 10% 10000 608 568 617

AR(2) 0 10000 663 446 477

10% 10000 651 450 483

AR(2) 0 10000 10000 428 10000

UM 10% 10000 10000 458 10000

RW 0 10000 10000 0 1931

10% 10000 4052 4447 4492

Table 4.4: The number of rejections in 10,000 trials of the univariate test procedure with

2 replicates for each of the 8 processes described in the text. The effect of tapering is

considered for each of the 4 factors of the basic model: frequency, time and their interaction,

plus the combined effect of time and interaction.

function of the test resembles the idealized step function much more closely than with a

single realization.

In conclusion, the numerical results seem to indicate that having the second realization

and using tapering gives a test for stationarity with approximately the right level.
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4.7 Multivariate Test of Stationarity

This section considers a multivariate extension of the test of stationarity developed by

Priestley and Subba Rao (1969). The outline of this section is very similar to the previous

section, where we will lay out some basic spectral theory for stationary multivariate

processes and then turn our attention to evolutionary spectral methods. We discuss the form

of the multivariate test and present a small simulation study.

Definition 4.4. Suppose we have r discrete parameter processes{X1(t)}, {X2(t)}, . . . ,

{Xr(t)}, t = 0,±1,±2, . . . ,, which we write in vector notation as

{X(t)} = (X1(t), X2(t), . . . , Xr(t)).

We say that X(t) is jointly second order stationary if

• {Xi(t)} for i = 1, . . . r are each univariate stationary processes as defined by

definition (4.2).

• cov(Xi(t), Xj(s)) is a function of |t − s|

Definition 4.5. The auto–covariance cXiXi
(u) and cross–covariance functions cXiXj

(u)

for a vector–valued zero–mean stationary process, {X(t)}, are given by

cXiXi
(u) = cov(Xi(t), Xi(t+u)) = E [Xi(t)Xi(t + u)] , i = 1, . . . , R, u = 0,±1,±2, . . .

and

cXiXj
(u) = cov(Xi(t), Xj(t+u)) = E [Xj(t)Xi(t + u)] , i, j = 1, . . . , R, i 6= j u = 0,±1,±2, . . .

respectively. Note that, cXiXj
(u) means that that j is leading i.

For each, u we can represent the auto–covariance and cross–covariance functions in

matrix form cXX(u) (the covariance matrix)

cXX(u) = [cXiXj
(u)], i = 1, . . . , r, j = 1, . . . , r

that is, the matrix has cXiXj
(u) in the ith row and jth column.
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Assume that for each i,
∑∞

u=−∞ |cXiXi
(u)| < ∞ and for all i and j

∑∞
u=−∞ |cXiXj

(u)| <

∞ we can introduce the univariate spectral density and cross–spectral density functions

respectively as follows:

hXiXi
(ω) =

1

2π

∞∑

u=−∞
e−iωucXiXi

(u), i = 1, . . . , r

hXiXj
(ω) =

1

2π

∞∑

u=−∞
e−iωucXiXj

(u), i, j = 1, . . . , r

The spectral matrix at frequency ω can be defined analogously as hXX(ω) = [hij(ω)], i, j =

1, . . . , r.

In order to simplify the above notation it is more convenient to express the series as a

column vector for each time t as, X(t) = {X1,t, . . . , Xp,t}
′

, and we can then write cXX(u)

as

cXX(u) = E[X(t)∗X(t + u)] (4.10)

where E[X(t)] = 0 and * denotes both complex conjugate and transposition. Thus we can

now write h(ω) more compactly as follows:

hXX(ω) =
1

2π

∞∑

u=−∞
e−iωucXX(u)

and upon inversion we have

cXX(u) =

∫ π

−π

eiωuhXX(ω)dω. (4.11)

Priestley (1988) states the following results:

• c∗XX(u) = cXX(−u) for each u

• h∗
XX(ω) = hXX(ω) for each ω, that is, h(ω) is a Hermitian matrix (the generalization

of a symmetric matrix to complex values)

Now, since each series is stationary with E[X] = 0 we know each exhibits a spectral

representation given by

Xi,t =

∫ π

−π

eiωtdZi(ω) (4.12)
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or in vector form

X(t) =

∫ π

−π

eiωtdZ(ω) (4.13)

where dZ = {dZ1(ω), dZ2(ω), . . . , dZp(ω)}′
.

Now we can substitute equation (4.13) into equation (4.10) to give

cXX(u) = E

[∫ π

−π

∫ π

−π

e−iωteiω
′
(t+u)dZ∗(ω)dZ(ω

′

)

]

=

∫ π

−π

∫ π

−π

e−iωteiω
′
(t+u)E

[
dZ∗(ω)dZ(ω

′

)
]

As with the previous argument for univariate series, the left hand side is a function of u

only, therefore, the right hand must also be a function of u only, and the only that can

happen is if

E
[
dZ∗(ω)dZ(ω

′

)
]

= 0 when ω 6= ω
′

thus, the increment process {dZ(ω)} is orthogonal and cross–orthogonal. Now, we have

the following expression

cXX(u) =

∫ π

−π

eiωuE [dZ∗(ω)dZ(ω)]

Comparing this expression with equation (4.11) we have the following

hXX(ω)dω = E [dZ∗(ω)dZ(ω)] .

Thus, we may interpret hXX(ω)dω as the variance–covariance matrix of the vector dZ(ω).

Note that by writing the inversion formula

cXX(u) =

∫ π

−π

eiuωhXX(ω)dω

and let u = 0, the covariance matrix can be expressed as

cXX(0) =

∫ π

−π

hXX(ω)dω.

The covariance matrix can be expressed as an integral over all frequencies of the power

spectral density matrix. In other words, the power spectral density matrix can be seen as a
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decomposition of the covariance matrix into its constituent parts, a similar interpretation as

in the univariate case.

4.7.1 Multivariate Evolutionary–Spectra

We next turn our discussion to evolutionary cross–spectra as laid out in Priestley and Tong

(1973); Priestley (1988). We present results from Priestley (1988), based on original work in

Priestley and Tong (1973). We first consider only two non–stationary oscillatory processes,

denoted by {X(t), Y (t)} that admit representations as follows

X(t) =

∫ π

−π

AX(t, ω)eiωtdZX(ω)

Y (t) =

∫ π

−π

AY (t, ω)eiωtdZY (ω)

with

E[dZ∗
X(ω)dZX(ω

′

)] = E[dZ∗
Y (ω)dZY (ω

′

)] = E[dZ∗
X(ω)dZY (ω

′

)] = 0 ω 6= ω
′

E[|dZX(ω)|2] = dµXX(ω)

E[|dZY (ω)|2] = dµY Y (ω)

E[dZ∗
XdZY (ω)] = dµXY (ω)

We have two different oscillatory families, represented by FX = {φX(t, ω) = AX(t, ω)eiωt}
and FY = {φY (t, ω) = AY (t, ω)eiωt}. We next define the evolutionary power spectral

densities as follows with respect to FX and FY respectively as

dHXX(t, ω) = |AXX(t, ω)|2dµXX(ω), −π ≤ ω ≤ π.

dHY Y (t, ω) = |AY Y (t, ω)|2dµY Y (ω), −π ≤ ω ≤ π.

We assume that the measures µXX(ω) and µXX(ω) are absolutely continuous with respect

to Lebesgue measure and hence we have evolutionary spectral densities given by

dHXX(t, ω) = hXX(t, ω)dω

dHY Y (t, ω) = hY Y (t, ω)dω
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We can similarly define the evolutionary power cross–spectrum at time t with respect to

familiesFX and FY by

dHt,XY (ω) = AX(t, ω)∗AY (t, ω)dµXY (ω).

We again assume that the measure µXY (ω) is absolutely continuous with respect to

Lebesgue measure, and hence we assume that we have evolutionary cross–spectral densities,

hXY (t, ω) given by

dHXY (t, ω) = hXY (t, ω)dω

Note that we could also assume that the families FX and FY are equivalent which would

lead to simplifications, but we will not pursue this further.

We can extend these ideas in a straightforward manner to multiple series, and represent

the evolutionary power spectral densities and cross–spectral densities in a matrix ht
XX(ω).

4.7.2 Estimation of the Spectral Density Matrix

Let X(t) be a stationary vector valued time series with r components, which we have

sampled for t = 0, . . . , T − 1, with mean µX, which we assume without loss of generality

is zero and spectral density matrix hXX(ω),−π ≤ ω ≤ π. Following, the development for

the univariate case, consider the vector valued finite Fourier transform given by

d
(T )
X (ω) = [d(T )

a (ω)]

=

[
∑

t

Xate
−iωt

]
− π ≤ ω ≤ π,

leading to the following distributional results (see Brillinger (1981))

d
(T )
X (ω) ∼






NC
r (0, 2πThXX(ω)) if ω 6= 0 (mod π)

Nr(0, 2πThXX(ω)) if ω = 0,±2π, . . .

Nr(0, 2πhXX(ω)) if ω = ±π,±, 3π, . . .

where the normal distributions are multivariate of dimension r and the superscript C

indicates a complex valued multivariate normal.
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As in the univariate case, a natural estimate to consider is the following

I
(T )
XX(ω) = [I

(T )
ij (ω)]

=

[
1

2πT
d

(T )
i (ω)d

(T )
j (ω)

]
, i, j = 1, . . . r.

This estimator suffers the same draw backs as the univariate estimator, that is, the variance

of our estimate does not go to zero as T goes to infinity. Therefore, in order to reduce the

variance of our estimator we must smooth the multivariate periodogram.

Brillinger (1981) gives the following estimator and proves that it is asymptotically

unbiased and that the ordinates (i.e. frequencies) are asymptotically independent

h
(T )
XX(ω) = (2m + 1)−1

m∑

s=−m

I
(T )
XX

(
2π[s(T ) + s]

T

)
if ω 6= 0 (mod π).

where s(T ) is an integer with 2πs(T )/T near ω 6= 0 (mod π). Again special considera-

tions have to be paid for frequencies that are multiples of π and also the zero frequency,

please refer to Brillinger (1981).

Although, the estimator considered here is asymptotically unbiased, Brillinger (1981)

section 7.4 states that the above estimate is not generally consistent, that is, h
(T )
XX(ω) does

not tend to hXX(ω) in probability as T → ∞. Brillinger (1981) considers classes of

estimators which are asymptotically consistent which are of the following form.

h
(T )
XX(ω) =

2π

T

T−1∑

s=1

W (T )

(
ω − 2πs

T

)
I
(T )
XX

(
2πs

T

)
(4.14)

where

I
(T )
XX(λ) = (2πT )−1

[
T−1∑

t=0

Xte
−iλt

][
T−1∑

t=0

Xte−iλt

]

and

W (T )(λ) =
∞∑

j=−∞
W (B−1

T [λ + 2πj])

with W (λ) being concentrated near λ = 0 and BT , T = 1, 2, . . ., is a sequence of non–

negative bandwidth parameters.

The inclusion of the spectral window W (T )(λ) gives us the required asymptotic consis-

tency, provided BT T → ∞ as T → ∞. This is similar to the univariate case.
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It is well known that the quality of the cross–spectrum is greatly improved if an alignment

is performed in advance of the spectral estimation (Brillinger, 1981; Priestley, 1981).

We don’t consider the alignment issue further, as we are dealing with cases where the

maximal correlation occurs at lag 0. Tapering is also used to reduce the spectral leakage in

multivariate spectral estimation.

4.8 Multivariate Test of Stationarity

Now that we have a basic introduction to multivariate evolutionary spectra, we consider

how to generalize the test of Priestley and Subba Rao (1969) to multivariate processes,X(t).

Proceeding along similar lines as the previous section we need an estimate of the spectral

matrix hXX(t, ω) for some collection of times t1, . . . , tI and frequencies ω1, . . . , ωJ . As

in the univariate case, we have two–way layout with the factors being frequencies and

times, however, rather than having a scalar valued response variable, we have a complex–

valued matrix response variable, hXX(t, ω). Brillinger (1981) shows that h
(T )
XX(t, ω) has

an asymptotically complex–valued Wishart distribution. One could proceed to develop an

analysis approach for this response variable, however, this is not the approach we shall

pursue here.

Our approach is to consider a scalar function of the matrix h
(T )
XX(t, ω) and use this as our

response variable in the stationarity test as described previously. Two natural choices are

the determinant and trace of the spectral matrix h
(T )
XX(t, ω). We focus our attention on the

determinant, as it has an interpretation as a generalized variance. However, we do present

some simulation results on the trace.

We give some well known results for the determinant of a sample variance–covariance

matrix and then proceed to investigate its properties for the spectral density matrix.

Note that we can write the determinant of a positive definite matrix as the product of its

eigenvalues, that is,

Det(A) =
r∏

i=1

λi

where λi are the eigenvalues of A.

Consider a sample, of size n, from a multivariate normal distribution with covariance

matrix Σ with eigenvalues denoted by λi, i = 1, . . . , r. Let the corresponding sample

quantities be denoted by S and λ̂i respectively. Anderson (1984) gives the following
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asymptotic results for the sample eigenvalues λ̂i

λ̂i ∼ N(λi, 2λ
2
i /n)

in addition we also have

log λ̂i ∼ N(log λi, 2/n),

which are asymptotically independent for each i.

As the generalized variance is the determinant of the sample covariance matrix, we have

the following asymptotic sampling distribution

log GV (S) = log det(S) =
r∑

i=1

log λ̂i ∼ N(
r∑

i=1

log λi, 2r/n).

Returning to the problem at hand, we have a spectral matrix hXX(ω) and an associated

estimate h
(T )
XX(ω).

Following Brillinger (1981) we decompose the spectral matrix hXX(t, ω) into its eigen-

value and eigenvector decomposition.

Brillinger (1981) states the following theorem

Theorem 4.3. LetX(t), t = 0,±1, . . . be an r vector–valued series satisfying assumption

Assumption 2.6.1 of Brillinger (1981). Let ν
(T )
j (ω) U

(T )
j (ω), j = 1, . . . , r be the eigenvalues

and eigenvectors of the matrix

∫ 2π

0

W (T )(ω − λ)h(λ)dλ

Let h
(T )
XX(ω) be defined by (4.14) and assume that W (β) satisfies

∫ ∞

−∞
W (β)dβ = 1

and ∫ ∞

−∞
|W (β)|dβ < ∞.

Let µ
(T )
j (ω), V

(T )
j (ω), j = 1, . . . , r, be the eigenvalues and eigenvectors of the matrix
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h
(T )
XX(ω). If BT T → ∞ as T → ∞, then

Eµ
(T )
j (ω) = ν

(T )
j (ω) + O(B−1/2T 1/2).

If the eigenvalues of hXX(ω) are distinct then

av~e µ
(T )
j (ω) = ν

(T )
j (ω) + O(B−1

T T−1)

and

av~e V
(T )
j (ω) = U

(T )
j (ω) + O(B−1

T T−1)

for j = 1, . . . , r.

where av~e denotes an expected value derived in a term by term manner from a Taylor

series expansion.

The key result, which is very similar in nature to the results of Anderson (1984), is the

following theorem by Brillinger (1981)

Theorem 4.4. Under the conditions of the previous theorem and if the eigenvalues of

hXX(ωm) are distinct, m = 1, . . . ,M , the variates µ
(T )
j (ωm), V

(T )
j (ωm), j = 1, . . . , r,

m = 1, . . . ,M are asymptotically jointly normal with asymptotic covariance structure

lim
T→∞

BT Tco~v {µ(T )
j (ωm), µ

(T )
k (ωn)}

=





2π
∫

W (α)2dα[η{ωm − ω − n} + η{ωm + ωn}]µj(ωm)2 if j = k

0 if j 6= k

where

η{α} =





1 if α = 0 (mod 2π)

0 otherwise

The theorem gives results for the asymptotic distribution of the eigenvectors, however,

these are not of interest to us and will be omitted. Note, that this theorem implies the

following very useful result

va~r log µ
(T )
j (ω) ∼





B−1

T T−12π
∫

W (α)2dα if ω 6= 0 (mod π)

B−1
T T−14π

∫
W (α)2dα if ω = 0 (mod π)
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Consider the generalized variance applied at each frequency to the spectral density matrix

as follows

log GV (ωm) =
r∑

i=1

log µ
(T )
j ∼ N

(
r∑

j=1

log{ν(T )
j (ω)}, r2π

∫
W (α)2dα

BT T

)
.

Brillinger (1981) has the following key result

2m + 1 ∼ 1
∑

s

[
2π
T

W (T )
(
ω − 2πs

T

)]2

∼ BT T

2π
∫

W (α)2dα

Thus, we can now express the sampling variability in the log generalized variance as follows

log GV (ωm) =
r∑

i=1

log µ
(T )
j ∼ N

(
r∑

j=1

log{ν(T )
j (ω)}, r

2m + 1

)
.

Using the log generalized variance allows us to form the multivariate test in an analogous

manner as the univariate one in the previous section.

Given the asymptotic variance results, the form of the multivariate test will be equivalent

to the univariate results with either the determinant or trace used in place of the univariate

spectral estimate. Given the results of the univariate test we only consider the situation

where we have multiple realizations of our multivariate process. We also only consider

tapering and the non pre–whitened version of the test

4.9 Simulation Study

We now describe a simple simulation study to investigate the Neyman-Pearson properties

of the test. Each multivariate process, Z(t) = {Z1(t), . . . , Zr(t)}, was generated in the

following way. Firstly, r = 5 uncorrelated processes of the given type where generated

(for a list of the processes used please see 4.5) for t = 0, . . . , 99, 999 with σ2
W = 1 . We

then constructed a covariance matrix with variances given by σ2
Z = (0.8, 0.9, 1.0, 1.1, 1.2)

covariance elements were randomly selected by first choosing a correlation coefficient

uniformly between (−0.8, 0.8) for each pair for variables. The resulting covariance matrix
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was only kept if it was positive definite. Note a new covariance matrix was generated for

each of the 10,000 trials, however, the variances were kept fixed. Finally, a multivariate

series was constructed by the following relation

Z(t) = Σ1/2Z(t)

where A1/2 is the matrix square root.

The sampling result for eigenvalues given in the previous section assumes that the

eigenvalues of the spectral matrix are distinct, this is the reason for having distinct variances

for Z.

Each of the eight processes were used to generate the univariate basis for the series,

though, they were always of the same type. That is, we did not consider mixing the different

processes in the same multivariate process, though this would certainly be an interesting

sideline to pursue. The simulation consisted of generating 10,000 trials of length 100,000

with 2 replicates/realizations of the series.

Table 4.5 gives the multivariate performance for each of the 8 series types, with the effect

of tapering and also the determinant and trace. The determinant outperforms the trace for

almost every combination, the only exception being the white noise series. Remarkably,

tapering moves the non-tapered version in the correct direction in every situation, making

the test more conservative when the series are actually stationary and improving the power

when the series are non–stationary.

4.10 Application to MCMC convergence

We have shown that the original test of Priestley and Subba Rao (1969) and the multivariate

generalization considered here have desirable Neyman–Pearson properties. That is, they

have the right level and power for the class of processes considered. Before proceeding

with the modification to assess whether or not a MCMC sampler has reached its stationarity

distribution, we need to consider a conceptual difficulty.

The processes considered previously in this chapter are either second order stationary or

not for all t. That is, they do not go through periods of stationarity and non–stationarity as

by definition a process like this would be non–stationary. By contrast, MCMC samplers

potentially go through periods of non–stationarity as they are not necessarily initialized
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Determinant Trace

Series Taper Freq Time Int T+I Freq Time Int T+I

WN 0 551 663 466 493 506 606 465 506

10% 562 653 442 493 474 644 454 516

AR(1) 0 10000 641 498 521 10000 782 991 1144

φ = 0.3 10% 10000 672 485 522 10000 765 947 1071

AR(1) 0 10000 680 459 534 10000 964 1564 1720

φ = 0.5 10% 10000 643 421 490 10000 950 1574 1716

AR(1) 0 10000 590 471 520 10000 1053 1984 2100

φ = 0.7 10% 10000 554 514 527 10000 1015 2020 2133

AR(1) 0 10000 848 705 801 10000 1161 2244 2362

φ = 0.9 10% 10000 624 760 816 10000 1114 2179 2306

AR(2) 0 10000 671 442 503 10000 818 1179 1319

10% 10000 627 442 491 10000 836 1194 1336

AR(2) 0 10000 10000 468 10000 10000 10000 10000 10000

UM 10% 10000 10000 500 10000 10000 10000 10000 10000

RW 0 10000 10000 0 1522 10000 1182 2112 2240

10% 10000 8885 9310 9337 10000 5770 6138 6169

Table 4.5: The number of rejections in 10,000 trials of the multivariate test procedure with

2 replicates for each of the 8 processes described in the text. The effect of tapering and

the use of determinant or trace are considered for each of the 4 factors of the basic model:

frequency, time and their interaction, plus the combined effect of time and interaction.
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in their stationary distribution. We additionally assume that MCMC samplers that have

reached their stationary distribution will behave like second–order stationary processes.

The diagnostic we propose can be described, roughly speaking, as sequentially removing

blocks of MCMC output until the resulting output appears to be stationary by the methods

presented previously in this chapter.

Recall Yijk represents the log of the estimated spectral density or the log of the determi-

nate of the estimated spectral density matrix for frequency i, time j and replicate k, that is,

Yijk. The test statistic is then the sum of the time and frequency by time interaction effects,

as we are not interested in the special case of uniformly modulated processes. We then

compare this to the appropriate error term. Recall we have an asymptotic expression for the

variance of log spectrum which allows us to test for the interaction plus time effect in the

absence of replication.

The test statistic of interest is given by

Fi =
(SST + SST×F )/((I − 1)J)

MSR

which we index by i the starting block of the given test. We compute the test statistic for

i = 1, . . . , I − 1 and the corresponding critical value, we suggest using α = 0.01. The

diagnostic plot would then depict the observed test statistics and their critical values. Note

the same procedure would used for both the univariate and multivariate versions.

Alternatively, we could proceed in a similar fashion to Gelman and Rubin (1992) and

derive a diagnostic on the basis of the expected mean squares, however, this was not

pursued. We illustrate the diagnostic procedure using example 3.2 which illustrated the

Metropolis–Hastings algorithm for generating a bivariate normal density with unit variances,

and correlation 0.9 and mean vector of (1, 2). To test the diagnostic procedure we used two

different proposal distributions [−δ, δ] × [−δ, δ] for δ = 0.1, 2.0. That is, one that will mix

slowly and one close to the optimal scaling. We start the two replicate chains at (10,10) and

(11,11) to illustrate the convergence to the stationary distribution.

Figures 4.2 and 4.3 show the results of applying the univariate and multivariate versions

of our diagnostic procedure to the two Metropolis–Hastings examples. The procedures

behave as expected, in that they indicate that it takes approximately 3000 iterations for the

slowly mixing chain to forget its initial conditions while the optimally scaled chains move

away from their initial conditions almost immediately.
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Figure 4.2: Trace plots (a-b) of the two replicates of the Metropolis–Hastings algorithm

for δ = 0.1 with starting values of (10,10) and (11,11) respectively. Panel c) gives the

univariate diagnostic plot for each variable (black line= first variate, red line = second

variate, blue=upper 95% of the appropriate F distribution). Panel d) gives the multivariate

diagnostic plot (black line = determinant, red line = trace, blue=upper 95% of the appropriate

F distribution).
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Figure 4.3: Trace plots (a-b) of the two replicates of the Metropolis–Hastings algorithm

for δ = 2.0 with starting values of (10,10) and (11,11) respectively. Panel c) gives the

univariate diagnostic plot for each variable (black line= first variate, red line = second

variate, blue=upper 95% of the appropriate F distribution). Panel d) gives the multivariate

diagnostic plot (black line = determinant, red line = trace, blue=upper 95% of the appropriate

F distribution).
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In this chapter, we introduce statistical models that have been used in the literature that

solve similar problems to the diet problem which we study in more detail in the next chapter.

We use the nomenclature of Wolbers and Stahel (2005) and refer to the general class of

models under consideration as linear mixing models.

To fix ideas, consider the more commonly encountered mixture model, where we model

the distribution of our, possibly vector valued, observations y1, . . . ,yn as mixture of p

components. That is, each observation, yi, comes from one of the p distributions, which we

denote by fj(yi|θj), j = 1, . . . , p, which depend on a vector valued unknown parameter θj .

Thus we denote the distribution of the yi as follows

f(yi|π, θ1, . . . ,θp) = π1f1(yi|θ1) + π2f1(yi|θ2) + · · · + πpfp(yi|θp) i = 1, . . . , n

where
∑p

i=1 πi = 1 are the proportions of the population that belong to each of the

components. The parameters in this case are the mixing proportions π = (π1, . . . , πp)
′

and

the unknown parameters of the distribution θj . There is a vast literature on mixture models

see Titterington et al. (1985) and the references therein.

The linear constant mixing model can be written as follows

yi = Θα + ǫi, i = 1, . . . , n

where yi is a column vector of length a, Θ = [θ1| . . . |θp] is a a × p dimensional matrix,

θj, j = 1, . . . , p are column vectors of length a representing the components, sources or

prey profiles, α = (α1, . . . , αp)
′

is a column vector of length p of mixing coefficients and

ǫi is a column vector of length a.

The linear multilevel mixing model can then be written as follows:

yi = Θαi + ǫi, i = 1, . . . , n

where αi is the mixing vector for each observation.

Finite mixture models assert that each observation yi belongs to one of the p distributions

and the goal of the inference to determine the parameters of each of the component mixtures

and the relative proportions of each that are present. Linear multilevel mixing models assert

that each observation is a linear combination of the components plus noise, which is the
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key distinction between the two types of models.

Several disciplines have tackled the linear mixing problem in various guises and under

different assumptions and terminology which makes deciphering the literature on this

subject a difficult undertaking. We don’t attempt a comprehensive review, but give some

key references and a brief discussion of the issues relevant for the diet problem discussed

in the next chapter. Perhaps the simplest linear mixing model is based on the concept of

conservation of mass, typically known as chemical mass balance models. In our framework,

we have

yj =

p∑

i=1

θijαj + ǫj

where y = (y1, . . . , ya) is an a dimensional vector of chemical concentrations measured at

a receptor site, θi = (θi1, . . . , θia)
′

are a dimensional vectors of known sources, the mixing

vector α = (α1, . . . , αp) and ǫ = (ǫ1, . . . , ǫa)
′
. Early chemical mass balance models solved

the above equation for α for each receptor site separately, usually by linear least squares

of variants there of. Henry et al. (1984) gives an excellent review of the state of the art at

that time, the methods include the tracer element method, the linear programming method,

ordinary least squares, effective variance least squares and ridge regression to handle

multicollinearity of the sources. This class of methods typically ignores the multivariate

nature of the receptor measurements and also doesn’t address the fact that the number of

parameters increases with the sample size. This ignores the classical problem recognized by

Neymann and Scott (1948) and further studied by Kiefer and Wolfowitz (1956) of having

no asymptotic theory to show consistency of the resulting estimates. Henry et al. (1984)

also considers multivariate models, where they deal with multiple measurements at the

receptor site simultaneously. The goal of these models is to estimate both the sources θ’s

and their contributions to the observed receptor αi in models like the following

yik =

p∑

j=1

θjkαij + ǫj.

This model has received much recent attention. Specifically, estimating the number of

sources, p, the source profiles θjk and the mixing vectors αij all from receptor observations.

Bandeen-Roche and Ruppert (1991); Bandeen-Roche (1994); Christensen and Sain (2002);

Park et al. (2000, 2001); Billheimer (2001); Park et al. (2002); Wolbers and Stahel (2005)
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all deal with various aspects of these problems in the multivariate setting.

In the geological literature this problem is known as the end–member problem, see Renner

(1993); Aitchison and Bacon-Shone (1999) and the references therein for an account of the

linear mixing model in Geology.

An issue with the multivariate models, where the emphasis is typically on estimating

both the sources and the mixing vectors is a lack of identifiability. To see this write the

multivariate model in matrix notation as follows:

yi = Θαi + ǫi

Let T be a p × p invertible matrix and define Θ∗ = ΘT and α∗ = T−1α then

yi = Θ∗α∗
i + ǫi

gives an equivalent model and is hence non–identifiable, without some further restrictions.

This is not of direct interest for our development, but it is a concern when there are

no observations on the sources or when no prior information is available. Billheimer

(2001) describes an approach to the problem using strong prior information on the source

composition. We review the Bayesian approach to linear mixing models in some detail

in this chapter before adapting them to the problem of predator diets in the next chapter.

Also note, we refer to the models in the more generic sense of linear mixing, adapted from

Wolbers and Stahel (2005).

5.1 Linear Mixing

In this section we introduce the two basic linear mixing models: the linear constant mixing

model and the linear multilevel mixing model. We keep the description quite general at first

and then introduce differing assumptions that characterize the many versions of the models.

The linear constant mixing model can be written as follows

yi
(a×1)

= Θ
(a×p)

α
(p×1)

+ ǫi
(a×1)

i = 1, . . . , n,

where yi is a column vector of length a, Θ = [θ1| . . . |θp] is a a × p dimensional matrix,
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θj, j = 1, . . . , p are column vectors of length a representing the components, sources or in

the next chapter the prey fatty acid profiles, α = (α1, . . . , αp)
′

is a column vector of length

p of mixing coefficients and ǫi is a column vector of length a. Note that we have written

the model in its additive form which is appropriate when there are no restrictions on the

spaces. However, the usual additive errors get replaced with component-wise multiplication,

denoted by ⊙, when the space is restricted to the positive quadrant or the perturbation

operator, denoted by ⊕, when the space is restricted to the simplex (see 2.1).

The linear constant mixing model can be expressed in matrix notation as follows:

Y
(a×n)

= Θ
(a×p)

Γ
(p×n)

+ E
(a×n)

Γ
(p×n)

= ρ−1
c

(
ρ

(
α

(p×1)

)
W

(1×n)

)
(5.1)

where Y = [yi| . . . |yn] is an a×n matrix, E = [ǫ1| . . . |ǫn] is an a×n matrix of errors, ρ(.)

represents a transformation, ρ−1(.) its inverse, ρ−1
c (.) its inverse applied to the columns of

a matrix and W is a known 1 × n design matrix of ones. Typical choices for the vector

valued function, ρ(.), will depend on the restrictions imposed on the mixing vector. No

restrictions would correspond to the identity transformation, ρ(x) = x, while restricting

the mixing vector to the positive quadrant would correspond to the usual log transformation,

ρ(x) = log(x) and restricting the space to the simplex would correspond to the log–ratio

transformation, ρ(x) = φ(x).

We can generalize this model to allow w different populations, by expanding the design

matrix W to dimension w × n. Thus our model becomes

Y
(a×n)

= Θ
(a×p)

Γ
(p×n)

+ E
(a×n)

Γ
(a×n)

= ρ−1
c

(
ρc

(
A

(p×w)

)
W

(w×n)

)

where A = [α1| . . . |αw] is a p × w dimensional matrix with the columns corresponding to

the different population mixing vectors αi, i = 1, . . . , w. For example, assume we have

two populations, one choice for the matrix W would be the following

W1
(2×(n1+n2))

=

[
1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1

]
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where the first row has n1 ones followed by n2 zeros and the second row has n1 zeros

followed by n2 ones. Or a second choice would be

W2
(2×(n1+n2))

=

[
1 . . . 1 1 . . . 1

0 . . . 0 1 . . . 1

]
,

where the first row is all ones and the second row has n1 zeros followed by n2 ones. Design

matrix W2 corresponds to the usual dummy variable coding used in traditional analysis

of variance models, while W1 would correspond to the effects modeling approach. With

the W2 parametrization, α1 represents the overall mixing vector in the two populations

and α2 is the difference between population two and population one. Using the W1

parametrization, α1 and α2 represent the mixing vectors in the two populations.

Consider the linear multilevel mixing model which can be seen as a generalization of the

linear constant mixing model. Linear multilevel mixing models, typically, do not consider

the case of multiple measurements per random effect or level. We develop the models in this

slightly more general context. For example, assume we have air quality measurements taken

in the morning and afternoon and we believe the air quality doesn’t change substantially

over the day, and we wish to apportion the air pollution to various sources on a daily basis.

The basic linear multilevel mixing model is given by the following

yij
(a×1)

= Θ
(a×p)

αi
(p×1)

+ ǫij
(a×1)

, i = 1, . . . , n, j = 1, . . . , ni

where αi is a p × 1 mixing vector for the ith level or random effect. For simplicity of

presentation we assume that ni = r, however, this is not required. If we collect the r

replicates into a matrix as follows

Yi
(a×r)

= [yi1| . . . |yir]

we can now write the above model in matrix notation as follows:

Yi
(a×r)

= Θ
(a×p)

αi
(p×1)

U
(1×r)

+ Ei
(a×r)

, i = 1, . . . , n

where, Ei is defined in an analogous fashion to Yi and U is a 1 × r matrix of ones.

Before presenting the linear multilevel mixing model in matrix form, we need the
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following definition of a Kronecker product:

Definition 5.1. The Kronecker product, denoted by ⊗, of an m × n matrix C and p × q

matrix D is an (mp) × (nq) matrix given by the following

C ⊗ D =





c11D . . . c1nD
...

. . .
...

cm1D . . . cmnD



 ,

Finally we can join the matrices Yi by concatenating the columns as follows

Y
(a×nr)

= [Y1| . . . |Yn].

This allows us to write the model in matrix notation as follows

Y
(a×nr)

= Θ
(a×p)

A
(p×n)

⊗ U
(1×r)

+ E
(a×nr)

,

where A = [α1| . . . |αn] an p × n matrix of mixing vectors, E is defined analogously to Y

and A ⊗ U means replicate each mixing vector, αi, r times column–wise.

We can extend the linear multilevel mixing model to allow for multiple populations in a

similar fashion as for the linear constant mixing model. To make the models more explicit

we adapt the structural equation model formulation (see Lee, 2007) which has connections

to the state space formulation. The αi plays the role of the latent variable or the unobserved

state in a state space model. We have the following equation describing the collection of

mixing vectors A:

A
(p×n)

= ρ−1
c

(
ρc

(
Af

(p×w)

)
W

(w×n)
+ A∗

(p×n)

)

where W is a known w × n design matrix for the linear multilevel mixing model. Note

as in the linear constant mixing model we assume that the population means are additive

on the ρ scale. We denote the population mean mixing vectors by µαj
, j = 1, . . . , w and

collect these into the matrix Af

Af

(p×w)
= [µα1

| . . . |µαw
].

Finally, A∗ is a matrix of deviations from the populations means, the distribution of the
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columns of A∗ will be discussed subsequently.

We are now in a position to write the generalization of the linear multilevel mixing model

to multiple populations as follows

Y
(a×nr)

= Θ
(a×p)

A
(p×n)

⊗ U
(1×r)

+ E
(a×nr)

,

A
(p×n)

= ρ−1
c

(
ρc

(
Af

(p×w)

)
V

(w×n)
+ A∗

(p×n)

)
(5.2)

For the present discussion we assume that the profiles/sources are known, that is, Θ is a

known matrix. To complete the model specifications we assign prior distributions to the

unknown parameters and assign sampling distributions to the observables. Specifically for

the linear constant mixing model for a single population we assign:

ǫi|Σǫ ∼ f(ǫi|0, Σǫ)

α|µα, Σα ∼ g(α|µα, Σα)

Σǫ|δǫ, Ψǫ ∼ h(Σǫ|δǫ, Ψǫ),

where f, g are multivariate density functions and h is a matrix valued density function.

These assumptions induce the following joint conditional distribution on yi’s,

y1, . . . ,yn|α, Σǫ,B ∼
n∏

i=1

f(yi|Θα, Σǫ)

where B is the collection of prior parameters and any other relevant background information,

B = {µα, Σα, δǫ, Ψǫ,Θ}. The above equation implies that the yi’s are exchangeable or

conditionally independent. The full posterior distribution is given by

p(α, Σǫ,Θ|D,B) ∝ h(Σǫ|δ, Ψ) × g(α|µα, Σα) ×
n∏

i=1

f(yi|Θα, Σǫ),

where D = {y1, . . . ,yn} is the collection of all observed data. It is unlikely that the above

full posterior distribution will be available in closed form and thus exact posterior inference

will not be available to us. However, we can readily generate samples from the posterior

distribution via MCMC. In addition, the hierarchical nature of the model will allow for
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relatively straightforward Gibbs or Metropolis-Hastings updates.

We assign the following sampling distributions and priors to complete the specification

of the linear multilevel mixing problem for a single population as follows:

ǫi|Σǫ ∼ f1(ǫi|0, Σǫ)

αi|µα, Σα ∼ f2(αi|µα, Σα)

µα|τ, Σµ
α

∼ g(µα|τ , Σµ
α

)

Σǫ|δǫ, Ψǫ ∼ h1(Σǫ|δǫ, Ψǫ)

Σα|δα, Ψα ∼ h2(Σα|δα, Ψα),

where f1, f2, g are multivariate density functions and h1, h2 are matrix valued density

functions. As with the linear constant mixing model, the above assumptions induce the

following joint conditional distribution on yij’s,

y11, . . . ,ynr|αi, µα,Θ, Σα, Σǫ,B ∼
n∏

i=1

r∏

j=1

f(yij|Θαi, Σǫ)

where B = {τ , Σµ
α

, δǫ, Ψǫ, δα, Ψα}. That is, the yij’s are exchangeable conditional on the

parameters including αi. The full posterior distribution is given by

p(αi, µα, Σα, Σǫ|Θ,D,B) ∝ h1(Σǫ|δǫ, Ψǫ) × h2(Σǫ|δα, Ψα) × g(µα|τ , Σµ
α

)

×
n∏

i=1

f2(αi|µα, Σα) ×
n∏

i=1

n∏

j=1

f1(yij|Θαi, Σǫ),

where D = {y11, . . . ,ynr}. As with the linear constant mixing model, it is unlikely that the

posterior distribution will available in closed form. Again we will use MCMC to generate

samples form the posterior to do approximate posterior inference.

Figures 5.1 and 5.2 give Directed Acyclic Graphs (DAG’s) for the generic linear constant

mixing model and linear multilevel mixing model respectively. The methods from appendix

A.5 enable us to write down the full conditional distributions directly from the DAG which

form the basic building blocks of the Gibbs sampler and the Metropolis–Hastings within

Gibbs sampler. Whether or not the sampling can be done using Gibbs or Metropolis–

Hastings will depend on the functional form of the densities assigned to each component of
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the model.
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Figure 5.1: Directed Acyclic Graph (DAG) for the linear constant mixing model. Where

θ1, . . . ,θp are the sources, α is the mixing vector, Σǫ is the error covariance matrix,

y1, . . . ,yn are the observables, µα and Σα represent the prior for the mixing vector and δǫ

and Ψǫ represent the prior information for Σǫ. The square nodes indicate parameters that

are known a priori, while circular nodes represent unknown parameters that are updated

when the data, yi, i = 1, . . . , n, are observed.

The full conditional distributions for the linear constant mixing model are as follows:

p(α|Σǫ,Θ,D,B) ∝ g(α|µα, Σα) ×
n∏

i=1

f(yi|α,Θ, Σǫ)

p(Σǫ|α,Θ,D,B) ∝ h(Σǫ|δǫ, Ψǫ) ×
n∏

i=1

f(yi|α,Θ, Σǫ)

and for the linear multilevel mixing model

p(αi|α−i, µα, Σα, Σǫ,Θ,D,B) ∝ f2(αi|µα, Σα) ×
r∏

j=1

f1(yir|αi,Θ, Σǫ)

p(µα|α1, . . . ,αn, Σα, Σǫ,Θ,D,B) ∝ g(µα|τ , Σµ
α

) ×
n∏

i=1

f2(αi|µα, Σα)

p(Σα|α1, . . . ,αn, µα, Σǫ,Θ,D,B) ∝ h2(Σα|δα, Ψα) ×
n∏

i=1

f2(αi|µα, Σα)

p(Σǫ|α1, . . . ,αn, µα, Σα,Θ,D,B) ∝ h1(Σǫ|δǫ, Ψǫ) ×
n∏

i=1

r∏

j=1

f1(yij|α
′

iΘ, Σǫ)
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Figure 5.2: Directed Acyclic Graph (DAG) for the linear multilevel mixing model. Where

θ1, . . . ,θp are the sources, α1, . . . ,αn are the mixing vectors, µα and Σα describe the

distribution of the αi’s, Σǫ is the error covariance matrix, y11, . . . ,ynr are the observables,

τ and Σµ
α

represent the prior information for mean of the mixing vector µα, δα and Ψα

represent the prior information for the variance of the mixing distribution Σα and δǫ and

Ψǫ represent the prior information for Σǫ. The square nodes indicate parameters that are

known a priori, while circular nodes represent unknown parameters that are updated when

the data, yi, i = 1, . . . , n, are observed.

5.2 Special Cases of the Linear Mixing Model

Linear mixing models, as we have described them, have three distinct parts: the source

matrix which we denote by Θ, the mixing vector denoted by α or αi and the noise vector

ǫi or ǫij . Differing assumptions on the components lead to different mixing models, which

is the subject of this section.

As most of the literature on linear mixing models and their variants deal with physical

systems, they typically restrict attention to cases where the source matrix Θ and the errors

ǫi reside in the positive quadrant and the mixing vector(s) (α, αi) is(are) restricted to the

positive quadrant. The most common applications are to receptor models in air pollution

studies (see Billheimer, 2001; Wolbers and Stahel, 2005; Henry et al., 1984) and end

member problems in Geology pollution (see Aitchison and Bacon-Shone, 1999; Renner,

1993) .

Wolbers and Stahel (2005) give an excellent description of the different types of models

used in the air pollution literature and their basic assumptions. However, the assumptions

given in Wolbers and Stahel (2005) are slightly more restrictive than necessary for our
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purposes as they consider the situation where the sources are not known and do not have

observations on them.

The discussion, thus far, has not placed any restrictions on the mixing vectors, the sources

or the errors, that is, they are all free to vary in the appropriate multi–dimensional real

space. However, as pointed out by Wolbers and Stahel (2005), this form of the model is

not physically realizable in air pollution studies, not to mention other areas of application.

Table 5.1 lays out the various restrictions on Θ, α and ǫi and gives potential candidate

distributions to describe the various distributional assumptions over the reduced spaces.

It also indicates which combinations of models are logically consistent. Note, it treats

the triplet Θ, the choice of operator and ǫ as one component of the model. It then places

restrictions on the α that are consistent with the choice of triplet. Note that the operators

mentioned in the table are the usual addition, ⊙ is elementwise multiplication and ⊕ is the

compositional operator introduced in chapter 2.1.

Rather than discuss all six logically consistent models we give illustrative examples

relying on the Markov Chain Monte Carlo machinery in all cases even in situations where

the models are analytically tractable. Specifically we consider two cases of the linear

mixing models: θj ∈ ℜa, ǫi ∈ ℜa, α ∈ ℜpand ρ(x) = x ; and θj ∈ ℜa, ǫij ∈ ℜa, α ∈ Sp

and ρ(x) = φ(x).

5.2.1 Case a: θj ∈ ℜa and α ∈ ℜp

The linear constant mixing model for a single population given in equation (5.1) is described

by three general distributions: a sampling distribution f(yi|Θα, Σǫ), a prior on α denoted

by g(α|µα, Σα) and a prior on Σǫ denoted by h(Σǫ|δǫ, Ψǫ). For purposes of illustration

we assign a multivariate normal distribution to the sampling distribution, with mean Θα

and covariance matrix Σǫ, a multivariate normal distribution to the prior distribution of α

with mean µα and covariance matrix Σα and finally a Inverse–Wishart, denoted by IW ,

with degrees of freedom δǫ and scale matrix Ψǫ to Σǫ. Note that, if Θ = Ia then the linear

constant mixing model (5.1) reduces to the usual multivariate analysis of variance model.

Similarly for the linear multilevel mixing model, we assign multivariate normal distribu-

tions to the generic distributions f1 , f2 and g with appropriate meanings for the parameters

and Inverse Wishart distributions to h1 and h2. If Θ = Ia then the linear multilevel mixing

model 5.2) reduces to a multivariate random effects model.

When Θ is known, it can be shown that (5.1) and (5.2) are identifiable provided Θ is of
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θj ∈ ℜa θj ∈ ℜa+ θj ∈ Sa

Operator + ⊙ ⊕
Linear Constant Mixing:

α ǫi ∼ N a ǫi ∼ LN a ǫi ∼ La−1

α ∈ ℜp
√ × ×

α ∈ ℜp+
√ √ ×

α ∈ Sp
√ √ √

Linear Multilevel Mixing:

αi ǫij ∼ N a ǫij ∼ LN a ǫij ∼ La−1

αi ∼ N p
√ × ×

αi ∼ LN p √ √ ×
αi ∼ Lp−1

√ √ √

Table 5.1: Distributional assumptions for the linear constant mixing model and the linear

multilevel mixing model. Where θj is the jth column of the source matrix Θ, ℜa is a–

dimensional real space, ℜa+ is the positive quadrant of a–dimensional real space, Sa is the

a– dimensional simplex, ⊙ means elementwise multiplication and ⊕ is the perturbation

operator introduced in chapter 2, N a is the a–dimensional multivariate normal distribution,

LN a is multivariate log normal distribution defined on ℜa+, La−1 represents the logistic

normal distribution on the Sa. Appendix C gives the functional forms of the multivariate

normal, the multivariate log–normal and the logistic normal distributions. Check marks

indicate model combinations that are consistent.

rank p, (see Henry et al., 1984). Practically this means that the number of sources needs to

be less than or equal to the dimension of the measurement vector y. However, even if Θ is

of full rank, the model can still show signs of non-identifiability if the condition number of

Θ is large, which indicates multicollinearity among the columns Θ. This is well known in

the chemical mass balance model literature; see Henry et al. (1984). It is of interest to see

what effect this has on the approximate inference we perform on these models via MCMC

sampling.

The condition number of an n × m matrix, with n < m is defined as follows:

cond(A) =
max eigen–value(AA

′
)

min eigen–value(AA′)
.

To investigate the effects of an ill–conditioned source matrix Θ we generated three source

profiles of dimension a = 5 with different condition numbers, these are given in table

5.2. The profiles were generated from a multivariate normal distribution with mean 0 and
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covariance matrix: 



1 ρ 0

ρ 1 0

0 0 1



 .

The three cases were generated by setting ρ = 0, 0.99, 0.9999 respectively, ranging from

very little dependence to almost perfect dependence between the first two components of

the source matrix. The resulting sources are given in table 5.2.

Example Source R1 R2 R3 R4 R5 Condition

Number

a) 1 -1.301 -1.210 -0.547 0.038 -0.216

2 0.384 -0.970 -0.915 -0.027 0.734

3 -0.767 2.819 -0.004 0.686 1.669 7.063

b) 1 0.035 0.839 0.244 -0.046 -0.560

2 -0.065 0.986 0.117 -0.244 -0.677

3 2.052 -1.066 0.816 0.113 -0.414 282.97

c) 1 1.151 -0.879 -0.239 -0.602 0.950

2 1.152 -0.881 -0.242 -0.608 0.952

3 -0.571 0.087 -0.300 -1.480 0.163 5155448

Table 5.2: Source profiles used in generating synthetic data to demonstrate the effect of

ill-conditioned matrices on the two versions of the linear mixing model given in equations

(5.1) and (5.2). The rows of the table indicate the columns of Θ.

Using the linear constant mixing model (5.1) we generated 50 samples for three mixing

vectors, α = (1, 1, 1)
′
, (3,−2,−1)

′
, (−1, 3, 3)

′
and three covariance matrices Σǫ = σ2

ǫId

with σ2
ǫ = 0.5, 1.0, 1.5. We used “vague” priors for both α and Σǫ specifically

p(α) = N p(0p, 100Ip)

and

p(Σǫ) = IWa(p, 100Ia).

We generated 100,000 posterior samples using a Metropolis–Hastings within Gibbs MCMC

algorithm with a thinning factor of 10. The full conditional distribution for Σǫ is an

inverse–Wishart distribution while the distribution for α was updated using an adaptive

Metropolis–Hastings algorithm. In this case, a full Gibbs sampler could be implemented,

but we chose to use a Metropolis–Within–Gibbs algorithm to mimic what happens with the
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more complicated models to come. We implemented a simple adaptive algorithm, in that we

didn’t follow the state of the art as suggested in Andrieu and Thoms (2008) though the ideas

were very much along the vein discussed there. A multivariate normal proposal distribution

was used which was centered at the current state with an adaptive variance given by σ2
adaptIp

where σ2
adapt is adaptively updated or controlled by keeping the acceptance rate near the

optimal value of 0.23. That is, we did not allow the algorithm to adaptively learn about the

variance of the posterior. In essence our algorithm is an adaptively controlled algorithm,

rather than a fully adaptive algorithm. For more details see the MCMC chapter 3. The

starting values for α were set to zero for each component.

Figure 5.3 shows trace plots of the MCMC output for the mixing vector α. Column one

of the figure shows very rapidly mixing chains that quickly converge to the correct area of

posterior space. Thus, the linear constant mixing model behaves very well when there is

little or no dependence among the columns of the source matrix Θ. The picture for column

three is not nearly as promising (the highest degree of dependence among the columns of

the Θ matrix). It shows all the tell-tale signs of a very slowly mixing chain and posterior

inference without running the chain for much longer would be problematic. However, there

is an interesting symmetry present. The total of the first two components matches quite

well to the amount apportioned to the first two components. This is not surprising as the

first two components are almost identical in this case.

Plotting the components in a pairwise fashion shows this strong dependence between

the first two components and indicates that the posterior surface actually resides in lower

dimensional subspace. This has implications for the diet problem discussed in the next

chapter and will be much harder to diagnose as the dimension of the problem increases

and the pattern of dependence becomes more complicated than presented in this simplified

situation. The picture in the middle column is a comprise between the first and third

columns of the figure. However, there is still a strong pattern of dependence between the

first two components.

Table 5.3 gives the posterior mean of the mixing vector α and the trace of Σǫ denoted

by ΣT
ǫ along with their associated component-wise 95% credible intervals. Results are

given for the three Θ matrices (see table 5.2), three error covariances denoted by σ2
ǫ and

three different mixing vectors α1, α2 and α3. The results for the nearly orthogonal source

matrix (case a), indicate a well behaved posterior distribution with relatively short 95%
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credible intervals, all of which contain the true mixing vector. Additionally the results for

the trace of the error covariance indicate a good recovery of the covariance matrix. For

moderate dependence (case b), the inference for the third component is unaffected by the

dependence between the first two components, as the results are very comparable to case

a). Not unexpectedly, the inference for the first two components is not correct, however,

the total of the first two components is approximately correct. Another consequence of the

strong dependence is the credible intervals for the first two components are substantially

wider than in case a). A similar pattern emerges for the third case, but the credible intervals

are much wider, indicating much more uncertainty in the first two components, but again the

total is correct. The inference for the trace of the error covariance matrix are not adversely

affected by the dependence in the sources, though some of the credible intervals are slightly

wider.

We also generated synthetic data to study the effect of ill–conditioned source matrices on

the linear multilevel mixing model (see equation 5.2) using the Θ matrices given in table

5.2. Synthetic data for this case was generated in the following manner. Generate n = 50

mixing vectors αi from a multivariate normal distribution with mean µα and covariance

matrix Σα. Then for each i generate r = 2 samples yi1 and yi2 from a multivariate normal

distribution with mean Θαi and covariance matrix Σǫ. We used the first sample to represent

the r = 1 case and both for the r = 1 case. We used the following settings: Σǫ = Id,

µα = (1, 1, 1)
′
, Σα = σ2

αIp with σ2
α = 0.5, 1.0, 1.5.

We used the following “vague” priors for µα, Σǫ and Σα:

p(α) = N p(0p, 100Ip),

p(Σǫ) = IWa(a, 100Ia),

and

p(Σα) = IWp(p, 100Ip).

We generated 100,000 posterior samples using a Metropolis–Hastings within Gibbs MCMC

algorithm with a thinning factor of 10 to save storage space. To avoid the burn in period we

started the algorithm at the generated values of αi. The full conditional distributions for Σǫ

and Σα are both inverse–Wishart distribution, additionally the full conditional distribution

for µα is multivariate normal and the distribution for αi was updated by a similar adaptive
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Figure 5.3: Trace plots of the linear constant mixing model for the mixing vector α with

Σǫ = I5. The rows show the effect of changing the mixing vector: (a-c) α = (1, 1, 1)
′
,

(d-f) α = (3, 0,−1)
′

and (g-i) α = (−1, 2, 3)
′
. While the columns show the effect of

dependence among the columns of Θ: (a,d,g) small condition number, (b,e,h) moderate

condition number and (c,f,i) large condition number. For each panel, the black represents

the first component, the red the second component and green the third component of the

source matrix. See table 5.2 for the actual Θ’s used. Note the changing scale in all panels

of the figure.
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α1 α2 α3

Θ σ2

ǫ
meas (1, 1, 1)

′

ΣT

ǫ
(3, 0,−1)

′

ΣT

ǫ
(−1, 2, 3)

′

ΣT

ǫ

a 0.5 pm (0.97,0.92,0.99) 2.77 (2.97,-0.04,-1.03) 2.86 (-1.04,2.05,3.01) 2.82

lci (0.85,0.79,0.92) 2.29 (2.86,-0.18,-1.09) 2.32 (-1.18,1.93,2.95) 2.27

uci (1.09,1.06,1.06) 3.36 (3.08,0.10,-0.96) 3.41 (-0.91,2.18,3.08) 3.40

1.0 pm (1.09,1.00,1.04) 5.47 (3.02,-0.01,-1.02) 5.16 (-1.07,2.06,3.03) 4.92

lci (0.89,0.84,0.93) 4.50 (2.86,-0.22,-1.12) 4.25 (-1.24,1.82,2.94) 4.00

uci (1.29,1.16,1.15) 6.64 (3.19,0.20,-0.93) 6.25 (-0.91,2.29,3.13) 5.93

1.5 pm (0.95,1.07,0.99) 7.65 (3.03,-0.06,-1.04) 6.89 (-1.20,2.06,3.00) 7.55

lci (0.76,0.82,0.89) 6.29 (2.82,-0.26,-1.15) 5.68 (-1.39,1.81,2.90) 6.18

uci (1.15,1.32,1.09) 9.32 (3.23,0.15,-0.94) 8.40 (-1.02,2.31,3.10) 9.19

b 0.5 pm (0.49,1.42,1.03) 2.39 (3.30,-0.22,-1.03) 2.61 (-0.57,1.63,2.98) 2.44

lci (-0.32,0.71,0.95) 1.97 (1.89,-1.14,-1.12) 2.14 (-1.48,0.85,2.89) 2.01

uci (1.32,2.11,1.11) 2.94 (4.38,0.96,-0.93) 3.21 (0.34,2.41,3.08) 2.99

1.0 pm (0.18,1.56,0.95) 6.00 (2.68,0.55,-0.87) 5.05 (-2.19,3.12,3.16) 4.87

lci (-1.29,0.23,0.80) 4.93 (1.50,-0.60,-1.03) 4.13 (-3.67,1.95,3.03) 4.02

uci (1.64,2.91,1.10) 7.39 (3.96,1.61,-0.71) 6.17 (-0.81,4.35,3.29) 5.93

1.5 pm (0.45,1.29,0.97) 8.14 (1.89,0.81,-0.92) 7.84 (-2.85,3.70,3.13) 7.34

lci (-1.17,-0.35,0.80) 6.70 0.20,-0.60,-1.10) 6.50 (-4.45,2.24,2.96) 6.03

uci (2.27,2.74,1.15) 9.96 (3.51,2.29,-0.75) 9.49 (-1.21,5.10,3.29) 8.96

c 0.5 pm (5.15,-3.07,1.01) 2.48 (0.08,2.93,-1.06) 2.16 (4.55,-3.51,3.12) 2.75

lci (-0.30,-8.56,0.89) 2.04 (-11.61,-7.17,-1.21) 1.78 (-2.09,-9.17,2.99) 2.27

uci (10.65,2.39,1.14) 3.00 (10.20,14.59,-0.91) 2.64 (10.23,3.13,3.26) 3.31

1.0 pm ( 0.07,1.98,0.89) 5.42 (3.94,-0.79,-0.98) 4.51 (3.50,-2.48,2.84) 5.15

lci (-10.88,-10.65,0.74) 4.45 (-4.15,-7.95,-1.16) 3.72 (-2.20,-6.06,2.68) 4.24

uci ( 12.59,12.78,1.04) 6.69 (11.11,7.27,-0.80) 5.48 (7.10,3.20,2.99) 6.34

1.5 pm (-3.49,5.55,0.85) 8.61 (1.78,1.13,-0.91) 7.74 (4.45,-3.44,3.10) 7.69

lci (-12.89,-3.07,0.59) 7.08 (-7.73,-9.97,-1.10) 6.38 (-5.83,-12.26,2.86) 6.34

uci (5.14,14.99,1.11) 10.55 (12.94,10.62,-0.72) 9.38 (13.28,6.80,3.33) 9.34

Table 5.3: Posterior summaries for the linear constant mixing model of 100,000 MCMC

runs of a Metropolis–Hastings within Gibbs algorithm with a thinning factor of 10. The

settings for Θ are given in table 5.2 which correspond to increasing degrees of linear

dependence between the first two rows of the Θ matrix. σ2 corresponds to the covariance

matrix of the multivariate normal distribution of the errors, that is, Σǫ = σ2
ǫId, α1, α2 and

α3 are the three settings of the mixing vector and ΣT
ǫ is trace of the error covariance matrix.

The posterior mean is denoted by pm, the upper and lower 95% element–wise credible

intervals are denoted by lci, and uci respectively.

Metropolis–Hastings algorithm to the linear constant mixing model. Thus was done again

for consistency with the more complicated models to come in the next chapter.

Before proceeding to the results, it is of interest to note the variance decomposition in
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the linear multilevel mixing model. Consider the covariance matrix of yi|Σα, Σǫ, µα:

var(yi|Σα, Σǫ, µα, ) = var(Θαi) + var(ǫi)

Σy

(k×p)

= Θ
(k×p)

Σα
(p×p)

Θ
′

(p×k)
+ Σǫ

(k×k)
,

which was derived using the multivariate version of the law of total variance:

var(Y) = E(var(Y|X)) + var(E(Y|X)).

The first term has rank at most p and the second term is of rank a. This can be seen

as a classical factor analysis problem, in that, we are decomposing a rank a covariance

matrix into two components one of potentially smaller rank. That is, we are hoping that the

variability in the original data can be described by a smaller dimensional subset of latent

variables.

Given the above breakdown in terms of covariance matrices we summarize the variability

due to the first and second terms respectively by their traces. We label the first one

(ΘΣαΘ
′

)T and the second one ΣT
ǫ . As synthetic data was generated with Σǫ = I5 the trace

is just 5, the trace for the first term is given by

(ΘΣαΘ
′

)T = σ2
αtrace(ΘΘ

′

)

since Σα = σ2
αI3. The traces for Θa, Θb and Θc given in table 5.2 are 17.76, 8.78 and 9.49

respectively.

Tables 5.4 and 5.5 give the posterior mean of the mean of the mixing distribution µα,

the diagonal of covariance of the mixing distribution Σα, the trace of ΘΣαΘ
′
, the trace of

the error covariance matrix Σǫ and an individual mixing vector α1 for r = 1 and r = 2

respectively. We consider each parameter in turn. The results for µα are consistent with

the linear constant mixing model, with good performance for case a) but the performance

doesn’t suffer as much when the dependence among the columns of the source profile

matrix increases. The multilevel model seems to control the wild fluctuations in posterior

space, but components one and two are still not well determined. Generally, with one

observation, the model attributes more variability to the mixing distribution at the expense

of the residual variability. By contrast, with two replicates, the partitioning of the covariance
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to the two components is more consistent with the generating mechanism. Of course there

are exceptions to this rule. Not surprisingly, both models have a difficult time with the

inference for an single individual, as suggested by the credible intervals being quite wide in

all cases.

It is surprising that we are able to do so well in the r = 1 case, which contradicts the

usual intuition one has in the usual one–way random effects model. This suggests that

there is enough structure in the linear multilevel mixing model to partition the covariances

properly.
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Θ σ2

α
meas µ

α
= (1, 1, 1)

′

diag(Σα) (ΘΣαΘ
′

)T ΣT

ǫ
α1

a 0.5 pm (0.97,0.85,0.84) (0.81,0.61,0.45) 8.78 5.08 (1.05,0.85,0.67)

lci (0.70,0.55,0.64) (0.46,0.25,0.21) 6.37 3.83 (0.65,0.51,0.50)

uci (1.25,1.13,1.06) (1.31,1.12,0.76) 12.10 6.79 (1.55,1.22,0.88)

gen (0.90,0.80,0.82) (0.52,0.52,0.42) 7.81 5.13 (1.21,1.61,0.71)

1.0 pm (1.13,1.10,1.13) (1.29,1.49,1.32) 22.86 3.20 (1.06,-1.20,0.63)

lci (0.80,0.76,0.80) (0.85,0.97,0.87) 17.02 2.12 (0.61,-1.57,0.27)

uci (1.45,1.45,1.46) (1.94,2.21,1.99) 31.15 5.64 (1.35,-0.45,1.26)

gen (1.16,1.01,1.12) (1.02,0.90,1.22) 19.55 4.10 (0.79,-0.48,0.72)

1.5 pm (1.04,1.11,1.37) (2.17,2.60,1.70) 32.94 3.09 (0.47,1.65,2.42)

lci (0.62,0.65,1.01) (1.45,1.60,1.12) 24.88 1.78 (0.26,0.95,2.29)

uci (1.46,1.56,1.74) (3.26,3.93,2.56) 44.27 6.31 (0.68,2.00,2.64)

gen (1.12,1.07,1.40) (1.84,1.67,1.46) 26.73 5.23 (0.64,1.99,2.22)

b 0.5 pm (0.86,1.45,1.03) (0.15,0.64,0.54) 5.02 4.76 (0.88,2.50,0.07)

lci (0.29,0.91,0.79) (0.00,0.02,0.24) 3.16 2.74 (0.05,1.33,-0.34)

uci (1.50,2.08,1.24) (0.51,1.76,0.87) 7.98 6.45 (2.11,3.99,0.39)

gen (1.17,1.08,1.06) (0.54,0.59,0.44) 4.14 4.97 (0.29,2.22,0.84)

1.0 pm (0.99,0.60,1.24) (0.65,3.98,1.01) 8.69 4.23 (0.38,2.44,1.99)

lci (0.54,-0.03,0.96) (0.05,1.97,0.67) 6.40 3.29 (-0.48,1.6,1.71)

uci (1.45,1.26,1.54) (1.77,7.22,1.50) 11.83 5.47 (1.20,3.29,2.30)

gen (0.92,0.99,1.25) (1.01,0.92,0.80) 7.56 5.76 (0.82,2.17,2.25)

1.5 pm (0.24,1.68,1.41) (3.07,2.18,1.61) 13.34 4.08 (-1.86,-1.29,0.63)

lci (-0.48,0.88,1.05) (1.67,0.63,1.07) 9.75 3.07 (-3.55,-2.72,0.25)

uci (1.25,2.35,1.77) (5.64,4.46,2.41) 18.33 5.51 (-0.44,0.46,0.92)

gen (1.03,0.94,1.30) (1.12,1.26,1.31) 11.26 5.09 (-0.07,-2.41,1.09)

c 0.5 pm (1.25,0.67,1.25) (1.20,0.31,0.97) 8.98 4.00 (1.44,0.87,1.66)

lci (0.75,0.27,0.97) (0.41,0.04,0.64) 6.53 3.09 (1.03,0.43,1.31)

uci (1.69,1.00,1.52) (2.78,0.86,1.46) 12.39 5.23 (1.96,1.27,2.19)

gen (0.82,1.18,1.17) (0.58,0.55,0.54) 6.79 5.67 (0.65,2.21,1.04)

1.0 pm (1.53,0.52,1.01) (3.60,3.07,1.76) 13.21 4.22 (-2.03,2.67,-1.22)

lci (0.74,-0.21,0.64) (1.77,1.12,0.99) 9.56 2.92 (-2.90,1.43,-1.69)

uci (2.28,1.33,1.39) (5.87,5.00,2.68) 17.99 6.17 (-0.43,3.69,-0.37)

gen (1.07,0.89,1.05) (1.02,1.18,1.18) 9.88 5.13 (-0.15,1.67,-0.23)

1.5 pm (0.36,1.34,0.65) (0.88,1.77,1.46) 17.30 3.70 (0.21,0.18,-0.50)

lci (-0.10,0.88,0.32) (,0.16,0.76,0.97) 12.48 2.65 (-0.62,-0.25,-1.08)

uci (0.71,1.84,1.00) (1.89,3.28,2.18) 24.33 5.55 (0.79,0.67,-0.03)

gen (0.77,0.97,0.70) (2.23,1.73,1.08) 16.25 4.71 (-0.39,0.48,-0.05)

Table 5.4: Posterior summaries for the linear multilevel mixing model with r = 1 of

100,000 MCMC runs of a Metropolis–Hastings within Gibbs algorithm. The settings for

Θ are given in table 5.2 which correspond to increasing degrees of linear dependence

between the first two rows of the Θ matrix. σ2
α corresponds to the covariance matrix of

the multivariate normal distribution of the mixing distribution, that is, Σα = σ2
αI3. µα is

the mean of the mixing distribution, diag(Σα) is diagonal of the covariance matrix of the

mixing distribution, (ΘΣαΘ
′

)T is the trace of the covariance of the mixing term, ΣT
ǫ is

trace of the error covariance matrix and α1 is the mixing vector for one level. The posterior

mean is denoted by pm, the upper and lower 95% element–wise credible intervals are

denoted by lci, and uci respectively. The lines indicated by gen, give the means of the

50 αi’s generated from N 3(µα, σ2
αI3) in column 4, the variances of the generated αi’s in

column 5, the trace of ΘΣαΘ
′

using the variance of the generated α’s in column 6, the

trace of Σǫ the variance of the actual errors in column 7 and the individual α1 in column 8.



129

Θ σ2

α
meas µ

α
= (1, 1, 1)

′

diag(Σα) (ΘΣαΘ
′

)T ΣT

ǫ
α1

a 0.5 pm (0.88,0.89,0.82) (0.28,0.37,0.40) 6.17 6.68 (0.92,0.98,0.55)

lci (0.66,0.67,0.63) (0.06,0.14,0.24) 4.18 5.70 (0.36,0.36,0.18)

uci (1.09,1.11,1.01) (0.61,0.70,0.63) 9.11 7.81 (1.57,1.65,0.93)

gen (0.90,0.80,0.82) (0.52,0.52,0.42) 7.81 5.34 (1.21,1.61,0.71)

1.0 pm (1.15,1.05,1.09) (1.04,0.78,1.12) 18.59 5.66 (0.98,0.07,1.03)

lci (0.84,0.76,0.79) (0.64,0.13,0.73) 13.37 4.72 (0.25,-0.87,0.53)

uci (1.45,1.33,1.39) (1.63,1.35,1.71) 26.17 7.21 (1.72,1.13,1.56)

gen (1.16,1.01,1.12) (1.02,0.90,1.22) 19.55 5.26 (0.79,-0.48,0.72)

1.5 pm (1.07,1.13,1.37) (1.71,1.84,1.42) 26.56 5.48 (0.42,1.62,2.38)

lci (0.69,0.74,1.04) (1.08,1.13,0.93) 19.70 4.60 (-0.36,0.74,1.88)

uci (1.45,1.55,1.72) (2.62,2.91,2.13) 36.07 6.56 (1.23,2.48,2.88)

gen (1.12,1.07,1.40) (1.84,1.67,1.46) 26.73 5.42 (0.64,1.99,2.22)

b 0.5 pm (1.33,0.85,0.99) (0.67,0.32,0.45) 4.03 5.10 (2.12,1.14,0.47)

lci (0.45,0.22,0.79) (0.04,0.03,0.27) 2.60 4.37 (0.71,-0.19,-0.04)

uci (2.05,1.61,1.19) (2.61,0.91,0.72) 5.95 5.97 (3.89,2.53,0.96)

gen (1.17,1.08,1.06) (0.54,0.59,0.44) 4.15 5.04 (0.29,2.22,0.84)

1.0 pm (1.64,0.33,1.20) (1.26,0.42,0.86) 8.03 5.28 (1.90,0.34,1.96)

lci (0.64,-0.31,0.93) (0.04,0.01,0.55) 5.70 4.51 (0.62,-0.47,1.50)

uci (2.40,1.26,1.47) (3.28,1.79,1.30) 11.14 6.23 (3.19,1.46,2.44)

gen (0.92,0.99,1.25) (1.01,0.92,0.80) 7.56 5.54 (0.82,2.17,2.25)

1.5 pm (0.40,1.54,1.39) (0.33,2.00,1.33) 11.22 5.68 (0.35,-2.17,0.92)

lci (-0.28,0.94,1.06) (0.01,0.57,0.87) 7.95 4.82 (-1.58,-5.01,0.31)

uci (0.96,2.22,1.73) (1.55,5.58,2.02) 15.76 6.74 (3.67,-0.19,1.55)

gen (1.03,0.94,1.30) (1.12,1.26,1.31) 11.26 5.28 (-0.07,-2.41,1.09)

c 0.5 pm (1.89,0.05,1.14) (0.86,0.35,0.52) 6.10 5.86 (2.46,0.28,1.03)

lci (0.50,-0.71,0.90) (0.16,0.02,0.26) 4.11 5.02 (0.97,-0.64,0.27)

uci (2.67,1.42,1.38) (2.96,1.13,0.89) 8.91 6.85 (3.69,1.76,1.79)

gen (0.82,1.18,1.17) (0.58,0.55,0.54) 6.79 5.54 (0.65,2.21,1.04)

1.0 pm (1.08,0.89,0.99) (1.40,0.67,1.41) 10.88 5.08 (0.53,0.52,-0.10)

lci (0.50,0.19,0.64) (0.02,0.01,0.87) 7.83 4.37 (-0.43,-0.24,-0.89)

uci (1.87,1.49,1.35) (5.65,2.18,2.20) 15.03 5.93 (1.31,1.38,0.72)

gen (1.07,0.89,1.05) (1.02,1.18,1.18) 9.88 5.03 (-0.15,1.67,-0.23)

1.5 pm (-0.28,1.93,0.64) (1.22,2.58,1.26) 16.61 4.62 (-0.89,0.94,-0.08)

lci (-1.77,0.78,0.31) (0.13,0.34,0.78) 11.88 3.97 (-2.08,-0.26,-0.81)

uci (0.85,3.63,0.97) (2.77,8.65,1.97) 23.33 5.40 (0.29,2.33,0.65)

gen (0.77,0.97,0.70) (2.23,1.73,1.08) 16.25 4.71 (-0.39,0.48,-0.05)

Table 5.5: Posterior summaries for the linear multilevel mixing model with r = 2 of

100,000 MCMC runs of a Metropolis–Hastings within Gibbs algorithm. The settings for

Θ are given in table 5.2 which correspond to increasing degrees of linear dependence

between the first two rows of the Θ matrix. σ2
α corresponds to the covariance matrix of

the multivariate normal distribution of the mixing distribution, that is, Σα = σ2
αI3. µα is

the mean of the mixing distribution, diag(Σα) is diagonal of the covariance matrix of the

mixing distribution, (ΘΣαΘ
′

)T is the trace of the covariance of the mixing term, ΣT
ǫ is

trace of the error covariance matrix and α1 is the mixing vector for one level. The posterior

mean is denoted by pm, the upper and lower 95% element–wise credible intervals are

denoted by lci, and uci respectively. The lines indicated by gen, give the means of the

50 αi’s generated from N 3(µα, σ2
αI3) in column 4, the variances of the generated αi’s in

column 5, the trace of ΘΣαΘ
′

using the variance of the generated α’s in column 6, the

trace of Σǫ the variance of the actual errors in column 7 and the individual α1 in column 8.
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5.2.2 Case b: θj ∈ ℜa and α ∈ Sp

In this section, we examine the case where α is constrained to lie in the simplex for the

linear constant mixing model and αi is sampled from a logistic normal distribution for

the linear multilevel mixing model. The distributional assumptions for the linear constant

mixing model are as follows:

yi|Θ, α, Σǫ ∼ N a(yi|Θα, Σǫ)

α|µα, Σα ∼ Lp(α|µα, Σα)

Σǫ|δ, Ψ ∼ IWa(Σǫ|δ, Ψ).

We chose the logistic normal distribution over the Dirichlet distribution for the reasons

summarized in chapter 2 and expanded upon in Aitchison (2003). And for the linear

multilevel mixing model

ǫi|Σǫ ∼ N a(ǫi|0, Σǫ)

αi|µα, Σα ∼ Lp(αi|µα, Σα)

µα|τ, Σµ
α

∼ N p−1(µα|τ , Σµ
α

)

Σǫ|δǫ, Ψǫ ∼ IWa(Σǫ|δǫ, Ψǫ)

Σα|δα, Ψα ∼ IWp−1(Σα|δα, Ψα),

To make the connection to the assumptions more clear we refer to the models as convex

constant normal mixing and convex multilevel normal mixing.

Before considering the implementation of the convex mixing models we discuss the

assignment of parameters to the logistic normal prior distributions for the convex mixing

models. Recall from chapter 2.1 that we can construct the logistic normal distribution from

the closure of a multivariate log–normal distribution. That is, let z be a vector of dimension

p and further assume that

z ∼ LN p(0p, σ
2Ip)

that is, a multivariate log–normal distribution with zero means and independent components

with a common variance σ2. If we then apply the closure operator C we have the following

C(z) ∼ Lp−1(0p−1, σ
2(Ip−1 + Jp−1))
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where Jp is a matrix of all ones. We use distributions of this form to assign prior distri-

butions to the parameters of the convex models. Before turning to the assignment of σ2

it is instructive to consider what ranges of values are practically reasonable. Due to the

constrained nature of the space on the simplex and the way the mixing vector enters into the

convex linear mixing model Θα large changes in α on the logistic normal scale translate

into relatively small changes in Θα. To see this consider, p = 3 and consider some possible

configurations of φ(α), where φ is the log–ratio transformation, and how they transform

back to the original scale via φ−1, see the following table:

φ(α)
′

α
′

φ(α)
′

α
′

(0,0) (0.333,0.333,0.333)

(1,-1) (0.665,0.090,0.245) (5,-5) (0.99326,0.00005,0.00669)

(-1,-1) (0.212,0.212,0.576) (-5,-5) (0.00665,0.00665,0.98670)

(1,1) (0.422,0.422,0.155) (5,5) (0.49832,0.49832,0.00336)

(2,-2) (0.867,0.016,0.117) (10,-10) (0.999955,2.06e-09,0.2,0.000045)

(-2,-2) (0.107,0.107, 0.787) (-10,-10) (0.00005,0.00005,0.99991)

(2,2) (0.468,0.468,0.063) (10,10) (0.49999,0.49999,0.00002)

Thus for almost all practical situations, priors that have most of their mass within, -10, 10

on the log–ratio scale will be sufficient. To err on the side of being non-informative, we

chose σ2 = 10. Also, note that we have chosen a prior distribution that is in the region of

multi–modality (see chapter 2.5.3).

The synthetic data for convex constant normal mixing model were generated using

the same source matrices Θ as given in table 5.2 and three settings for Σǫ = σ2
ǫ I5, σ2

ǫ =

0.5, 1.0, 1.5. The following three settings were used for α: φ−1((0, 0)
′
) = (0.33, 0.33, 0.33)

′
,

φ−1((1,−1)
′
) = (0.67, 0.09, 0.24)

′
,φ−1((−2, 2)

′
) = (0.02, 0.87, 0.12)

′
, where φ−1 is the

inverse logistic transform described in 2. The MCMC algorithm was started at the parameter

settings used to generate the data, to avoid burn in effects.

Figure 5.4 gives two-dimensional density plots of φ(α) for σ2
ǫ = 1.0 and each of the

three settings of α across the columns of the figure and the three settings of Θ given

in table 5.2 across the rows. The results for the first column, corresponding to the case

where the source matrix is well conditioned, show very well behaved posterior surfaces,

suggesting a uni-modal posterior. The picture for increasing level of dependence is not

so straightforward. They all have a boomerang shape, which suggests the switching of
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components between the two highly dependent sources. The pattern deviates slightly

depending on the particular setting for α. These plots provide very good indicators for the

component switching, however, it isn’t clear how to deal with higher dimensional situations

which are explored in the next chapter.

Another way to examine the posterior surfaces with three components is to use ternary

diagrams which were introduced in chapter 2. Figure 5.5 gives ternary diagrams of φ(α)

for σ2
ǫ = 1.0 and each of the three settings of α across the columns of the figure and the

three settings of Θ given in table 5.2 across the rows. As seen in figure 5.4, the posterior

surface is well behaved when there is little dependence between the components of the

source matrix. Similarly the ternary diagrams show the characteristic switching between

components one and two. Again, this is hard to generalize to higher dimensional mixing

problems where ill–conditioned source matrices are more likely to be an issue.

Table 5.6 gives posterior summaries for the convex constant normal mixing model. We

present the mixing vector results on the original scale for ease of interpretation, however,

we equally could have presented the results on the φ(α) scale. Focusing on the equally

weighted mixing vector α = (0.33, 0.33, 0.33)
′
, we do reasonably well when the sources are

nearly orthogonal, and as before the performance of final component which is uncorrelated

with the first two. The partitioning of the first two components breaks down as the source

matrix becomes more ill–conditioned as was seen before. Rare components are very difficult

to apportion properly and not surprisingly deteriorates as residual variance increases as

evidenced in part a) of the table for α2 and α3. The effect of the high degree of correlation

results in the inability to separate out those two components regardless of how rare they

are. Also note that there is substantial uncertainty in the posterior with high degree of

dependence as evidenced by most of the credible intervals spanning the entire 0-1 range to

2 decimal places of course. The residual variance is well recovered, however, the posterior

mean estimates are on the high side for case c) with residual variance σǫ = 1.5.

Consider the convex multilevel normal model and recall the that the covariance break-

down is given by:

var(yi) = var(Θαi) + var(ǫi)

Σy

(k×p)

= Θ
(k×p)

Σ∗
α

(p×p)

Θ
′

(p×k)
+ Σǫ

(k×k)
.
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Figure 5.4: Posterior density plots of the convex constant mixing model for the log–ratio

transformation of the mixing vector denoted by φ(α). The rows show the effect of changing

the mixing vector: (a-c) φ(α) = (0, 0)
′
, (d-f) φ(α) = (1,−1)

′
and (g-i) φ(α) = (−2, 2)

′
.

While the columns show the effect of dependence among the columns of Θ: (a,d,g) small

condition number, (b,e,h) moderate condition number and (c,f,i) large condition number.

See table 5.2 for the actual Θ’s used. Note the changing scale across the rows of the panel

plot. The plots were constructed using the kde2d function from the MASS package of R.

The ranges were restricted to the 0.5% and 99.5% quantiles for each of the components of

φ(α) to avoid large regions with very little density variation.



134

0 1

1

1
0 2 1

0

3

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l l l
l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l
ll

l

l l
l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l l

l

l
l

l

l

l

l
l l

l

l

l

l
l

l

l
l

l
ll

l l
l

l

l l
l

l

l

l

l

l

l

l
l l

l

l

ll

l

l
l

l l
ll

l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

ll

l

l
l

l

l

l
l

l

l l

l

l

l
l

l

l
l

l

ll l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

ll

l
l l

l

l
l

l

l

l

l
l

l

l

l
l l

l

l

l

l

l

ll

l l l
l

l

l

ll
l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l l

l

l ll

l

l

l

l
l

l

l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

ll

l

l
l

ll l

l

l l

l

l

l
l

l
l

l

l

l

l
l l

l

ll

ll

l

l

l
l

l

l
ll

l

l

l

l

l

l

ll

l

l
l

l l

l

l

l

l

l
l

l

ll

l

l

l

l

l
l

l

l

l
l

l

l

ll

l

l
l

l

l

l

l
l

l l

ll

l

l

l
l

ll

l

l

l

l
l

l

l

l

ll
l

l

l l
l

l

l
l

l

l

l

ll

l

l

l
l l

l

l

l

l

l l
l

l

l

ll

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l l l
l

l

l

l
l

l l
l

l
l

ll

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

ll l
lll

l

l

l
l

l

l l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l
ll

l

l

l l

l
l

l

l

l
ll

l

l

l

l

l

ll

l

l

l

l
l

l

l l

l
l

l

l

l

l

l

l

l
l

l

ll

l

l

l

ll

l

l

l

l

l

l

ll l

l

l

l

ll
l

l l

l

l
l

l

l

l

l

l

l l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l
l l

l

l

l

l l

l
l

l
l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l
l

l

l l

l

l

l

ll

l

l

l

l

ll
ll

l

l

l

l

l

l

l

l l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l

ll
l

l
l

l
l

l
ll

l

l l
l

l
l

l

l l

l

ll

l

l

l

l

l l
l

l

lll

l

l
l

l
l

l

l

l
l

l

l
l

l

l

l

l

l l
l ll l

l

l l

ll
l

l

l

l
l

l
l

l

l

l

ll

l

l

l

l l

l

l l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l
l

ll
l

l ll

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l ll

l l

l

l

l
l

l

l

l

l
l

l
l

l ll

lll

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l l

l

l

l

l

l

l

l
l

l

l

l
ll

l
ll

l
l

l
l

l

l
ll

l

l
l

l

l
l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l
l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

ll

(a)
0 1

1

1
0 2 1

0

3

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l

l l

l

l

l
l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

ll

l
l

ll
l
l

l

l

l

l

l

ll

l

l

l

l

l

l l

l
l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l l ll

l

l

ll

l

l

ll
l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l l
l

l
l

l
l

l
l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

ll

l
l

l

l

l

l

l
lll

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l l

ll

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l l

l l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

ll

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l
l

l

l l
l

l
ll

l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

ll
l

l

ll
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l l
l

l

l

l
l

l

l

l
l

l

l

l
ll

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l l

l

l

l

l

l

(b)
0 1

1

1
0 2 1

0

3

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l l

l

l

l
l

l

l

l
l l

ll

l

l

ll
l

l

l
ll l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

ll

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll l

l l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l l
l

l

l
l

l

l

l

l

ll

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

ll

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l l

l
l

l

l

l

l

l
l

l

l

l

l

l
l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll l

l

l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l
ll

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

ll l

l
l

l

l

l

l
l

l

l l

l

l l

l

l

l
l

l

l

l
ll

l

l

ll

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

ll l

l

l

l

l

l

l
l l

l

l

l

l

l

l l

l

l

l

ll

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l l

l

l
l

l

l

l

l

l

l

l

l
l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

(c)

0 1

1

1
0 2 1

0

3

l

l

l

l

l

l

l
l

l l
l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

ll

l

l
l

l
l

l
l

l
l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l l l
l

l

l

l

ll

l

l
l

lll
l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l l

l

l

l

l
l

l
l

l

l
l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l

l l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

ll

l

l
ll

l

l

l

l
l

l

l

l
l

l

l

l l

l

l

l

l
l

l

ll

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l l

l
l

ll l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l
l

ll

l

l

l

l

l
l

l

l

l

l

l

lll

l

l
l

l

l

l

l
l

l

l

l

l

ll
ll l

l

l

l

l

l

l
l

ll
ll

l

l l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l

l l

l

l

l

l

l

l
ll

l
l

l

l

l
l

l

ll

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ll

l

ll

l

l

l

l

ll
l

l

l

ll
l

l

ll

l

ll

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l l

l

l

l l

l l l

ll

l

l

l

l

l

l

l

l

l
l

l
l

ll l

l

l

l

l

l
l l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

ll
l l

ll
l

l

l

l

l

l
l

l

l
l

l

ll

l

l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

ll

l l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll
l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

ll
l

l l

l

l

l

l l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l
l

l l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

ll

lll

l

l

l

l l
l

l
l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l
l

ll

l

l

l

l ll

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l l

ll

l

ll

l

l l

l

ll

l

l

l

l
l

ll

l
l

l

l

l

l

l
l

l

l
l

l

l

ll

l

l

l
l

l

l

l

l
l

l

l

l

ll

l

ll

l

l

l

l

l

l

l l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l l

l

l

(d)
0 1

1

1
0 2 1

0

3

l

l
l

l

l

l

l

l

l

l

ll

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

ll

l

l l l

l

l

l

l

l

l

l

ll

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l
l

l
l

l

l
l

ll

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

ll

l

l

l
l

l
l

l l

l

l

l

l

l

l
ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l l

l
l

l

l

l

l

l

l l
l

l
l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l
l

l l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l
l

l

l

l

l

l

l

l

l l l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l
l

ll

l

ll

l

l

l
l

ll

l

ll l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l
lll

l

l

l

l

l

l
l

l

ll

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l ll

l

l

l

l l

l
l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l l

l

l
ll

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l l
l

l

l

l

l

l
l

l

l
l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

(e)
0 1

1

1
0 2 1

0

3

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l l

l

l

l
l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
ll l

l

l

l

l

l

l

l

l

l l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l l

l

l
l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

ll

l

ll

l

l

l
l

l

ll

l

l

l

l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l ll

l l

l

l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l
l

l

l

ll

l
l

ll

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l l

l

l

l
l

ll

l

l

l

l

l

l

l l

l

l
l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

(f)

0 1

1

1
0 2 1

0

3

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l
l ll
l

l
l
l

l

l

l

l

l
l

l l

ll
l

l

l

l

l
l

l

l

l

l

l

l
l
l

l
l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l
l

l

ll

l

l

l

l

l

l

l
l l

l
l

l

l

l

l

l

l
l

l

l

ll

l
l

l

l

l

l

ll

l

l
l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

ll

l

l

l l

lll

l
l

l l
l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l
l

l

l

l

ll

l l

l

l

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
l l

l l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

ll lll
l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l
ll

ll
l

l

l l

l
l

l

l

l

l

ll

l

l

l

l

lll l

l l

l

l

l

l

l
l

l

l

l

l l

l

l

l
l

l
l ll

l
l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l
ll

l
l

l

l

l

l

l

l

l

ll
ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll
ll l l

l

l

l

l

l

l
l

l

l

l

l

l
l

ll

l

l

l l

l

l

l

l

l

l
ll

l
l

l

l
l

l

l

l
ll

l

l l

l l

l

l
l

l

l
l

l

l

l

l

l
l

l l

l

l

l
l

ll
l

l l

l

l
l

l

l

l

l

l

l

l

l

l

lll
l

ll
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l l

l

l
l

l
l

l

l
l

l

l

l
l

l

ll
l

l

l
ll

l
l

ll

l l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l l

ll

l l

l

l
l

l

l

l
l

l

l

ll
l

l

l

ll

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

ll

l

l

ll

l

l
l

l

l

l

l

l

l l
l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l l ll

l

l

l

l

l

l
ll l

l

l

l
l

l

l

l

l l
l

l

l
l

l
l

l

lll

l

ll

l

l
l

l
l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l
l

l

l

ll l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l
l

l
l

l l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l
ll

l

ll
l

l

l
l l

l

l

l

l

l

l

l
ll

l

l
l

l
ll

l
l

l

l

l

l

l

l

l

ll
ll

l

ll
l

l

l l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l l

l

l

l

l l
l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

ll

l
l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l
ll

l

l

l
l

l

l

l

l

l

l

l l

l

l
l

l
l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l l

l
l

l

l

l

l

l l

l

l

l
l

l

ll
l

l
l l

l

l

l

l

l
l

l

l

ll

l

l
l

l

l l

l

l

l

l
l

l
l

l

l

l

lll l
l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
ll

ll

l
l

l

l

l

l

l

l

lll

l

l

l
l

l

l

l

ll l

l

l

l ll

l
l

l
l

l

l

l

(g)
0 1

1

1
0 2 1

0

3

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l
l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l l

l

l

l

l

l l
l

l

l

l

l

l

l
l

l

l
l

l

l
l

l
l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

ll

ll

l

l
l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

lll l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

lll

l

l

l

l

l

l l

l
l

l

l

l

l

l

ll

l

l
l

l

l
l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l

l
l
l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

ll

l

l
l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l l

l

l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l l

l
l

l
l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

ll

l

l

l
l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l
l l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l
l

l

l
l

l ll

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l
l

l

l
l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l ll

l
l

l

lll

l

l

l

l

l
l l l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l
l

l

l

ll

l
l l l

l
l

l
l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l ll

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

ll

l
ll

l

l

l
l

l

l
l

l

l
l

l

l

l

l l

l

l

l
l

l
l

l
l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

ll

l

l

l

l
ll

l

l
l

l

l
l

l

l

l

l

l l
l

l
l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l
l

l

l
l

l

l
l

l
l
l

ll

l
l

l

l

l

l
l

l
l

l

ll
l

l

l

l

l

l
l

lll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

ll

l

(h)
0 1

1

1
0 2 1

0

3

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l l

l

l

ll
l

l

l

l

l l

l

llll

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l
l
l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
ll

l

l

l

l

l

l
l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l
l

ll

l

l

l

l

l

l

ll
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l l

l
l

l

ll l

ll

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l
ll

l

l

l

l
l

l

l

l

ll

l
l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l
l

l

l

lll

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l l

l
l

l

l

l
l

l

l

l
l

l

l

l
l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

ll

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll
l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
l

ll

l

l

l

l

l

l
l

ll

l

l

l

l

l

ll

l

l

l

lll
l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

ll

l

l

l
l

l

l
l

l
l

l

l

l
l

l

ll

l

l
l

l
l

l
ll

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
ll

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l
l

l

l

l
l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

lll

l
l

l

l

l

l

ll
l

l

l
l

l

l

l
l

l

l l

(i)

Figure 5.5: Posterior density ternary diagrams of the convex constant mixing model for

φ(α). The rows show the effect of changing the mixing vector: (a-c) φ(α) = (0, 0)
′
,

(d-f) φ(α) = (1,−1)
′

and (g-i) φ(α) = (−2, 2)
′
. While the columns show the effect of

dependence among the columns of Θ: (a,d,g) small condition number, (b,e,h) moderate

condition number and (c,f,i) large condition number. See table 5.2 for the actual Θ’s

used. Note that only every 10 posterior sample was used in the construction of the ternary

diagrams.
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Θ σ2

ǫ
meas α1 α2 α3

(0.33, 0.33, 0.33)
′

ΣT

ǫ
(0.67, 0.09, 0.24)

′

ΣT

ǫ
(0.02, 0.87, 0.12)

′

ΣT

ǫ

a 0.5 pm (0.34,0.28,0.37) 2.86 (0.64,0.12,0.24) 2.89 (0.01,0.85,0.13) 1.87

lci (0.24,0.17,0.32) 2.35 (0.53,0.01,0.19) 2.37 (0.00,0.80,0.10) 1.54

uci (0.45,0.39,0.43) 3.48 (0.74,0.23,0.30) 3.54 (0.05,0.90,0.17) 2.27

1.0 pm (0.31,0.36,0.33) 5.46 (0.67,0.11,0.22) 5.60 (0.08,0.84,0.09) 4.55

lci (0.17,0.21,0.27) 4.51 (0.51,0.00,0.15) 4.62 (0.00,0.68,0.03) 3.74

uci (0.45,0.51,0.39) 6.64 (0.79,0.30,0.29) 6.87 (0.20,0.96,0.14) 5.54

1.5 pm (0.25,0.42,0.33) 6.85 (0.77,0.03,0.20) 6.98 (0.02,0.89,0.10) 8.64

lci (0.08,0.26,0.26) 5.66 (0.67,0.00,0.13) 5.76 (0.00,0.77,0.01) 7.14

uci (0.41,0.58,0.41) 8.35 (0.85,0.12,0.28) 8.45 (0.09,0.99,0.19) 10.47

b 0.5 pm (0.49,0.17,0.34) 3.04 (0.51,0.22,0.27) 2.41 (0.11,0.81,0.07) 2.82

lci (0.02,0.00,0.26) 2.52 (0.02,0.00,0.20) 1.98 (0.00,0.00,0.01) 2.33

uci (0.72,0.61,0.42) 3.68 (0.78,0.67,0.35) 2.95 (0.98,0.98,0.14) 3.43

1.0 pm (0.37,0.32,0.31) 5.33 (0.52,0.22,0.26) 5.08 (0.25,0.66,0.09) 4.69

lci (0.01,0.00,0.21) 4.41 (0.01,0.00,0.16) 4.18 (0.00,0.00,0.01) 3.89

uci (0.75,0.70,0.41) 6.47 (0.81,0.71,0.35) 6.21 (0.98,0.96,0.17) 5.72

1.5 pm (0.44,0.21,0.34) 6.07 (0.54,0.26,0.20) 7.99 (0.24,0.60,0.17) 6.35

lci (0.01,0.00,0.23) 4.99 (0.01,0.00,0.06) 6.63 (0.00,0.00,0.06) 5.24

uci (0.74,0.63,0.45) 7.45 (0.92,0.79,0.34) 9.66 (0.92,0.88,0.26) 7.75

c 0.5 pm (0.36,0.31,0.32) 2.44 (0.40,0.38,0.22) 2.32 (0.47,0.45,0.07) 2.56

lci (0.00,0.00,0.24) 2.02 (0.00,0.00,0.16) 1.90 (0.00,0.00,0.01) 2.10

uci (0.71,0.71,0.40) 2.96 (0.80,0.80,0.29) 2.85 (0.98,0.98,0.15) 3.14

1.0 pm (0.34,0.31,0.36) 4.99 (0.40,0.44,0.16) 5.73 (0.49,0.45,0.07) 4.96

lci (0.00,0.00,0.23) 4.11 (0.00,0.00,0.03) 4.73 (0.00,0.00,0.00) 4.08

uci (0.71,0.70,0.48) 6.05 (0.93,0.94,0.30) 6.95 (0.99,0.99,0.17) 6.08

1.5 pm (0.24,0.24,0.52) 8.47 (0.45,0.46,0.09) 8.53 (0.45,0.46,0.09) 9.06

lci (0.01,0.01,0.38) 6.94 (0.00,0.00,0.00) 7.05 (0.00,0.00,0.00) 7.45

uci (0.54,0.55,0.65) 10.39 (0.99,0.99,0.24) 10.38 (0.99,0.99,0.24) 11.03

Table 5.6: Posterior summaries for the convex linear constant mixing model of 100,000

MCMC runs of a Metropolis–Hastings within Gibbs algorithm with a thinning factor of 10.

The settings for Θ are given in table 5.2 which correspond to increasing degrees of linear

dependence between the first two rows of the Θ matrix. σ2 corresponds to the covariance

matrix of the multivariate normal distribution of the errors, that is, Σǫ = σ2
ǫId, α1, α2 and

α3 are the three settings of the mixing vector and ΣT
ǫ is trace of the error covariance matrix.

The posterior mean is denoted by pm, the upper and lower 95% element–wise credible

intervals are denoted by lci, and uci respectively. Note that the posterior is summarized for

the original scale rather than the φ scale for ease of interpretation.

The mixing occurs on the simplex scale, however, the (p − 1) × (p − 1) covariance matrix

Σα is expressed on the log–ratio scale (see chapter 2). In order to apply the above equation

we need an expression for the variance on the simplex scale, which we denote by Σ∗
α which

is p× p matrix. Note that this is a singular matrix, that is, one of the eigenvalues is zero due

to the unit sum constraint. Rather than work out an analytical approximation, we use the

generated αi’s to compute the covariance matrix. Aitchison and Bacon-Shone (1999) give
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an approximation to this distribution using the delta method for the compositional case. By

trial and error, we deduced that scaling the Θ by a scale factor of 5, gives approximately

the correct signal to noise ratio with Σǫ = I5.

Synthetic data was generated using the convex normal mixing model using µα =

(0.33, 0.33, 0.33)
′
, Σα = σ2

αI3, with σ2
α = 0.5, 1.0, 1.5 and Σǫ = I5. The source matrix is

multiplied by 5 to get a reasonable signal to noise ratio. The results of generating n = 50

and r = 1 and r = 2 replicates with first one serving as one of the replicates for the r = 2

case.

The results are given tables in 5.7 and 5.8 for r = 1 and r = 2 respectively. The results

for case a) indicate that we do remarkably well in reconstructing the mean mixing vector,

µα for both one and two replicate observations and also in the recovery of the individual

level result given by α1. The partitioning of the covariance between the mixing process and

the error process appears to be well recovered as well, though there is a tendency to attribute

more variability to the mixing process. A similar pattern emerges for the other two cases,

an inability to correctly partition the first two components, however, the final component

appears to be recovered well. There is no obvious improvement in the partitioning of the

covariance between the two model components.
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Θ σ2

α
meas µ

α
= (0.33, 0.33, 0.33)

′

diag(Σα) (ΘΣαΘ
′

)T σT α1

a 0.5 pm (0.33,0.34,0.33) (0.82,0.78) 9.67 4.73 (0.72,0.15,0.14)

lci (0.27,0.28,0.29) (0.54,0.49) 9.15 3.50 (0.70,0.12,0.12)

uci (0.40,0.40,0.37) (1.24,1.21) 10.48 6.49 (0.73,0.17,0.16)

gen (0.34,0.36,0.30) (0.60,0.50) 7.67 5.15 (0.63,0.24,0.13)

1.0 pm (0.31,0.41,0.27) (1.39,0.32) 9.28 8.52 (0.24,0.48,0.28)

lci (0.23,0.30,0.22) (0.82,0.02) 7.70 4.77 (0.10,0.31,0.20)

uci (0.40,0.52,0.34) (2.29,1.68) 13.3 12.65 (0.37,0.70,0.34)

gen (0.35,0.38,0.27) (0.98,1.00) 11.76 4.57 (0.17,0.57,0.26)

1.5 pm (0.32,0.38,0.30) (2.23,1.50) 22.07 6.37 (0.13,0.17,0.71)

lci (0.23,0.28,0.24) (1.33,0.69) 18.7 4.54 (0.03,0.04,0.61)

uci (0.41,0.47,0.38) (3.64,2.81) 25.73 8.94 (0.23,0.34,0.79)

gen (0.36,0.34,0.30) (1.83,1.87) 19.08 5.09 (0.3,0.14,0.55)

b 0.5 pm (0.53,0.17,0.30) (0.41,0.54) 3.76 4.38 (0.49,0.15,0.36)

lci (0.30,0.08,0.26) (0.13,0.11) 3.48 3.45 (0.30,0.06,0.27)

uci (0.64,0.38,0.34) (0.73,1.31) 4.13 5.62 (0.60,0.38,0.42)

gen (0.32,0.37,0.31) (0.45,0.48) 2.79 4.90 (0.26,0.41,0.33)

1.0 pm (0.51,0.16,0.33) (2.00,0.54) 9.32 5.76 (0.45,0.16,0.39)

lci (0.31,0.06,0.26) (1.14,0.04) 8.62 4.37 (0.27,0.06,0.35)

uci (0.65,0.34,0.42) (3.41,1.77) 10.42 7.92 (0.58,0.33,0.43)

gen (0.29,0.34,0.36) (0.90,1.09) 5.65 5.26 (0.24,0.13,0.63)

1.5 pm (0.23,0.41,0.36) (1.60,1.01) 7.11 4.48 (0.25,0.64,0.11)

lci (0.11,0.28,0.27) (0.24,0.40) 6.70 3.59 (0.00,0.19,0.04)

uci (0.42,0.55,0.47) (3.88,2.11) 7.57 5.60 (0.76,0.89,0.16)

gen (0.33,0.35,0.32) (1.36,1.43) 6.99 4.60 (0.09,0.74,0.16)

c 0.5 pm (0.42,0.25,0.33) (0.61,4.75) 3.36 4.38 (0.46,0.13,0.41)

lci (0.08,0.08,0.25) (0.18,2.14) 3.10 3.51 (0.08,0.03,0.37)

uci (0.61,0.59,0.44) (2.05,8.22) 3.72 5.49 (0.57,0.50,0.44)

gen (0.35,0.34,0.31) (0.54,0.54) 1.46 5.15 (0.51,0.17,0.32)

1.0 pm (0.29,0.43,0.28) (2.77,0.31) 3.16 4.57 (0.65,0.26,0.09)

lci (0.18,0.25,0.22) (1.41,0.11) 2.98 3.69 (0.27,0.03,0.01)

uci (0.45,0.53,0.35) (4.87,0.69) 3.48 5.69 (0.94,0.54,0.19)

gen (0.39,0.32,0.29) (1.04,0.92) 2.55 5.20 (0.59,0.26,0.15)

1.5 pm (0.61,0.14,0.25) (1.38,0.84) 4.71 4.30 (0.69,0.12,0.19)

lci (0.36,0.07,0.19) (0.83,0.09) 4.41 3.45 (0.54,0.03,0.14)

uci (0.72,0.33,0.33) (2.21,2.92) 5.26 5.41 (0.78,0.27,0.26)

gen (0.37,0.35,0.29) (1.58,1.28) 3.32 4.65 (0.14,0.67,0.20)

Table 5.7: Posterior summaries for the convex multilevel normal mixing model with r = 1
of 100,000 MCMC runs of a Metropolis–Hastings within Gibbs algorithm. The settings

for Θ are given in table 5.2 which correspond to increasing degrees of linear dependence

between the first two rows of the Θ matrix. σ2
α corresponds to the covariance matrix of

the multivariate normal distribution of the mixing distribution, that is, Σα = σ2
αI3. µα is

the mean of the mixing distribution, diag(Σα) is diagonal of the covariance matrix of the

mixing distribution, (ΘΣαΘ
′

)T is the trace of the covariance of the mixing term, ΣT
ǫ is

trace of the error covariance matrix and α1 is the mixing vector for one level. The posterior

mean is denoted by pm, the upper and lower 95% element–wise credible intervals are

denoted by lci, and uci respectively. The lines indicated by gen, give the means of the

50 αi’s generated from L2(µα, σ2
αI2) in column 4, the variances of the generated αi’s in

column 5, the trace of ΘΣαΘ
′

using the variance of the generated α’s in column 6, the

trace of Σǫ the variance of the actual errors in column 7 and the individual α1 in column 8.
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Θ σ2

α
meas µ

α
= (0.33, 0.33, 0.33)

′

diag(Σα) (ΘΣαΘ
′

)T σT α1

a 0.5 pm (0.34,0.34,0.32) (0.55,0.53) 7.71 4.79 (0.63,0.22,0.16)

lci (0.29,0.29,0.29) (0.34,0.31) 6.75 4.13 (0.52,0.11,0.11)

uci (0.39,0.39,0.36) (0.87,0.87) 8.67 5.57 (0.73,0.33,0.21)

gen (0.34,0.36,0.30) (0.60,0.50) 7.67 4.85 (0.63,0.24,0.13)

1.0 pm (0.31,0.40,0.29) (1.55,1.23) 13.11 4.63 (0.20,0.55,0.24)

lci (0.23,0.31,0.24) (0.94,0.72) 11.93 3.98 (0.08,0.40,0.19)

uci (0.41,0.49,0.34) (2.53,2.01) 14.29 5.39 (0.34,0.70,0.29)

gen (0.35,0.38,0.27) (0.98,1.00) 11.76 4.77 (0.17,0.57,0.26)

1.5 pm (0.34,0.35,0.32) (2.24,1.82) 19.71 5.05 (0.24,0.14,0.62)

lci (0.24,0.26,0.25) (1.34,1.03) 18.03 4.32 (0.13,0.03,0.55)

uci (0.44,0.45,0.39) (3.67,3.03) 21.35 5.93 (0.33,0.27,0.69)

gen (0.36,0.34,0.30) (1.83,1.87) 19.08 5.01 (0.30,0.14,0.55)

b 0.5 pm (0.59,0.11,0.30) (0.42,0.35) 3.13 4.76 (0.57,0.11,0.32)

lci (0.42,0.01,0.26) (0.21,0.01) 2.43 4.14 (0.39,0.01,0.22)

uci (0.71,0.27,0.34) (0.76,1.45) 3.85 5.49 (0.73,0.27,0.41)

gen (0.32,0.37,0.31) (0.45,0.48) 2.79 4.81 (0.26,0.41,0.33)

1.0 pm (0.39,0.25,0.37) (0.49,1.32) 5.90 5.38 (0.30,0.13,0.56)

lci (0.22,0.07,0.31) (0.12,0.36) 4.90 4.68 (0.14,0.02,0.46)

uci (0.57,0.41,0.43) (1.41,3.33) 6.93 6.21 (0.45,0.29,0.67)

gen (0.29,0.34,0.36) (0.90,1.09) 5.65 5.22 (0.24,0.13,0.63)

1.5 pm (0.22,0.46,0.32) (2.10,0.69) 7.19 5.12 (0.49,0.45,0.06)

lci (0.08,0.31,0.26) (0.27,0.31) 6.41 4.45 (0.07,0.09,0.01)

uci (0.39,0.58,0.40) (6.49,1.29) 8.00 5.90 (0.89,0.85,0.13)

gen (0.33,0.35,0.32) (1.36,1.43) 6.99 5.27 (0.09,0.74,0.16)

c 0.5 pm (0.14,0.54,0.31) (0.46,0.39) 1.83 4.98 (0.14,0.51,0.35)

lci (0.03,0.24,0.27) (0.01,0.05) 1.15 4.30 (0.03,0.24,0.23)

uci (0.45,0.67,0.36) (2.22,0.92) 2.53 5.80 (0.39,0.68,0.47)

gen (0.35,0.34,0.31) (0.54,0.54) 1.46 4.88 (0.51,0.17,0.32)

1.0 pm (0.50,0.23,0.28) (0.46,0.41) 1.98 5.60 (0.58,0.26,0.16)

lci (0.16,0.02,0.23) (0.06,0.01) 1.25 4.85 (0.12,0.01,0.06)

uci (0.72,0.57,0.32) (1.31,1.46) 2.72 6.50 (0.88,0.75,0.27)

gen (0.39,0.32,0.29) (1.04,0.92) 2.55 5.54 (0.59,0.26,0.15)

1.5 pm (0.13,0.62,0.25) (0.89,0.93) 3.46 4.84 (0.13,0.66,0.21)

lci (0.00,0.35,0.20) (0.02,0.45) 2.86 4.21 (0.00,0.38,0.12)

uci (0.38,0.78,0.31) (4.01,2.01) 4.09 5.54 (0.39,0.86,0.31)

gen (0.37,0.35,0.29) (1.58,1.28) 3.32 4.71 (0.14,0.67,0.20)

Table 5.8: Posterior summaries for the convex multilevel normal mixing model with r = 2
of 100,000 MCMC runs of a Metropolis–Hastings within Gibbs algorithm. The settings

for Θ are given in table 5.2 which correspond to increasing degrees of linear dependence

between the first two rows of the Θ matrix. σ2
α corresponds to the covariance matrix of

the multivariate normal distribution of the mixing distribution, that is, Σα = σ2
αI3. µα is

the mean of the mixing distribution, diag(Σα) is diagonal of the covariance matrix of the

mixing distribution, (ΘΣαΘ
′

)T is the trace of the covariance of the mixing term, ΣT
ǫ is

trace of the error covariance matrix and α1 is the mixing vector for one level. The posterior

mean is denoted by pm, the upper and lower 95% element–wise credible intervals are

denoted by lci, and uci respectively. The lines indicated by gen, give the means of the

50 αi’s generated from L2(µα, σ2
αI2) in column 4, the variances of the generated αi’s in

column 5, the trace of ΘΣαΘ
′

using the variance of the generated α’s in column 6, the

trace of Σǫ the variance of the actual errors in column 7 and the individual α1 in column 8.
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5.3 Observations on the Sources

Throughout this chapter we assumed that the source matrix Θ was known, however, this

is rarely the case in practice. Several attempts have been made in the literature to address

this, for example Bandeen-Roche and Ruppert (1991); Bandeen-Roche (1994); Billheimer

(2001); Park et al. (2000, 2001, 2002); Wolbers and Stahel (2005) to name but a few.

The studies and methods considered above did not have access to measurements on the

sources, we briefly introduce a model that allows for this and we take this up in much more

detail in the next chapter where we analyze the diet of marine predators. The model under

consideration has some similarities to the work of Aitchison and Bacon-Shone (1999);

Billheimer (2001).

To keep things simple, we consider the most basic version of the mixing model, the

linear constant mixing model without any restrictions and assume that ǫi ∼ N a(0, Σǫ).

The model is again

yi = Θα + ǫi i = 1, . . . , n.

Let the observations on the sources be denoted by xjk, j = 1, . . . , p, k = 1, . . . , nj , which

for simplicity we assume follow the model

xjk = θj + ǫx
jk j = 1, . . . , p, k = 1, . . . , nj.

where ǫx
jk ∼ N a(0, Σxj

). Or writing it in the structural equation framework (see Lee, 2007)

in matrix notation

Y
(a×n)

= Θ
(a×p)

α
(p×1)

W
(1×n)

+ E
(a×n)

Xj
(a×nj)

= θj
(k×1)

Wj
(1×nj)

+ EX
j

(a×nj)

j = 1, . . . , p

where Xj
(a×nj)

= [xj1| . . . |xjnj
] is an a × nj matrix of observations on the jth source, Wj

(1×nj)

is a matrix of ones, and finally EX
j is defined analogously to Xj with the errors ǫx

jk, k =

1, . . . , nj forming the columns of the matrix. This model is highly non–linear as two

parameters Θ and α appear as a product which makes the analysis of this model much

more complicated compared to when Θ is known. However, it turns out that the MCMC

algorithm for this model is relatively straightforward due to the conditional nature of the

updates. The DAG for constant mixing version is given in figure 5.6 and the multilevel
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version in figure 5.7.
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Figure 5.6: Directed Acyclic Graph (DAG) linear constant mixing model with observations

on the sources. The square nodes indicate parameters that are known a priori, while circular

nodes represent unknown parameters that are updated when the data, yi, i = 1, . . . , n and

xjk, j = 1, . . . , p, k = 1, . . . , nj are observed.

This model can be see as a halfway house between the chemical mass balance models

where the source matrix Θ is assumed to be known and the models that assume that it

is not known and can be inferred from receptor observations see Bandeen-Roche and

Ruppert (1991); Bandeen-Roche (1994); Billheimer (2001); Park et al. (2000, 2001, 2002);

Wolbers and Stahel (2005). The identifiability conditions are less stringent than usual as

the observations on the sources pin down the sources, however, we still require Θ to be

of full rank. Seen in this way this is a natural extension of the Billheimer (2001) model,

however, we defer discussion of this until the next chapter.

The full posterior distribution of the linear constant mixing model with observations on

the sources is given by:

p(α, Σǫ,Θ, Σx|y1, . . . ,yn,X1, . . . ,Xp) ∝ h(Σǫ|δ, Ψ) × g(α|µα, Σα) ×
n∏

i=1

f(yi|Θα, Σǫ)

×h(Σx|δx, Ψx) ×
p∏

j=1

g(θj|µθj
, Σθj

) ×
p∏

j=1

nj∏

k=1

f(xjk|θj, Σx).

where we have assumed the functional form of the prior for θ, Σx1
and sampling distribution
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Figure 5.7: Directed Acyclic Graph (DAG) linear multilevel mixing model with observa-

tions on the sources. The square nodes indicate parameters that are known a priori, while cir-

cular nodes represent unknown parameters that are updated when the data, yi, i = 1, . . . , n
and xjk, j = 1, . . . , p, k = 1, . . . , nj are observed.

for xjk are g, h and f respectively, similar to distributional assumptions for α, Σǫ and

yi. This posterior distribution has more complicated structure than previously as the term

Θα now involves two unknown parameters. However, using the properties of conditional

independence which are graphically depicted in the DAG (see figure 5.6) of the linear

constant mixing model with observations on the sources, we can write down the full

conditional distributions as follows:

p(α|Σǫ, ) ∝ g(α|µα, Σα) ×
n∏

i=1

f(yi|α,Θ, Σǫ)

p(Σǫ|α, ) ∝ h(Σǫ|δǫ, Ψǫ) ×
n∏

i=1

f(yi|α,Θ, Σǫ)

p(Σxj
|θj, ) ∝ h(Σxj

|δxj
, Ψxj

) ×
nj∏

k=1

f(xjk|θj, Σxj
)

p(θj|Σǫ, ) ∝ g(θj|µθj
, Σθj

) ×
nj∏

k=1

f(xjk|θj, Σxj
) ×

n∏

i=1

f(yi|α,Θ, Σǫ)
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The full conditional distribution for θj has information from three sources: the prior for

θj , the observations on each source (prey) xjk, k = 1, . . . , nj and also on the observations

receptor (predator), yi, i = 1, . . . , n. This is consistent with the approach taken by Bill-

heimer (2001) where he used informative priors on the sources to help make the problem

identifiable, though he didn’t have observations on the sources. For reasons that will

become clear in the next chapter we also consider modifying the fully Bayesian MCMC

approach and breaking the information flow between the predator and prey, that is, we

consider having the updates for θj not depend on the yi.

To illustrate the model, we consider the linear constant mixing model with observations

on the sources. We use identical settings as in the previous sections, that is, we consider

the three source matrices, Θ given in table 5.2, α = (1, 1, 1)
′

and Σǫ = I5. Additionally,

we assume we have nj = 50 observations on the sources generated according to xjk ∼
N a(θj, σ

2
xI5), with σ2

x = 0.5, 1.0, 1.5. We assume that each source has the same covariance

matrix, though this assumption will be relaxed in the next chapter.

We used the same observations on the receptors/predators as were used to generate table

5.3. We focus on the three parameters of the model, namely the mixing vector α, the source

matrix Θ, and the trace of the error covariance matrix, denoted by ΣT
ǫ .

The results of 100,000 MCMC runs with a thinning of 10 are given in table 5.9 which

can be compared to the inference given in table 5.3 where the source matrix, Θ, was known.

The results for the essentially orthogonal case (a), indicate that the inference for the mixing

vector, α, is more uncertain as indicated by the wider credible intervals, however, the

posterior expectation is approximately the same in both cases. The inference for the trace of

the error covariance matrix is not affected by the increased uncertainty of not knowing the

sources exactly, the credible intervals are essentially the same length and the posterior mean

is essential unchanged. Also, the variability in the sources themselves does not appear to

have much effect on the mixing vector or the trace of the error covariance matrix, however,

this is probably due to the small range of variances considered. The inference for the source

profiles θ is affected by the variability in the sources, not surprisingly, with the credible

intervals getting slightly wider as the σ2
x increases. The results for cases b) and c) behave in

a similar way for the inference of the mixing vector α, with some interesting differences.

Specifically, the third component has the same posterior mean, but increased uncertainty as

indicated by widening credible intervals. However, the first two components behave in a
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similar way for case b), that is, increased variability compared to the known source profile

case. For the last case, the increased uncertainty in not knowing the true source profile

matrix, seemingly helps, in that the posterior uncertainty is reduced. This can be explained

by the fact that the uncertainty actually helps by reducing the dependence between the

sources. The other components namely the sources and the trace of the covariance matrix

have similar properties as in case a.

We now discuss the impact of breaking the flow of information from the receptors to the

sources by changing the full conditional distribution for θj from the following:

p(θj|Σǫ, ) ∝ g(θj|µθj
, Σθj

) ×
nj∏

k=1

f(xjk|θj, Σxj
) ×

n∏

i=1

f(yi|α,Θ, Σǫ)

to

p(θj|Σǫ, ) ∝ g(θj|µθj
, Σθj

) ×
nj∏

k=1

f(xjk|θj, Σxj
)

The physical reason for potentially considering this, is that the information on the sources

should trump the information contained in the receptors.

The results of 100,000 MCMC runs with a thinning of 10 are given in table 5.10 and we

compare them to the inference given in table 5.9. For case a), the inference for the various

parameters doesn’t appear to be affected by the elimination of the information flow from

the receptor to the source, with one exception. The posterior distribution of ΣT
ǫ has shifted

to larger values, indicating a poorer fit to the receptors. In fact, this result is consistent

across the other two cases as well. Interestingly, the posterior for the mixing process for

cases b) and c) has reduced uncertainty in the posterior samples as indicated by shorter

credible intervals, additionally, the posterior means have changed.

There are some subtle changes in the posterior means of the θ parameters, but no obvious

move away from the original parameter values. One potential reason for this is that the

sample sizes and hence information content is the same for both the sources and receptors

in the synthetic data.

5.4 Conclusion

This chapter has shown that Bayesian inference applied to linear mixing models can help

diagnose ill–conditioned source matrices and has also shown that we can extend the model
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to cases where we don’t have exact knowledge of the source profiles.

It is widely known that multicollinearity is a serious problem and given the nature of

the sources considered here and in the next chapter ways of dealing with it are desperately

needed. Some potential ways are:

• Examine the source matrix Θ and determine whether the offending columns can be

removed or combined. This can be difficult in large dimensional problems where the

relationships between the columns can be quite complex.

• Perform a singular value decomposition of the columns and form principal com-

ponents of the columns. There is a practical difficulty here that the components

lose their physical or biological interpretation. This approach can work well when

there are no restrictions on where the sources lie, however, this is problematic when

the sources lie in the positive quadrant or in the simplex. Principal components for

compositional data (see Aitchison, 2003) offers some promise, though, there is still

no guarantee of physical interpretability.

• If prior information on the relative contributions of each component to the mixing

vector is available then this information can be used to help locate the proper range

of parameter space and hence deal with the non–identifiability. This is theoretically

appealing, however, such information is not typically available in practice.

• Regression approaches to the linear mixing models have used variants of ridge

regression (see Henry et al., 1984). However, it is not obvious how one would

implement this approach in the more complicated situation considered in the next

chapter, where we deal with the case where the sources are themselves compositions.

• Our preferred method of handling this issue is a model selection method, however,

due to time constraints this approach was not possible. The ideas contained in Green

(1995) would be essential here.
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6.1 Introduction

The overall aim of this chapter is to develop Bayesian inference for the convex linear

mixing model applied to fatty acid signatures. Specifically, the Bayesian approach allows

for incorporation of prior information on diet compositions when available and perhaps

more importantly gives an accurate account of uncertainty. We present some details on

the chemical mass balance approach to fatty acids. The bulk of the chapter develops the

convex linear mixing model and several variants and presents results using synthetic data.

Finally, we give two applications: a captive sea bird study (see Iverson et al., 2007) and a

wild harbour seal study for which the individuals animals had an attached critter cam that

recorded prey encounters (see Iverson et al., 2004; Bowen et al., 2002).

6.2 Biological Basis of the Model

The biological basis of the model follows a very similar line of reasoning as the chemical

mass balance models discussed in the previous chapter with some modifications. Firstly,

the fatty acids are compositional in nature, that is, we only know the relative amounts of the

various fatty acids due to the sampling method used. Specifically, a small blubber biopsy (or

adipose tissue) is taken from the predator rather a complete analysis of the animal’s blubber.

In fact, even the total amount of blubber of a given animal is not known as estimating the

fat content of each individual animal is not practically feasible.

Therefore we assume that the fatty acid profiles are mostly deposited in the adipose

tissue without modification. However, as Iverson et al. (2004) noted, this assumption isn’t

strictly speaking true, that is, predators do modify some fatty acids, in other words, some

biosynthesi , modification and differing deposition characteristics occur. That is, the fatty

acid profile of the fat deposited in the adipose tissue is not the same as the fatty acid profile

of the ingested prey. Iverson et al. (2004) dealt with this issue via the idea of calibration

coefficients. These were calculated by a long term feeding study, where a group of predators

was fed the same diet for an extended period, assumed to represent complete turnover of all

fatty acids. The fatty acid composition of the diet was then compared to the deposited fatty

acid signature and a calibration coefficient was computed to mimic predator metabolism.

For illustration consider the following simplified ecosystem. Assume the predator has

access to p prey types and let a1, . . . , ap be the amounts in arbitrary units that the predator
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consumed of each prey type and denote the total amount consumed by aT =
∑p

i=1 ai. As

mentioned previously, we can’t reconstruct the actual amounts due to the nature of the

sampling. However, expressing this in proportional terms we have τi = ai/aT .

Now consider the amount of fat that was actually deposited in the predator, each prey has

an associated percentage fat, which we denote by fi. Thus, the total amount of fat deposited

is given by

fT =

p∑

i=1

aifi

however, we can substitute ai = τiaT giving the total fat deposited in terms of the propor-

tions of prey consumed, their fat contents and the total amount consumed:

fT =

(
p∑

i=1

τifi

)
aT .

If we consider the proportions of fat deposited, denoted by αi we have

αi =
τifiaT∑p
i=1 τifiaT

=
τifi∑p
i=1 τifi

Thus, if we can estimate the composition deposited in fat, αi’s, we can then invert the last

equation to estimate the true proportions τi’s which are of interest. That is,

τi =
αi/fi∑p
i=1 αi/fi

.

The QFASA method introduced by Iverson et al. (2004) deals directly with deposited fat,

therefore we can estimate the αi’s and hence the actual proportions of each prey item

consumed.

6.3 Constant Convex Mixing Model With Sources Known

In this section we consider the constant convex mixing model which we study in detail,

as it illustrates the basis for all subsequent models considered in the sequel. Biologically

this model is unrealistic as it assumes that there is no predator metabolism effects, that is,

the fat the predator eats is deposited in its adipose tissue without modification. In addition,

it assumes that each potential prey source has an equal amount of fat. That is, the same
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amount of fat is deposited from herring which is high in fat as a cod which is lower in fat.

We gradually introduce more complicated models which address these biological issues.

The basic model can be stated as follows:

yi =

p∑

j=1

αjθj ⊕ ǫi, i = 1, . . . , n

where yi is an a–dimensional compositional vector also referred to as the predator fatty acid

profile, θj, j = 1, . . . , p is an a–dimensional vector which represent the mixing components

or the jth prey fatty acid profile, α = (α1, . . . , αp)
′
is a p–dimensional compositional vector

of mixing coefficients also called the diet composition vector, ⊕ indicates the perturbation

operator introduced in chapter 2 and ǫi is an a–dimensional error compositional vector.

Note that all vectors belong to a simplex of appropriate dimension, that is, all components

must lie strictly between zero and one and must obey the unit sum constraint. All vectors

are assumed to be column vectors and we denote matrix transposition by ′. Note this model

is a special case of the Billheimer (2001) model where he had a separate mixing vector for

each observation yi.

The basic model can be expressed more compactly as follows:

yi
(a×1)

= Θ
(a×p)

α
(p×1)

⊕ ǫi
(a×1)

, i = 1, . . . , n

where Θ = [θ1| . . . |θp] is an a × p dimensional matrix with each prey fatty acid profile

forming the columns and | indicates column concatenation.

We collect the sample of n predators yi, i = 1, . . . , n into a matrix Y by concatenating

them column–wise as given below

Y
(a×n)

= [y1| . . . |yn].

The matrix version of the basic model written in terms of a structural equation is given by:

Y
(a×n)

= Θ
(a×p)

Γ
(p×n)

⊕c E
(a×n)

Γ
(p×n)

= φ−1
c

(
φ(α)

((p−1)×1)
W

(1×n)

)
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where ⊕c is the column-wise perturbation operator, E = [ǫ1| . . . |ǫn] is an a × n matrix

of compositional errors, φ−1
c is the inverse log–ratio function applied to the columns of

its matrix argument, φc is the log–ratio transformation applied to the columns of a matrix,

W is a known 1 × n design matrix of ones and Γ is a p × n matrix. The usual order of

precedence applies, that is, the matrix multiplications are done before the compositional

addition ⊕c.

To complete the model specification we need to assign a distribution to the compositional

errors ǫi. We assume they follow a logistic normal distribution

π(ǫi|0a−1, Σǫ)

which we denote by La(0a−1, Σǫ), where 0a−1 is a vector of zeros of dimension a − 1 and

covariance matrix Σǫ. The density function is (see chapter 2 for more details)

π(ǫi|0a−1, Σǫ) =

(
1

2π

)(a−1)/2

|Σǫ|−1/2

(
1∏a

t=1[ǫi]j

)

× exp

{
−1

2
(φ(xi) − 0a−1)

′

Σ−1
ǫ (φ(xi) − 0a−1)

}
,

where [ǫi]t denotes the t element of the vector ǫi.

We assign a logistic normal prior distribution to the diet composition vector α, denoted

by Lp(µα, Σα), where µα and Σα are parameters representing our uncertainty/knowledge

about the diet. Similarly, we assign a logistic normal prior distribution for each of the p

prey types denoted by La(µθj
, Σθj

). Finally, we assign an inverse Wishart distribution to

Σǫ, denoted by IWa−1(δǫ, Ψǫ) (see appendix C). This induces the following conditional

distribution on yi

π(yi|α,Θ, Σǫ, B) = La(φ(Θα), Σǫ)

where B indicates the additional background information, typically the parameters of the

prior distributions. However, the presence of the background information is assumed and

will be dropped.

The joint distribution of a single observation yi and the model parameters is,

(yi,Θ, α, Σǫ) = π(α|µα, Σα)

{
p∏

j=1

π(θj|µθj
, Σθj

)

}
π(Σ−1

ǫ |Ψǫ, δǫ)π(Yi|α,Θ, Σǫ).
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The joint distribution is then the product over the n observations, as they are conditionally

independent given the parameters. The posterior distribution is given by

π(Θ, α, Σǫ|y1, . . . ,yn, B) =

∏n
i=1 π(yi,Θ, α, Σǫ|B)∫ ∏n

i=1 π(yi,Θ, α, Σǫ|B)dΘdαdΣǫ

.

Aitchison and Bacon-Shone (1999) approached a similar problem from a likelihood per-

spective, however, they were unable to derive an exact likelihood and developed several

approximations using Taylor series methods. The complication is the product term, Θα,

which also makes the posterior non–analytically tractable. However, we can use Markov

Chain Monte Carlo methods to sample from the posterior, provided it is a proper distribu-

tion.

It is instructive to look at the Directed Acyclic Graph (DAG) for this model. The main

advantage of graphical representation is that enables one to write down the conditional

distributions required for MCMC in a straightforward way (see chapter A). Figure 6.1

gives the DAG for the base model. Square nodes indicate parameters known a priori,

while circular nodes represent unknown parameters that are updated when the data, yi, i =

1, . . . , n, is observed. The joint distribution of the data and the unknown parameters can

be written using the rules given in A, but the more important use of DAG’s is the fact that

the full conditional distributions can be read directly off the graph. The full conditional

distributions are key ingredients to Gibbs samplers, more specifically, Metropolis–within–

Gibbs algorithms which we employ.
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Figure 6.1: Directed Acyclic Graph (DAG) for the base model. The square nodes indicate

parameters that are known a priori, while circular nodes represent unknown parameters that

are updated when the data, yi, i = 1, . . . , n, are observed.

DAG theory states that the full conditional distributions for any node depend only on its
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immediate parents and children. For more details see the section of on Graphical models in

Appendix A. The conditional distributions are as follows:

π(θj|θ−j, α, Σǫ,Y) = π(θj|µθj
, Σθj

)
n∏

i=1

π(yi|α,Θ, Σǫ), j = 1, . . . , p,

π(α|Θ, Σǫ,Y) = π(α|µα, Σα)
n∏

i=1

π(yi|α,Θ, Σǫ),

π(Σǫ|α,Θ,Y) = π(Σǫ|Ψǫ, δǫ)
n∏

i=1

π(yi|α,Θ, Σǫ),

where θ−j is the collection of all other θ’s other than θj .

The term φ(Θα) in the sampling distribution for yi means that the full conditional

distributions for α and each of the θj’s do not follow standard distributions. Metropolis–

Hastings updates will be needed for these parameters and hence we employ a Metropolis–

within–Gibbs algorithm. We can use the Gibbs sampler for updating Σǫ, as our prior

distribution for Σǫ is inverse–Wishart and this is conjugate for Σǫ in the logistic normal

distribution. Our MCMC algorithm, the reversible systematic scan Metropolis–within–

Gibbs, for the base model consists of the following:

0. Choose starting values for α0 and θj,0, j = 1, . . . , p.

1. Sample Σ∗
ǫ from

IWa−1(δǫ + n, Ψǫ + S(yi,Θt−1αt−1))

where

S(yi,Θt−1αt−1) =
n∑

i=1

(φ(yi) − φ(Θt−1αt−1)) (φ(yi) − φ(Θt−1αt−1))
′

and Θt−1 = [θ1,t−1| . . . |θp,t−1].

2. For j = 1, . . . , p generate θ∗
j from the following Metropolis–Hastings algorithm with

proposal distribution qθj
(.|θj,t−1)

(a) Generate ν ∼ qθj
(ν|θj,t−1)
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(b)

θ∗
j =





ν with probabilityρθj

(θj,t−1, ν)

θj,t−1 with probability1 − ρθj
(θj,t−1, ν)

where

ρθj
(νo, νn) = min

{
fθj

(νn)qθj
(νo|νn)

fθj
(νo)qθj

(νn|νo)
, 1

}

3. Generate αt from the following Metropolis–Hastings algorithm with proposal distri-

bution qα(.|αt−1)

(a) Generate ν ∼ qα(ν|αt−1)

(b)

αt =





ν with probabilityρα(αt−1, ν)

αt−1 with probability1 − ρα(αt−1, ν)

where

ρα(νo, νn) = min

{
fα(νn)qα(νo|νn)

fα(νo)qα(νn|νo)
, 1

}

4. For j = p, . . . , 1 generate θj,t from the following Metropolis–Hastings algorithm

with proposal distribution qθj
(.|θ∗

j)

(a) Generate ν ∼ qθj
(ν|θ∗

j)

(b)

θj,t =





ν with probabilityρθj

(θ∗
j , ν)

θ∗
j with probability1 − ρθj

(θ∗
j , ν)

5. Sample Σǫ,t from

IWa−1(δǫ + n, Ψǫ + S(yi,Θtαt))

where

S(yi, α
′

tΘt) =
n∑

i=1

(φ(yi) − φ(Θtαt))(φ(yi) − φ(Θtαt))
′

and Θ = [θ1,t| . . . |θp,t].

6. Repeat steps 1-5 and increment t till “convergence”.
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The target densities fα(ν) and fθj
(ν) are given by the following

fα(ν) = π(ν|µα, Ψα)
n∏

i=1

π(yi|α = ν,Θ, Ψǫ),

fθj
(ν) = π(ν|µθj

, Ψθj
)

n∏

i=1

π(yi|α, θj = ν, θ−j, Ψǫ).

We should explicitly include everything we are conditioning on in the form of the distribu-

tions given above, however, that notation gets cumbersome and clumsy very quickly. The

notation we have adopted means that when implementing the Metropolis–within–Gibbs

steps, it isn’t clear exactly what is being conditioned on. To clarify, assume p = 2 and that

we are updating θ1 and θ2 in step 2 of the algorithm. The full version of fθ1
(ν) and fθ1

(ν)

are as follows

fθ1
(ν|α = αt−1, θ2 = θ2,t−1, Ψǫ = Ψ∗

ǫ) =

π(θ1 = ν|µθ1
, Ψθ1

)
n∏

i=1

π(yi|α = αt−1, θ1 = ν, θ2 = θ2,t−1, Ψǫ = Ψ∗
ǫ)

fθ2
(ν|α = αt−1, θ1 = θ∗

1, Ψǫ = Ψǫt−1
) =

π(θ2 = ν|µθ2
, Ψθ2

)
n∏

i=1

π(yi|α = αt−1, θ1 = θ∗1, θ2 = ν, Ψǫ = Ψ∗
ǫ).

We will use the shorthand notation in the sequel but implicitly mean the full version in the

example above.

The proposal distributions are given by

qα(νn|νo) = Lp (φ(νo), βα(I + J))

qθj
(νn|νo) = La

(
φ(νo), βθj

(I + J)
)
,

where βα and βθj
are scale factors that control the acceptance rates for the Metropolis–

Hastings algorithm and the identity matrix I and the matrix J are of the appropriate size

(see 2.6) . The terms qα(νo|νn)/qα(νn|νo) and qθj
(νo|νn)/qθj

(νn|νo) can be expressed

as follows,
qα(νo|νn)

qα(νn|νo)
=

∏p
j=1[ν

n]j∏p
j=1[ν

o]j
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and
qθj

(νo|νn)

qθj
(νn|νo)

=

∏a
j=1[ν

n]j∏a
j=1[ν

o]j
.

The acceptance probabilities ρα(νo, νn) and ρθj
(νo, νn) are given by

ρα(νo, νn) = min

{
fα(νn)

∏p
j=1[ν

n]j

fα(νo)
∏p

j=1[ν
o]j

, 1

}

and

ρθj
(νo, νn) = min

{
fθj

(νn)
∏a

j=1[ν
n]j

fθj
(νo)

∏a
j=1[ν

o]j
, 1

}

To tune the reversible systematic scan Metropolis–within–Gibbs algorithm we have p + 1

scale parameters to vary ( βα and βθj
, j = 1, . . . , p). Ideally, these parameters are chosen to

give acceptance rates in the 20 − 40% range. In practice this can be difficult as the number

of parameters requiring Metropolis–Hastings updates increases. As we have seen in chapter

3, adaptive algorithms offer a solution to this tuning problem. We discuss this further for

the more complicated models to come.

6.3.1 Observations on the Sources

The data set that Billheimer (2001) used does not have any observations on the chemical

sources, that is, woodsmoke and automobile emissions. Rather, Billheimer (2001) uses

informative priors on the source profiles. In the diet estimation problem observations on

the fatty acid profiles of the potential prey items is available. We develop a model to allow

for this new source of information.

The notation for the p prey types is slightly more complicated. We let xjk represent the

fatty acid signature for the kth sample of the jth prey type and note that for each prey type

j xjk ∈ Sa. Let Xj denote the matrix of nj samples of the jth prey type.

Consider the following model

yi = Θα ⊕ ǫi, i = 1, . . . , n,

xjk = θj ⊕ ǫx
jk, j = 1, . . . , p, k = 1, . . . , nj.

where θj is the fatty acid profile for the jth prey type, Θ = [θ1| . . . |θp] is an a × p matrix

and ǫx
jk is an a–dimensional compositional vector of errors. We can also write this model
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in structural equation or matrix notation as follows:

Y
(a×n)

= Θ
(a×p)

Γ
(p×n)

⊕c E
(a×n)

,

Γ
(p×n)

= φ−1
c

(
φ(α)

((p−1)×1)
W

(1×n)

)
,

Xj
(a×nj)

= θj
(a×1)

WXj

(1×nj)

⊕c Exj

(a×nj)

, j = 1, . . . , p,

where Xj = [xj1| . . . |xjnj
] is an a×nj matrix with the individual samples of the jth source

forming the columns, Wj is an 1 × nj matrix of ones and Exj
is defined analogously to

Xj . Note we do not allow general design matrices for the prey sources in our formulation

but they could easily be accommodated. However, we do not pursue this avenue.

We assign the following prior distributions

π(θj|µθj
, Σθj

) ∼ La(θj|µθj
, Σθj

), j = 1, . . . , p

π(α|µα, Σα) ∼ Lp(α|µα, Σα)

π(Σxj
|δxj

, Ψxj
) ∼ IWa−1(Σxj

|δxj
, Ψxj

), j = 1, . . . , p

π(Σǫ|δǫ, Ψǫ) ∼ IWa−1(Σǫ|δǫ, Ψǫ)

and the following sampling distributions

π(xjk|θj, Σxj
) ∼ La(φ(θj), Σxj

), j = 1, . . . , p; k = 1, . . . , nj

π(yi|Θ, α, Σǫ) ∼ La(φ(Θα), Σǫ), i = 1, . . . , n.

The joint prior distribution for θ1, . . . ,θp, α, Σǫ, Σx1
, . . . , Σxp

has the following form

π(θ1, . . . ,θp, α, Σǫ, Σx1
, . . . , Σxp

) =

p∏

j=1

π(θj) × π(α) × π(Σǫ) ×
p∏

j=1

π(Σxj
).

Each component of the model is logically independent of the other components a priori.

The DAG for this model is given in Figure 6.2. The local character of the DAG is very

similar in nature to the previous model and most of the Gibbs updates will be essentially

the same as the previous section, with the exception of the θj’s and of course the additional
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covariance matrices ΣXj
’s. We omit the details of the Metropolis–within–Gibbs sampler

for this model as it is a special case of the more complicated models to come and isn’t

particularly illuminating.
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Figure 6.2: Directed Acyclic Graph (DAG) for the base model with observations on the

prey types. The square nodes indicate parameters that are known a priori, while circular

nodes represent unknown parameters that are updated when the data, yi, i = 1, . . . , n, are

observed.
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6.3.2 Fat Content and Predator Biosynthesis

Long term diet studies (see Iverson et al. (2004) and the references therein) cast doubt on a

key biological assumption the previous models have made. The previous models assumed,

essentially that you are what you eat, that is, they assumed that the fat a predator consumed

from its diet was deposited directly in its adipose tissue (fat stores). The studies reported in

Iverson et al. (2004) consisted of long term feeding experiments where groups of predators

were fed a known diet for extended periods (months or representing complete fattening).

Comparing the fatty acid profiles of the predator to that of the known diet showed that,

the fatty acid profile in the predator differed predictably from the fatty acid profile of

consumed diet due to some effects of metabolism. Iverson et al. (2004) developed so called

“calibration coefficients” to mimic predator biosynthesis. The model we develop in this

section includes predator metabolism and its associated uncertainty.

The previous model also assumed that kilogram of herring has the same amount of fat

as a kilogram of cod, however, this is not the case as was seen in section 6.2. Assume we

know the true diet composition, denoted by τ = (τ1, . . . , τp) and let λ = (λ1, . . . , λp) be

the corresponding percentage fat. The amount of fat deposited in the predator from the jth

prey type is τjλj j = 1, . . . , p or more compactly τ ⊕ ξ. That is, if a predator consumes 1

kilogram of a high fat species, they have consumed proportionally more of those fatty acids

compared to a kilogram of a low fat species.

The α considered in the previous models corresponds to the diet based on fatty acid

signatures and not the actual diet that was consumed by the predator. This can be related to

the true diet by way of the compositional closure operator as follows

α = τ ⊕ λ =
τjλj∑p
j=1 τjλj

.

We can relate the actual diet to the signature diet by inverting the above equation as follows

τ = α ⊖ λ =
αj/λj∑p
j=1 αj/λj

.

The compositional, α, considered in the previous model, can now be seen to represent the

mixing vector for the fatty acid signatures. That is, to reconstruct the diet composition

vector, τ , we need to consider the percentage fat of the consumed prey. The approach we

take models the true diet τ and the fat content and its inherent uncertainty.
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The model developed in this section takes both fat content and predator biosynthesis into

account.

Before proceeding with the model we need some additional notation, let ul, l = 1, . . . , L

be the fatty acid profiles of the prey used in the calibration experiment and similarly

let vm, m = 1, . . . ,M be the fatty acid profiles of the predators used in the calibration

experiment. Let zjk be the fat composition vector for the kth sample of the jth predator.

The fat composition vector is of length 2, as we classify the prey as percentage fat and

non–fat.

Consider the following model

yi = (Θγ) ⊕ (θv ⊖ θu) ⊕ ǫi, i = 1, . . . , n,

γ = τ ⊕ λ

xjk = θj ⊕ ǫx
jk, j = 1, . . . , p, k = 1, . . . , nj,

zjk = λv
j ⊕ ǫz

jk, j = 1, . . . , p, k = 1, . . . , nj,

ul = θu ⊕ ǫu
l , l = 1, . . . , L

vm = θv ⊕ ǫv
m, m = 1, . . . ,M

where θj is the fatty acid profile of the jth prey type, Θ = [θ1| . . . |θp] is an a×p matrix, θu

is the fatty acid profile of the calibration prey, θv is the fatty acid profile of the calibration

predator, λv
j = (λj, 1 − λj)

′
is the fat content profile consisting of the proportion of fat for

the jth prey type and the the proportion of non–fat and λ is the vector of percentage fats,

that is λ = (λ1, . . . , λp)
′
. Note λ is not a composition as its components don’t necessarily

sum to 1, however, it is a positive vector and can be used to perturb compositions (see 2).
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The matrix version of the model is given as follows:

Y
(a×n)

=

[(
Θ

(a×p)
Γ

(p×n)

)
⊕c

(
θv

(a×1)
⊖ θu

(a×1)

)]
⊕c E

(a×n)

Γ
(p×n)

= φ−1
c

(
φ( τ

(p×1)
⊕ λ

(p×1)
) W

(1×n)

)

Xj
(a×nj)

= θj
(a×1)

WXj

(1×nj)

⊕c EXj

(a×nj)

, j = 1, . . . , p,

Zj
(2×nj)

= λv
j

(2×1)

WZj

(1×nj)

⊕c EZj

(a×nj)

, j = 1, . . . , p,

U
(a×L)

= θu
(a×1)

WU
(1×L)

⊕c EU
(a×L)

V
(a×M)

= θv
(a×1)

WV
(1×M)

⊕c EV
(a×M)

where ⊕c is the column–wise perturbation operator and the matrices are formed as in

previous sections, that is, they are formed by column–concatenation.

We assign the following prior distributions for the location parameters

π(τ r|µτ , Στ) ∼ Lp(µτ , Στ), r = 1, . . . , p,

π(θj|µθj
, Σθj

) ∼ La(µθj
, Σθj

), j = 1, . . . , p,

π(λv
j |µλj

, Σλj
) ∼ L2(µλj

, Σλj
), j = 1, . . . , p,

π(θu|µθu , Σθu) ∼ La(µθu , Σθu),

π(θv|µθv , Σθv) ∼ La(µθv , Σθv),

and for the covariance matrices

π(Σǫ|δǫ, Ψǫ) ∼ IWa−1(δǫ, Ψǫ),

π(Σxj
|δxj

, Ψxj
) ∼ IWa−1(δxj

, Ψxj
) j = 1, . . . , p,

π(Σzj
|δzj

, Ψzj
) ∼ IW1(δzj

, Ψzj
), j = 1, . . . , p,

π(Σu|δu, Ψu) ∼ IWa−1(δu, Ψu),

π(Σv|δv, Ψv) ∼ IWa−1(δv, Ψv).
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The sampling distributions are given by

π(y1, . . . ,yn|Θ, τ , Σǫ, λ, θu, θv) ∼ La(φ
(
ΘΓi ⊕c (θv ⊖ θu)

)
, Σǫ), i = 1, . . . , n

π(xjk|θj, Σxj
) ∼ La(φ(θj), Σxj

), j = 1, . . . , p, k = 1, . . . , nj,

π(zjk|λv
j , Σzj

) ∼ L2(φ(λv
j ), Σzj

), j = 1, . . . , p, k = 1, . . . , nj,

π(ul|θu, Σu) ∼ La(φ(θu), Σu), l = 1, . . . , L,

π(vm|θv, Σv) ∼ La(φ(θv), Σv), m = 1, . . . ,M,

where the notation Ai means the ith column of the matrix A.

Figure 6.3 gives the DAG representation of this model. The full conditionals for this

model are special cases of the design matrix version of the constant diet model discussed in

the next section and the full conditionals will be presented for that model in Appendix B.



163

µ
λ
1

��6666666
Σ

λ
1

���������
µ

λ
p

��6666666
Σ

λ
p

����
��

��
�

µ
τ

��22222222
Σ

τ

�� �������
µ

θ u

��4444444
Σ

θ u

�� 







µ

θ v

��4444444
Σ

θ v

�� 








?>=
<

89:
;

λ
v 1

�� �������

��8888888

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
?>=

<
89:

;
λ

v p

���������

��8888888

''PPPPPPPPPPPPPPPP
/.-

,
()*

+
τ ��

?>=
<

89:
;

θ
u

��							

��5555555

##GGGGGGGGGGG
?>=

<
89:

;
θ

v

�� 							

��5555555

{{ ww
ww

ww
ww

ww
w

?>=
<

89:
;

z
1
1

..
.

GFE
D

@AB
C

z
1
n

1
?>=

<
89:

;
z

p
1

..
.

GFE
D

@AB
C

z
p
n

p
α

 ����������������������������������������

��########################################
765

4
012

3
u

1
..

.
?>=

<
89:

;
u

L
κ

��




























765

4
012

3
v

1
..

.
?>=

<
89:

;
v

M

GFE
D

@AB
C

Σ
z
1

CC � � � � � � �

[[7 7 7 7 7 7 7
GFE

D
@AB

C
Σ

z
p

BB � � � � � � �

[[7 7
7 7

7 7
7

?>=
<

89:
;

Σ
u

DD 	 	 	 	 	 	 	

ZZ5 5 5 5 5 5 5
?>=

<
89:

;
Σ

v

DD 	 	 	 	 	 	 	

ZZ5 5 5 5 5 5 5

δ z
1

DD � � � � � � �
Ψ

z
1

[[7 7
7 7

7 7
7

δ z
p

CC � � � � � � �
Ψ

z
p

[[7 7
7 7

7 7
7

δ u

DD 
 
 
 
 
 
 

Ψ

u

ZZ4 4 4 4 4 4 4

δ v

DD 
 
 
 
 
 
 

Ψ

v

ZZ4 4 4 4 4 4 4

µ
θ 1

��6666666
Σ

θ 1

�� �������
µ

θ p

��6666666
Σ

θ p

�� ��
��

��
�

κ

�� ����������������

}} ||
||

||
||

||
||

||
||

||
||

||
δ ǫ

��4444444
Ψ

ǫ

��








?>=
<

89:
;

θ
1

�� �������

��8888888

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
?>=

<
89:

;
θ

p

�� �������

��8888888

))TTTTTTTTTTTTTTTTTTTTT

$$JJJJJJJJJJJJ
?>=

<
89:

;
Σ

ǫ

ttii
ii

ii
ii

ii
ii

ii
ii

ii
ii

ii
i

ssff
ff

ff
ff

ff
ff

ff
ff

ff
ff

ff
ff

ff
ff

ff
ff

f

?>=
<

89:
;

x
1
1

..
.

GFE
D

@AB
C

x
1
n

1
?>=

<
89:

;
x

p
1

..
.

GFE
D

@AB
C

x
p
n

p
765

4
012

3
y

1
..

.
?>=

<
89:

;
y

n

GFE
D

@AB
C

Σ
x

1

[[7 7 7 7 7 7 7

CC � � � � � � �
GFE

D
@AB

C
Σ

x
p

[[7 7
7 7

7 7
7

BB � � � � � � �

δ x
1

DD � � � � � � �
Ψ

x
1

[[7 7
7 7

7 7
7

δ x
p

CC � � � � � � �
Ψ

x
p

[[7 7
7 7

7 7
7

F
ig

u
re

6
.3

:
D

A
G

:
C

o
n
st

an
t

D
ie

t
w

it
h

ca
li

b
ra

ti
o
n

an
d

fa
t

co
n
te

n
t.

N
o
te

κ
=

θ
v
⊕

θ
u
,
α

=
τ
⊕

λ
an

d
Y

=
[(

Θ
Γ
)
⊕

c
(θ

v
⊖

θ
u
)]
⊕

c
E

.

N
o
d
es

th
at

ar
e

n
o
t

co
n
ta

in
ed

in
ci

rc
le

s
o
r

sq
u
ar

es
ar

e
d
er

iv
ed

v
ar

ia
b
le

s
ar

e
u
se

d
to

si
m

p
li

fy
th

e
g
ra

p
h
.



164

6.3.3 Design Matrices

All the models considered thus far have dealt with a single population of predators, with a

common diet composition τ . This section considers generalizing this to several populations

and the possible presence of a continuous covariate. However, for our purposes, we restrict

our attention to categorical variables, which divide the predators into distinct groups or

populations. We construct synthetic data with three seasons (Spring, Summer, Fall/Winter)

and sex to illustrate. The illustrations of the model will only have at most one factor.

The generalization is based on models developed Billheimer (2001) (briefly described in

2.6.1) which in turn is a generalization of some earlier work described in Aitchison (2003).

Consider the following model:

yi
(a×1)

= Θ
(a×p)

Γi

(p×1)
⊕( θv

(a×1)
⊖ θu

(a×1)
)⊕ ǫi

(a×1)
, i = 1, . . . , n,

Γ
(p×n)

= φ−1
c

(
φc

(
T

(p×w)

)
W

(w×n)

)
⊕c λ

(p×1)

xjk
(a×1)

= θj
(a×1)

⊕ ǫx
jk

(a×1)

, j = 1, . . . , p, k = 1, . . . , nj,

zjk
(2×1)

= λv
j

(2×1)

⊕ ǫz
jk

(2×1)

, j = 1, . . . , p, k = 1, . . . , nj,

ul
(a×1)

= θu
(a×1)

⊕ ǫu
l

(a×1)

, l = 1, . . . , L,

vm
(a×1)

= θv
(a×1)

⊕ ǫv
m

(a×1)

, m = 1, . . . ,M,

where W is an w × n known design matrix, Γi indicates the ith column of the matrix Γ

and T = [τ p
1| . . . |τ p

w] is a p × w matrix of population diet compositions.
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Expressing this model in matrix notation is relatively straightforward as follows:

Y
(a×n)

=

[(
Θ

(a×p)
Γ

(p×n)

)
⊕c

(
θv

(a×1)
⊖ θu

(a×1)

)]
⊕c E

(a×n)

Γ
(p×n)

= φ−1
c

(
T

((p−1)×w)
W

(w×n)

)
⊕c λ

(p×1)

Xj
(a×nj)

= θj
(a×1)

WXj

(1×nj)

⊕c EXj

(a×nj)

, j = 1, . . . , p,

Zj
(2×nj)

= λv
j

(2×1)

WZj

(1×nj)

⊕c EZj

(a×nj)

, j = 1, . . . , p,

U
(a×L)

= θu
(a×1)

WU
(1×L)

⊕c EU
(a×L)

V
(a×M)

= θv
(a×1)

WV
(1×M)

⊕c EV
(a×M)

We assign the following prior distributions for the location parameters

π(τ s|µτ , Στ) ∼ Lp(µτs
, Στs

), s = 1, . . . , w,

π(θj|µθj
, Σθj

) ∼ La(µθj
, Σθj

), j = 1, . . . , p,

π(λv
j |µλj

, Σλj
) ∼ L2(µλj

, Σλj
), j = 1, . . . , p,

π(θu|µθu , Σθu) ∼ La(µθu , Σθu),

π(θv|µθv , Σθv) ∼ La(µθv , Σθv),

and for the covariance matrices

π(Σǫ|δǫ, Ψǫ) ∼ IWa−1(δǫ, Ψǫ),

π(Σxj
|δxj

, Ψxj
) ∼ IWa−1(δxj

, Ψxj
), j = 1, . . . , p,

π(Σzj
|δzj

, Ψzj
) ∼ IW1(δzj

, Ψzj
), j = 1, . . . , p,

π(Σu|δu, Ψu) ∼ IWa−1(δu, Ψu),

π(Σv|δv, Ψv) ∼ IWa−1(δv, Ψv).
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The sampling distributions are given by

π(yi|Θ,T, Σǫ, λ, θu, θv) ∼ La(φ(ΘΓi ⊕ (θv ⊖ θu)), Σǫ), i = 1, . . . , n

π(xjk|θj, Σxj
) ∼ La(φ(θj), Σxj

), j = 1, . . . , p; k = 1, . . . , nj

π(ul|θu, Σu) ∼ La(φ(θu), Σu), l = 1, . . . , L;

π(vm|θv, Σv) ∼ La(φ(θv), Σv), m = 1, . . . ,M ;

π(zjk|λ1, Σzj
) ∼ L2(φ(λj), Σzj

), j = 1, . . . , p; k = 1, . . . , nj

For example, suppose we are interested in the diets of male and female grey seals. Let nM

represent the number of males and nF represent the number of females (n = nM + nF ). In

this case w = 2 and we would have two obvious choices for the matrix W. The more usual

dummy variable coding would consist of a column of n ones, and a column consisting

of nM zeros followed by nF ones. The second coding scheme would correspond to the

matrix W having the first column consist of nM ones followed by nF zeros and the second

column consisting of nM zeros followed by nF ones. The second parametrization seems to

be the preferable one as suggested in Gelman (2004). See Hills and Smith (1993); Gelfand

et al. (1995); Roberts and Sahu (1997); Gelman et al. (2008) for a general discussion about

parametrizations in a Bayesian context.

The full conditionals and reversible systematic scan Metropolis–within–Gibbs algorithm

is given in Appendix B. Appendix B also shows that the full posterior distribution is proper

which is a key assumption for any MCMC sampler to be valid.

6.3.4 Synthetic Data

In this section we consider two synthetic diets constructed from the most recent Scotian

shelf prey base. The Scotian shelf prey library consists of 28 species of which we chose 12

to illustrate the constant diet model with multiple populations. Table 6.1 gives the common

name, the scientific name, sample size and the percentage fat for the 12 prey species used

in the creation of synthetic diets given in table 6.2.

Recall that two vectors x and y are perpendicular (orthogonal) if an only if the angle

between them, denoted by θ, is 90◦ or 270◦ in other words if cos(θ) = 0. Conversely, the

two vectors are coincident if cos(θ) = 1 corresponding to an angle of 0◦. The cos(θ) of two
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Common name Scientific name n % Fat

Forage Fish

Capelin Mallotus villosus 165 4.57

Herring Clupea harengus 247 3.75

Northern sand lance Ammodytes dubius 124 3.71

Gadids

Cod Gadus morhua 134 2.02

Pollock Pollachius virens 57 2.18

Silver Hake Merluccius bilinearis 70 1.44

White Hake Urophycis tenuis 75 1.18

Flounders

American plaice Hippoglossoides platessoides 148 1.76

Yellowtail Flounder Limanda ferruginea 118 2.03

Skates

Thorny Skate Raja radiate 74 2.02

Other fish

Longhorn Sculpin Myoxocephalus Octodecemspinosus 70 2.34

Redfish Sebastes sp. 84 4.33

Table 6.1: Prey species used in the creation of the two synthetic diets.

vectors x and y is defined as follows

cos(θ) =
x

′
y√

x
′
x
√

y
′
y

.

The usual Pearson product moment correlation can be obtained if we center the vectors x

and y. Thus, we use cos(θ) as a similarity measure between the two vectors x and y and

define the standardized distance between x and y as 1 − cos(θ). The reason for using the

non–centered data is that the source profiles are compositions and hence must remain in the

simplex.

Figure 6.4 shows the 12 prey (source) fatty acid profiles for 32 fatty acids used in

constructing the synthetic diet and a hierarchical clustering of 1 − cos(θ). The condition

number of the source matrix of the source matrix is 220709, which indicates a large degree

of linear dependence between the columns of the source matrix. Several species (sources)

are very similar to each other for example Cod and Plaice, cos(θ) = 0.9975 and Pollock

and Silver Hake, cos(θ) = 0.9964. As we have seen in the previous chapter high degrees of

dependence among the sources can make correct apportionment much more difficult.
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Figure 6.4: The left hand plot shows the source profile for the 12 species used in constructing

the synthetic diets and the right hand plot shows a hierarchical clustering of the standardized

distance using the average linkage method. The source matrix Θ condition number is

202709.

The prey profiles shown in figure 6.4 all have similar patterns across the fatty acids

which leads to the strong dependence among the species. With that in mind we considered

choosing a distinct permutation of the fatty acid labels for each prey species. This led

to a drastically reduced source matrix condition number, 26.909. Figure 6.5 gives the

prey profiles for the permuted profiles and the corresponding hierarchical clustering. The

largest degree of dependence occurs between Capelin and Silver Hake, cos(θ) = 0.651.

For comparison purposes we generate synthetic data using the permuted prey to assess the

effect of ill–conditioned source matrices.

Samples of fatty acid signatures and fat contents for the prey types denoted by xjk and zjk

were generated as follows. We assume that xjk and zjk follow logistic normal distributions

which are completely characterized by their mean and covariance matrices. We estimate
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Figure 6.5: The left hand plot shows the source profile for the 12 species used in constructing

the synthetic diets and the right hand plot shows a hierarchical clustering of the standardized

distance using the average linkage method. The source matrix condition number is 26.909.

Note for clarity we have denoted the permuted species with a “(p)” to indicate that it is a

distince species from the original.

the mean and covariance matrices from the sample data and denote them as follows

φ̂(θj) =
1

nj

nj∑

k=1

φ(xjk), j = 1, . . . , p

φ̂(λv
j ) =

1

nj

nj∑

k=1

φ(zjk), j = 1, . . . , p

Σ̂xj
=

1

nj

nj∑

k=1

(
φ(xjk) − φ̂(θj)

)(
φ(xjk) − φ̂(θj)

)′

, j = 1, . . . , p

Σ̂zj
=

1

nj

nj∑

k=1

(
φ(zjk) − φ̂(λj)

)(
φ(zjk) − φ̂(λj)

)′

, j = 1, . . . , p

The small sample sizes for the captive grey seal feeding experiment, only 8 grey seals

and 30 herring, are not sufficient to estimate the covariance matrix. Therefore, we chose

two species from the prey base, Haddock (M=140) to serve as the captive predator and

Gaspereau (L=70) serve as the captive prey. We give a solution to this dilemma when we
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model the real predators. Our estimates are given by

φ̂(θu) =
1

L

L∑

l=1

φ(ul)

φ̂(θv) =
1

M

M∑

m=1

φ(vm)

Σ̂u =
1

L

L∑

l=1

(
φ(ul) − φ̂(θu)

)(
φ(ul) − φ̂(θu)

)′

Σ̂v =
1

M

M∑

m=1

(
φ(vm) − φ̂(θv)

)(
φ(vm) − φ̂(θv)

)′

The compositional errors are generated from a logistic normal distribution with center

zero and covariance matrix, Σǫ = 0.1(I + J), which corresponds to independent lognormal

basis (see section 2.1). Table 6.2 gives the diet compositions used in the construction of

the synthetic predator. We generated 300 predator profiles broken down according to the

following table

Sex Spring Summer Fall/Winter

M 50 50 50

F 50 50 50

The samples by are denoted yi, i = 1, . . . , 300 and were constructed as follows

Y
(a×n)

=

(
Θ

(a×p)
Γ

(p×n)

)
⊕c

(
θv

(a×1)
⊖ θu

(a×1)

)
⊕c E

(a×n)

Γ
(p×n)

= φ−1
c

(
φc

(
T

(p×w)

)
W

(w×n)

)
⊕c λ

(p×1)

where W is a 6 × 300 matrix, each column has 5 zeros and 1 one corresponding to the

population of interest; T is a 12 × 6 matrix whose columns correspond to the columns

given in 6.2; λ =
[
φ−1(λ̂1)| . . . |φ−1(λ̂12)

]

1
that is, the first row of the matrix; Θ =

[φ−1(θ̂1)| . . . |φ−1(θ̂12)], θv = φ−1(θ̂v) and θu = φ−1(θ̂u).

Samples for xjk, j = 1, . . . , p, k = 1, . . . , nj , zjk, j = 1, . . . , p, k = 1, . . . , nj , ul, l =

1, . . . , L and vm, m = 1, . . . ,M were generated from the appropriate logistic normal
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Spring Summer Winter

Species M F M F M F

Capelin 0.3 3.0 1.5 0.005 3.0 1.8

Cod 3.0 1.0 5.5 4.0 5.0 1.5

Herring 5.0 6.0 4.0 2.0 4.0 8.0

Longhorn Sculpin 0.5 0.1 1.5 1.50 0.005 0.185

Plaice 5.0 1.5 3.0 0.50 1.0 0.005

Pollock 30.0 5.5 21.0 0.02 11.0 5.00

Redfish 33.0 35.0 33.0 23.0 35.0 38.0

Sandlance 7.0 41.0 22.0 67.0 32.0 43.0

Silver Hake 2.0 1.4 0.5 0.5 0.9 0.005

Thorny Skate 5.0 0.5 2.0 0.005 5.00 0.50

White Hake 6.0 1.0 4.0 0.50 0.095 0.005

Yellowtail 3.2 4.0 2.0 0.97 3.00 2.00

Table 6.2: Synthetic diet 1 compositions (in percent) for the 12 species and 6 populations

(3 seasons times 2 sexes) used in to assess the constant diet model.

distribution using the estimated center and covariance matrix.

The original sample data serves as the population values from which we generate sample

data using the sample estimates as the true value of the parameters. This is similar in spirit

to the classical method of the parametric bootstrap to assess variability.

6.3.5 Choice of Prior Variances for Logistic Normal Distributions

Given the brief discussion in the previous about prior variances and practical considerations

for the parameters of linear convex mixing models we consider the choice of prior variance

more formally here. The discussion concluded that approximately plus or minus ten on

the log–ratio scale is practically sufficient given how close these values are to one and

zero respectively when viewed on the original scale via the inverse logistic transformation,

denoted by φ−1. Firstly, recall the functional form of the p–dimensional logistic normal

distribution, denoted by Lp(µ, Σ)

π(z|µ, Σ) ∝ |Σ|−1/2

(
p∏

i=1

zi

)−1

exp

{
−1

2
(φ(z) − µ)

′

Σ−1(φ(z) − µ)

}

where µ is the location vector of length p − 1 and Σ is the covariance matrix of dimension

(p − 1) × (p − 1). This functional form is very closely related to the multivariate normal

distribution and for our purposes we choose to exploit one of the well known properties
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of the multivariate normal distribution namely the distributional property of the quadratic

form in the exponent. Specifically, a (1 − a) × 100 % probability ellipsoid can be written

as follows

(φ(z) − µ)
′

Σ−1(φ(z) − µ) ≤ χ2
p−1(a)

where χ2
p(a) is the upper (100a)th percentile of the chi–square distribution with p degrees

of freedom. The major–axis of the ellipse is given by

±c
√

λ1e1

where c = χ2
p−1(a), λ1 is the largest eigenvalue of Σ and e1 is its corresponding eigenvector.

We restrict attention to the class of logistic normal priors that can be generated from p

independent log–normal distributions with common variance σ2, which have the following

covariance structure

Σ
((p−1)×(p−1))

= σ2 [Ip−1 + Jp−1]

where Ip is the p–dimensional identity matrix and Jp is a p × p matrix of all ones. It can be

shown that the largest eigenvalue is λ1 = pσ2 and associated eigenvector

e
′

1 =
jp−1√
p − 1

where jp is a vector of all ones of dimension p.

Therefore, to restrict the prior distribution to have most of its mass within the region of

practical interest, that is, ±xc, we can solve the following equation for σ2:

√
χ2

p−1(a)
√

pσ2
jp−1√
p − 1

≤ xcjp−1

giving

σ2 <
x2

c(p − 1)

pχ2
p−1(a)

for each component. For example, with p = 12 and restricting the range of practical interest

to ±10 with a = 0.05 choosing σ2 < 4.659 gives the desired result. Note that this value

gives a multi–modal prior distribution, see chapter 2.1. This analysis deals with the logistic

normal distribution on the log–ratio scale.

This can be contrasted with “so called” box constraints on the components which would
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lead to
√

za2σ2 < 10, yielding a solution of σ2 ≤ 25 for each component irrespective of

the dimension of the problem under consideration.

We assign vague but proper priors to all of the location and scale parameters of the

constant diet model. We center the prior distributions at the compositional zero and set the

variances as described above setting xc = 10 and use the 95% percentile of the Chi–squared

distribution. In order to ensure the propriety of the prior inverse Wishart distributions we set

the degrees of freedom parameter consistent with the dimension of the covariance matrix of

interest.

6.3.6 Starting Values

Theoretically, starting values are not important provided the algorithm is Harris recurrent,

ergodic, etc. However, in practice, starting values are an important issue as we only have

limited computing resources. Gelman et al. (2003) suggest starting the MCMC algorithm

at the posterior modes of the distribution. In fact, they suggest that one should sample from

a mixture distribution of all posterior modes and run multiple chains each starting from a

point sampled from this mixture distribution. The posterior distribution under consideration

is difficult to handle analytically due to the presence of the term

Y
(a×n)

=

(
Θ

(a×p)
Γ

(p×n)

)
⊕c

(
θv

(a×1)
⊖ θu

(a×1)

)
⊕c E

(a×n)

Γ
(p×n)

= φ−1
c

(
φc

(
T

(p×w)

)
W

(w×n)

)
⊕c λ

(p×1)

and the high dimensional nature of the space under consideration.

Gelman et al. (2003) suggest using conditional maximization or steepest ascent to address

the issue of posterior modes. The method we employ here is a slight variant of this method

but it also incorporates some ideas from Liu et al. (2009). Liu et al. (2009) considers the

case where some parts (modules) of a Bayesian model may contain better quality data

than others, they use partial likelihood as a motivating example. This is not the case here,

however, the idea of a modulation approach is exploited to find starting values for the

various modules.

Essentially, we modularize the model into five parts, θj, j = 1, . . . , p, λj, j = 1, . . . , p,

θu, θv and τ s. We assume that the prior distributions are diffuse enough such that the
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posterior is dominated by the likelihood for these components. Effectively this means that

the posterior distributions are logistic T distributions, (see Gelman et al. (2003), pg 88). For

example, the starting values for θj are sampled from the following distributions

θj,0 ∼ LT a(φ(xj), nj(nj − a + 1)SS−1
j , nj − a + 1)

where

φ(xj) =
1

nj

nj∑

k=1

φ(xjk)

and

SSj =

nj∑

k=1

(
φ(xjk) − φ(xj)

)(
φ(xjk) − φ(xj)

)′

Similar distributions apply for λj , θu and θv.

It is not possible to find starting values for the parameters τ s, s = 1, . . . , w in this manner,

so we start them at the compositional zero. That is, we assume that the diet compositions

are all equally weighted among the prey types.

6.3.7 Adaptive Modifications

To avoid some of the pitfalls of adaptive algorithms we describe a variant, that by construc-

tion obeys the diminishing adaption condition required to be theoretically valid. One of the

problems with adaptive algorithms is that they can get stuck when the initial solution is not

near a posterior mode and in the application we address later this is concern. We propose to

have two distinct stages of adaption followed by a stage of non–adaption. Note that, we

only consider adaption on the Metropolis–Hastings steps of the Metropolis–within–Gibbs

algorithm systematic scan algorithm. That is to say, we are not considering adaption

in a random scan Metropolis–within–Gibbs algorithm where it is possible to adaptively

update the probability of visiting a particular part of the posterior distribution. There

are valid reasons for doing this, as some conditional distributions may not need to be

sampled as often as other conditionals, however, as stated we implement a systematic scan

Metropolis–within–Gibbs algorithm.

The first stage of our algorithm consists of adaptively updating the conditional distribu-

tions that require a Metropolis–Hastings algorithm with the following proposal distribution.

Let νi be the previous state of a given conditional distribution, and assume that the control
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parameter at the previous step was λi

ν∗ ∼ L (νi, λi[I + J])

where λi+1 is then updated according to

log λi+1 = log λi + γi+1(ρ(ν∗, νi) − ρ)

where γi+1 is the adaption parameter which is updated in a systematic fashion, ρ is the

target acceptance rate of the chain, and ρ(ν∗, νi−1) is the acceptance probability for the

current point ν∗.

The second stage is more standard, along the lines of Andrieu and Thoms (2008); Roberts

and Rosenthal (2009). The premise is that after running the stage one for a sufficient number

of iterations, that we should now be close to posterior mode and can now implement the

more standard methods. Specifically, we use the following algorithm from Andrieu and

Thoms (2008) with a slight modification given in Roberts and Rosenthal (2009) to avoid a

potentially singular covariance matrix in the initial start up.

Algorithm 2 Modified Adaptive Algorithm

Input: Initialize X0, µ0, Σ0 and λ0

Output: An adaptive Markov chain Xi, i = 1, . . . , n
1: At iteration i + 1, given Xi, µi, Σi and λi

2: Sample X∗
i+1 ∼ qSRWM

µi,Σi
(Xi, .)

3: Update

log(λi+1) = log(λi) + γi+1

(
ρ(Xi, X

∗
i+1) − ρ

)

µi+1 = µi + γi+1 (Xi − µi)

Σi+1 = Σi + γi+1

(
(Xi+1 − µi)(Xi+1 − µi)

′ − Σi

)

where γi+1 = i−0.7.

The third stage of the algorithm follows the second stage, except we turn the adaption

off, that is, γi+1 = 0. This is done so that we can assess the convergence diagnostics on the

final stage. To date, we are not aware of any convergence diagnostics that apply to adaptive

algorithms.

We run stage 1 for 5 × 105 iterations, stage 2 for 1 × 106 iterations and the stage 3 for
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1 × 106 iterations, with a thinning factor of 100 to save on storage space. The first two

stages of the adaptive algorithm are not used to conduct posterior inference. However, they

are used to monitor the chains.

6.3.8 Results

We now give the results of applying the constant diet model to the synthetic data generated

using the diet composition given in table 6.2 for both the original prey and the permuted prey.

Due to the large dimension of the compositions in question we only give detailed results

for the diet composition and present various summary measures for the other parameters of

the model.

Tables 6.3 and 6.4 give the results of the diet composition for the original prey and the

permuted prey respectively. Perhaps the most striking feature of the tables is how much

wider the component–wise credible intervals are for the original data compared to the

permuted data. The total width of the 95% credible intervals for the original data on the

percentage scale is 547.17 compared to 160.16 for the permuted data. Most of the credible

intervals span the actual diet, 66 out of 72 for both cases, the exceptions are typically for

the rarer diet items. These two facts indicate that we pay a substantial price in loss of

certainty of the diet composition with high degree of collinearity among the diet items.

The trace of the true error covariance matrix for this problem is 0.62, the posterior mean

is 0.628 with 95% credible interval of (0.579, 0.686) for the original data and 0.625 and

(0.577, 0.682) for the permuted data respectively. This result is consistent with the case of

multicollinearity in regression contexts where the overall fit is not compromised, however,

the individual regression coefficients are not well determined.

As a further comparison we compute the compositional distance introduced by Billheimer

(2001) (see chapter 2.1) between the actual parameters and the 10,000 MCMC samples and

the posterior mean. The results are given in figures 6.6 and 6.7 for the diet composition,

τw, w = 1, . . . , 6, the calibration predator θv, calibration prey θu, the prey (source) profiles

Θ = [θ1| . . . |θ12] and finally the fat composition, λj, j = 1, . . . , 12.

Inspection of panel a) of both figures reiterates the difficulty in recovering the actual

diet when there is a high degree of multicollinearity present. That is, the non–permuted

example has much more difficulty reproducing the actual diet compared to the permuted

version. However, both methods experience more difficulty reconstructing diets with rare

components (summer females, and winter males and females, see table 6.2). Panels b)
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through d) of the figure do not indicate any appreciable difference in the ability of the two

forms of the model to reconstruct the other model parameters.

The previous results allow communication of information from the predator (receptor) to

influence the prey (sources). To see this consider the full conditional distribution for the jth

prey type, θj:

π(θj|θ−j, α, Σǫ,Y,Xj, ΣXj
) =π(θj|µθj

, Σθj
)

n∏

i=1

π(yi|α,Θ, Σǫ),

nj∏

k=1

π(xjk|θj, ΣXj
).

The full conditional depends on the prior distribution for θj , the sampling distribution for

xjk and more interestingly the sampling distribution of yi. That is, the predators actually

contain information about the prey profiles. As was discussed in the previous chapter, it is

interesting to see what the consequences of breaking this information flow is on the quality

of the inference. The conditional distributions for λj , θu and θv also have similar functional

forms, in that the sampling distribution is part of their full conditional distribution and

hence has information about the plausible values for each of these parameters.

The Markov Chain Monte Carlo machinery gives samples from the full posterior distribu-

tion when the correct full conditional distributions are used in either Gibbs sampling or in

our case, Metropolis–Hastings–within-Gibbs. If we change the full conditional distributions

as suggested above, we are no longer generating samples from the full posterior distribution.

At best, it might be an adequate approximation to the original posterior at worst it we could

be sampling from a posterior distribution that isn’t even a proper distribution and hence it

would be impossible to draw even approximate posterior inference. For different reasons,

Liu et al. (2009), considers this as well and concludes it can work in some situations. How-

ever, changing the functional form of the full conditional distributions when performing

Gibbs sampling is not recommended in general.

With these caveats in mind we repeated the Gibbs sampling with the information flow

between the predator and prey. Figures 6.8 and 6.9 give the distances between the model

parameters and the true ones for the approximate method. Comparing panel a) of these

figures with the previous ones, it is readily apparent that the diet composition is adversely
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Figure 6.6: Boxplots of the compositional distance between the true parameters and

the 10,000 MCMC samples for the non–permuted prey (the distance to the posterior

mean is indicated by the solid circle). Panel a) τw for each of the of the six season and

sex combinations; panel b) θu the calibration predator and (Ycal in the figure), θv the

calibration prey, (Xcal in the figure); panel c) Θ = [θ1| . . . |θ12] the fatty acid profile of the

12 prey types; panel d) λ1, . . . , λ12 the fat content of the 12 prey types.
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Figure 6.7: Boxplots of the compositional distance between the true parameters and the

10,000 MCMC samples for the permuted prey (the distance to the posterior mean is indicated

by the solid circle). Panel a) τw for each of the of the six season and sex combinations;

panel b) θu the calibration predator and (Ycal in the figure), θv the calibration prey, (Xcal

in the figure); panel c) Θ = [θ1| . . . |θ12] the fatty acid profile of the 12 prey types; panel d)

λ1, . . . , λ12 the fat content of the 12 prey types.



182

affected by removing the information flow from predator to prey. It is particularly problem-

atic for the permuted version with the distances increasing by an order of magnitude. Panel

b) indicates a slight problem with the calibration factors, in that, the prey calibration is

further away from the its true value for both the permuted and non–permuted synthetic data.

For the non–permuted example, several prey types have moved further away from their true

values, indicating again some information loss by not allowing information to flow from

the predator to the prey. Most notably this occurs for Pollock, Redfish and Sandlance the

biggest contributors to the diet. A similar picture emerges for the permuted example, with

the same species moving away from their actual profiles with the addition of Capelin. Not

surprisingly, the fat content, denoted in panel d) is unaffected as there is no information in

the predator as to the fat content of the prey types as the fat content does not get deposited

in the predator.

Logically, it makes sense for information to flow from the predator to the prey, as only

they contain the prey fatty acid compositions that were actually consumed. The samples on

the prey themselves, at best, contain the actual prey items that could have potentially been

consumed.

The quality of inference is affected by two aspects, the multicollinearity between the

sources (prey types) and allowing information to flow from predator to prey as per the full

conditional distribution. One other potential consequence of information flow between

the predator and prey is that if an important prey type isn’t present among the potential

sources then the model can/will modify the existing prey types. In fact, this is the basis of

the Billheimer (2001) model, he uses informative priors to help and allows the receptors to

inform the sources. In our situation we can think of the samples on the prey (sources) as

forming an informative prior on their fatty acid profiles which can then be modified by the

predators.

One strategy to deal with the multicollinearity issue is to remove the potentially con-

founded prey types. Hoever, if the species that are removed are important constituents of

the diet then other prey types may get modified to such an extent that they are no longer

recognizable as the species of interest. With synthetic diet studies we can minimize this

problem by keeping the larger diet constituents, however, in a practical application this

is not feasible. Examining the prey species that are markedly different from their sample

means after the removal of a candidate species gives evidence that the species removed
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Figure 6.8: Boxplots of the compositional distance between the true parameters and the

10,000 MCMC samples for the non–permuted prey with no information flow between the

predator and prey (the distance to the posterior mean is indicated by the solid circle). Panel

a) τw for each of the of the six season and sex combinations; panel b) θu the calibration

predator and (Ycal in the figure), θv the calibration prey, (Xcal in the figure); panel c)

Θ = [θ1| . . . |θ12] the fatty acid profile of the 12 prey types; panel d) λ1, . . . , λ12 the fat

content of the 12 prey types.
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Figure 6.9: Boxplots of the compositional distance between the true parameters and the

10,000 MCMC samples for the permuted prey with no information flow between the

predator and prey (the distance to the posterior mean is indicated by the solid circle). Panel

a) τw for each of the of the six season and sex combinations; panel b) θuthe calibration

predator and (Ycal in the figure), θv the calibration prey, (Xcal in the figure); panel c)

Θ = [θ1| . . . |θ12] the fatty acid profile of the 12 prey types; panel d) λ1, . . . , λ12 the fat

content of the 12 prey types.
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were an important part of the diet composition.

With these caveats in mind we try two simple methods of dealing with ill–conditioned

source (prey) matrices, namely, fitting a reduced set of potential prey items and fitting the

full suite of prey items and amalgamating after the fact on the original scale.

Figure 6.10 gives the results of fitting 5 species (Capelin, Cod, Pollock, Redfish, Sand-

lance), which were selected from the hierarchical clustering diagram (see figure 6.4 ). It

looks as though the fully Bayesian method and the approximate method perform about

equally well, however, the Bayesian approach modifies Cod quite substantially compared

to the approximate method. That is one of the disadvantages of this approach, in that it

will modify potential prey items so that they more resemble the predators. This can be

used as a potential diagnostic tool to say when a species may be potentially missing from

the diet library. However, we don’t pursue this at the present time. We can also compute

the compositional distance between the posterior means of τ and the amalgamated true

diet, they are 21.994 and 16.976 for the fully Bayes and approximate solution respectively.

That is, we do a slightly better job of recovering the actual diet of the predator with the

approximate solution. Additionally, the posterior mean of the trace of the covariance

matrix is, 0.646, with 95% credible interval (0.591,0.713) for the fully Bayesian approach

compared to a posterior mean of 0.908 and 95% credible interval of (0.722,1.269) for the

approximate method. Thus, the fully Bayesian approach appears to fit better but it achieves

this by modifying the species (sources) compared to the approximate method. Of course

the difficulty with the Bayesian approach is that it produces a species that may not be

recognizable.

Another simple method of dealing with multicollinearity issues are to fit the model

ignoring the problem and then amalgamate after the fact. We illustrate this with the fully

Bayesian approach as it was shown to be superior when all species are present in the

fitting procedure. According to figure 6.4 the following five groups were selected (Capelin,

Herring), (Cod, Longhorn Sculpin, Plaice, Thorny Skate, Yellowtail), (Pollock, Silver Hake,

White Hake), Redfish and Sandlance each formed their own group. Figure 6.11 gives the

amalgamated posterior estimates (note they were amalgamated on the original scale) and

their 95% credible intervals, with the true value indicated by the closed circles. All the

credible intervals contain the true values, and the total compositional distance is 5.078

which compares very favourably to selecting out a few prey items as previously discussed.
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Figure 6.10: Boxplots of the compositional distance between the true parameters and the

10,000 MCMC samples for the original prey base using the following 5 species (Capelin,

Cod, Pollock, Redfish, Sandlance) to ascertain the viability of fitting a reduced set of

prey. Panel a) τw for each of the of the six season and sex combinations; panel b) θu

the calibration predator and (Ycal in the figure), θv the calibration prey, (Xcal in the

figure); panel c) Θ = [θ1| . . . |θ12] the fatty acid profile of the 12 prey types; panel d)

λ1, . . . , λ12 the fat content of the 12 prey types. Within each of the panels the first boxplot

(black) corresponds to the fully Bayesian approach and the second boxplot (blue) to the

approximate Bayesian solution.
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Figure 6.11: Posterior means and 95% credible intervals for the amalgamated diet composi-

tion based on figure 6.4 (see text for details). The open circle is the posterior mean and the

closed circle is the amalgamated true diet.
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6.4 Individual Diet Model

Most predators are opportunistic foragers, therefore, we would expect variations in the

diet compositions of individuals within populations. The common diet model developed

in the previous sections will not capture this nuance. Recall, in the original Billheimer

(2001) model each day of air pollution had its own mixing coefficient. We pursue this

generalization, known as the individual diet model, in this section.

To account for possibly multiple measurements per predator, we let yi1, . . . ,yir denote

the r replicate fatty acid profiles on the ith predator. Consider the following generalization

of the constant diet model with multiple populations

Y
(a×nr)

=

[(
Θ

(a×p)
Γ

(p×n)
⊗ U

(1×r)

)
⊕c

(
θv

(a×1)
⊖ θu

(a×1)

)]
⊕c E

(a×nr)
,

Γ
(p×n)

= φ−1
c

(
φc

(
T

(p×w)

)
W

(w×n)
+φc

(
Γm

(p×n)

))
⊕c λ

(p×1)
,

Xj
(a×nj)

= θj
(a×1)

WXj

(1×nj)

⊕c EXj

(a×nj)

, j = 1, . . . , p,

Zj
(2×nj)

= λv
j

(2×1)

WZj

(1×nj)

⊕c EZj

(a×nj)

, j = 1, . . . , p,

U
(a×L)

= θu
(a×1)

WU
(1×L)

⊕c EU
(a×L)

,

V
(a×M)

= θv
(a×1)

WV
(1×M)

⊕c EV
(a×M)

where Y
(a×nr)

= [y11| . . . |y1r| . . . ,yn1| . . . |ynr] is an a × nr matrix of observations on the

predators, Θ
(a×p)

= [θ1| . . . |θp] is an a×p matrix of predator(source) profiles, Γ
(p×n)

is an p×n

matrix of individual diet(mixing) compositions adjusted for fat content, ⊗ represents the

Kronecker product of two matrices defined in the previous chapter, U
(1×r)

is an 1 × r matrix

of ones which allows the predicted profile to be replicated r times to account for replicate

measurements on the same predator, ⊕c is the perturbation operator applied column–wise

for matrices of the same size (if the second argument is a vector, then the vector is replicated

column–wise first then applied column wise), θv
(a×1)

is an a–dimensional fatty acid profile

of the calibration predator, θu
(a×1)

is an a–dimensional fatty acid profile of the calibration

prey, ⊖ is the inverse perturbation operator ( x ⊖ y = x ⊕ y−1), E
(a×nr)

is an a × nr

dimensional matrix of compositional errors, φ−1
c is the logistic transformation applied

column–wise, φc is the log–ratio transformation, T
(p×w)

= [τ p
1| . . . |τ p

w] is a p × w matrix
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of population diet compositions (table 6.2 gives the required matrices for the synthetic

data ), Γm

(p×n)
= [τm

1 | . . . |τm
n ] are samples from the multilevel distribution in our case the

logistic normal with zero mean and covariance matrix Στ , λ the p dimensional vector of fat

contents for each prey type, Xj
(a×nj)

is an a × nj matrix of samples of the fatty acid profiles

from the jth prey type, θj is an a–dimensional vector consisting of the measure of location

for the fatty acid profile of the jth prey type, WXj

(1×nj)

is a 1 × nj matrix of ones, EXj

(a×nj)

is an

a × nj dimensional matrix of compositional errors. We have similar definitions for the

remaining parameters and observations for the model, however, note λv
j = (λj, 1 − λj)

′

is the vector of fat and non–fat, similarly for the observations Zj . Let µτj
= φ(τ p

j), or

φc(T) = [µτ1
| . . . |µτw

], that is, µτj
are means of the logistic normal distributions of the

individual populations. Note that, Γ
(p×n)

= [τ 1| . . . |τ n consists of samples from the mixing

distribution with zero mean added to the appropriate population mean.

To complete the model specification we assign the following prior distributions for the

location parameters

π(µτr
|ηr, Σµ

τ r
) ∼ MN p−1(ηr, Σµ

τ r
), r = 1, . . . , w

π(θj|µθj
, Σθj

) ∼ La(µθj
, Σθj

), j = 1, . . . , p,

π(λv
j |µλj

, Σλj
) ∼ L2(µλj

, Σλj
), j = 1, . . . , p,

π(θu|µθu , Σθu) ∼ La(µθu , Σθu),

π(θv|µθv , Σθv) ∼ La(µθv , Σθv),

and for the covariance matrices

π(Στ |δτ , Ψτ)) ∼ IWp−1(δτ , Ψτ),

π(Σxj
|δxj

, Ψxj
) ∼ IWa−1(δxj

, Ψxj
), j = 1, . . . , p,

π(Σzj
|δzj

, Ψzj
) ∼ IW1(δzj

, Ψzj
), j = 1, . . . , p,

π(Σǫ|δǫ, Ψǫ) ∼ IWa−1(δǫ, Ψǫ),

π(Σu|δu, Ψu) ∼ IWa−1(δu, Ψu),

π(Σv|δv, Ψv) ∼ IWa−1(δv, Ψv).
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The sampling distributions are given by

π(yis|Θ, τ i, Σǫ, λ, θu, θv) ∼ La

(
φ

([
Θ

(a×p)
Γi

(p×1)
⊕c

(
θv

(a×1)
⊖ θu

(a×1)

)])
, Σǫ

)
,

i = 1, . . . , n

s = 1, . . . , r

π(xjk|θj, Σxj
) ∼ La(φ(θj), Σxj

), j = 1, . . . , p; k = 1, . . . , nj,

π(zjk|λv
j , Σzj

) ∼ L2(φ(λv
j ), Σzj

), j = 1, . . . , p; k = 1, . . . , nj,

π(ul|θu, Σu) ∼ La(φ(θu), Σu), l = 1, . . . , L,

π(vm|θv, Σv) ∼ La(φ(θv), Σv), m = 1, . . . ,M,

and the mixing distribution is given by

π(τ i|0, Στ) ∼ Lp(0, Στ)

where 0 is a p − 1 dimensional vector of zeros. We assume that the mixing distribution has

the same covariance matrix in each population, although, this assumption could be easily

adapted to allow a different mixing covariance per population. By comparison with more

traditional analysis of variance models our individual diet model can be seen as a mixed

model with the design matrix W giving the fixed effects and the covariance matrix Στ

playing the role of controlling the amount of variability in the random effects.

Figure 6.12 gives the directed acyclic graph for this model. For the most part the DAG is

similar to the DAG for the constant diet model, with some exceptions. As noted previously

each predator now has its own diet composition and as a consequence we need an additional

level of hierarchy for this part of the model. Namely, a random effects precision matrix and

mean vector or in this case matrix to allow for the population level effects described in W.

The details of the reversible systematic scan Adaptive–Metropolis–within–Gibbs algorithm

are described in Appendix B.

The full conditional distribution for µτs
, s = 1, . . . , w is a multivariate normal distri-

bution (see Rowe, 2003, for a derivation). Essentially, we have a multivariate regression

where τ i’s play the role of the observations and the regression parameters are SW where

S = [µτ1
| . . . |µτw

] is a (p − 1) × w matrix.
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6.4.1 Synthetic Data

We illustrate individual diet level model by constructing synthetic data in a similar fashion

to the constant data model and then carry out Bayesian inference to assess how well we can

reconstruct the true parameters. We are also interested in determining whether multiple

replicates on the same individual predator improve the inference. To explore this we

generate two replicate samples for each predator and use the first observation for the case

of one replicated and both for the two replicate case.

The mixing distribution was logistic normal with two settings for σ2
τ corresponding to

the following structured covariance matrix:

Στ = σ2
τ (Ip−1 + Jp−1)

with σ2
τ = 0.5, 1.0. All other settings were exactly the same as in the constant diet

model. The same permutation of the species labels was used to assess the affect of an

ill–conditioned source matrix, Θ.

Prior parameters were assigned using the same algorithm as the constant model to give

relative vague but proper priors. Ideally maximum entropy priors would be assigned,

however, this was not carried out for the thesis.

Starting values were assigned in a similar way as for the constant model with the

exception of the mixing distribution. To assess the affect of burn in for the mixing vectors

τ i’s we started the chains at two settings: starting at the “true” values and also initializing

them at the compositional center.

The MCMC algorithm was run in exactly the same way as the constant diet model with

appropriate modifications including the same three part adaptive scheme. See Appendix B

for the full individual diet reversible systematic scan Metropolis–within–Gibbs algorithm.

6.4.2 Results

In this section we give the results of applying the individual diet model to the synthetic

data sets discussed in the previous section. We have two levels of mixing variability,

σ2
τ = 0.5, 1.0, whether or not the fatty acids have been permuted or not and one or two

replicates. We also give results for the fully Bayesian approach and the approximate method

where we turn off the information flow between the predator and prey. Though as discussed

in the constant diet model section it isn’t clear what posterior distribution we are actually
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sampling from. More work needs to be done in this area. We also give a comparison with

the original QFASA method developed by Iverson et al. (2004) as it gives individual diet

estimates.

Figure 6.13 gives boxplots of the true diet compositions, τ i, the posterior means com-

puted on the log–ratio scale and transformed back via the logistic transformation for the

fully Bayesian approach and the approximate approach as well as the QFASA point esti-

mates. We only give the results for one of the diets (Spring Males), the other diets have

similar patterns. Panels a) and c) give the results for the permuted fatty acid case. The fully

Bayesian method agrees quite closely with the actual diets, suggesting that the method

performs quite well with well conditioned source matrices. The approximate Bayesian

method, also does quite well but there are slight departures from the actual diet, though

they are hard to detect on the original proportional scale. The original QFASA method also

does quite well, however, it tends to under estimate the amount of Pollock in the diet and

over estimate the amount of Redfish. However, the picture is quite different in panels b)

and d), for the case of the original fatty acid profiles, that is, the case where the condition

number of the prey fatty acid profiles is quite high, indicating a large amount of dependence

among the profiles. There are several discrepancies between the fully Bayesian approach

and the actual diets, particularly for some of the rarer prey items in diet 1. The picture is

worse for the approximate case with larger discrepancies even for the larger diet items. The

picture for the original QFASA is not nearly as good, with large discrepancies between the

QFASA estimates and the actual diet.

To make the comparison between the fully Bayesian method and the original QFASA

model more fair we also initialized the MCMC algorithm at the compositional center. The

results are given in figure 6.14. It is clear that starting values are not a major factor in having

the Bayesian method outperform the original QFASA model as the Bayesian posterior

means are still much closer to the true τ i’s than the QFASA method.

Figure 6.15 gives another comparison between the actual individual diets and their

posterior mean values and the QFASA diet estimates. It gives boxplots of the compositional

distance between the actual diet and each of the three estimates discussed previously. Note

as in the previous case, we are only considering the case with one replicate. The figure

shows boxplots for all 300 diet estimates for each of the three methods and the actual

τ i. Recall the compositional distance compares the diets on the log–ratio scale, therefore,
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Figure 6.13: Boxplots of τ i for Males sampled in the Spring (other 5 diet combinations are

similar but not shown) for the synthetic data from diet 1 (see table 6.2). Panels a) through

d) represent the following combinations respectively: σ2
τ = 0.5 and permuted fatty acids;

σ2
τ = 0.5 and original fatty acids; σ2

τ = 1.0 and permuted fatty acids; σ2
τ = 1.0 and original

fatty acids. For each panel and species the individual boxplots represent: the true τ i’s

(in black), posterior means for the fully Bayesian approach (in blue), posterior means for

the approximate Bayesian approach (in red) and the QFASA estimates from Iverson et al.

(2004) (in brown). The Bayesian approaches are based on 10,000 posterior samples, see

the text for details.
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Figure 6.14: Boxplots of τ i for Males sampled in the Spring (other 5 diet combinations

are similar but not shown) for the synthetic data from diet 1 (see table 6.2) starting the

Bayesian method at the compositional zero. Panels a) through d) represent the following

combinations respectively: σ2
τ = 0.5 and permuted fatty acids; σ2

τ = 0.5 and original fatty

acids; σ2
τ = 1.0 and permuted fatty acids; σ2

τ = 1.0 and original fatty acids. For each panel

and species the individual boxplots represent: the true τ i’s (in black), posterior means for

the fully Bayesian approach (in blue) and the QFASA estimates from Iverson et al. (2004)

(in red). The Bayesian approaches are based on 10,000 posterior samples, see the text for

details.
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differences in small diet components get magnified compared to the original scale. For

the case with little dependence (panels a and c) the fully Bayesian approach has the best

overall estimates followed by QFASA and the approximate Bayesian solution having the

worst performance, which is a little surprising. The ordering is slightly different for the

non–permuted data, with the QFASA and approximate Bayesian method reversing positions.

A similar pattern emerges for the Bayesian solution versus QFASA when the Bayesian

solution is started at the compositional center as shown in figure 6.16

Figure 6.17 gives boxplots of the compositional distance between the true mean diet

composition µτj
for each season and sex combination and the 10,000 MCMC samples for

the fully Bayesian approach versus the approximate solution for the one and two replicate

cases. It is clear, that the fully Bayesian approach does better in reconstructing the diet

composition in all situations. When the source matrix is well conditioned panels a) and

c) adding a second observation improves the Bayesian solution, however, the situation is

not as clear for the ill–conditioned case, though it most cases it does improve the inference.

The approximate solution, doesn’t seem to make use of the second observation well at

all, in almost all situations it moves the posterior means further away from the true mean

compositions. This is even more pronounced in the original non–permuted prey profiles.

Figures 6.18 and 6.19 give boxplots of the trace of the covariance matrix of the mixing

distribution,Στ , and the covariance of the compositional error distribution , Σǫ, respec-

tively. Note the logarithm scale on the trace of the gamma plots. It is quite clear that the

approximate method does not recover the covariance matrix breakdown between the mixing

distribution and the error distribution, while the fully Bayesian approach does quite well in

recovering the correct covariance matrix breakdown as measured by the trace. Note the

large discrepancies in the scale of the two variances, this due to the fact that the mixing

distribution is parametrized on the log–ratio scale, while the mixing actually occurs on the

original scale.

As with the constant diet model, we are still in a quandary as to how to optimally

proceed in the presence of ill–conditioned prey matrices Θ. One possibility is to remove

species (columns) of the matrix to make it better conditioned, however, we might remove

an ecologically important prey item. If we happen to remove an important prey item

the the fully Bayesian approach may in fact modify one of the remaining prey items to

compensate. Kashiwagi (2004) presents a model which allows the incorporation of a
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Figure 6.15: Boxplots of the compositional distance between the true τ i parameters and the

posterior means of 10,000 MCMC samples. Panels a) through d) represent the following

combinations respectively: σ2
τ = 0.5 and permuted fatty acids; σ2

τ = 0.5 and original fatty

acids; σ2
τ = 1.0 and permuted fatty acids; σ2

τ = 1.0 and original fatty acids. The boxplots

in each panel represent the following: 1) the fully Bayesian solution with one replicate, 2)

the approximate Bayesian solution with one replicate and qfasa) the QFASA solution. Note

each boxplot represents the 300 τ i’s (50 for each of 6 diet combinations).
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Figure 6.16: Boxplots of the compositional distance between the true τ i parameters and

the posterior means of 10,000 MCMC samples with the fully Bayesian approach initialized

at the compositional center. Panels a) through d) represent the following combinations

respectively: σ2
τ = 0.5 and permuted fatty acids; σ2

τ = 0.5 and original fatty acids;

σ2
τ = 1.0 and permuted fatty acids; σ2

τ = 1.0 and original fatty acids. The boxplots in

each panel represent the following: 1) the fully Bayesian solution with one replicate and

qfasa) the QFASA solution. Note each boxplot represents the 300 τ i’s (50 for each of 6

diet combinations).
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Figure 6.17: Boxplots of the compositional distance between the true mean diet compo-

sition µτj
and the 10,000 MCMC samples. Panels a) through d) represent the following

combinations respectively: σ2
τ = 0.5 and permuted fatty acids; σ2

τ = 0.5 and original fatty

acids; σ2
τ = 1.0 and permuted fatty acids; σ2

τ = 1.0 and original fatty acids. For each

panel and diet composition the individual boxplots represent: the fully Bayesian approach

with one replicate (in black), the fully Bayesian approach with two replicates (in blue), the

approximate Bayesian solution with one replicate (in red) and the approximate Bayesian

solution with two replicates (in brown).
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Figure 6.18: Boxplots of the trace of the Στ mixing distribution for the 10,000 MCMC

samples. Panels a) through d) represent the following combinations respectively: σ2
τ = 0.5

and permuted fatty acids; σ2
τ = 0.5 and original fatty acids; σ2

τ = 1.0 and permuted

fatty acids; σ2
τ = 1.0 and original fatty acids. For each panel the individual boxplots

represent: the fully Bayesian approach with one replicate, the fully Bayesian approach with

two replicates, the approximate Bayesian solution with one replicate and the approximate

Bayesian solution with two replicates. Note the logarithm scale on plots.
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Figure 6.19: Boxplots of the trace of the Σǫ for the 10,000 MCMC samples. Panels a)

through d) represent the following combinations respectively: σ2
τ = 0.5 and permuted

fatty acids; σ2
τ = 0.5 and original fatty acids; σ2

τ = 1.0 and permuted fatty acids; σ2
τ =

1.0 and original fatty acids. For each panel the individual boxplots represent: the fully

Bayesian approach with one replicate, the fully Bayesian approach with two replicates, the

approximate Bayesian solution with one replicate and the approximate Bayesian solution

with two replicates.
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potentially unknown but unobserved source. However, as noted by Kashiwagi (2004) there

are some identifiability issues with his model and due to time constraints we were not able

to implement his approach.

Another possibility is to amalgamate prey items after the fact, however, due to the

nature of the log–ratio transformation it isn’t entirely clear how one should do this (see

Aitchison, 2003). We amalgamate on the original scale, rather than the log–ratio scale,

though there is no theoretical reason for choosing one scale over another. Rather than repeat

the amalgamation exercise again we refer the reader to the constant data section for an

illustration.

Still another possibility, which in some sense would be preferable, is to have a variable

selection procedure to eliminate prey items that were not contributing to the predator and

hence reduce the dimension. For instance using the Reversible Jump/trans–dimensional

MCMC approach suggested by Green (1995). However, this was not approached in the

thesis, due to time constraints.
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6.5 Applications

The previous discussions on synthetic data illustrated the flexibility of the constant diet

model and the individual diet model, particularly the fully Bayesian approach. That is, the

predator has valuable information about the prey profiles in its own fatty acid signature. The

prey samples can be thought of as a prior for the source profiles consumed by the predator,

that is, similar to the approach taken by Billheimer (2001). However, the interpretation can

be problematic, as the predator may substantially modify the source profiles to an extent

that they are no longer recognizable as a known species. For this reason, we introduced

the approximate Bayesian method of not allowing information to flow from the predator

to the prey source profiles, the calibration coefficients and the fat contents. However, the

validity of this approach is still in question, as is isn’t clear what posterior distribution

we are sampling from. Our approximate technique is similar in spirit to the approach

modularization technique taken by Liu et al. (2009).

We further illustrate the applicability of the constant and individual diet models with

one captive study and one field study. The captive study was conducted on Murres and

Kittiwakes collected from the Pribilofs Islands, Alaska (see Iverson et al., 2007) . The field

study was conducted on Harbour Seals from Sable Island, Nova Scotia using critter cams

(see Iverson et al., 2004). We use the common names for species rather than their scientific

counterparts where available. Also note that all samples of both predators and potential

prey items were analyzed for fat content and their constituent fatty acids using the methods

described in Iverson et al. (2004).

Our strategy is to fit both the fully Bayesian method and the approximate Bayesian

method and compare the results. But before proceeding to the real data sets we need to

address some other model complications. The sample sizes of both the predators and

prey are typically smaller than we considered in the synthetic data discussions making the

inference of the various covariance matrices problematic. With this in mind we considered

two parametrized/patterned covariance matrices, one of which we have discussed previously.



204

The first covariance matrix is given by

Σ1
(a−1)×(a−1)

= σ2 [Ia−1 + Ja−1] =





2σ2 σ2 · · · σ2 σ2

σ2 2σ2 · · · σ2 σ2

...
...

. . .
...

...

σ2 σ2 · · · 2σ2 σ2

σ2 σ2 · · · σ2 2σ2





(6.1)

where Ia−1 is the (a− 1)× (a− 1) identity matrix and Ja−1 is the (a− 1)× (a− 1) matrix

of ones. This patterned covariance matrix can be thought of as the closure of a independent

log–normal variables with common variance, σ2. The second patterned covariance matrix

is given by

Σ2
((a−1)×(a−1)

=





σ2
1 0 · · · 0 0

0 σ2
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · σ2
d−2 0

0 0 · · · 0 σ2
d−1





+ σ2
aJ (6.2)

=





σ2
1 + σ2

a σ2
a · · · σ2

a σ2
a

σ2
a σ2

2 + σ2
a · · · σ2

a σ2
a

...
...

. . .
...

...

σ2
a σ2

a · · · σ2
a−2 + σ2

a σ2
a

σ2
a σ2

a · · · σ2
a σ2

a−1 + σ2
a





and can be thought of as the closure of a independent log–normals with variances σ2
1, . . . , σ

2
a.

The first matrix was used to represent our prior knowledge of scale matrices and covariance

matrices. Both covariance matrices imply a very strong form of independence among the

elements of the composition, however, with limited data they are necessary, unless one is

willing to impose a lot of prior information.

6.5.1 Captive Murre and Kittiwakes

In this section we apply the constant diet model to a captive seabird study described in

Iverson et al. (2007). We apply the fully Bayesian approach and the approximate version of

the model.
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The experiment consisted of collecting twenty six partially incubated eggs of Common

Murres (COMU) and thirteen Red Legged Kittwakes (RLKI) from Cook Inlet and the

Pribilof Islands, Alaska respectively. Once hatched, the chicks were raised in individual

nests and hand fed controlled diets. The Common Murres were fed for 45 days and

a synsacral adipose tissue was obtained on the last day. Half of the COMU were fed

silverside for the full 45 days. The other half was fed silverside for the first 11 days and

then switched to a diet of rainbow smelt. Red legged Kittiwakes were fed for 42 days

and biopsied on the final day. All the RLKI were fed the same diet for the first 15 days

which consisted of 8 parts herring to 2 parts silverside. Seven of the chicks where then fed

silverside for remainder of the experiment while the other 6 chicks were fed rainbow smelt.

Additionally samples of the prey were collected from the lots that were experimentally fed:

fifteen Silverside, fifteen rainbow smelt and ten herring.

Since n = 13 Common Murres were fed a constant diet of silverside for 45 days we used

these samples to construct calibration coefficients which mimic predator biosynthesis as

previously described. Iverson et al. (2007) also modeled the thirteen Common Murres that

were used in the calibration study and we follow that approach here. Note that the same

silverside samples were used for both calibration and as part of the prey base. Ideally this

would not be the case, but we follow their approach.

There are four distinct diet scenarios: two levels of species by two levels of diets fed

during the second half of the feeding regime. Accordingly, we model the (n=39) specimens

with a constant diet model with four populations. We used a slightly modified version of

extended dietary set considered in Iverson et al. (2007) which consists of 40 fatty acids

for see figure 6.20, we omitted two fatty acids 16:3n-1 and 22:2n-6 as they were constant

across prey species.

Given the large number of fatty acids relative to the sample size of the prey and predator,

we chose to model the prey covariance matrices Σxi
, i = 1, 2, 3, the predator covariance

matrix Σǫ and the calibration covariance matrices Σu and Σv by the patterned covariance

matrix given in equation 6.1 with a distinct σ2 for each of the prey types, predators and the

calibration data. It is relatively well known in the biological literature that the fat content of

prey item can vary from approximately 0.22% to approximately 28.0% fat, we therefore

further restrict the fat content to this range by using the methods of assigning priors in the

synthetic data sections and setting the mean of the prior distribution to be the center of the
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Figure 6.20: The left hand panel shows the source profiles for the three species fed in

the captive seabird study and the right hand panel shows a hierarchical clustering of the

standardized distance using the average linkage method. Source matrix condition number

is 43.96.

range.

Figure 6.20 depicts the three source profiles for Herring, silverside and smelt and the

hierarchical clustering of 1 − cos(θ). The condition number of the source matrix 43.96939,

which is much more manageable than the non–permuted synthetic data set. This is also

confirmed by examining the individual source profiles.

To compare the fully Bayesian approach and the approximate method we monitor the

compositional distance between the posterior distribution (in steady state) and the sample

means of the prey fatty acid profiles, fat content and the calibration profiles (both predator

and prey). If one of the prey profiles is drastically different from its sample value, this could

indicate one of several possibilities: there isn’t enough sample information to dominate

the “vague” prior used; one of the prey items that was sampled does not represent what

the predator actually consumed and the fully Bayesian method is modifying an existing

one to compensate for the discrepancy. Calibration experiments are typically quite small

and potentially variable due to inherent variability in the prey samples, deviations in

the calibration parameters and their respective sample means would indicate substantial

variability in the calibration coefficients or alternatively could indicate that the present

calibration coefficients are not suitable to the current problem. The most likely cause of

divergence between the various parameters and their sample means is a small sample size,
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as we didn’t experience any large departures in the synthetic data.

More investigation is needed into the potential causes, however, we adopt the approach

that if the fully Bayesian approach deviates substantively from the sample means, we take

this as evidence that the fully Bayesian model is not identifiable without stronger prior

information or equivalently larger number of observations on its component parts. This is

similar to the way of addressing the identifiability issue proposed by Billheimer (2001).

6.5.1.1 Starting Values and Prior Assignment

The covariance matrices are now parametrized in terms of equation 6.1, that is, one parame-

ter. We assign inverse scaled Chi–squared distributions (or Inverse–Wishart distributions)

with one degree of freedom to ensure a proper prior distribution with scale parameter of

100. The prior distributions for the location parameters were set in a similar way to the

synthetic data. That is, the θj’s, θu and θv were assigned a logistic normal distribution

centered at the compositional zero with covariance matrices chosen to limit the range of

the prior as described in section 6.3.5. The λv
j were further restricted to lie in the range of

plausible values of fat content. Note we could have pursued more stringent priors for the

other parameters as well, but that avenue was not pursued here.

We started the adaptive Metropolis–Hastings–within–Gibbs algorithm in a similar fashion

for the synthetic data, starting the θj , λv
j , θu, θv at the sample means. We started the,

mixing vector τ , at the compositional zero. Note this is a slight departure from what

Gelman et al. (2003) recommends as we didn’t sample from an overdispersed distribution

to generate starting values.

6.5.1.2 Convergence Diagnostics

The convergence of the chain was assessed using the standard techniques in the R–package,

CODA. As the standard techniques are meant to apply to a chain that isn’t adaptive we only

use and assess the convergence of the third part of our hybrid strategy.

6.5.1.3 Results

After running two chains through our hybrid algorithm for stage lengths of 5× 105, 1× 106

and 1 × 106, there was no evidence of non–convergence to the stationary distribution for

the third stage. Note that all stages were thinned by a factor of 100 to reduce storage

requirements.
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Figure 6.21 gives the posterior mean and 95% credible intervals for the diet composi-

tion vector τw for each of the four treatments (COMU fed silverside/silverside, COMU

fed silverside/rainbow smelt, RLKI fed silverside&herring/silverside, RLKI fed silver-

side&herring/rainbow smelt). Both the fully Bayesian approach and the approximate

approach are presented.

The posterior means and credible intervals agree quite well between the fully Bayesian

approach and the approximate method, with the exception that fully Bayesian approach

indicates more smelt in the RLKI fed herring/smelt initially then fed silverside. However,

both methods indicate some evidence of smelt in the COMU group fed Silverside for the

duration of the experiment, but the amount in both cases is slight. Note that neither variant

shows any evidence of a herring signature in either RLKI group. Both methods agree quite

well with the diet consumed in each group, with the exception of not having much residual

traces of the initial diet as we would expect.

Recall, Σǫ = σ2
ǫ(Ia−1 +Ja−1) is the covariance matrix of the compositional errors, which

allows us to compare the overall fits of the fully Bayes approach and the approximate

approach. The 95% credible intervals for the fully Bayesian and approximate approach are

σ2
ǫ are (0.138,0.161) and (0.252,0.318) respectively.

To explore the discrepancy in fits between the two approaches, we compared how the

fully Bayesian and approximate approaches deviated from the sample means. Examination

of the compositional distances between the sample means and the posterior showed that

the fully Bayesian approach modified the fatty acid profile of rainbow smelt as shown in

figure 6.22. The biggest discrepancies appear on fatty acids 16:0, 18:1n-7, 20:4n-6, 20:5n-3,

22:5n-6, and 22:6n-3.

The slight modification of rainbow smelt results in an improved fit of the Bayesian versus

approximate method as measured by the lower σ2
ǫ and the µτ’s being closer to the diet

compositions consumed by the captive sea birds.
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Figure 6.21: Posterior Means and component–wise 95% credible intervals for the diet

composition, τw, for the four treatment combinations of captive birds. The fully Bayesian

solution is given in the left panel, while the approximate method is given in the right hand

panel. Note the labels at the top of the panels indicate the species, followed by the initial

diet (see text for duration) and main diet. Note if the credible interval overlaps with the

posterior mean then the credible interval is not shown.
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Figure 6.22: Posterior mean profile of rainbow smelt. The fully Bayesian is given by the

solid line, the profiles for the approximate approach and the sample mean of rainbow smelt

are superimposed.
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6.5.2 Harbour Seals

Iverson et al. (2004) illustrated the original QFASA model using a sample of 23 free–

ranging adult male harbour seals collected on Sable Island, Nova Scotia in 1997 during the

breeding season (May–June). The harbour seals are known to make foraging trips returning

to Sable every few days. Each animal was equipped with an animal–borne video system,

or critter cam [National Geographic Television, Washington, D.C., USA] for at least 3

days. The camera was fitted to the animals head and was programmed to film for 10 minute

segments every 45min during daylight, allowing prey encounters to be recorded (Bowen

et al., 2002). Blubber biopsies were taken during each return to Sable island, allowing the

comparison of the filmed encounters and the estimated diet via QFASA. To illustrate the

individual diet model we analyzed the 23 harbour seals using the same 28 species (see table

6.5.2) used in Iverson et al. (2004).

Common Common

name Category n %Fat name Category n %Fat

Argentine Other 10 6.64 Sandlance Forage 71 5.61

Butterfish Other 10 7.22 Sculpin Other 20 1.37

Capelin Other 56 8.27 Sea raven Other 6 0.76

Cod Gadiod 84 2.14 Silver hake Gadiod 38 2.15

Gaspereau Forage 41 12.56 Smooth skate Skate 5 1.40

Haddock Gadiod 54 1.39 Thorny skate Skate 12 1.14

Halibut Flat 8 1.10 White hake Gadiod 46 1.29

Herring Forage 74 7.73 Winter flounder Flat 25 1.88

Mackerel Forage 10 3.38 Winter skate Skate 15 1.55

Ocean Pout Other 18 1.99 Yellowtail flounder Flat 92 2.69

Plaice Flat 99 2.20 Lobster Invertebrate 9 1.98

Pollock Gadiod 25 3.02 Red Crab Invertebrate 14 1.84

Red Hake Gadiod 7 1.71 Rock Crab Invertebrate 10 0.75

Redfish Other 49 6.33 Shrimp Invertebrate 46 2.58

Table 6.5: Potential diet items of harbour seals. Category refers to the level of identification

that can be differentiated with the video from the critter cams, n is the number of samples,

% fat is the average fat content.

Figure 6.23 shows the mean fatty acid profile of the 28 species along with a hierarchical

clustering of the standardized distance measure of the profiles. Note that three fatty acids

(16:3n-1, 16:2n-6, 22:2n-6) were removed from the extended dietary set considered in

Iverson et al. (2004) due to lack of variability on several prey species. The condition number

of the source matrix is extremely large, which indicates strong similarities among the prey
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Figure 6.23: The left hand panels shows the mean fatty acid signatures for the 28 species of

potential prey of Harbour seals used in Iverson et al. (2004) and the right hand panel shows

a hierarchical clustering of the standardized distance using the average linkage method.

The source matrix, Θ, condition number is 8592067. Note that three fatty acids (16:3n-1,

16:2n-6, 22:2n-6) were removed from the extended dietary set considered in Iverson et al.

(2004).

species. For instance the cosine of the angle between Red hake and White hake is 0.9988,

indicating that are almost coincident. Several other pairs of species have cos(θ)’s in excess

of 0.99 (Plaice & Yellowtail flounder, Smooth skate & Thorny skate, Cod & Haddock,

Pollock & Silver hake and Halibut & Winter skate ). The smallest degree of association

was observed between Halibut and Red hake, cos(θ) = 0.547. This example can be seen to

be an extreme case of an ill–conditioned source matrix.

A long term calibration study was carried out (see Iverson et al., 2004, for further details)

on eight juvenile (2-3 year) grey seals housed in large indoor seawater tanks at Dalhousie

University’s Aquatron facilities. The grey seals were kept on a diet of Atlantic herring for

at least 5 months. Biopsies were taken on each of the eight animals at the end of the study

period. Thirty herring were also collected during the study and analyzed. See Iverson et al.

(2004) for more details on the laboratory methods that were used to analyze the blubber

and herring samples.

As with the captive sea bird study in the previous section, the covariance matrices for

the predator and calibration components of the model were not modeled by unconstrained

covariance matrices, due to the small number of samples collected. We model the predator
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covariance matrix and the calibration covariance matrices by the pattern covariance matrix

given in equation (6.1), with different values for the multiplier σ2. Our strategy for the

prey species covariance matrices is the following: sample sizes less than 30, model the

covariance using equation (6.1), for sample sizes between 30 and 60 we use equation (6.2)

and for sample sizes greater than 60 we use a non–pattered covariance matrix. Additionally,

we model the mixing distribution covariance matrix with the patterned covariance matrix

given in equation ( 6.1 ) as we only have 23 predators.

Despite the difficulties that the original QFASA method has when dealing with ill-

conditioned source matrices we use the estimates as starting values for the τ i’s. The

hope is that they are in approximately the right region of posterior space. However, we

modify the original QFASA method slightly. Firstly the distance was modified from the

Kulback–Liebler distance used originally to the compositional distance as suggested in

Stewart (2005). Secondly, the log–ratio transformation was applied to the composition to

assure non–zero components which are crucial for our purposes. Thirdly, the optimization

algorithm was adapted to have a simulated annealing step to avoid getting stuck in local

optima.

6.5.3 Results

Video footage was collected on 30 adult harbour seals, including the 23 that had blubber

biopsies taken, for an average of 3 days. All males, save one, was observed foraging on

sandlance during the 3 day observation period. In total, there were 223, 10–minute video

segments where identifiable prey captures occurred, 91% were on sandlance, 7% on flatfish

and 2% on gadoids and other prey (Bowen et al., 2002).

Figure 6.24 gives 95% component–wise credible intervals for µτ , the mean of the

mixing distribution, for the fully Bayesian approach and the approximate method. Both

methods identify sandlance as the dominant component of the diet, however, the fully

Bayes approach has a lower portion compared to the approximate method. Interestingly, the

approximate method identifies only three species with an upper credible limit greater than

5% (capelin, redfish and sadlance, while the Bayesian method identifies six species with an

upper credible limit greater than 10% (capelin, cod, herring, pollock, redfish, sandlance).

As previously discussed, one of the features of the fully Bayesian approach is that the

predator has information about the fatty acid profiles of the prey actually consumed and for

this reason it is not surprising if the fully Bayesian approach modifies a given prey’s fatty
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Figure 6.24: 95% credible intervals for the mean diet composition for the 23 adult male

harbour seals. The black credible intervals correspond to the fully Bayesian model while

the blue credible interval corresponds to the approximate method.

acid signature away from its sample mean. The species that the fully Bayesian approach

modifies most is Silver hake, which turns out to be one of the most variable species, however,

it doesn’t appear to be a major diet component in either method.

Figure 6.25 gives boxplots of the posterior mean for the 23 individual estimates for the

fully Bayesian approach, the approximate approach and slight modification of the original

QFASA method. The original QFASA was modified in two ways: firstly the distance was

modified from the Kulback–Liebler distance used originally to the compositional distance

as suggested in Stewart (2005). Additionally, the log–ratio transformation was applied to

the composition to assure non–zero components. Both of these modifications explain the

departures from the estimates presented in Iverson et al. (2004).

As both the error covariance matrix Σǫ and the mixing distribution covariance matrix

Στ were modeled with the simple patterned structure given in equation (6.1 ), we present

95% credible intervals for both parameters. The credible intervals for the fully Bayesian
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Figure 6.25: Boxplots of the 23 individual estimates of the diet composition: The fully

Bayesian approach is given in black, the approximate method in blue and the modified

QFASA approach (see text for details) is given in red.
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approach and the approximate method are given in the following table:

Parameter Fully Bayesian Approximate

σ2
ǫ (0.0097,0.0131) (0.1512,0.2189)

σ2
τ (0.5172,1.5102) (0.2242,1.6645)

The fully Bayesian approach fits the 23 Harbour seals much better as indicated by the

credible intervals for the Σǫ parameter. The difference between the mixing distribution

parameter σ2
τ for the two methods is less clear from the credible intervals, however, the

distribution for the approximate method is more right skewed and the credible interval is

much longer.

The results indicate substantial variability in the individual diets of adult male harbour

seals but they are dominated by sandlance, though the methods disagree as to the extent

of sandlance in the various individual diets. The diet compositions given in Iverson et al.

(2004) did not have redfish present in the diet, however, all three methods, including the

modification of QFASA, identify redfish as a major component of the diet. This suggests

that the choice of distance is a critical factor in the estimation of predator diets, however,

due to the nature of the distributions considered we feel the compositional distance is most

appropriate.

It is known that redfish are a relatively deep–water species and as a result may not be an

item on the harbour seal menu. This brings up an interesting point about the prey library,

one should remove species that are not potential prey of the predator due to physical size

constraints, predator range considerations, etc.

The removal of redfish from the prey library of harbour seals results in different behaviour

for the Bayesian approach and the approximate method. The approximate method behaves

as one would expect and switches the redfish portion of the diet to capelin in this case

while the amount of sandlance remains largely unchanged. The inference for the residual

covariance parameter σǫ indicates a slight worsening of the fit as indicated by the 95%

credible interval shifting to the right (0.1631, 0.2301).

The behaviour of the fully Bayesian method is more interesting. It shifts the diet away

from sandlance and capelin completely in favour of Silver hake and Winter skate two items

that were not part of the diet before, with Silver hake dominating at nearly 85% without

suffering any increase in variability of the residuals (95% credible interval (0.0096,0.0131)).

Upon further investigation the Bayesian approach modifies the fatty acid signature of silver
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hake quite substantially away from the sample mean of silver hake and as a result is able

to fit the data equally well without using sandlance or capelin. The resulting signature

is a combination of sandlance and the original redfish signature that was removed. This

suggests a lack of identifiability in the prey source matrix, which is not surprising given the

large degree of multicollinearity in the original matrix.

When there is a large discrepancy between the approximate method and the fully Bayesian

method it suggests that there is either an important prey item missing from the diet or there

is an ill–conditioned source matrix.

As a further followup to the consequences of removing a potentially important prey item

from the prey library we return to the synthetic data runs of the previous sections. We

chose to run the individual diet model to assess the effect of dropping out a major element

of the diet to determine how the fully Bayesian method copes with a non-existent prey

item. We removed sandlance from the prey library and ran the individual diet model with

Στ = 0.5(I + J) for both the permuted and non–permuted source matrix. For simplicity of

presentation we only present the posterior means for each of the diet compositions.

Tables 6.6 and 6.7 give the posterior means of φ−1(µτj
) for each of the six populations

given in table 6.2 for the permuted and non–permuted synthetic data respectively. Recall

the permuted data is very well conditioned, meaning that no two prey types are that similar

and in this case the model apportions the amount of sandlance to redfish though some of its

contribution gets apportioned to other species as well. By contrast, for the non–permuted

synthetic data, the missing sandlance portion gets apportioned to capelin and herring which

are the two species that are most similar to sandlance (see figure 6.5). Interestingly, the

permuted version doesn’t choose the most similar species to apportion the missing sandlance

to, rather it chooses redfish. As a result of not having species close to sandlance in the prey

library, the permuted residual variance suffers drastically as evidence by the 95% credible

interval for the trace of Σǫ increasing to (14.89,20.94) compared to the non–permuted data

(0.51,1.47).

The interesting feature of the synthetic data is that the sample sizes for all the components

are much larger than in either of the two applications considered. The result of the larger

sample sizes is that the various components are much better identified and as a result do not

move away from their prior values as the application examples shows. This suggests that

there is a potential identifiability issue for the fully Bayesian approach when the samples
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Spring Summer Winter

Species M F M F M F

Capelin 0.04 3.02 1.29 0.02 2.81 1.94

Cod 4.05 4.30 5.80 6.62 6.30 4.54

Herring 5.68 4.65 3.04 1.47 3.01 7.96

Longhorn Sculpin 1.15 1.03 2.39 4.10 0.84 1.24

Plaice 5.63 2.96 3.83 1.79 3.16 1.32

Pollock 26.73 7.98 16.59 2.77 9.35 7.79

Redfish 35.50 61.6 51.16 73.25 57.09 64.77

Silver.Hake 2.46 3.14 1.67 1.45 2.13 1.28

Thorny Skate 5.71 0.74 2.77 0.50 5.68 0.88

White Hake 7.30 4.14 6.03 3.59 4.23 3.90

Yellowtail 5.74 6.44 5.43 4.42 5.39 4.39

Table 6.6: Posterior means of φ−1(µτj
)’s for the individual diet model for the permuted

synthetic data without sandlance as a prey item. The true diet compositions are given in

table 6.2.

size are small. Billheimer (2001) dealt with this issue with much stronger prior information

and that would be one way to deal with potential identifiability issues if they arise. That

is, additional prior information available combined with the information contained in the

observations on the various components would make the model more identifiable.

The approximate method does not appear to suffer from the identifiability issue as much

as the fully Bayesian method. Our conjecture is that by turning off the information flow

between the predator and prey doesn’t allow the predator to influence the prey and cause

problems in the identification of Θα. However, it isn’t entirely clear what properties the

approximate method has. Particularly with regards to what joint distribution the MCMC

sampler is actually sampling from.
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Spring Summer Winter

Species M F M F M F

Capelin 5.59 12.1 4.82 14.66 9.46 13.18

Cod 1.39 1.72 4.87 1.90 5.59 2.45

Herring 12.25 36.49 25.41 41.32 30.08 31.98

LonghornSculpin 0.68 0.05 1.17 1.94 2.63 0.88

Plaice 6.02 1.98 1.00 2.45 1.01 0.90

Pollock 25.00 3.60 22.42 0.43 7.59 7.26

Redfish 26.10 31.65 25.88 33.56 30.77 39.80

Silver.Hake 7.88 5.21 1.09 0.55 4.20 0.30

ThornySkate 4.79 0.30 0.54 0.64 2.26 0.59

WhiteHake 8.21 1.22 7.74 0.32 2.37 0.27

Yellowtail 2.09 5.22 5.07 2.23 4.03 2.38

Table 6.7: Posterior means of φ−1(µτj
)’s for the individual diet model for the non–permuted

synthetic data without sandlance as a prey item. The true diet compositions are given in

table 6.2.
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6.6 Conclusion

The applicability of the modification of the linear mixing model to the diet composition

problem was demonstrated in this chapter. We saw excellent results with the synthetic

data for both the constant and individual diet models when the source matrix was well

conditioned. However, the performance of the model deteriorated in the presence of strongly

linearly related prey fatty acid profiles.

Clearly, a method for dealing with this collinearity is needed. Several methods suggest

themselves: a priori selection of the prey species before modeling the predator diets; a

variable selection procedure akin to that suggested by Green (1995) and others. However,

the variable selection procedure will problematic due to the fact that the fully Bayesian

method will potentially modify prey fatty acid profiles.

Additionally, further work is needed along the lines of Kashiwagi (2004) to allow for the

potential for unknown prey species to be missing from the prey library. The consequences

of this are well understood in regression contexts, but less so in the present modeling

situation.

Finally, more work is also needed to understand the strengths and limitations of our

approximate method. It has the attractive feature of interpretability, in that, the prey species’

fatty acid signatures are not typically altered from their mean values, though this is not

always the case. However, it doesn’t typically fit as well as the fully Bayesian approach,

which is not surprising as it ignores the potentially valuable information contained in the

predator about the fatty acid profiles it actually consumed. Also, more theoretical work

needs to be done to understand actually what posterior distribution the approximate method

is sampling from. At best it is a close approximation to the true joint posterior; at worst it

may not correspond to any joint distribution.



CHAPTER 7

CONCLUSION

220



221

In this thesis we have argued for the Bayesian approach to inference for the diet compo-

sition problem as it allows for incorporation of all sources of uncertainty. Additionally, it

allows one to carry out inference on population level compositions as well as individual

predator compositions as required.

The method performs better than the original QFASA method of Iverson et al. (2004)

as it gives diet compositions that are closer to generated ones in the synthetic data sets

considered. It also doesn’t appear to be as affected by multicollinearity (see section 6.4.1

for details). However, the fully Bayesian approach does appear to have some issues with

non–identifiability when both the sources and diet compositions are unknown and not a lot

of sample or prior information is available on the sources. The original QFASA approach

avoids this issue by conditioning on the sources. The approximate Bayesian method doesn’t

appear to suffer the same non-identifiability problems as the fully Bayesian approach,

however, it is not entirely clear what distribution we are actually sampling from. Though it

appears to work reasonably well in the situations considered, this is far from an exhaustive

study.

The multi–modality of the logistic normal distribution was not reported in the literature,

to our knowledge, and has some implications for modeling compositional data. We chose

a very restrictive covariance structure to study and more work is needed to determine if

similar patterns hold with different covariance matrices and mean vector combinations.

The work of Priestley and Subba Rao (1969) and our extensions on a frequency domain

test of stationarity of time series could be a promising addition to the MCMCist’s tool box

for assessing when a chain has reached its stationary distribution. The modification of

the original test is based on the properties of the spectra matrix given in Brillinger (1981),

specifically the eigenvalues of the spectral matrix and their asymptotic variances. It gives

the analyst a relatively objective way of determining when the chain(s) is its stationary

distribution, that is, it has forgotten its initial conditions.

Robert and Casella (2004) give the following quote against the use of spectra methods

and non–parametric methods:

A global criticism of the spectral approach also applies to all the methods

using a nonparametric intermediary step to estimate a parameter of the model,

namely that they necessarily induce losses in efficiency in the processing of

the problem (since they are based on a less constrained representation of the
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model). Moreover, the calibration of nonparametric estimation methods (as

the choice of the window in the kernel method) is always delicate since it is

non–standardized.

Though we agree with the first part of this statement, we disagree with the second as

MCMC methods by their very nature are delicate and non-standardized. We feel it is a

promising avenue to approach the issue of when MCMC chains have reached their stationary

distribution.

In the thesis we considered the case were we had partial knowledge of the source

matrix through observations collected on the potential prey of a given predator. We can

consider those observations as forming a prior on the various prey profiles and in that sense

our approach can be seen as a direct application of the Billheimer (2001) model, with

modifications for fat content and predator biosynthesis which were not present in the air

pollution data considered by Billheimer (2001).

Analysis of synthetic data and two experimental studies, one on captive sea birds and

the other on Harbour seals equipped with National Geographic critter cams, illustrated the

validity and some of the pitfalls of the constant diet and individual diet models for inference

on the diet composition of predators. The models performed best when the source matrix

was well conditioned but this is hardly a new result as it is well known in the chemical mass

balance/receptor literature.

The compositional constant mixing and the compositional multilevel models perform

well in situations where there is little dependence among the sources. This is problematic

for the diet composition problem as the species of interest have similar fatty acid profiles

and proper apportionment in this situation is difficult.

This was not fully known or appreciated in the previous work on the diet composition

using fatty acids as there was no diagnostic procedures available to alert the user when

the optimizer may have encountered a ridge in the distance surface that was the basis of

the previous methods. By contrast careful examination of MCMC samples indicate that

in the presence of highly linearly related prey fatty acid signatures, ridges in the posterior

surface occur. This was evident in the preliminary investigations in chapter 5. However,

these ridges can be difficult to detect in higher dimensional posterior surfaces.

An interesting feature of the models is that they are highly non–linear in the case where

the source profiles are not known, and it means that the only way to approach the models
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in a sensible fashion is through the Bayesian conditioning machinery. Thus the models

are difficult to analyze analytically other than with approximations like the delta method

as Aitchison and Bacon-Shone (1999) considered. By contrast the Bayesian MCMC

machinery and the local nature of the model as given in its DAG representation allow for

relatively straightforward Metropolis–within–Gibbs algorithms.

Consider the basic version of the model with no predator biosynthesis or fat content, that

is,

yi = Θαi ⊕ ǫi

where the columns of the source matrix Θ are compositions as is the mixing vector αi, i.e.,

the compositional mixing model. As the mixing occurs on the scale of compositions we

have argued that it is the linear properties of the source matrix, Θ , that are important in

determining how well separated each species is. We measure the total contribution of all

the linear associations among the species fatty acid profiles by the condition number of the

source matrix, Θ. This appears to violate the recommendations of Aitchison (2003) where

he argues that ignoring the unit sum constraint can lead to spurious correlations between

components of the individual elements of the composition. However, we are arguing here

that the correlation/linear dependence is obtained by using the sources as the variables and

the fatty acids as the observations. Of course, the condition number is directly related in

both cases as all we are considering here is a matrix versus its transpose. This is something

that needs to be explored further as it is crucial for reducing ill–conditioned source matrices.

A final note on the diet models, is that implicitly we are assuming that the predators

consume the “average” prey of a given type. That is, if they were feeding on one prey type,

the fatty acid profile of the predator would resemble the average of that prey type ignoring

predator biosynthesis. Thus, if the predator happens to prefer a size class of a certain prey

type that may be different in its fatty acid profile from the overall average, then this would

be problematic for the diet models considered here, as well as, for the original QFASA

model.

7.1 Future Work

We give a brief account in point form (in no particular order) of the outstanding issues not

yet addressed in the current thesis .
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• Improved posterior summaries of the high dimensional mixing vectors and other

parameters. That is, how do we sensibly summarize a high dimensional posterior

surface? To this end we need to address the issue of multivariate percentiles or

quantiles, see for example Chakraborty (2001).

• Multicollinearity of prey sources is a key issue. It can have potentially drastic effects

on the quality of the inference as shown in the synthetic data studies with well

conditioned and ill–conditioned source matrices. Improving the condition number of

the source matrix when the data is compositional is not straightforward, as the usual

methods will not necessarily give rise to sources that remain in the simplex. Also, a

further fleshing out of the dependence properties of the source matrix Θ is required.

Compositional principal components Aitchison (2003) hold some promise, though

as with traditional principal components or factor analytic solutions, the resulting

factors may not be directly interpretable. A potential possibility is discussed in the

next point. However, perhaps the best tactic is more a judicious choice of potential

prey is needed before proceeding with the linear mixing model.

• In other areas of statistics, variable selection techniques can be used to reduce the

effects of multicollinearity. That is, if two species are similar and one is currently

in the model then adding the second species will give little improvement in the

overall fit of the model. However, Hamilton (1987) shows that this isn’t always

the case as he demonstrated in the multiple regression context, thus any forward

selection technique must be interpreted with caution. The methods of Green (1995)

on transdimensional Markov chains would be essential here. However, there are

several complications compared to traditional variable selection in linear regression

for example. Most importantly is that we don’t have complete knowledge of the

source profiles. Whereas in linear regression variable selection we assume the

predictor variables are measured without error. This lack of certainty in the source

profiles, fat contents or calibration components of the model are due to insufficient

prior information and/or lack of adequate samples of the various model components

to sufficiently determine the various portions of the model. In other words, when the

model is only partially/conditionally identifiable, then the model selection problem is

even more difficult as we saw some evidence of in the Harbour seal example when

redfish was removed from the prey library and the fully Bayesian method changed
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the profile of Silver hake to resemble a combination of redfish and sandlance. This

lack of certainty on the prey profiles will make the model selection very difficult

indeed, in some cases that is.

• As previously mentioned, an added bonus of the multilevel or individual diet model is

that we get an individual level inference as well as a population level model. However,

as is well known in the generalized linear mixed models literature (see Diggle et al.,

2002), some interpretation problems exist between the various types of models. Our

model would most closely resemble generalized linear mixed models rather than

population averaged models, which means that careful consideration must be given

to the interpretation of the individual level compositions.

• Further refinements of the convergence test based on the evolutionary spectra are

needed to assess how well it does in other situations. Also, need to address the

concern of Robert and Casella (2004) on the use of convergence methods that require

the choice of window width. There are surprisingly few methods based on the spectra

of the MCMC output to assess convergence and this may be the reason.

• Need to do some further research into the applicability of the so called approximate

Bayesian technique where the flow of information between the predator and prey is

turned off by removing the contribution of the predator from the full conditional of

the other various parts of the model. Recall that the full conditional distribution for

the fatty acid profile for the jth source which we denote by θj is

π(θj|θ−j, α, Σǫ,Y,Xj, ΣXj
) =π(θj|µθj

, Σθj
)

n∏

i=1

π(yi|α,Θ, Σǫ),

nj∏

k=1

π(xjk|θj, ΣXj
).

The approximate method removes the term
∏n

i=1 π(yi|α,Θ, Σǫ), however, by mod-

ifying the full conditionals in this way, we are no longer sampling from the joint

posterior with our MCMC algorithms. We need to determine what distribution the

approximate method is actually sampling from.

• Exploring different distributional assumptions for the various parts of the model. The

most natural one being the skew–logistic distribution mentioned in chapter 2 given by
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Mateu-Figueras et al. (2005) which generalized the work of Azzalini and DallaValle

(1996); Azzalini and Capitanio (1999) on the skew–normal distribution.

• Further modifications of the MCMC sampler can be explored as well: different pro-

posal distributions, different adaption algorithms, random scans versus the reversible

systematic scan method that was implemented. The reversible system scan is quite

wasteful of resources as it only uses one out of every two samples generated.

• The constant and individual diet models were written in Fortran 90 for computational

reasons, and further refinements of the code are needed for both readability and

efficiency reasons.

• Modeling the uncertainty associated with the rounded zeros which are generated

by the absence of peaks in the gas chromatograph. Currently, we arbitrarily assign

a value half way between the lower detection limit of the gas chromatograph and

zero. There are several approaches in the compositional literature that can be tried to

ascertain their affect on the diet estimates and their associated uncertainty. See for

example Martı́n-Fernández et al. (2003); Palarea-Albaladejo et al. (2007)



APPENDIX A

THE BAYESIAN PARADIGM AND

DIRECTED ACYCLIC GRAPHS

In this chapter we briefly present some of the arguments for the Bayesian approach to

statistical inference. Inference as an extension of logic and probability theory is the

approach advocated by Cox (1946); Jaynes (2003), we present those arguments briefly in

the first section. We then follow those with the likelihood principle argument first presented

by Birnbaum (1962). Another argument in favour of Bayesian principles is the Decision

theoretic approach. We end this chapter with the a brief introduction to Directed Acyclic

Graph, which are a powerful way to represent hierarchical models and are particularly

important in implementing the Markov Chain Monte Carlo approach to approximating the

posterior distribution.

A.1 Probabilistic Approach to Inference

The probabilistic approach to statistical inference is very appealing for many reasons not the

least of which is the numerous interpretation problems that arise with the classic/orthodox

paradigm. Specifically, the failure of the classical approach to follow the likelihood principle

which follows directly from two seemingly innocuous principles, the sufficiency principle

and the conditionality principle (see Birnbaum, 1962). Physicist Richard T. Cox (see Cox,

1946, 1958, 1962) laid out some basic rules or desiderata that any system of inference

should follow. He went on to show, by way of variational calculus techniques, that any

such system must be based on the product and sum rule. In other words, Bayes theorem.

This work went largely ignored in the literature, except by fellow physicist E.T. Jaynes

227
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who published numerous articles on statistical inference and maximum entropy methods,

culminating in his life’s work (see Jaynes, 2003), which was edited and published by former

student Larry Bretthorst. Jaynes advocated the so called objective Bayesian approach to

statistical inference which is consistent with the approach taken by Jeffreys (1961) but is

contrasted with the subjective approach taken by other others most notably, Savage (1954);

Lindley (1965a,b); de Finetti (1990a,b); Berger (1985). That is not to say that they all had

the same view on subjective probability, in fact, several of them built an axiomatic approach

to utility as a way of overcoming the wholly subjective approach. It is not our purpose

to expose the virtues of a given approach only to say that the objective approach, when

possible, should be taken.

We briefly mention the Cox and Jaynes desiderata:

1. Degrees of Plausibility are represented by real numbers.

2. (a) If a conclusion can be reasoned out in more than one way, then every possible

way must lead to the same result.

(b) All relevant evidence/information is taken into account. That is, information is

not ignored or taken into account arbitrarily.

(c) Equivalent states of knowledge are represented by equivalent plausibility as-

signments. That is, if in two problems our state knowledge is the same (except

perhaps for the labeling of the propositions), then the same plausibilities must

be assigned in both.

3. Qualitative Correspondence with common sense.

Theorem A.1 (Cox’s Theorem). Cox (1946, 1962) A measure of plausibility that satisfy

the above desiderata must be a monotonic function of p(.) that satisfies the following rules

(the product and sum rule)

(i) p(AB|C) = p(A|BC)p(B|C) = p(B|AC)p(A|C)

(ii) p(A|B) + p(Ā|B) = 1

Proof. Cox (1946, 1962) provided detailed proofs, and Jaynes (2003) gives a more general

proof. They both rely on functional analysis and the calculus of variations.
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A.2 Classical Versus Bayesian Paradigms

Arguably the fundamental distinction between the classical (Neyman–Pearson) approach

and the Bayesian approach is their view on parameters. In the classical approach unknown

parameters are considered as fixed constants and probability statements about the unknown

constants are generated by considering all possible realizations of the experiment, the

so called sampling based approach. The Bayesian approach, by contrast, considers the

unknown parameters on an equal footing with the data, that is, the uncertainty or lack

of knowledge about the unknown parameter(s) is described by a probability distribution.

Thus we consider the joint distribution of the parameters and the data, using basic rules

of probability theory and then once the data are observed we base our inference on the

conditional distribution of the parameters given the data.

To highlight the difference between the two approaches consider the following simple

example. Assume we have a parametric model with an single unknown parameter θ, that is,

we assume our data y1, . . . , yn are generated from π(yi|θ), where π is our parametric model.

The classical approach to inference, would then use the likelihood function to construct

a maximum likelihood estimator of θ, say θ̂. Now comes the interesting part, since the

classical approach assumes that the parameter is a fixed constant, how do they go about

assigning probabilities. To do this, they construct confidence intervals, where they consider

all possible realizations of the data, y1, . . . , yn and construct an form intervals of the form

θ̂ ± c(α)s.e(θ)

where c(α) is an appropriately chosen quantile of the sampling distribution and s.e(θ) is a

measure of the spread of the sampling distribution. The constructed confidence interval then

has the following interpretation: Overall all possible realizations of the experiment intervals

constructed in the above fashion will have (1 − α) ∗ 100% coverage. That is, confidence

intervals have a perfectly valid interpretation right up until the data is collected. Confidence

and coverage probabilities tell us about how we can expect our procedures to behave before

we actually collect the data. However, they don’t tell us anything about a particular data set

as their probability is derived from the collection of all possible outcomes.

The Bayesian approach to the same problem, requires one more piece of information

before the analysis can proceed, namely a distribution which gives our prior knowledge

about the unknown parameter, θ. We shall return to the discussion of the choice of prior later.
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We then use basic rules of conditional probability theory to arrive at the joint distribution of

θ, y1, . . . , yn as follows:

π(θ)p(y1, . . . , yn|θ) = π(θ, y1, . . . , yn)

Once the data y1, . . . , yn are observed we then use Bayes theorem to write the conditional

distribution of π(θ|y1, . . . , yn) as follows

π(θ|y1, . . . , yn) =
π(θ, y1, . . . , yn)∫
π(θ, y1, . . . , yn)dθ

=
π(θ)π(y1, . . . , yn|θ)∫
π(θ)π(y1, . . . , yn|θ)dθ

.

Inference is then based on pi(θ|y1, . . . , yn), the conditional distribution of the unknown

parameter given the observed data. We can then construct probability intervals or any other

summary measures of interest of the conditional distribution.

Classical statisticians claim that the Bayesian approach isn’t objective given that one

has to assign a prior distribution. However, the method of maximum entropy gives one an

objective way to assign prior distributions (see Jaynes, 2003, and the references therein).

Once we assign a prior distribution everything flows from the basic rules of probability

theory, there is no need for any other principles that are common in the classical approach.

The prior and likelihood lead to a posterior and that is the end of the story, at least from a

theoretical perspective.

Bayesian calculations are more complex than their classical counterpart and in all but

the simplest situations exact computations are not possible. The computational difficulty

caused the Bayesian approach to lag behind its classical counterpart in applied settings.

However, that changed drastically with the explosion of Markov Chain Monte Carlo

(MCMC) methods in the early 1990s. This meant that many more problems could be

tackled from a Bayesian perspective.

A.3 Likelihood Principle

The likelihood principle states that inferences involving proportional likelihoods should

reach the same conclusions. We begin this section with an example to illustrate the essential

ideas and then provide more details as to the actual principle and how it was derived. The

original example was given in Lindley and Phillips (1976), however, we use the form
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presented in Berger (1985).

Example A.1. We are given a coin and are interested in the parameter θ, the probability of

heads when flipped. It is desired to test H0 : θ = 1/2 versus H1 : θ > 1/2. An experiment

is conducted by flipping the coin in a series of trials, the result of which is the observation

of 9 heads and 3 tails. We assume that the trials are exchangeable. That is, the order in

which the heads and tails occur gives no information as to the value of θ.

This is not yet enough information to specify f(x|θ), since the series of trials was not

explained. Two possibilities are: (1) the experiment consisted of a predetermined 12 flips,

so that X, the number of heads, would have a binomial distribution denoted by B(12, θ); or

(2) the experiment consisted of flipping the coin until 3 tails were observed, thus X would

have a negative binomial distribution, denoted by NB(3, θ). The sampling distributions

are given by

π1(x|θ) =

(
n

x

)
θx(1 − θ)n−x = 220θ9(1 − θ)3

and

π2(x|θ) =

(
y + x − 1

x

)
θx(1 − θ)y = 55θ9(1 − θ)3.

Recall that the likelihood functions l1(θ+x) and l2(θ|x), are proportional to their respective

sampling distributions.

Traditional hypothesis testing relies on the computing the observed significance levels or

p–values for each of the experimental situations as they obviously have different sample

spaces. Therefore, the significance level for the binomial version of the experiment is:

p–value1 = p(X ≥ 9|θ = 0.5) =
12∑

x=9

π1(x|θ = 0.5)

= 0.075.

For the negative binomial model, the significance level is,

p–value2 = p(X ≥ 9|θ = 0.5) =
∞∑

x=9

π2(x|θ = 0.5)

= 0.0325.

Thus, depending on which sampling design we employ we get a very different picture of the

significance level of the hypothesis test. This result seems counter–intuitive, in the sense
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that why should it matter what our intentions were before the experiment. If our data is

identical in two experiments, shouldn’t the conclusions be the same? According to the

likelihood principle, this should in fact be the case.

There are two readily accepted principles that we need to discuss before proceeding to

the discussion of the likelihood principle.

Conditionality Principle. Suppose one can perform either of two experiments E1 or E2,

both pertaining to θ, and that the actual experiment conducted is the mixed experiment of

first choosing J = 1 or 2 with probability p (logically independent of θ ), then performing

experiment EJ . Then the actual information about θ obtained from the overall experiment

should depend only on the experiment Ej actually performed.

The following examples from Berger (1985); Cox (1958) respectively illustrate the weak

conditionality principle.

Example A.2. (Berger, 1985) Suppose a substance to be analyzed can be sent either to a

laboratory in New York or a laboratory in California. The two labs seem equally good, so

a fair coin is flipped to choose between them, with heads denoting that the lab in New York

will be chosen. The coin is flipped and comes up tails, so the California lab is used. After a

while, the experimental results come back and a conclusion and report must be developed.

Should this conclusion take into account the fact the coin could have been heads, and hence

that the experiment in New York might have been performed instead? Common sense (and

the conditional viewpoint) cries no, that only the experiment actually performed is relevant,

but frequentist reasoning would call for averaging over all possible data, even the possible

New York data.

Example A.3. (Cox, 1958) In a research laboratory, a physical quantity θ can be measured

by a precise but often busy machine, which provides a measurement, x1 ∼ N(θ, σ2 = 1),

with probability p = 0.5, or through a less precise but always available machine, which

gives x2 ∼ N(θ, σ2 = 9). The machine being selected at random, depending on the

availability of the more precise machine, the inference on θ when it has been selected

should not depend on the fact that the alternative machine could have been selected.

Firstly, its clear that if we condition on the toss of the coin, the coverage probabilities

are 0.95. However, if we were to consider the coverage of the more precise interval (that is,

based on σ2 = 1) under repeated sampling without conditioning on the coin toss then this
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interval has coverage given by

P (x − 1.96 < θ < x + 1.96) = P (x − 1.96 < θ < x + 1.96|Y = 1)P (Y = 1)

+ P (x − 1.96 < θ < x + 1.96|Y = 0)P (Y = 0)

= 0.95
1

2
+ 0.243

1

2
= 0.718

By a similar argument the coverage of the less precise instrument would have coverage of

0.975. Finally, if we wanted to have a classical interval with coverage 0.95, the interval

would be (-4.935,4.935).

Thus, by not conditioning on the coin toss, we have to suffer a substantial decrease in

precision in order to get the required coverage probability

Definition A.1. When x ∼ f(x|θ), a function T of x (also called a statistic) is said to be

sufficient if the distribution of x conditional upon T (x) does not depend on (θ)

Thus a sufficient statistic contains all the information about θ contained in the sample.

The factorization theorem allows for easy identification of sufficient statistics, that is,

f(x|θ) = g(T (x)|θ)h(x|T (x))

Example A.4. Let x1, . . . , xn be a sample from a Poisson distribution with parameter θ,

thus the joint density can be written as follows

p(x1, . . . , xn|θ) =
n∏

i=1

e−θθxi

xi!

=
e−nθθ

P

xi

∏
xi!

Thus if we let T (x) =
∑n

i=1 then we have

p(x1, . . . , xn|θ) =
e−nθθT (x)

∏
xi!

.

Now if we let g(T (x)|θ) = e−nθθT (x) and h(x|T (x)) = 1/
∏

xi! we can apply the factor-

ization theorem and see that T (x) is sufficient for θ.
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Sufficiency Principle Two observations x and y factorizing through the same value of a

sufficient statistic T , that is, such that T (x) = T (y), must lead to the same inference on θ.

Almost all classically trained statisticians ascribe to the sufficiency principle and if

one restricts attention to the exponential family sufficient statistics exist. Rao-Blackwell

theorem states that if you have an estimator and then condition on a sufficient statistic then

that’s the best you can do Bickel and Doksum (2000).

Likelihood Principle The information in the observation x about θ is entirely contained

in the likelihood function l(θ|x). Moreover, if x1 and x2 are two observations depending

on the same parameter θ, such that there exists a constant c satisfying

l1(θ|x1) = cl1(θ|x2)

for every θ, thus they have the same information concerning θ and must lead to identical

inferences.

Note that the likelihood principle only applies when the parameter θ is same in both

models.

Birnbaum (1962) shows that the likelihood principle follows from the conditionality

principle and the sufficiency principle. Robert (2004) also gives a proof of this result.

Example A.5. The coin tossing experiment discussed previously, is the standard example

of how the likelihood principle can be violated. To see this note, the classical analysis has

a different p–value depending on which sampling design was used. However, the parameter

θ is exactly the same in both experiments and the likelihood functions are proportional,

therefore the inferences reached have to be the same according to the likelihood principle.

Thus, the seemingly innocuous conditionality principle and the generally accepted

sufficiency principle leads to a powerful principle that as the above example shows, is

violated by one of the cornerstones of classical statistical inference, the p–value. As Jeffreys

(1961) so eloquently stated

“... a hypothesis which may be true may be rejected because it has not predicted

results which have not occurred”

The likelihood principle does not indicate how inference should be carried out, only that

datasets with identical likelihood functions for the same parameter should yield the same
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inference. Bayesian inference obeys the likelihood principle as a matter of course, as it

conditions on the observed data.

A.4 Decision Theory

Statistical decision theory is concerned with how to make decisions on the basis of statistical

knowledge (ie a sample of data) which presumably sheds light on the uncertainties associ-

ated with the unknown quantities in the problem of interest. For example, consider making

a decision as to whether or not to put a street light at a particular intersection in a city, given

a sample of the number of accidents at that particular intersection. Parameter estimation,

hypothesis testing and confidence intervals as well as their Bayesian counterparts can all

be thought of as decision problems with particular loss functions. However, the class of

decision problems is also much richer than this.

The following development is taken from Berger (1985) and supplemented from Robert

(2004); Jaynes (2003). We assume that the state of nature or unknown quantity is given by

θ and the set of all possible values is given by Θ. In most settings of interest, θ represents

the unknown parameters of some statistical model and Θ represents the set of all possible

values of said parameter(s) also known as the parameter space. In our example above, θ

would be the true accident rate at the intersection of interest and Θ would typically be the

positive real line, but of course practical considerations would give a upper limit to the

parameter space. Let a represent a particular action (decision) and A be the collection of

all possible actions.

The next ingredient in the decision theory pie, is that of a loss or utility function. The

loss function, denoted by L(θ, a) gives the penalty/loss for decision a when the state of

nature is θ. The loss function L(θ, a) is defined for all (θ, a) ∈ Θ×A and gives a mapping

onto positive real line. The utility function is denoted by U(θ, a) and gives the amount

of gain for decision a when the state of nature is θ. Loss and utility functions are related

by L(θ, a) = −U(θ, a). Most of the statistical literature deals with loss functions while

economists typically deal with utilities. Berger (1985); Robert (2004) give some technical

details on the existence of utility/loss functions. For our purposes, we consider standard

loss functions and investigate the properties of the decisions they imply.

The data are denoted by X = (X1, . . . , Xn) and joint their distribution is given by

π(X|θ). The observations are typically assumed to be conditionally independent given θ,
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that is,

π(X|θ) =
n∏

i=1

π(Xi|θ).

Finally, our prior knowledge of θ is summarized in a prior p(θ). Using Bayes theorem, we

can write our updated knowledge of θ using the posterior distribution

π(θ|X) ∝ π(θ)p(X|θ)

Consider the loss function L(θ, a) which gives, the loss for action(decision) a when the

actual state of nature is θ. As θ is the only unknown, after the data is collected, it is natural

to consider our expected loss over different values of θ and choose a decision on this basis.

Definition A.2 (Bayes Posterior Expected Loss). If π(θ|x) is the posterior distribution of

θ, then the Bayesian expected loss for action a is

ρ(π(θ|x), a) = Eπ(θ|x)L(θ, a) =

∫

Θ

L(θ, a)π(θ|x)dθ.

The conditional Bayes Principle states the following: choose an action a ∈ A which

minimizes the Bayes expected loss ρ(θ, a), assuming a minimum is obtained. We denote

such actions by δπ(x) and call them posterior Bayes actions. Consider the following

example.

Example A.6. Let π(X|θ) ∼ N(θ, 1) and consider the squared error loss L(θ, a) =

(θ − a)2. Now suppose that our prior for θ is given by π(θ) ∼ N(0, τ 2), for some known

τ . Assume we have observed a sample x = (x1, . . . , xn). Firstly, we need to derive the

posterior distribution of θ. Bayes theorem gives the following

π(θ|x) ∝ π(θ)π(x|θ)

∝ N

(
nτ 2x̄

nτ 2 + 1
,
nτ 2 + 1

τ 2

)
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this follows as this is a conjugate family. the Bayes expected loss is

ρ(θ, a) =

∫ ∞

−∞
L(θ, a)π(θ|x)

=

∫ ∞

−∞
(θ − a)2π(θ|x)

=

∫ ∞

−∞
((θ − E(θ|x)) + (E(θ|x) − a))2π(θ|x)

=

∫ ∞

−∞

{
(θ − E(θ|x))2 + (E(θ|x) − a))2

}
π(θ|x)

The cross product term vanishes, the first term is the posterior variance of θ and the second

term is minimized by choosing a = E(θ|x)). That is, the conditional Bayes principle says

estimate the unknown location parameter with the posterior mean. Note that, since we did

not use anything about the form of the posterior other than having finite first two moments,

this result generalizes to any posterior distribution that has finite first moments. That is,

if the loss function is squared error loss, then the conditional Bayes principle gives the

posterior mean as estimator that minimizes the Bayes expected loss.

In this particular case, the posterior mean is

E(θ|x) =
nτ 2x̄

nτ 2 + 1

=
x̄

1 + 1/(nτ 2)
.

Thus, as the prior knowledge gets more vague, in other words, larger prior variance τ 2 or

the sample size gets larger, the estimator becomes closer to the usual sample mean. That is,

in the limit the posterior mean is dominated by the likelihood function.

A.4.1 Classical Decision Theory

As the classical statistician does not assign probabilities to unknown constants (parameters),

the concept of expected loss is very different. Following Berger (1985) we define a decision

rule δ(x) as follows.

Definition A.3. A decision rule δ(x) is a function from the sample space, X into the action

space, A. If X = x is observed then δ(x) is the action taken. Two decision rules δ1 and δ2,

are equivalent if Pθ(δ1(X) = δ2(X)) = 1 for all θ.
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Rather than take expectations over θ, the frequentist prefers to measure his expected loss

over all possible samples X .

Definition A.4. The risk function of a decision rule δ(x) is given by

R(θ, δ) = EX
θ [L(θ, δ(X))] =

∫

X
L(θ, δ(x))π(x|θ)dθ

However, note that unlike the Bayes expected loss, which is a single number as the

expectation was taken over θ the risk function is defined for all θ. Which naturally leads to

some potential problems as it is clear that any one decision rule will be not be “best” for

all θ. To see this, just consider a trivial decision rule of δ(x) = θ0, this rule is best when

θ = θ0 and no other rule could beat it. This leads us to consider some other types of rules.

Definition A.5. A decision rule δ1 is R–better than a decision rule δ2 if R(θ, δ1) ≤ R(θ, δ2)

for all θ ∈ Θ, with strict inequality for some θ. A rule δ1 is said to be R–equivalent to

delta2 if R(θ, δ1) = R(θ, δ2) for all θ ∈ Θ.

Definition A.6. A decision rule is admissible if there exists no R–better decision rule. A

decision rule is inadmissible if there does exist an R–better decision rule.

We now define Bayes risk where the expectation is taken both of the sample space and

the parameter space as seen in the following definition.

Definition A.7. The Bayes risk of a decision rule δ, with respect to a prior distribution

π(θ) on Θ is defined as

r (π(θ), δ) = Eθ[R(θ, δ)]

=

∫

Θ

∫

X
L(θ, δ(x))π(x|θ)π(θ)dxdθ

Since we have taken expectation over all possible θ values with respect to the prior π(θ),

the Bayes risk is now a single number and we can seek rules which minimize this risk.

The Bayes Risk Principle. A decision rule δ1, is preferred to a rule δ2 if

r (π(θ), δ1) < r (π(θ), δ2)

A decision rule that minimizes r (π(θ), δ) is optimal; it is called a Bayes rule, and will

be denoted by δπ. The quantity r(π(θ)) = r(π(θ), δp) is called the Bayes risk for π(θ).
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Example A.7. Consider the example from the previous section. First, we find the risk

and Bayes risk for the squared error loss function. Consider decision rules of the form

δc(x) = cx. The risk is given by

R(θ, δc) = EX
θ L(θ, δc(X)) = EX

θ (θ − cX)2

= EX
θ (θ − cθ + cθ − cX)2

= EX
θ (θ(1 − c) + c(θ − X))2

= c2EX
θ [θ − X]2 + 2c(1 − c)θEX

θ [θ − X] + (1 − c)2θ2

= c2 + (1 − c)2θ2

R(θ, δ1) = 1 < c2 + (1 − c)2θ2 = R(θ, δc)

for c > 1, which implies that δ1 is R–better than any rule δc. It is less clear when 0 ≤ c ≤ 1,

for instance, the rules δ1 and δ1/2 cross due to the quadratic nature of the loss function for

0 ≤ c ≤ 1, so the rules are not really comparable. Thus, also admissibility is a desirable

property it cannot always be achieved even for simple examples.

The Bayes risk is given by

r(π(θ|X), δ) = Eπ[R(θ, δ)] = Eπ[c2 + (1 − c)2θ2]

= c2 + (1 − c)2Eπ[θ2] = c2 + (1 − c)2τ 2.

Applying the Bayes risk Principle to this example, by differentiating with respect to c

yields

c0 =
τ 2

1 + τ 2

Note that by application of the following proposition, δc0 is optimal in the sense that it also

minimizes the Bayes risk.

Berger (1985) states the following two results:

Proposition A.1. A Bayes rule δp (a rule minimizing r(π(θ|X), δ(x)) ) , the bayes risk)

can be found by choosing, for each x such that the π(x) > 0, an action which minimizes

the posterior expected loss. The rule can be defined arbitrarily when π(x) = 0.
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Proposition A.2. If δ is a non–randomized estimator, then

r(θ, δ) =

∫

x:π(x)>0

ρ(π(θ|x), δ(x))

Proposition A.1 follows directly from proposition A.2 and proposition A.2 is a direct

consequence of Fubini’s theorem which allows for a change of the order of integration.

A.4.2 Other Common Loss Function Results

In this section, we give results for several common loss functions and discuss their imple-

mentation in terms of minimizes Bayes expected loss and hence Bayes risk. We consider,

the squared–error loss, the absolute loss function, and the 0–1 loss function. As we have

seen before minimizing ρ(π(θ|x), δ(x)) is all that is required, that is,

ρ(π(θ|x), δ(x)) =

∫

Θ

L(θ, δ(x))π(θ|x)dθ

If L(θ, δ(x)) = (θ − δ(x))2 the squared–error loss then the Bayes estimator is

δπ(x) = Eπ(θ|x)[θ]

the posterior mean.

If L(θ, δ(x)) = |θ − δ(x)| the absolute-error loss then the Bayes estimator is any median

of π(θ|x)

If

L(θ, δ(x)) =





0 δ(x) = θ

1 otherwise

the zero-one loss, this corresponds to the highest posterior mode of π(θ|x).

Consider the following non-technical proof. The Bayes risk is given by

ρ(π(θ|x), δ(x)) = E(L(θ, δ(x)))

=

∫

Θ

L(θ, δ(x))π(θ|x)

=

∫

θ 6=δ(x)

π(θ|x)

= 1 − π(θ = δ(x)|x)
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The issue here is how to define a posterior mode for a continuous parameter spaces.. Not

sure.. have to do some reading. The proof follows very easily in the discrete parameter

case,though not very interesting in practice.

Thus, the Bayes risk is minimized if we allow δ(x) the posterior mode.

Jaynes (2003) gives an interesting interpretation of this loss function in the case that the

prior distribution is relatively flat in the high likelihood region and not much greater else

where, then we essentially have the maximum likelihood estimator in this case. To quote

Jaynes (2003)

In this result we see finally just what maximum likelihood accomplishes, and

under what circumstances it is the appropriate method to use. The maximum–

likelihood criterion is the one in which we care only about the chance of being

exactly right; and, if we are wrong, we don’t care how wrong we are. This is

just the situation we have in shooting at a small target, where ’a miss is as good

as a mile’. But it is clear that there are few other situations where this would

be a rational way to behave; almost always, the amount of error is of some

concern to us, and so maximum likelihood is not the best estimation criterion

Several of the theorems mentioned can be found in the classic frequentist text on point

estimation by Lehmann (1983). Thus, even the most staunch classicalist acknowledges the

existence of Bayes estimators and their optimality properties. They use the Bayes methods

to derive classes of estimators, however, they don’t take the next logical step and perform

inference in a conditional fashion once the data has been collected.

A.5 Graphical Models

Directed acyclic graphs or DAGs are very useful for depicting hierarchical models and

their associated dependencies. We briefly review some of their properties and note their

usefulness to Markov Chain Monte Carlo methods for finding noting full conditional

distributions and their potential simplification.

A graph is a collection of vertices or nodes, denoted by V and edges, denoted by E ,

between vertices. We say the graph is directed if all the edges are represented by arrows,

implying a particular path through the nodes. We say the graph is acyclic if no cycles are

allowed and call these graphs directed acyclic graphs or DAGs. Figure A.1 gives examples
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of three commonly occurring graphs, however, note that we are only interested in the DAGs

for the subsequent discussion.
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Figure A.1: Examples of three graphs. The first graph is an undirected graph, note it has no

directed edges. The center graph is a directed graph, note it has a cycle, (A,B,C). The final

graph is a directed acyclic graph (DAG) (taken from Spiegelhalter, 1998).

We say that vertex B is a child of the vertex A if a directed edge (arrow) connects A to

B or A is a parent of B. It is convenient to label all the parents of a node B by pa(B) or

when needed the children of node A by ch(A).

Consider the collection of all nodes, V , as represent unknown quantities which we want

to model the joint distribution of. As pointed by Spiegelhalter (1998), it seems natural to

assume that any node or vertex is conditionally independent of any other non–descendants,

given that nodes parents. He goes to assert that this formulation obeys the conditionally

independence axioms given in Dawid (1979b). Also, one can read off the conditional

independence properties directly off the DAG which he states can be used as a “theorem

prover”. Most importantly it enables one to write down the joint distribution for the set of

nodes V as follows

p(V) =
∏

ν∈V
π(ν|pa[ν]).

Thus, we can write down the full joint distribution in terms of the local conditional properties

of the graph. This is similar in nature to the Hammersley–Clifford theorem that we shall see

in the chapter on Markov Chain Monte Carlo methods. Applying this rule to the example

DAG of (Spiegelhalter, 1998) gives

p(A, B, C,D, E) = p(A)p(B)p(C|A, B)p(D|A, B)p(E|C).

Spiegelhalter (1998) also points out that the directed local Markov property is equivalent to

other Markov properties given in Lauritzen et al. (1990) in more general context.
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There is a connection between DAGs and Gibbs and hence its variants of Metropolis–

Hastings–within–Gibbs which was pointed out by Pearl (1987) in the artificial intelligence

literature but it bears pointing out here. In essence it allows one to read the full conditional

distributions, essential in Gibbs sampling, off the DAG. The connection between the full

conditional distributions and the local dependence properties of the DAG can be see by the

following argument.

Consider a node ν a given node of the set V and let V \ ν represent the remaining nodes.

The full conditional for node ν is then given by

p(ν|V \ ν) ∝ p(ν,V \ ν)

∝ terms in p(V) containing ν

= p(ν|pa(ν))
∏

ω∈ch(ν)

p(ω|pa(ω))

That is, to read off the full conditional distribution of a particular unobservable we only

have to consider the co-parents and any children of the node ν.

For our example DAG the full conditional distributions are :

p(C|A, B, D,E) ∝ terms in p(V ) containing C

∝ p(C|A, B)p(E|C)

p(A|B, C, D,E) ∝ p(A)p(C|A, B)p(D|A, B)

p(B|A, C,D, E) ∝ p(B)p(C|A, B)p(D|A, B)

p(D|A, B, C,E) ∝ p(D|A, B)

p(E|A, B, C,D) ∝ p(E|C).

The local properties of the graph enable one to write down the full conditional distri-

butions in a relatively simple and systematic way. Therefore, if you can write the model

of interest as DAG then doing Gibbs sampling algorithm or Metropolis–Hastings–within–

Gibbs algorithm is, in theory at least, straightforward.

For further details on conditional independence and graphical models the reader is
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referred to Dawid (1979a); Pearl (1987); Lauritzen et al. (1990); Lauritzen (1996); Spiegel-

halter and Lauritzen (1990); Spiegelhalter (1998); Cowell et al. (1999); Consonni and

Leucari (2001) plus the references therein.



APPENDIX B

REVERSIBLE SYSTEMATIC SCAN

METROPOLIS–WITHIN–GIBBS

ALGORITHMS

B.1 Constant Diet Model

This section gives details for the reversible systematic scan Metropolis–within-Gibbs

algorithm for the constant diet model.

The model is:

yi
(a×1)

= Θ
(a×p)

Γi

(p×1)
⊕( θv

(a×1)
⊖ θu

(a×1)
)⊕ ǫi

(a×1)
, i = 1, . . . , n,

Γ
(p×n)

= φ−1
c

(
φc

(
T

(p×w)

)
W

(w×n)

)
⊕c λ

(p×1)

xjk
(a×1)

= θj
(a×1)

⊕ ǫx
jk

(a×1)

, j = 1, . . . , p, k = 1, . . . , nj,

zjk
(2×1)

= λv
j

(2×1)

⊕ ǫz
jk

(2×1)

, j = 1, . . . , p, k = 1, . . . , nj,

ul
(a×1)

= θu
(a×1)

⊕ ǫu
l

(a×1)

, l = 1, . . . , L,

vm
(a×1)

= θv
(a×1)

⊕ ǫv
m

(a×1)

, m = 1, . . . ,M,

where W is an w × n known design matrix, T = [τ 1|τ 2; . . . |τw] is an p × w matrix.

245
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We assign the following prior distributions for the location parameters

π(τ s|µτ , Στ) ∼ Lp(µτs
, Στs

), s = 1, . . . , w,

π(θj|µθj
, Σθj

) ∼ La(µθj
, Σθj

), j = 1, . . . , p,

π(λv
j |µλj

, Σλj
) ∼ L2(µλj

, Σλj
), j = 1, . . . , p,

π(θu|µθu , Σθu) ∼ La(µθu , Σθu),

π(θv|µθv , Σθv) ∼ La(µθv , Σθv),

and for the covariance matrices

π(Σǫ|δǫ, Ψǫ) ∼ IWa−1(δǫ, Ψǫ),

π(Σxj
|δxj

, Ψxj
) ∼ IWa−1(δxj

, Ψxj
), j = 1, . . . , p,

π(Σzj
|δzj

, Ψzj
) ∼ IW1(δzj

, Ψzj
), j = 1, . . . , p,

π(Σu|δu, Ψu) ∼ IWa−1(δu, Ψu),

π(Σv|δv, Ψv) ∼ IWa−1(δv, Ψv).

The sampling distributions are given by

π(yi|Θ,T, Σǫ, λ, θu, θv) ∼ La(φ(ΘΓi ⊕ (θv ⊖ θu)), Σǫ), i = 1, . . . , n

π(xjk|θj, Σxj
) ∼ La(φ(θj), Σxj

), j = 1, . . . , p; k = 1, . . . , nj

π(ul|θu, Σu) ∼ La(φ(θu), Σu), l = 1, . . . , L;

π(vm|θv, Σv) ∼ La(φ(θv), Σv), m = 1, . . . ,M ;

π(zjk|λ1, Σzj
) ∼ L2(φ(λj), Σzj

), j = 1, . . . , p; k = 1, . . . , nj

Before we can describe the MCMC algorithm to sample the posterior, we need to

establish that the posterior is proper.

Proposition B.1. The posterior distribution for the constant diet model is proper. That is:

∫
π(θ1, . . . ,θp, Σx1

, . . . , Σxp
, λv

1, . . . ,λ
v
p, Σz1

, . . . , Σzp
, θu, Σu, θv, Σv, τ 1, . . . , τw, Σǫ|D)

dθ1 . . . , dθp, dΣx1
, . . . , dΣxJ

, dλv
1, . . . , dλv

p, dΣz1
, . . . , dΣzp

, dθu, dΣu, dθv, dΣv, dτ , dΣǫ < ∞
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where the range of integration is over the simplex for θj , λv
j , θu, θv, τ s,, and the range

of positive definite matrices for Σxj
, Σzj

, Σu, Σv and Σǫ and D is the collection of all

observed data.

Proof. The posterior is given below:

π(θ1, . . . ,θp, Σx1
, . . . , Σxp

, λv
1, . . . ,λ

v
p, Σz1

, . . . , Σzp
, θu, Σu, θv, Σv, τ 1, . . . , τw, Σǫ|D)

=

p∏

j=1

{
La−1(θj|µθj

, Σθj
) × IWa−1(Σxj

|δxj
, Ψxj

) ×
nj∏

k=1

La−1(xjk|θj, Σxj
)

}

×
p∏

j=1

{
L1(λv

j |µλv
j
, Σ j) × IW1(Σzj

|δzj
, Ψzj

) ×
nj∏

k=1

L1(zjk|λv
j , Σzj

)

}

× La−1(θu|µθu

, Σθu
) × IWa−1(Σu|δu, Ψu) ×

L∏

l=1

La−1(ul|θu, Σu)

× La−1(θv|µθv

, Σθv
) × IWa−1(Σv|δv, Ψv) ×

M∏

m=1

La−1(vm|θv, Σv)

×
w∏

s=1

Lp−1(τ s|µτ , Στ) × IWa−1(Σǫ|δǫ, Ψǫ)

×
n∏

i=1

La−1(yi|Θ, λ, θu, θv, τ , Σǫ)

With the exception of the term
∏n

i=1 L(yi|Θ, λ, θu, θv, τ , Σǫ) there is complete separa-

tion between the terms of the posterior distribution. Consider the functional form for this

term

|Σǫ|−n/2 exp

{
−1

2

n∑

i=1

(yi − µyi
)
′

Σ−1
ǫ (yi − µyi

)

}

where

µyi
= Θ

(a×p)
Γi

(p×1)
⊕( θv

(a×n)
⊖ θu

(a×1)
)

and Γi means the ith column of the matrix Γ.

Since Σǫ is positive definite,
∑n

i=1(Yi − Θα)
′
Σ−1

ǫ (Yi − Θα) ≥ 0, therefore, the term

is bounded by |Σǫ|−n/2 .

Using a similar bounding technique we can bound each of the sampling distributions

La−1(xjk|θj, Σxj
), L1(zjk|λv

j , Σzj
) , La−1(ul|θu, Σu)La−1(vm|θv, Σv) by

∏p
j=1 |Σxj

|nj/2,
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∏p
j=1 |Σzj

|nj/2, |Σu|L/2 and |Σv|M/2 respectively. Therefore we can bound our original

integral by

∫ p∏

j=1

{
La−1(θj|µθj

, Σθj
) × IWa−1(Σxj

|δxj
, Ψxj

) × |Σxj
|−nj/2

}

×
p∏

j=1

{
L1(λv

j |µλv
j
, Σ j) × IW1(Σzj

|δzj
, Ψzj

) × |Σxj
|−nj/2

}

× La−1(θu|µθu

, Σθu
) × IWa−1(Σu|δu, Ψu) × |Σu|−L/2

× La−1(θv|µθv

, Σθv
) × IWa−1(Σv|δv, Ψv) × |Σv|−M/2

×
w∏

s=1

Lp−1(τ s|µτ , Στ) × IWa−1(Σǫ|δǫ, Ψǫ) × |Σǫ|−n/2

dθ1 . . . , dθp, dΣx1
, . . . , dΣxJ

, dλv
1, . . . , dλv

p, dΣz1
, . . . , dΣzp

, dθu, dΣu, dθv, dΣv, dτ , dΣǫ

Since all the integrands are positive we can rearrange the order of integral by Fubini’s

theorem.

p∏

j=1

{∫
La−1(θj|µθj

, Σθj
)dθj ×

∫
IWa−1(Σxj

|δxj
, Ψxj

) × |Σxj
|−nj/2dΣxj

}

×
p∏

j=1

{∫
L1(λv

j |µλv
j
, Σ j)dλv

j ×
∫

IW1(Σzj
|δzj

, Ψzj
) × |Σxj

|−nj/2dΣzj

}

×
∫

La−1(θu|µθu

, Σθu
)dθu ×

∫
IWa−1(Σu|δu, Ψu) × |Σu|−L/2dΣu

×
∫

La−1(θv|µθv

, Σθv
)dθv ×

∫
IWa−1(Σv|δv, Ψv) × |Σv|−M/2dΣv

×
w∏

s=1

∫
Lp−1(τ s|µτ , Στ)dτ ×

∫
IWa−1(Σǫ|δǫ, Ψǫ) × |Σǫ|−n/2dΣǫ

We assume that all prior distributions are proper, though diffuse. The integrals involving

the logistic normal distribution are all finite since the priors are proper. Thus all that remains

to be shown is that the integrals involving the Inverse Wishart distributions are finite. The

kernel of a Wishart distribution with scale matrix M and degrees of freedom n is given by

|Σ|−(n+d+1)/2e−
1

2
tr(MΣ−1).
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We focus on the term for Σ−1
ǫ and the other terms follow analogously.

∫
|Σǫ|−(δǫ+(a−1)+1)/2e−

1

2
tr(MΣ−1)|Σǫ|−n/2dΣǫ

=

∫
|Σǫ|−(δǫ+n+(a−1)+1)/2e−

1

2
tr(M−1Σ)dΣǫ

where M = Ψǫ. Which is the kernel of an Inverse Wishart distribution with degrees of

freedom δǫ + n. Thus all of the Wishart integrals are finite since the priors were assumed to

be proper and the result follows.
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The reversible systematic scan Metropolis–within–Gibbs sampler for the constant diet

model is given below

0. Choose starting values for τ s,0, s = 1, . . . , w, θj,0, j = 1, . . . , p, λj,0, j = 1, . . . , p,

θu,0 and θv,0

1. Sample Σ∗
ǫ from

IWa−1(Ψǫ + S(yi, µyi
), δǫ + n)

where

S(yi, µyi
) =

n∑

i=1

(φ(yi) − φ(µyi
))(φ(yi) − φ(µyi

))
′

,

and

µyi
= Θt−1Γ

i
t−1 ⊕ (Θv,t−1 ⊖ θu,t−1)

Γt−1 = φ−1
c (φc (Tt−1)W) ⊕c λt−1,

Θt−1 = [θ1,t−1| . . . |θp,t−1], Γi means the ith column of the matrix Γ, Tt−1 =

[τ 1,t−1| . . . |τw,t−1] is an p × w matrix and λt−1 = (λ1,t−1, . . . ,λp,t−1) .

2. For j = 1, . . . , p sample Σ∗
xj

from

IWa−1(Ψxj
+ S(xjk, θj,t−1), δxj

+ nj)

where

S(xjk, θj,t−1) =

nj∑

k=1

(φ(xjk) − φ(θj,t−1))(φ(xjk) − φ(θj,t−1))
′

3. Sample Σ∗
u from

IWa−1(Ψu + S(ul, θu,t−1), δu + L)

where

S(ul, θu,t−1) =
L∑

l=1

(φ(ul) − φ(θu,t−1))(φ(ul) − φ(θu,t−1))
′
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4. Sample Σ∗
v from

IWa−1(Ψv + S(vm, θv,t−1), δv + M)

where

S(vm, θv,t−1) =
M∑

m=1

(φ(vm) − φ(θv,t−1))(φ(vm) − φ(θv,t−1))
′

5. Generate θ∗
u from the following Metropolis–Hastings algorithm with proposal distri-

bution qθu
(.|θu,t−1)

(a) Generate ν ∼ qθu
(ν|θu,t−1)

(b)

θ∗
u =





ν with probabilityρθu

(θu,t−1, ν)

θu,t−1 with probability1 − ρθu
(θu,t−1, ν)

where

ρθu
(νo, νn) = min

{
fθu

(νn)qθu
(νo|νn)

fθu
(νo)qθu

(νn|νo)
, 1

}

6. Generate θ∗
v from the following Metropolis–Hastings algorithm with proposal distri-

bution qθv
(.|θv,t−1)

(a) Generate ν ∼ qθv
(ν|θv,t−1)

(b)

θ∗
v =





ν with probabilityρθv

(θv,t−1, ν)

θv,t−1 with probability1 − ρθv
(θv,t−1, ν)

where

ρθv
(νo, νn) = min

{
fθv

(νn)qθv
(νo|νn)

fθv
(νo)qθv

(νn|νo)
, 1

}

7. For j = 1, . . . , p generate θ∗
j from the following Metropolis–Hastings algorithm with

proposal distribution qθj
(.|θj,t−1)

(a) Generate ν ∼ qθj
(ν|θj,t−1)

(b)

θ∗
j =





ν with probabilityρθj

(θj,t−1, ν)

θj,t−1 with probability1 − ρθj
(θj,t−1, ν)
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where

ρθj
(νo, νn) = min

{
fθj

(νn)qθj
(νo|νn)

fθj
(νo)qθj

(νn|νo)
, 1

}

8. For s = 1, . . . , w, Generate τ ∗
s from the following Metropolis–Hastings algorithm

with proposal distribution qτs
(.|τ s,t−1)

(a) Generate ν ∼ qτs
(ν|τ s,t−1)

(b)

τ ∗
s =





ν with probabilityρτs

(τ s,t−1, ν)

τ s,t−1 with probability1 − ρτs
(τ s,t−1, ν)

where

ρτs
(νo, νn) = min

{
fτs

(νn)qτs
(νo|νn)

fτs
(νo)qτs

(νn|νo)
, 1

}

9. For j = 1, . . . , p sample Σ∗
zj

from

IW1(Ψzj
+ S(zjk, λ

v
j,t−1), δzj

+ nj)

where

S(zjk, λj,t−1) =

nj∑

k=1

(φ(zjk) − φ(λv
j,t−1))(φ(zjk) − φ(λv

j,t−1))
′

10. For j = 1, . . . , p generate λv∗
j from the following Metropolis–Hastings algorithm

with proposal distribution qλj
(.|λj,t−1)

(a) Generate ν ∼ qλj
(ν|λj,t−1)

(b)

λv∗
j =





ν with probabilityρλv

j
(λv

j,t−1, ν)

λv
j,t−1 with probability1 − ρλv

j
(λv

j,t−1, ν)

where

ρλv
j
(νo, νn) = min

{
fλv

j
(νn)qλv

j
(νo|νn)

fλv
j
(νo)qλv

j
(νn|νo)

, 1

}

Note λv
p,t = λv∗

j , that is, we don’t need to do the last one twice.
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11. For j = p−1, . . . , 1 generate λv
j,t from the following Metropolis–Hastings algorithm

with proposal distribution qλv
j
(.|λv∗

j )

(a) Generate ν ∼ qλv
j
(ν|λv∗

j )

(b)

λv
j,t =





ν with probabilityρλv

j
(λv∗

j , ν)

λv∗
j with probability1 − ρλv

j
(λv∗

j , ν)

12. For j = p, . . . , 1 sample Σzj ,t from

IW1(Ψzj
+ S(zjk, λ

v
j,t), δzj

+ nj)

where

S(zjk, λ
v
j,t) =

nj∑

i=1

(φ(zjk) − φ(λv
j,t))(φ(zjk) − φ(λv

j,t))
′

13. For s = w, . . . , 1, Generate τ s,t from the following Metropolis–Hastings algorithm

with proposal distribution qτs
(.|τ ∗

s)

(a) Generate ν ∼ qτs
(ν|τ ∗

s)

(b)

τ s,t =





ν with probabilityρτs

(τ ∗
s, ν)

τ ∗
s with probability1 − ρτs

(τ ∗
s, ν)

14. For j = p, . . . , 1 generate θj,t from the following Metropolis–Hastings algorithm

with proposal distribution qθj
(.|θ∗

j)

(a) Generate ν ∼ qθj
(ν|θ∗

j)

(b)

θj,t =





ν with probabilityρθj

(θ∗
j , ν)

θ∗
j with probability1 − ρθj

(θ∗
j , ν)

15. Generate θv,t from the following Metropolis–Hastings algorithm with proposal

distribution qθv
(.|θv,t)

(a) Generate ν ∼ qθv
(ν|θv,t)
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(b)

θv,t =





ν with probabilityρθv

(θv,t, ν)

θ∗
v with probability1 − ρθv

(θv,t, ν)

16. Generate θu,t from the following Metropolis–Hastings algorithm with proposal

distribution qθu
(.|θu,t)

(a) Generate ν ∼ qθu
(ν|θu,t)

(b)

θu,t =





ν with probabilityρθu

(θu,t, ν)

θ∗
u with probability1 − ρθu

(θu,t, ν)

17. Sample Σv,t from

IWa−1(Ψv + S(vm, θv,t), δv + M)

where

S(vm, θv,t) =
M∑

m=1

(φ(vm) − φ(θv,t))(φ(vm) − φ(θv,t))
′

18. Sample Σu,t from

IWa−1(Ψu + S(ul, θu,t), δu + L)

where

S(ul, θu,t) =
L∑

l=1

(φ(ul) − φ(θu,t))(φ(ul) − φ(θu,t))
′

19. For j = p, . . . , 1 sample Σxj ,t from

IWa−1(Ψxj
+ S(xjk, θj,t), δxj

+ nj)

where

S(xjk, θj,t) =

nj∑

i=1

(φ(xjk) − φ(θj,t))(φ(xjk) − φ(θj,t))
′

20. Sample Σǫ,t from

IWa−1(Ψǫ + S(yi, µyi
), δǫ + n)
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where

S(yi, µyi
) =

n∑

i=1

(φ(yi) − φ(µyi
))(φ(yi) − φ(µyi

))
′

and

µyi
= ΘtΓ

i
t ⊕ (θv,t ⊖ θu,t)

Γt = φ−1
c (φc (Tt)W) ⊕c λt,

Θt−1 = [θ1,t−1| . . . |θp,t−1], Γ
i means the ith column of the matrix Γ, Tt = [τ 1,t| . . . |τw,t]

is an p × w matrix and λt = (λ1,t, . . . , λp,t) is a vector of length p.

21. Repeat steps 1-20 until convergence and increment t.

To complete the MCMC algorithm we need to specify the target densities, the proposal

densities and the acceptance probabilities for each of the Metropolis–Hastings steps for each

of θu, θv, θj , τ s and λv
j . The target densities are the appropriate full Gibbs conditional

distributions (see Figure B.1):

fθu
(ν) = π(θu = ν|µθu

, Σθu
)

n∏

i=1

π(yi|λ,Θ, Σǫ, θu = ν, θv,T)

L∏

l=1

π(ul|θu = ν, Σu)

fθv
(ν) = π(θv = ν|µθv

, Σθv
)

n∏

i=1

π(yi|λ,Θ, Σǫ, θu, θv = ν,T)

M∏

m=1

π(vm|θv = ν, Σv)

fθj
(ν) = π(θj = ν|µθj

, Σθj
)

n∏

i=1

π(yi|λ, θj = ν, θ−j, Σǫ, θu, θv,T)

nj∏

k=1

π(xk|θxj
, Σxj

)
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fτs
(ν) = π(τ s = ν|µτs

, Στs
)

n∏

i=1

π(yi|λ,Θ, Σǫ, θu, θv, τ s = ν, τ−s)

fλv
j
(ν) = π(λj = ν|µλj

, Σλj
)

n∏

i=1

π(yi|λv
j = ν, λ−j,Θ, Σǫ, θu, θv,T)

nj∏

k=1

π(zk|θzj
, Σzj

).

The target density for τ s can be simplified depending on the form of the matrix W.

The following logistic normal proposal distributions where used

qθu
(νn|νo) = La−1(φ(νo), βθu

(I + J)),

qθv
(νn|νo) = La−1(φ(νo), βθv

(I + J)),

qθj
(νn|νo) = La−1(φ(νo), βθj

(I + J)),

qτs
(νn|νo) = Lp−1(φ(νo), βτs

(I + J)),

qλv
j
(νn|νo) = L1(φ(νo), βλj

(I + J)),

where βθu
, βθv

,βθj
, βτs

and βλj
are scale factors that control the acceptance rates for the

Metropolis–Hastings algorithm.

The acceptance probabilities ρθj
(νo, νn), ρθj

(νo, νn), ρθj
(νo, νn) ρτs

, (νo, νn) and

ρλj
, (νo, νn) are given by

ρθu
(νo, νn) = min

{
fθu

(νn)
∏p

j=1[ν
n]j

fθu
(νo)

∏p
j=1[ν

o]j
, 1

}

ρθv
(νo, νn) = min

{
fθv

(νn)
∏p

j=1[ν
n]j

fθv
(νo)

∏p
j=1[ν

o]j
, 1

}

ρθj
(νo, νn) = min

{
fθj

(νn)
∏p

j=1[ν
n]j

fθj
(νo)

∏p
j=1[ν

o]j
, 1

}

ρτs
(νo, νn) = min

{
fτs

(νn)
∏p

j=1[ν
n]j

fτs
(νo)

∏p
j=1[ν

o]j
, 1

}

ρλv
j
(νo, νn) = min

{
fλj

(νn)
∏p

j=1[ν
n]j

fλj
(νo)

∏p
j=1[ν

o]j
, 1

}
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The acceptance probabilities are very similar to the random walk Metropolis–Hastings

proposal, however, the logistic normal is not symmetric due to the Jacobin of the transfor-

mation
∏a

i=1[z]
−1
i .

B.2 Individual Diet Model

This section gives details for the reversible systematic scan Metropolis–within-Gibbs

algorithm for the individual diet model.

Y
(a×nr)

=

[(
Θ

(a×p)
Γ

(p×n)
⊗ U

(1×r)

)
⊕c

(
θv

(a×1)
⊖ θu

(a×1)

)]
⊕c E

(a×nr)
,

Γ
(p×n)

= φ−1
c

(
φc

(
T

(p×w)

)
W

(w×n)
+φc

(
Γm

(p×n)

))
⊕c λ

(p×1)
,

Xj
(a×nj)

= θj
(a×1)

WXj

(1×nj)

⊕c EXj

(a×nj)

, j = 1, . . . , p,

Zj
(2×nj)

= λv
j

(2×1)

WZj

(1×nj)

⊕c EZj

(a×nj)

, j = 1, . . . , p,

U
(a×L)

= θu
(a×1)

WU
(1×L)

⊕c EU
(a×L)

,

V
(a×M)

= θv
(a×1)

WV
(1×M)

⊕c EV
(a×M)

where Y
(a×nr)

= [y11| . . . |y1r| . . . ,yn1| . . . |ynr] is an a × nr matrix of observations on the

predators, Θ
(a×p)

= [θ1| . . . |θp] is an a×p matrix of predator(source) profiles, Γ
(p×n)

is an p×n

matrix of individual diet(mixing) compositions adjusted for fat content, ⊗ represents the

Kronecker product of two matrices defined in the previous chapter, U
(1×r)

is an 1 × r matrix

of ones which allows the predicted profile to be replicated r times to account for replicate

measurements on the same predator, ⊕c is the perturbation operator applied column–wise

for matrices of the same size (if the second argument is a vector, then the vector is replicated

column–wise first then applied column wise), θv
(a×1)

is an a–dimensional fatty acid profile

of the calibration predator, θu
(a×1)

is an a–dimensional fatty acid profile of the calibration

prey, ⊖ is the inverse perturbation operator ( x ⊖ y = x ⊕ y−1), E
(a×nr)

is an a × nr

dimensional matrix of compositional errors, φ−1
c is the logistic transformation applied

column–wise, φc is the log–ratio transformation, T
(p×w)

= [µτ1
| . . . |µτw

] is a p × w matrix

of population diet compositions (table 6.2 gives the required matrices for the synthetic
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data ), Γm

(p×n)
= [τm

1 | . . . |τm
n ] are samples from the multilevel distribution in our case the

logistic normal with zero mean and covariance matrix Στ , λ the p dimensional vector of fat

contents for each prey type, Xj
(a×nj)

is an a × nj matrix of samples of the fatty acid profiles

from the jth prey type, θj is an a–dimensional vector consisting of the measure of location

for the fatty acid profile of the jth prey type, WXj

(1×nj)

is a 1 × nj matrix of ones, EXj

(a×nj)

is an

a × nj dimensional matrix of compositional errors. We have similar definitions for the

remaining parameters and observations for the model, however, note λv
j = (λj, 1 − λj)

′

is the vector of fat and non–fat, similarly for the observations Zj . Let µτj
= φ(τ p

j), or

φc(T) = [µτ1
| . . . |µτw

], that is, µτj
are means of the logistic normal distributions of the

individual populations. Note that, Γ
(p×n)

= [τ 1| . . . |τ n consists samples from the mixing

distribution with zero mean added to the appropriate population mean.

To complete the model specification we ass the following prior distributions for the

location parameters

π(µτr
|η, Σµ

τ r
) ∼ MN p−1(ηr, Σµ

τ r
), r = 1, . . . , w

π(θj|µθj
, Σθj

) ∼ La(µθj
, Σθj

), j = 1, . . . , p,

π(λv
j |µλj

, Σλj
) ∼ L2(µλj

, Σλj
), j = 1, . . . , p,

π(θu|µθu , Σθu) ∼ La(µθu , Σθu),

π(θv|µθv , Σθv) ∼ La(µθv , Σθv),

and for the covariance matrices

π(Στ |δτ , Ψτ)) ∼ IWp−1(δτ , Ψτ),

π(Σxj
|δxj

, Ψxj
) ∼ IWa−1(δxj

, Ψxj
), j = 1, . . . , p,

π(Σzj
|δzj

, Ψzj
) ∼ IW1(δzj

, Ψzj
), j = 1, . . . , p,

π(Σǫ|δǫ, Ψǫ) ∼ IWa−1(δǫ, Ψǫ),

π(Σu|δu, Ψu) ∼ IWa−1(δu, Ψu),

π(Σv|δv, Ψv) ∼ IWa−1(δv, Ψv).
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The sampling distributions are given by

π(yis|Θ, τ i, Σǫ, λ, θu, θv) ∼ La

(
φ

([
Θ

(a×p)
Γi

(p×1)
⊕c

(
θv

(a×1)
⊖ θu

(a×1)

)])
, Σǫ

)
,

i = 1, . . . , n

s = 1, . . . , r

π(xjk|θj, Σxj
) ∼ La(φ(θj), Σxj

), j = 1, . . . , p; k = 1, . . . , nj,

π(zjk|λv
j , Σzj

) ∼ L2(φ(λv
j ), Σzj

), j = 1, . . . , p; k = 1, . . . , nj,

π(ul|θu, Σu) ∼ La(φ(θu), Σu), l = 1, . . . , L,

π(vm|θv, Σv) ∼ La(φ(θv), Σv), m = 1, . . . ,M,

and the mixing distribution is given by

π(τ i|0, Στ) ∼ Lp(0, Στ)

where 0 is a p − 1 dimensional vector of zeros. We assume that the mixing distribution has

the same covariance matrix in each population, although, this assumption could be easily

adapted to allow a different mixing covariance per population. By comparison with more

traditional analysis of variance models our individual diet model can be seen as a mixed

model with the design matrix W giving the fixed effects and the covariance matrix Στ

playing the role of controlling the amount of variability in the random effects.

Proposition B.2. The posterior distribution for the individual diet model is proper.

Proof. The proof is straightforward using the same bounding techniques used in the con-

stant diet model.
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The reversible systematic scan Metropolis–within–Gibbs sampler for the constant diet

model is given below

0. Choose starting values for τ i,0, i = 1, . . . , n, θj,0, j = 1, . . . , p, λj,0, j = 1, . . . , p,

θu,0 and θv,0

1. Sample Σ∗
ǫ from

IWa−1
(
Ψǫ + S

(
yir, µyi

)
, δǫ + nr

)

where

S
(
yir, µyi

)
=

n∑

i=1

r∑

r=1

(
φ (yir) − φ

(
µyi

)) (
φ (yir) − φ

(
µyi

))′
,

µyi
= (Θt−1 (τ i,t−1 ⊕ λt−1)) ⊕ (θv,t−1 ⊖ θu,t−1)

Θt−1 = [θ1,t−1| . . . |θp,t−1] is a a × p matrix of prey fatty acid profiles and λt−1 =

(λ1,t−1, . . . , λp,t−1) is a vector of length p of fat contents.

2. For j = 1, . . . , p sample Σ∗
xj

from

IWa−1
(
Ψxj

+ S (xjk, θj,t−1) , δxj
+ nj

)

where

S (xjk, θj,t−1) =

nj∑

k=1

(φ (xjk) − φ (θj,t−1)) (φ (xjk) − φ (θj,t−1))
′

3. Sample Σ∗
u from

IWa−1 (Ψu + S (ul, θu,t−1) , δu + L)

where

S (ul, θu,t−1) =
L∑

l=1

(φ (ul) − φ (θu,t−1)) (φ (ul) − φ (θu,t−1))
′

4. Sample Σ∗
v from

IWa−1 (Ψv + S (vm, θv,t−1) , δv + M)
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where

S (vm, θv,t−1) =
M∑

m=1

(φ (vm) − φ (θv,t−1)) (φ (vm) − φ (θv,t−1))
′

5. Generate θ∗
u from the following Metropolis–Hastings algorithm with proposal distri-

bution qθu
(.|θu,t−1)

(a) Generate ν ∼ qθu
(ν|θu,t−1)

(b)

θ∗
u =





ν with probabilityρθu

(θu,t−1, ν)

θu,t−1 with probability1 − ρθu
(θu,t−1, ν)

where

ρθu
(νo, νn) = min

{
fθu

(νn) qθu
(νo|νn)

fθu
(νo) qθu

(νn|νo)
, 1

}

6. Generate θ∗
v from the following Metropolis–Hastings algorithm with proposal distri-

bution qθv
(.|θv,t−1)

(a) Generate ν ∼ qθv
(ν|θv,t−1)

(b)

θ∗
v =





ν with probabilityρθv

(θv,t−1, ν)

θv,t−1 with probability1 − ρθv
(θv,t−1, ν)

where

ρθv
(νo, νn) = min

{
fθv

(νn) qθv
(νo|νn)

fθv
(νo) qθv

(νn|νo)
, 1

}

7. For j = 1, . . . , p generate θ∗
j from the following Metropolis–Hastings algorithm with

proposal distribution qθj
(.|θj,t−1)

(a) Generate ν ∼ qθj
(ν|θj,t−1)

(b)

θ∗
j =





ν with probabilityρθj

(θj,t−1, ν)

θj,t−1 with probability1 − ρθj
(θj,t−1, ν)

where

ρθj
(νo, νn) = min

{
fθj

(νn) qθj
(νo|νn)

fθj
(νo) qθj

(νn|νo)
, 1

}
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8. For i = 1, . . . , n, Generate τ ∗
i from the following Metropolis–Hastings algorithm

with proposal distribution qτi
(.|τ i,t−1)

(a) Generate ν ∼ qτi
(ν|τ i,t−1)

(b)

τ ∗
i =





ν with probabilityρτi

(τ i,t−1, ν)

τ i,t−1 with probability1 − ρτi
(τ i,t−1, ν)

where

ρτi
(νo, νn) = min

{
fτi

(νn)qτi
(νo|νn)

fτi
(νo)qτi

(νn|νo)
, 1

}

9. Sample T∗ by generating a vector δ from the following (p−1)w dimensional normal

distribution

MN (p−1)w(ξ, Σ)

where

Σ = (∆ + Ω)−1,

ξ = Σ(∆ηv + Ωβ).

And where

∆ = Iw×w ⊗ Ψ−1
Στ

,

Ω = (WW
′

) ⊗ Σ−1
τ ,t−1,

β = vec{GW
′

(WW
′

)−1},

ηv = vec([η1| . . . |ηw]) is a vector of length (p − 1)w, Iw×w is an w × w identity

matrix,W is the w × n design matrix, ⊗ is the Kronecker product, β is a vector of

length (p − 1) × w, vec is the vector operator which turns a matrix into a vector

column–wise and G = [φ(τ ∗
1)| . . . |φ(τ ∗

n)] is an (p − 1) × n matrix.

We then assign the first p − 1 elements of δ to µ∗
τ1

, the next p − 1 elements of δ

toµ∗
τ2

and the final p − 1 elements of δ to µ∗
τw

. The p × w dimensional matrix T∗ is

then formed as follows

T∗ = [φ−1(µ∗
τ1

)| . . . |φ−1(µ∗
τw

)]
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10. Sample Σ∗
τ from

IWp−1
(
Στ + S(τ ∗

i , φc(T)∗Wi), δτ + n
)

where

S(τ ∗
i , φc(T

∗)Wi) =
n∑

i=1

r∑

r=1

(φ(τ ∗
i ) − φc(T

∗)Wi)(φ(τ ∗
i ) − φc(T

∗)Wi)
′

and Wi is the i column of the w × n design matrix and T = [τ p
1
∗| . . . |τw

∗] is an

(p − 1) × w matrix and recall that φ(τ p
j) = µτj

.

11. For j = 1, . . . , p sample Σ∗
zj

from

IW1
(
Σzj

+ S(zjk, λ
v
j,t−1), δzj

+ nj

)

where

S(zjk, λ
v
j,t−1) =

nj∑

k=1

(φ(zjk) − φ(λv
j,t−1))(φ(zjk) − φ(λv

j,t−1))
′

12. For j = 1, . . . , p generate λv∗
j from the following Metropolis–Hastings algorithm

with proposal distribution qλv
j
(.|λv

j,t−1)

(a) Generate ν ∼ qλv
j
(ν|λv

j,t−1)

(b)

λv∗
j =





ν with probabilityρλv

j
(λv

j,t−1, ν)

λv
j,t−1 with probability1 − ρλv

j
(λv

j,t−1, ν)

where

ρλv
j
(νo, νn) = min

{
fλv

j
(νn)qλv

j
(νo|νn)

fλv
j
(νo)qλv

j
(νn|νo)

, 1

}

Note λv
p,t = λv∗

j , that is, we don’t need to do the last one twice.

13. For j = p−1, . . . , 1 generate λv
j,t from the following Metropolis–Hastings algorithm

with proposal distribution qλv
j
(.|λv∗

j )

(a) Generate ν ∼ qλv
j
(ν|λv∗

j )
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(b)

λv
j,t =





ν with probabilityρλv

j
(λv∗

j , ν)

λv∗
j with probability1 − ρλv

j
(λv∗

j , ν)

14. For j = p, . . . , 1 sample Σzj ,t from p

IW1
(
Σzj

+ S(zjk, λ
v
j,t), δzj

+ nj

)

where

S(zjk, λ
v
j,t) =

nj∑

i=1

(φ(zjk) − φ(λv
j,t))(φ(zjk) − φ(λv

j,t))
′

15. Sample Στ ,t from

IWp−1
(
Στ + S(τ ∗

i , φc(T
∗)Wi), δτ + n

)

where

S(τ ∗
i , φc(T

∗)Wi) =
n∑

i=1

r∑

r=1

(φ(τ ∗
i ) − φc(T

∗)Wi)(φ(τ ∗
i ) − φc(T

∗)Wi)
′

and W is an w × n design matrix and T∗ = [µ∗
τ1
| . . . |µ∗

τw
] is an (p− 1)×w matrix

and recall that φ(τ p
j) = µτj

.

16. Sample Tt by generating a vector δ from the following (p− 1)w dimensional normal

distribution

MN (p−1)w(ξ, Σ)

where

Σ = (∆ + Ω)−1,

ξ = (∆ηv + Ωβ).
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And where

∆ = Iw×w ⊗ Ψ−1
Στ

,

Ω = (WW
′

) ⊗ Σ−1
τ ,t,

β = vec{GW
′

(WW
′

)−1},

ηv = vec([η1| . . . |ηw]) is a vector of length (p − 1)w, Iw×w is an w × w identity

matrix,W is the w × n design matrix, ⊗ is the Kronecker product, β is a vector of

length (p − 1) × w, vec is the vector operator which turns a matrix into a vector

column–wise and G = [φ(τ ∗
1)| . . . |φ(τ ∗

n)] is an (p − 1) × n matrix.

We then assign the first p − 1 elements of δ to µ∗
τ1

, the next p − 1 elements of δ

toµ∗
τ2

and the final p − 1 elements of δ to µ∗
τw

. The p × w dimensional matrix Tt is

then formed as follows

Tt = [φ−1(µ∗
τ1

)| . . . |φ−1(µ∗
τw

)]

17. For i = n, . . . , 1, Generate τ i,t from the following Metropolis–Hastings algorithm

with proposal distribution qτi
(.|τ ∗

i )

(a) Generate ν ∼ qτi
(ν|τ ∗

i )

(b)

τ i,t =





ν with probabilityρτi

(τ ∗
i , ν)

τ ∗
i with probability1 − ρτi

(τ ∗
i , ν)

18. For j = p, . . . , 1 generate θj,t from the following Metropolis–Hastings algorithm

with proposal distribution qθj
(.|θ∗

j)

(a) Generate ν ∼ qθj
(ν|θ∗

j)

(b)

θj,t =





ν with probabilityρθj

(θ∗
j , ν)

θ∗
j with probability1 − ρθj

(θ∗
j , ν)

19. Generate θv,t from the following Metropolis–Hastings algorithm with proposal

distribution qθv
(.|θv,t)
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(a) Generate ν ∼ qθv
(ν|θv,t)

(b)

θv,t =





ν with probabilityρθv

(θv,t, ν)

θ∗
v with probability1 − ρθv

(θv,t, ν)

20. Generate θu,t from the following Metropolis–Hastings algorithm with proposal

distribution qθu
(.|θu,t)

(a) Generate ν ∼ qθu
(ν|θu,t)

(b)

θu,t =





ν with probabilityρθu

(θu,t, ν)

θ∗
u with probability1 − ρθu

(θu,t, ν)

21. Sample Σv,t from

IWa−1 (Σv + S(vm, θv,t), δv + M)

where

S(vm, θv,t) =
M∑

m=1

(φ(vm) − φ(θv,t))(φ(vm) − φ(θv,t))
′

22. Sample Σu,t from

Wa−1 (Σu + S(ul, θu,t), δu + L)

where

S(ul, θu,t) =
L∑

l=1

(φ(ul) − φ(θu,t))(φ(ul) − φ(θu,t))
′

23. For j = p, . . . , 1 sample Σxj ,t from

Wa−1
(
Σxj

+ S(xjk, θj,t), δxj
+ nj

)

where

S(xjk, θj,t) =

nj∑

i=1

(φ(xjk) − φ(θj,t))(φ(xjk) − φ(θj,t))
′

24. Sample Σǫ,t from

Wa−1
(
Σǫ + S(yi, µyi

), δǫ + nr
)
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where

S(yi, µyi
) =

n∑

i=1

(φ(yi) − φ(µyi
))(φ(yi) − φ(µyi

))
′

,

µyi
= (Θt (τ i,t ⊕ λt)) ⊕ (θv,t ⊖ θu,t) ,

Θt = [θ1,t| . . . |θp,t] is a a × p matrix and λt = (λ1,t, . . . , λp,t) is a vector of length

p.

25. Repeat steps 1-24 until convergence and increment t.

To complete the MCMC algorithm we need to specify the target densities, the proposal

densities and the acceptance probabilities for each of the Metropolis–Hastings steps for each

of θu, θv, θj , τ i and λj . The target densities are the full Gibbs conditional distributions

(see Figure B.2)

fθu
(ν) = π(θu = ν|µθu

, Σθu
)

n∏

i=1

r∏

i=1

π(yir|λ,Θ, Σǫ, θu = ν, θv, τ i)

L∏

l=1

π(ul|θu = ν, Σu)

fθv
(ν) = π(θv = ν|µθv

, Σθv
)

n∏

i=1

r∏

i=1

π(yir|λ,Θ, Σǫ, θu, θv = ν, τ i)

M∏

m=1

π(vm|θv = ν, Σv)

fθj
(ν) = π(θj = ν|µθj

, Σθj
)

n∏

i=1

r∏

i=1

π(yir|λ, θj = ν, θ−j, Σǫ, θu, θv, τ i)

nj∏

k=1

π(xk|θxj
, Σxj

)

fτi
(ν) = π(τ i = ν|[W]iS, Στ)

r∏

r=1

π(yir|λ,Θ, Σǫ, θu, θv, τ i = ν)
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where [W]i means the ith row of the n × w design matrix W and S = [µτ1
; . . . ; µτw

] is a

w × (p − 1) matrix.

fλj
(ν) = π(λj = ν|µλj

, Σλj
)

n∏

i=1

r∏

i=1

π(yir|λj = ν, λ−j,Θ, Σǫ, θu, θv, τ i)

nj∏

k=1

π(zk|θzj
, Σzj

).

The following logistic normal proposal distributions where used

qθu
(νn|νo) = La−1(φ(νo), βθu

(I + J)),

qθv
(νn|νo) = La−1(φ(νo), βθv

(I + J)),

qθj
(νn|νo) = La−1(φ(νo), βθj

(I + J)),

qτi
(νn|νo) = Lp−1(φ(νo), βτi

(I + J)),

qλj
(νn|νo) = L1(φ(νo), βλj

(I + J)),

where βθu
, βθv

,βθj
, βτi

and βλj
are scale factors that control the acceptance rates for the

Metropolis–Hastings algorithm.

The acceptance probabilities ρθj
(νo, νn), ρθj

(νo, νn), ρθj
(νo, νn) ρτi

, (νo, νn) and

ρλj
, (νo, νn) are given by

ρθu
(νo, νn) = min

{
fθu

(νn)
∏p

j=1[ν
n]j

fθu
(νo)

∏p
j=1[ν

o]j
, 1

}

ρθv
(νo, νn) = min

{
fθv

(νn)
∏p

j=1[ν
n]j

fθv
(νo)

∏p
j=1[ν

o]j
, 1

}

ρθj
(νo, νn) = min

{
fθj

(νn)
∏p

j=1[ν
n]j

fθj
(νo)

∏p
j=1[ν

o]j
, 1

}

ρτi
(νo, νn) = min

{
fτi

(νn)
∏p

j=1[ν
n]j

fτi
(νo)

∏p
j=1[ν

o]j
, 1

}

ρλj(ν
o, νn) = min

{
fλj

(νn)
∏p

j=1[ν
n]j

fλj
(νo)

∏p
j=1[ν

o]j
, 1

}



APPENDIX C

DISTRIBUTIONAL FUNCTIONAL

FORMS

• Normal distribution with location −∞ < µ < ∞ and variance σ2 > 0

π(y|µ, σ2) = N (µ, σ2) =

√
1

2πσ2
e−

1

2σ2 (y−µ)2 , −∞ < y < ∞.

E(y) = µ and Var(y) = σ2.

• t-distribution distribution with location −∞ < µ < ∞, scale σ2 > 0 and degrees of

freedom n > 0

π(y|µ, σ2, n) = T (µ, σ2, n) =
Γ((n + 1)/2)

(nπσ2)1/2Γ(n/2)

[
1 +

1

nσ2
(y − µ)2

]−(n+1)/2

If n > 2 then E(y) = µ and Var(y) = n
n−2

σ2.

• Multivariate Normal with location vector −∞ < µ < ∞ and positive definite

covariance matrix Σ

π(y|µ, Σ) = N d(µ, Σ) = (2π)d/2|Σ|−1/2e−
1

2
(y−µ)

′
Σ−1(y−µ)

E(y) = µ and Var(y) = Σ.

• Multivariate Log–Normal with location vector −∞ < µ < ∞ and positive definite
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covariance matrix Σ

π(y|µ, Σ) = LN d(µ, Σ) = (2π)d/2|Σ|−1/2

(
d∏

i=1

[y]−1
i

)
e−

1

2
(log(y)−µ)

′
Σ−1(log(y)−µ)

E(log(y)) = µ and Var(log(y)) = Σ.

• Logistic Normal with location vector −∞ < µ < ∞ and positive definite covariance

matrix Σ

π(z|µ, Σ) = Ld(µ, Σ) = (2π)d/2

(
D∏

i=1

[z]−1
i

)
|Σ|−1/2e−

1

2
(φ(z)−µ)

′
Σ−1(φ(z)−µ)

where z is of dimension D = d + 1, µ is of dimension d and Σ is of dimension d× d.

E(φ(z)) = µ and Var(φ(z)) = Σ.

• Multivariate T-distribution with location vector −∞ < µ < ∞, positive definite

covariance matrix Σ and degrees of freedom n > 0

π(y|µ, Σ, n) = T d(µ, Σ, n) =
Γ((n + d)/2)

|Σ|1/2Γ(n/2)(nπ)d/2

[
1 +

1

n
(y − µ)

′

Σ−1(y − µ)

]−(n+d)/2

If n > 2 then E(y) = µ and Var(y) = n
n−2

Σ.

• Logistic T-distribution with location vector −∞ < µ < ∞, positive definite

covariance matrix Σ and degrees of freedom n > 0

π(z|µ, Σ, n) = LT d(µ, Σ, n) =
Γ((n + d)/2)

Γ(n/2)(nπ)d/2|Σ|1/2

(
D∏

i=1

[z]−1
i

)

×
[
1 +

1

n
(φ(z) − µ)

′

Σ−1(φ(z) − µ)

]−(n+d)/2

If n > 2 then E(φ(z)) = µ and Var(φ(z)) = n
n−2

Σ.

• Skew Normal with mean vector −∞ < µ < ∞, positive definite covariance matrix
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Σ and skew vector −∞ < β < ∞.

π(y|µ, Σ, β) = SN d(µ, Σ, β) =

2(2π)−d/2|Σ|−1/2e

h

− 1

2
(y−µ)

′
Σ−1(y−µ)

i

Φ(β
′

Ω−1(y − µ)),

where Φ(.) is the standard normal distribution function and Ω is the square root of

diag(Σ) and diag(Σ) is the diagonal matrix of Σ. The vector β controls the shape of

the distribution and determines the direction of maximum skewness. If β = 0 the

skew–normal reduces to the Multivariate normal distribution.

• Additive skew Logistic Normal with mean vector −∞ < µ < ∞, positive definite

covariance matrix Σ and skew vector −∞ < β < ∞

π(z|µ, Σ, β) = SLd(µ, Σ, β) =

2(2π)−d/2|Σ|−1/2

(
D∏

i=1

[z]−1
i

)
e

h

− 1

2
(φ(z)−µ)

′
Σ−1(φ(z)−µ)

i

Φ(β
′

Ω−1(φ(z) − µ))

where Φ(.) is the standard normal distribution function and Ω is the square root of

diag(Ψ−1) and diag(Ψ−1) is the diagonal matrix of Ψ−1. The vector β controls the

shape of the distribution and determines the direction of maximum skewness. If

β = 0 the skew–normal reduces to the Multivariate normal distribution.

• Wishart

π(Ψ|n, M) = Wd(Ψ|M, n) =
|M |−n/2|Ψ|(n−d−1)/2

[
2nd/2πd(d−1)/4

∏d
j=1 Γ

(
n+1−j

2

)]e−
1

2
tr(M−1Ψ)

where M is a d×d positive definite matrix and n is the degrees of freedom n > d−1.

The support of this distribution is the set of positive definite matrices Ψ.

• Inverse–Wishart

π(Σ|n, M) = Wd(Σ|M, n) =
|M |n/2|Σ|−(n+d+1)/2

[
2nd/2πd(d−1)/4

∏d
j=1 Γ

(
n+1−j

2

)]e−
1

2
tr(MΣ−1)

where M is a d×d positive definite matrix and n is the degrees of freedom n > d−1.
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The support of this distribution is the set of positive definite matrices Σ.
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