
THREE NEW METHODS FOR COLOR AND TEXTURE BASED
IMAGE MATCHING IN CONTENT-BASED IMAGE RETRIEVAL

by

Daan He

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

April 2010

c© Copyright by Daan He, 2010



DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to

the Faculty of Graduate Studies for acceptance a thesis entitled “THREE NEW

METHODS FOR COLOR AND TEXTURE BASED IMAGE MATCHING IN

CONTENT-BASED IMAGE RETRIEVAL” by Daan He in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Dated: April 22, 2010

External Examiner:

Research Supervisor:

Examining Committee:

ii



DALHOUSIE UNIVERSITY

DATE: April 22, 2010

AUTHOR: Daan He

TITLE: THREE NEW METHODS FOR COLOR AND TEXTURE BASED
IMAGE MATCHING IN CONTENT-BASED IMAGE RETRIEVAL

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: Ph.D. CONVOCATION: October YEAR: 2010

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing) and that all such use is clearly
acknowledged.

iii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Abbreviations and Symbols Used . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction to Content-Based Image Retrieval . . . . . . . . . . . . 2

1.2 Motivations and Contributions . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Image Features and Comparison Methods . . . . . . . . . . . . . . . 6

1.3.1 Global Features . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Local Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Feature Comparison . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Benchmark Image Data Sets . . . . . . . . . . . . . . . . . . . 17

1.4.2 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 2 Local Triplet Pattern Histograms . . . . . . . . . . . . . 25

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Color Histograms . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Correlograms and Autocorrelograms . . . . . . . . . . . . . . 26

2.1.3 Local Binary Pattern Histograms . . . . . . . . . . . . . . . . 29

2.2 Local Triplet Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Definition of the LTP . . . . . . . . . . . . . . . . . . . . . . . 32

iv



2.2.3 Scaling and Neighboring Parameters . . . . . . . . . . . . . . 33

2.2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Classification of Texture Images . . . . . . . . . . . . . . . . . 38

2.3.2 Retrieval on Generic Images . . . . . . . . . . . . . . . . . . . 42

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 3 Gaussian Mixture Model-based Image Features . . . . 46

3.1 Introduction to GMMs . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Estimating GMMs via the EM Algorithm . . . . . . . . . . . . . . . . 49

3.3 Proposed GMM Estimation Algorithm: Extended Mass-constraint Al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Three Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Experiments on Simulated Data . . . . . . . . . . . . . . . . . 62

3.4.2 Retrieval on Generic Images . . . . . . . . . . . . . . . . . . . 68

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 4 JPEG Image Retrieval . . . . . . . . . . . . . . . . . . . . 71

4.1 JPEG Image Standard . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 JPEG Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 JPEG Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 DCT Domain Image Retrieval by Hypothesis Testing . . . . . . . . . 81

4.2.1 Motivations and Assumptions . . . . . . . . . . . . . . . . . . 81

4.2.2 Formulation of Image Retrieval as a Hypothesis Testing Problem 83

4.2.3 DCT2KL Algorithm . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Comparison to Other Features . . . . . . . . . . . . . . . . . . 90

4.3.2 Comparison to Other Systems . . . . . . . . . . . . . . . . . . 91

v



4.3.3 The Number K . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 5 Feature Combination . . . . . . . . . . . . . . . . . . . . . 95

5.1 Combining Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Experimental Results for the Corel1K and the UCID Data Sets . . . 96

5.2.1 Results using Different Features from the Literature . . . . . . 96

5.2.2 Results using Our Methods . . . . . . . . . . . . . . . . . . . 98

5.2.3 Retrieval Examples . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Experimental Results on the IAPR TC-12 Data Set . . . . . . . . . . 105

5.3.1 ImageCLEF Photographic Retrieval Task and Results . . . . . 105

5.3.2 Experimental Results using Our Methods . . . . . . . . . . . . 116

5.3.3 Retrieval Examples . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vi



List of Tables

Table 1.1 Summary of the image data sets . . . . . . . . . . . . . . . . . 21

Table 2.1 Classification results by using different features for the OUTEX
data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 2.2 Classification results for the LTP histograms with different scal-
ing and neighboring parameters . . . . . . . . . . . . . . . . . . 41

Table 2.3 MAP comparison by using different features for the Corel1K
data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 2.4 MAP comparison for the LTP histograms with different scaling
and neighboring parameters . . . . . . . . . . . . . . . . . . . . 44

Table 3.1 Difference among the EM, the DAEM, and the EMass algorithms 61

Table 3.2 True and initial parameter sets in simulation experiments . . . 63

Table 3.3 Parameters estimated by the EM, the DAEM, and the EMass
algorithms in simulation experiments . . . . . . . . . . . . . . . 64

Table 3.4 MAP comparison results with retrievals using different features 69

Table 4.1 DCT coefficients in ZigZag order . . . . . . . . . . . . . . . . . 75

Table 4.2 JPEG encoder example: image data . . . . . . . . . . . . . . . 76

Table 4.3 JPEG encoder example: DCT data . . . . . . . . . . . . . . . . 76

Table 4.4 Quantization table example . . . . . . . . . . . . . . . . . . . . 76

Table 4.5 JPEG encoder example: quantized DCT data . . . . . . . . . . 77

Table 4.6 Decoded image parameters . . . . . . . . . . . . . . . . . . . . 79

Table 4.7 Decoded quantization tables . . . . . . . . . . . . . . . . . . . 80

Table 4.8 Decoded Huffman tables for DC coefficients . . . . . . . . . . . 80

Table 4.9 MAP comparison of the RGB hist, the RGB GMMs, the low
frequency DCT histograms, and the DCT2KL algorithm . . . . 90

Table 4.10 Comparison to other systems . . . . . . . . . . . . . . . . . . . 92

vii



Table 5.1 ER and MAP [%] for each of the features for the Corel1K and
the UCID data sets [19] . . . . . . . . . . . . . . . . . . . . . . 97

Table 5.2 ER and MAP [%] by combining features for the Corel1K data
set [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 5.3 ER and MAP [%] for each of our proposed method for the
Corel1K and the UCID data sets . . . . . . . . . . . . . . . . . 98

Table 5.4 ER and MAP [%] for combining the proposed features and meth-
ods for the Corel1K and UCID data sets . . . . . . . . . . . . . 99

Table 5.5 ImageCLEF photo 2007 query topics . . . . . . . . . . . . . . . 114

Table 5.6 Results by different groups for the ImageCLEF 2007 Photo-
graphic Retrieval Task . . . . . . . . . . . . . . . . . . . . . . . 115

Table 5.7 Results by using our methods for the ImageCLEF 2007 Photo-
graphic Retrieval Task . . . . . . . . . . . . . . . . . . . . . . . 117

Table 5.8 Results by using three MPEG-7 descriptors (EHD, SCD, and
CSD), and by combining with our three methods for the Image-
CLEF 2007 Photographic Retrieval Task . . . . . . . . . . . . . 118

viii



List of Figures

Figure 1.1 The proposed three methods and their roles in an image re-
trieval system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.2 Example images from the OUTEX data set. . . . . . . . . . . 18

Figure 1.3 Example images from the Corel1k data set. . . . . . . . . . . . 19

Figure 1.4 Example images from the UW data set. . . . . . . . . . . . . . 19

Figure 1.5 Example images from the UCID data set. . . . . . . . . . . . . 20

Figure 1.6 Example images from the IAPR data set. . . . . . . . . . . . . 20

Figure 2.1 An image, its grey level histogram, and the histograms in R, G,
and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.2 Two images with the same histogram, but different correlo-
grams and autocorrelograms. . . . . . . . . . . . . . . . . . . . 28

Figure 2.3 A 3 × 3 pixel block and the corresponding binary sequence in
the LBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.4 Color level notations in a 3× 3 pixel block . . . . . . . . . . . 30

Figure 2.5 Two different 3× 3 pixel blocks with a same LBP level . . . . 31

Figure 2.6 Three 3× 3 pixel blocks with a same LBP but different LTP . 32

Figure 2.7 Neighboring parameter in the LTP . . . . . . . . . . . . . . . 34

Figure 2.8 Upper and lower patterns in the Local Ternary Pattern . . . . 36

Figure 3.1 One-dimensional Gaussian distribution example . . . . . . . . 48

Figure 3.2 Two-Dimensional Gaussian distribution example . . . . . . . . 48

Figure 3.3 An image of size 256× 384 . . . . . . . . . . . . . . . . . . . . 49

Figure 3.4 The one-dimensional histogram and its GMM estimation of the
image in Figure 3.3 . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.5 The two-dimensional histogram and its GMM estimation of the
image in Figure 3.3 . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.6 Simulation experimental results by the EM algorithm . . . . . 63

Figure 3.7 Simulation experimental results by the DAEM algorithm . . . 64

ix



Figure 3.8 Simulation experimental results by the EMass algorithm . . . 65

Figure 3.9 Simulation experimental results by the DAEM algorithm. (a):
β starts from 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 3.10 Simulation experimental results by the DAEM algorithm. (b):
β starts from 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 3.11 The log-likelihood of the GMMs estimated by using the EM,
the DAEM, and the EMass algorithms for 50 runs . . . . . . . 67

Figure 4.1 An image in Bitmap and JPEG . . . . . . . . . . . . . . . . . 73

Figure 4.2 JPEG encoder diagram [42] . . . . . . . . . . . . . . . . . . . 73

Figure 4.3 JPEG decoder diagram [42] . . . . . . . . . . . . . . . . . . . 79

Figure 4.4 Extracting the DCT coefficient sequences from a JPEG image 82

Figure 4.5 DCT coefficient histograms from the JPEG image in Figure 4.1 86

Figure 4.6 Partition of DCT coefficients in the vector quantization index
histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.7 4 sub-blocks for each DCT block . . . . . . . . . . . . . . . . . 88

Figure 4.8 Retrieval precision-recall Figure for the Corel1K data set. . . . 92

Figure 4.9 MAP by using different numbers of DCT coefficient sequences. 93

Figure 5.1 Retrieved images ranking from 1 to 8 using different methods
(Flower) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.2 Retrieved images ranking from 9 to 16 using different methods
(Flower) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.3 Retrieved images ranking from 17 to 24 using different methods
(Flower) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.4 Retrieved images ranking from 25 to 32 using different methods
(Flower) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 5.5 Retrieved images ranking from 1 to 8 using different methods
(Africa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 5.6 Retrieved images ranking from 9 to 16 using different methods
(Africa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.7 Retrieved images ranking from 17 to 24 using different methods
(Africa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

x



Figure 5.8 Retrieved images ranking from 25 to 32 using different methods
(Africa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 5.9 Retrieved images ranking from 1 to 8 using different methods
(Mountain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 5.10 Retrieved images ranking from 9 to 16 using different methods
(Mountain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 5.11 Retrieved images ranking from 17 to 24 using different methods
(Mountain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 5.12 Retrieved images ranking from 25 to 32 using different methods
(Mountain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.13 Retrieved images for the topic church with more than two towers
for the IAPR TC-12 data set. . . . . . . . . . . . . . . . . . . 119

Figure 5.14 Retrieved images for the topic people on surf boards for the
IAPR TC-12 data set. . . . . . . . . . . . . . . . . . . . . . . 120

Figure 5.15 Retrieved images for the topic sunset over water for the IAPR
TC-12 data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xi



Abstract

Image matching is an important and necessary process in Content-Based Image Re-

trieval (CBIR). We propose three new methods for image matching: the first one is

based on the Local Triplet Pattern (LTP) histograms; the second one is based on the

Gaussian Mixture Models (GMMs) estimated by using the Extended Mass-constraint

(EMass) algorithm; and the third one is called the DCT2KL algorithm.

First, the LTP histograms are proposed to capture spatial relationships between

color levels of neighboring pixels. An LTP level is extracted from each 3 × 3 pixel

block, which is a unique number describing the color level relationship between a

pixel and its neighboring pixels. Second, we consider how to represent and compare

multi-dimensional color features using GMMs. GMMs are alternative methods to

histograms for representing data distributions. GMMs address the high-dimensional

problems from which histograms usually suffer inefficiency. In order to avoid local

maxima problems in most GMM estimation algorithms, we apply the deterministic

annealing method to estimate GMMs. Third, motivated by image compression al-

gorithms, the DCT2KL method addresses the high dimensional data by using the

Discrete Cosine Transform (DCT) coefficients in the YCbCr color space. The DCT

coefficients are restored by partially decoding JPEG images. Assume that each DCT

coefficient sequence is emitted from a memoryless source, and all these sources are in-

dependent of each other. For each target image we form a hypothesis that its DCT co-

efficient sequences are emitted from the same sources as the corresponding sequences

in the query image. Testing these hypotheses by measuring the log-likelihoods leads to

a simple yet efficient scheme that ranks each target image according to the Kullback-

Leibler (KL) divergence between the empirical distribution of the DCT coefficient

sequences in the query image and that in the target image.

Finally we present a scheme to combine different features and methods to boost

the performance of image retrieval. Experimental results on different image data

sets show that these three methods proposed above outperform the related works in

literature, and the combination scheme further improves the retrieval performance.

xii
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Chapter 1

Introduction

A picture is worth thousands of words. In many applications, such as art collec-

tions, photographic archives, retail catalogs, medical diagnose, crime prevention, mil-

itary applications, intellectual property, architectural and engineering design, and

geographical information and remote sensing systems1, it has been seen that informa-

tion is more effectively conveyed by pictures or images. For example, in online retail

business, products shown in images often provide more information to potential cus-

tomers. However, because of the unique characteristics of images, how to effectively

show, share, organize, browse, and retrieve images from large sets presents many

challenges. Among these challenges, one of the important problems is to search for

images of interest, i.e., image matching.

In literature, techniques for finding matches in text passages are well estab-

lished [84, 59]. In contrast, image matching proves to be more difficult, specifically

because of the two challenging problems. The first challenging problem is: how to

describe the image that is requested? Take as an example to find an image from

a collection. A simple description such as, “portrait”, or “scene”, is obviously not

accurate enough to find a specific image. An even more specific request, such as “an

image with mountains” will match many images. The second challenging problem is:

how to find an image through a large image collection according to the given image

description? To answer the question, one has to go through the collection and find the

matching images, either manually or using computers. On one hand, going through a

large collection manually is not infeasible, but certainly time consuming; on the other

hand, computers are often not as effective as humans in understanding, describing,

and matching images.

Research efforts have been devoted to finding solutions for these two challenging

1http://en.wikipedia.org/wiki/Content based image retrieval, last visited on March 15, 2010

1
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problems. In the early years (1980’s), images were matched based on image annota-

tions, or keywords [3, 4, 9, 27, 47]. Image matching by the keywords is still one of the

most popular techniques, such as used by Google 2 and Yahoo 3 image search engines.

Such keyword-based image retrievals are neither efficient nor effective because of the

following two reasons. First, images have to be annotated manually, which is not

efficient. Second, the performance of the keyword-based image matching applications

depends on how well the annotations and keywords can depict the images. Image

annotations are usually biased and depend on the view of annotators. Moreover, the

annotations could only partially represent image content. In the view of these, we

see that to date, no truly satisfactory keyword-based methods exist for efficient and

effective image matching.

1.1 Introduction to Content-Based Image Retrieval

In order to perform efficient and effective image retrieval, image retrieval turns to

techniques based on image content, which is also known as Content-Based Image

Retrieval (CBIR) [14, 46, 85, 100, 106]. Central to CBIR is image matching, where

two images are matched by their contents. Image features, such as color, texture, and

shape features, are used to match images.

Current CBIR systems are available either as commercial products, research pro-

totypes, or demos [46, 100]. Kherfi et al. [100] provide a comprehensive survey on

system design and technical achievements of current image retrieval systems, includ-

ing Virage [2], Blobworld [6], Flexible Image Retrieval Engine (FIRE) [17], Retrieval-

Ware [20], WISE [24], Netra [58], QBIC(Query By Image Content) [62], MARS [67],

Photobook [71], and VisualSEEk [88], and GNU Image Finding Tool (GIFT)4 etc.

According to Kherfi et al. [100], image retrieval systems usually have one or more of

the following features: random browsing, searching by example, searching by sketch,

searching by text, and navigating with customized image categories. Barnard et

al. [46] survey a number of prototypes for image retrieval on the web, including Im-

ageScape [51], WebMars [66], ImageRover [82], WebSeek [88], PicToSeek [88], Web-

Seer [94], and WISE [103]. These prototypes usually combine text-based queries with

2http://images.google.ca/, last visited on March 5, 2010.
3http://images.search.yahoo.com/, last visited on March 5, 2010.
4http://www.gnu.org/software/gift/, last visited on March 5, 2010.
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content-based queries.

In this thesis, we work on the image matching methods for the searching by ex-

ample retrieval systems. In these systems, one or multiple query images are given as

examples of images to be retrieved. The purpose of image matching is then to find

images similar to the query images. Image matching encompasses two basic steps:

image indexing and similarity comparison. Image indexing, also known as feature

extraction, extracts features from images. These features are stored in a feature

database for further retrieval applications. In order to index images better, one or

multiple features are usually extracted from the images. The similarity between two

images is then measured by the similarity between these image features. With these

two steps, we are able to search for similar images to query images. Thus the retrieval

performance heavily depends on how well these features can represent the images.

1.2 Motivations and Contributions

How well a feature represents an image is difficult to determine in general. In order

to improve the performance of image matching from this perspective, current work is

engaged in finding solutions for the following sub-questions.

1. What features to use for representing an image?

2. How to represent these features?

3. How to measure the similarities among these features?

In this thesis, we answer these three questions by presenting the following three

methods: the first one is based on the Local Triplet Pattern (LTP) [37]; the second

one is based on the Gaussian Mixture Models (GMMs) [28, 43, 98, 99] estimated

by the EMass algorithm [38]; and the third one is the DCT2KL algorithm, which

is an efficient retrieval scheme in the Discrete Cosine Transform (DCT) domain by

hypothesis testing [39]. These three methods and their roles in an image retrieval

system are shown in Figure 1.1.

The LTP histograms are pattern features for indexing images. GMMs provide

a simplified and efficient representation for high-dimensional image features. We

propose a new algorithm (EMass) to estimate GMMs from image data. The DCT2KL

method selects the DCT features first, and derives the feature distance measure by

hypothesis testing. We will discuss how to design and implement these proposed new
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Figure 1.1: The proposed three methods and their roles in an image retrieval system.

methods, and also evaluate them by comparing our methods with state-of-the-art

work.

We first introduce a pattern based image feature (i.e., Local Triplet Pattern) for

color and texture images matching. The LTP feature of an image is a histogram

which contains spatial information among neighboring pixels in the image. An LTP

level is extracted from each 3 × 3 pixel block, which is a unique number describing

the relationships between the color levels of a pixel and its neighboring pixels. The

color levels of the eight surrounding pixels are compared to the color level of the

center pixel. The comparison result of two color levels is represented by a triplet-

code. Each of the triplet codes represents the three conditions: the color level of a

neighboring pixel is smaller than, equal to, or larger than the color level of the center

pixel. The eight triplet codes from the eight surrounding pixels are then transformed

to an LTP level. We also consider extracting the LTP from a quantized color space

and at different pattern length according to the application needs.

In the next step, we consider how to represent and compare multi-dimensional

features by using GMMs. GMMs are alternative methods to histograms for repre-

senting data distributions. Histograms are well known for their advantages including

rotation invariance, low calculation load, and so on. GMMs maintain the rotation

invariance property. Moreover, GMMs address the high-dimensional problems from



5

which histograms usually suffer inefficiencies. To estimate GMMs from data, the

Expectation-Maximization (EM) algorithm [15] is often used. To avoid local max-

ima problems in the EM algorithm, we apply the deterministic annealing method

and propose our EMass algorithm to estimate GMMs. The objective is to minimize

the overall distortion of the GMM given the data under certain constraints. We

compare the EMass algorithm with the EM algorithm, and the related deterministic

annealing EM (DAEM) [97] algorithm. Results show that our EMass algorithm is

able to estimate GMMs more accurately and stably than the other two algorithms.

When applying the algorithms for estimating GMMs from image color features for

image retrieval, the EMass algorithm achieves higher precision than the other two

algorithms.

We present an efficient image retrieval scheme (DCT2KL) in the DCT-domain

by hypothesis testing. Motivated by image compression algorithms, we simplify the

multi-dimensional features in images by using image processing techniques and the

YCbCr color space5. More specifically, we choose the features using the DCT co-

efficients in the YCbCr color space. The DCT coefficients are restored by partially

decoding JPEG images. In order to further decorrelate DC coefficients from an image,

a 2× 2 DCT is performed on the sub-image constructed from all the DC coefficients.

Assume that each DCT coefficient sequence is emitted from a memoryless source,

and all these sources are independent of each other. For each target image we form a

hypothesis that the DCT coefficient sequences of the query images are emitted from

the same sources as the corresponding sequences in the target image. Testing these

hypotheses by measuring the log-likelihoods leads to a simple yet efficient scheme that

ranks each target image according to the Kullback-Leibler (KL) divergence between

the empirical distribution of the DCT coefficient sequences in the query image and

that in the target image. Experiments on two image data sets show that our approach

achieves consistently better retrieval results than related methods in literature.

Finally, we provide a simple scheme to combine different features and methods

together to boost the performance of image matching. The performance of our pro-

posed methods is compared before and after the combination on different image data

sets. In addition, we also compare our results with the benchmark results on these

5http://en.wikipedia.org/wiki/YCbCr, last visited on March 5, 2010.
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data sets. The experimental results demonstrate the effectiveness of our methods and

the combination scheme.

In summary, our contributions of this thesis include,

1. Present a new image feature, the Local Triplet Pattern.

2. Present the EMass algorithm to estimate GMMs accurately and stably from

multi-dimensional data.

3. Present the DCT2KL image retrieval scheme which considers feature extrac-

tion and feature comparison together by formulating the retrieval process as a

hypothesis testing problem.

4. Provide a scheme to combine different features and methods.

5. Provide detailed experimental results for each method and the combination, as

well as extensive discussions on their advantages and disadvantages.

In Section 1.3, we review related work in feature extraction and comparison. In

order to make comparison among different methods, the retrieval performance metrics

and the image data sets for evaluation are reviewed in Section 1.4.

1.3 Image Features and Comparison Methods

In this section, we review several image features and feature comparison methods.

Existing image features can be grouped into two categories, global features and local

features [19]. Global features are extracted from the overall image, and are often

represented in form of histograms or statistical models. The popular global features

include edge histograms [12], MPEG-7 color descriptors [12], color correlograms [40],

Local Binary Patterns (LBP) [65], Gabor filtering features [68], color moments [92],

color histograms [93], and Tamura [95] etc. Local features [54] are extracted from

selective pixel blocks and patches in images. These patches carry the most distinctive

information and are chosen by different methods, such as differential of Gaussian [54],

corner detection methods [36] etc. Descriptors for each patch are extracted as local

features. CVPIC [80], Border-Interior classification [90], and Scale-Invariant Feature

Transform (SIFT) [54] are all famous local features.
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1.3.1 Global Features

Basic Color Features

Colors are the most fundamental elements in images, as all image features are ex-

tracted based on colors. In the early stage of CBIR, color levels are used directly

without any transformation or preprocessing. Color histograms are first introduced

by Swain et al. [93]. The histograms are one of the most basic and widely used

features in image retrieval [25, 63, 69, 75, 87, 91]. It has been demonstrated to be

efficient and robust features for image indexing for large image data sets. A color

histogram of an image describes the frequency of each color level existing in the im-

age in pixel domain. To extract a color histogram, an image is quantized into sets

of colors if necessary. Color histograms are then defined by counting the frequency

or the number of times that each quantized color level existing in the image. Swain

et al. show that the color histograms are invariant to translation and rotation, and

tolerant to the change of angle of view, scale and occlusion. Color histograms are

often used as baseline features in image matching.

Color Features Exploring Spatial Relationship

More works have been devoted to including spatial information in images to color

features. The relationships between a color level of a pixel with the color levels of the

surrounding pixels are explored in different features, including the color coherence

vector (CCV) [69], the correlograms [40], the autocorrelograms [40], and the Local

Binary Patterns (LBP) [65].

A CCV is a color histogram with each bin partitioned into two types: either

coherent or incoherent. The spatial coherence is defined by the percentage of the

pixels with the color level belonging to a large uniform color area in images. Regions

with uniform color levels are called significant regions. The CCVs favor images with

uniform color areas. Otherwise, the CCVs perform very close to the color histograms.

A correlogram of an image describes the frequency of the occurrence of two color

levels, when the two color levels are spatially located at a defined distance in the

image. To extract a correlogram, an image is quantized into sets of colors, and the

frequency of two color levels existing at neighboring pixels are counted. The size of a
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correlogram without any quantization is too large to provide efficient image retrievals.

The autocorrelogram, which only counts the frequency of two identical color levels at a

given distance, is presented. Both the correlogram and autocorrelogram consider the

color levels at the same distance but different orientations to be the same, according

to the definition of the distance function between two color levels. The main reason

to define the distance function is that the feature size might be multiplied if different

orientations are separately considered in feature extraction.

The LBP is a simple method to amalgamate several orientations while maintaining

a low feature size. LBP transforms the relationship between two color levels into two

scales, either one is smaller than or larger (equal) than the other, which can be

represented by a binary code (0 or 1). The relationship of a color level of a pixel with

the eight neighboring color levels are transformed into a sequence of binary code,

which is equal to an LBP level ranging from 0 to 255.

Texture Features

Features examining the pattern existence and repetition in an image are called tex-

ture features. In order to describe the texture information, second or higher order

statistics are primarily used together with filtering techniques, such as wavelets or

Gabor filters [68, 95]. Filtering based texture features assume that the feature dis-

tribution in one filtered subband identifies one type of texture. Hence, if an image

is separated into a sufficient number of subbands, the statistical signatures extracted

from all subbands are sufficient to discriminate different textures in the image.

The Tamura features [95] consist of six visual perceptions: coarseness, contrast,

directionality, line-likeness, regularity, and roughness. From the experiments that test

the significance of these features with respect to human perception, it was concluded

that the first three features are very important [19]. Thus, histograms that describe

the coarseness, contrast, and directionality are often extracted as the texture features

for images.

Gabor-filtered features have been widely used for texture analysis [68]. A Gabor

filter is a two dimensional filtering function which extracts the significant energy

from data at a specified phase and aspect ratio. In order to extract the texture

information, a bank of Gabor functions is first applied at different scales and directions
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to the images. The energy for the Gabor-filtered data is represented by different

methods. One method is to use the mean and standard deviation of the filtered data

in different orientations and at different scales, and jointly lead to multi-dimensional

vector features. Another useful representation is to quantize the energy for each

filter on the bank into a number of bands. The output of the mean filter over all

image regions is computed into histograms to provide a global measure of the texture

characteristics of the images [89].

Texture features achieve very good performance in texture image and medical

image comparison, where texture information is dominant in images. For generic

images, texture features are often used together with other features [28].

Shape Features

Shape features describe the object information in images, and are often classified

into two types, contour-based and region-based [53]. Contour-based shape features

detect the edges of an object, organize the edges into a contour, and then extract

descriptions from the contour. Edge detections methods, e.g., Canny edge detector [8],

Harris edge detector [35], are applied in different applications for edge detection.

The contour of the object is estimated by either the polygonal [101] or the spline

approximation [26]. The descriptions of the contour are often extracted by the Fourier

descriptors [26, 30, 77], or chain codes [78]. Region-based shape features segment

images into different regions and extract shape features from the regions, including

moment, circularity, eccentricity, rectangularity, etc [55].

The extraction of shape features is a more difficult task compared to color and

texture features. The shape representation is strongly affected by the image noise,

distortion, and occlusion [53]. These problems affect the precision of either the edge

detection or the region segmentation, and thereof, the quality of shape features. For

example, the retrieval by the color and texture features in the QBIC [62] system is

more precise than using the shape features. As a result, shape features are often

used for retrievals by sketch or for images with man-made objects where the edges or

regions are much easier to be detected. For other types of images, shape features are

used together with color and texture features.
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Multidimensional Features: Model-based

In order to utilize the color and other multi-dimensional data in images, different

representations other than the histograms are necessary for high dimensional data.

These methods include model-based features which find statistical models to represent

data, and transformation-based features which transform data in pixel domain to

frequency domain, e.g. the DCT domain.

Model-based features make the assumption that the distribution of features can

be represented by a generic model, e.g., Gaussian Mixture Models (GMMs). The

Blobworld [6] segments images into discontinued regions by GMMs, which is estimated

by the EM algorithm [15]. The features for estimating GMMs are joint color-texture-

position. Each segmented region is coherent in color and texture and is represented

by one Gaussian component in the GMM.

S. Jeong [44] extracts quantized histogram features from the Hue-Saturation-Value

(HSV) color space6. The quantization is performed by training a GMM from a train-

ing set with several images. The GMM is trained by the Gaussian Mixture Vector

Quantization algorithm [44]. The mean for each component is used as the codebook

for quantization. Histograms are then generated in the quantized color space and

used for image retrieval.

A GMM-IB [29] based image retrieval method utilizes the Information Bottleneck

(IB) algorithm to estimate GMMs from images to cluster images into groups. The

feature space modeled by the GMMs is jointly color-spatial, with the CIE color space7

and the pixel 2D positions. GMMs are estimated from the joint features from each

image by the EM algorithm. All images are grouped into clusters by the IB algorithm,

and retrievals are converted to find the closest cluster for a query image.

Multidimensional Features: Transformation-based

Different color spaces and image processing techniques have been applied to address

the multi-dimensional features. Some color spaces, e.g., the HSV color space and

the YCbCr color space, show more separation among three color channels than the

6http://en.wikipedia.org/wiki/HSL and HSV, last visited on March 5, 2010.
7http://en.wikipedia.org/wiki/CIE 1931 color space, last visited on March 5, 2010.
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RGB color space8. The three channels in the HSV and YCbCr can be considered

as independent of each other. Thus feature extraction and comparison are processed

in each channel separately. Many features have been proposed to extract from these

color spaces instead of the RGB color space.

DCT-based image features have been widely applied to image retrieval applica-

tions. Two advantages of DCT-based features are as follows. Firstly, large quantities

of online images or local images in databases are in JPEG format [42], which is a

DCT-based image compression algorithm. DCT coefficients can be easily and quickly

reconstructed from JPEG images. Secondly, the DCT coefficients are open to combine

with other techniques, such as work in [25, 83, 105, 107, 108].

The color layout [25] feature is extracted based on DCT coefficients instead of

colors. The color layout first divides an image into 64 blocks (8 rows by 8 columns)

with an equal size. The average color for each block is calculated. 2D DCT is applied

to the 64 average colors, and the resulting DCT coefficients are the extracted layout

features. Color layout feature is very sensitive to the orientation of the image, as it

is actually not a real histogram. The partition into 64 blocks is too coarse that the

average color cannot represent the block precisely, which decreases its discriminating

capability.

Several other methods have been presented working with the DCT coefficients

restored from JPEG images. Lay et al. [49] build histograms from selected group

of coefficients, which are either from a 1x1, 2x2 or 3x3 block. DC and AC coeffi-

cients are counted in a same histogram. Histograms are compared by a normalized

Minkowski-form (L1) distance. They conclude that the histograms from the DC coef-

ficient are suitable for image similar in colors, and combinations of DC with low-level

AC coefficients usually yield better results for generic images.

Liu et al. [57] proposes a joint color and texture DCT feature based on the co-

efficients spatial and energy properties. Each 8 × 8 DCT block is split into four

sub-blocks. The color features which are four color histograms of the mean values of

the sub-blocks are constructed. The texture features is the histogram of the mean

and the standard deviation of selected coefficient blocks, which contain texture infor-

mation such as edges in the DCT blocks.

8http://en.wikipedia.org/wiki/RGB, last visited on March 5, 2010.
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D. Zhong [109] proposes to extract two histograms from the DCT coefficients

in 4 × 4 DCT blocks. The histograms are extracted from patterns defined similar

to the LBP [65]. The corresponding DCT coefficients are grouped into sub-images.

Coefficients in each 3 × 3 block are transformed into sequences of binary codes or

ternary codes by comparing to predefined thresholds. Each sequence in a block is

converted to a number, and histograms of the resulting numbers are generated as the

features.

Feng et al. [23] analyzes the statistical features of the DCT coefficients. They

provide a simple method to calculate the average DC coefficient and weighted square

mean of the AC coefficients. The statistical parameters of mean and variance are

quantized into 28 subspaces. According to these 28 subspaces, a histogram is con-

structed as the feature vector of an image.

1.3.2 Local Features

Local features are extracted from local patches in images. They have provided promis-

ing performance for object recognition. For objects in images, there are many points

that carry the most distinctive information about the objects. These points are known

as interesting points. To extract local features from an image, interesting points are

first extracted by different methods, e.g., differential of Gaussian, Harris corner detec-

tion, etc. Unstable interesting points are removed, and descriptors are then extracted

from the remaining interesting points.

It is important that the local features are robust to changes in image scale, noise,

illumination and local geometric distortion, for performing reliable recognition. Scale-

Invariant Feature Transform (SIFT) [54] is one of the best algorithms in computer

vision to detect and describe local features in images. SIFT is able to robustly identify

objects even among clutter and under partial occlusion because the SIFT descriptors

are invariant to scale, orientation, affine distortion and partially invariant to illumi-

nation changes. SIFT consists of four steps: scale-space extrema detection, keypoint

localization, orientation assignment, and keypoint descriptor extraction. The result-

ing SIFT features for an image are a group of descriptors of size 128.

Although the dimension of each descriptor in the SIFT is 128, the total size of a

SIFT feature for an image is very large. For an image of size 256×256, the number of
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descriptors is usually of the size of several hundreds to thousands. Some approaches

improve the SIFT feature efficiency by decreasing the size of the descriptor, such

as the PCA (Principal Component Analysis) SIFT features [45]. The PCA SIFT

features use the PCA to downsize the SIFT descriptor from 128 to a much smaller

size, i.e., 32. Like the SIFT features, the PCA SIFT features locate all keypoints by

the same method. The main change is that the descriptors are processed by the PCA

and represented by the gradient patch around the keypoints. Experimental results

have shown that PCA SIFT features are more compact and distinctive than the SIFT

features.

SURF (Speeded Up Robust Features) [6] is a robust image feature inspired by the

SIFT feature. The SURF filters images with the 2D Haar wavelet responses, and uses

the integral images to improve the computation in near constant time. The standard

version of the SURF is several times faster than the SIFT [6].

The local features are usually designed for object recognition purposes. To incor-

porate into an image retrieval system, different representation methods are applied,

such as, local histograms [18], local signatures [61], and global search [19]. For each

representation method, local features (e.g., SIFT) are first extracted from each im-

age. In the local histograms [18], all features are first clustered into N clusters. For

each local feature, we only record the id of the cluster that the feature are closest

to. Finally a size N histogram is extracted from all features in an image. The local

signatures [61] cluster the features for each image separately. The mean and covari-

ance are used for comparison between images. The global search [19] method uses

efficient nearest neighbor searching algorithms to find matching descriptors. For each

query image, we globally search for the top k nearest neighbor descriptors in all target

images. The number of descriptors belonging to each target images is calculated and

sorted. Thus, the similarity is decided by the number of descriptors that a target

image has.

Global and local features have their own advantages and disadvantages. Global

features are more efficient, and provide overall matching between images. Local

features provide more detail information at the object level, but take more time to

compute and process. In this thesis, we focus on methods to extract global features

and decide on the corresponding matching schemes. The LTP histograms explore the
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spatial information among neighboring pixels. The EMass algorithm estimates model-

based features i.e., GMMs, from multi-dimensional data. The DCT2KL scheme uses

DCT coefficients partially restored from JPEG images, and then derives the specific

distance measure theoretically.

1.3.3 Feature Comparison

Feature comparison uses a measurement to calculate how similar are two features.

The comparison method is chosen based on what type of representation that the

features adopt. Observing the features reviewed in Section 1.3.1 and 1.3.2, features

are usually represented by second-order (or higher-order) statistics, non-parametric

histograms, or multi-modal density function [28]. Different distance measures are

applied according to the features’ different representation.

Distance Measure for Histogram-based Features

Histogram representation is often used for features [69, 75, 87, 91]. Distance measure-

ments for histograms include Lp, cosine distance, normalized histogram intersection

match [93], quadratic distance [62], Earth Mover Distance (EMD) [50], Kullback-

Leibler (KL) divergence [13], and Jensen-Shannon divergence (JSD) [74]. Given two

histograms H1 and H2 of the same size K, these distance measurements are defined

as follows.

The Lp measure is defined in Equation (1.1).

DLp
(H1, H2) =

(
K∑
k=1

(H1(k)−H2(k))
p

) 1
p

(1.1)

where p is often chosen as 1 or 2. The L1 is also known as Manhattan distance and the

L2 is known as Euclidean distance. When the features are not distributions, such as

jointly high-order moments, L1 is often applied to gain the absolute distance between

histograms.

The cosine distance defines the similarity between two histograms by finding the

cosine of the angle between them.

Dcos(H1, H2) =

∑K
k=1(H1(k)H2(k))√∑K

k=1 H1(k)2
√∑K

k=1H2(k)2
(1.2)
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The cosine distance is a modified normalized L2 distance, and is often used in text

mining.

The histogram intersection match is defined in Equation (1.3).

Di(H1, H2) =

∑K
k=1min(H1(k), H2(k))∑K

k=1 H2(k)
(1.3)

The normalized histogram intersection match reduces the effect of the pixels in the

background on the feature matching.

The quadratic distance [62] is introduced by the QBIC and is defined in Equa-

tion (1.4)

Dquad(H1, H2) = (H1 −H2)
′A(H1 −H2) (1.4)

where A is a similarity matrix of size K × K. The quadratic distance includes the

correlations between color levels to the distance. The cross-correlation among colors

is represented by the matrix A, which is predefined given the specific color space. For

the RGB color space, the matrix is defined as:

aij = 1− dlij

max(dlij)
, 1 ≤ i, j ≤ K (1.5)

where dlij is L2 distance between the color i and j.

The Earth Mover Distance (EMD) between two histograms is the minimum cost

of turning one of them into the other. Informally, if the distributions are interpreted

as two different ways of piling up a certain amount of dirt, the EMD is the minimum

cost of turning one pile into the other. The cost is the amount of dirt to be moved

times the distance by which it is moved. To define the EMD between H1 and H2 is

to find the best F = {fij, 1 ≤ i, j ≤ K} to minimize the overall cost W (H1, H2, F ) =∑K
i=1

∑K
j=1 fi,jdij, under the constraints that

fij ≥ 0,
K∑
i=1

K∑
j=1

fij = 1, 1 ≤ i, j ≤ K (1.6)

K∑
j=1

fij ≤ H1(i),
K∑
i=1

fij ≤ H2(j) (1.7)

With the optimal F , the EMD is given as

DEMD(H1, H2) =

∑K
i=1

∑K
j=1 fijdij∑K

i=1

∑K
j=1 fij

(1.8)
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The KL divergence is defined as

DKL(H1, H2) =
K∑
k=1

H1(k) log
H1(k)

H2(k)
(1.9)

The KL divergence is a popular method of measuring the similarity between two

probability distributions. The KL divergence measures the expected numbers of bits

required to encode a sequence of data generated from one distribution but using the

code based on the other distribution.

Jensen-Shannon divergence (JSD) is defined as

DJS(H1, H2) =
K∑
k=1

H1(k) log
2H1(k)

H1(k) +H2(k)
+H2(k) log

2H2(k)

H1(k) +H2(k)
(1.10)

The JSD is based on the KL divergence. But unlike the KL divergence, the JSD is

symmetric, bounded, and a true distance metric.

Distance Measure for Model-based Features

Histograms suffer heavy computational load when the features are in high dimension.

Quantization [32, 44, 87] is thus applied to alleviate the high complexity in this sit-

uation. However, the optimal quantization intervals are too difficult to determine,

and inappropriate quantization will decrease the histogram’s discrimination capabil-

ity. The model-based representation [28] is suggested to be a good balance between

efficiency and effectiveness for feature representation. Features for an image are rep-

resented by a model which describes the feature distribution. As the distribution of

features in an image is usually a mixture of several distributions, a mixture model is

always applied, e.g., GMMs. The distance between two models is more difficult to

measure than the distance between two histograms. The most accurate method is

based on the Monte-Carlo simulations, which is very time-consuming. Current solu-

tions include the measurements by the approximation of the KL divergence [28], the

unscented transformation distance [28], the approximation of the EMD [41], and the

approximation of the normalized L2 distance [41]. Goldberger et al. [28] show that

the unscented transformation distance is an efficient method and is very close to large

sample Monte-Carlo based ground truth.
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Some distance metrics are designed for specific features, such as the region-based

distance measure [102] and the fuzzy feature matching method [10]. These metrics

are not included here.

1.4 Performance Evaluation

In order to evaluate the effectiveness of image features for retrieval, image data sets

and performance metrics are also very important. In this section, we review the image

data sets and retrieval performance metric used for evaluation.

1.4.1 Benchmark Image Data Sets

In order to compare the performance of different image features for retrieval systems

or applications, benchmark image data sets have been proposed in literature [19].

However, compared to all types of features, publicly available image data sets are

limited for several reasons, such as copyrights, missing ground truth data, and lack

of annotations. Despite these limitations, some image data sets available for research

purposes remain useful. These data sets usually provide ground truth data, or group

images into different categories. With such information, comparison among differ-

ent features is possible. We introduce several data sets that are public for research

purposes.

OUTEX The OUTEX [64] image data sets9 provide several groups of texture im-

ages for image classification and segmentation applications. Their texture images

come from three sources: the Brodatz album [7], the MIT Vision Texture database10,

and the MeasTex database [86]11. Each texture image is cut into small images with

a window size varying from 32 × 32 to 128 × 128 pixels to generate different data

sets, numbered from Outex TC 00000 to Outex TC 000016. The size of each group

varies from several hundreds to thousands. For each data set, the ground truth data

contains the class label for each image. The training and testing data and the best

classification results on the each data are provided as well. These data sets are very

9http://www.outex.oulu.fi, last visited on March 01, 2010.
10http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html, last visited on

March 01, 2010.
11http://www.texturesynthesis.com/meastex/meastex.html, last visited on March 01, 2010.
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good resources for comparing the performance of classification by using different im-

age texture features. Some texture images from the OUTEX data set are shown in

Figure 1.2. To evaluate the performance of image retrievals, we can consider the

Figure 1.2: Example images from the OUTEX data set.

images with the same class label are positive matches (relevant). The images with

different class labels are negative (not relevant).

Corel1K The Corel1K [52]12 data set consists of 1000 images from the Corel stock

photo database. The 1000 images fit into 10 categories: Africa, Beach, Building,

Buses, Dinosaurs, Elephants, Horses, Flowers, Mountains, and Food, with 100 images

in each category. An example image from each category is shown in Figure 1.3.

For retrieval tasks, we can consider the images in one category as positive matches,

and images in different categories as negative matches. In this way, the Corel1K data

set can be used for evaluating features and methods for image matching.

UW The UW database13 is created by the University of Washington with 1019

images. Images are of varying sizes, and mainly represent natural scenes from different

12http://wang.ist.psu.edu/docs/related/, last visited on March 01, 2010.
13http://www.cs.washington.edu/research/imagedatabase/groundtruth, last visited on March 01,

2010.
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Figure 1.3: Example images from the Corel1k data set.

locations, such as: Australia, Cambridge, spring flowers, and Yellow Stone. Some

example images are shown in Figure 1.4.

Figure 1.4: Example images from the UW data set.

All images are put into different categories, and annotated with several keywords

(maximum 22 keywords, and minimum 1 keyword). On average, each image is as-

sociated with 6 keywords. The relevance between images is decided by keywords

matching. Two images are relevant if they both have a common keyword. On aver-

age, each image has 53 relevant images in the data set.

UCID The Uncompressed Colour Image Database (UCID) data set [81]14 consists

of 1338 uncompressed images. Images represent buildings, natural scenes, small man-

made objects etc. A list of 262 queries is provided. The relevant images to each query

image are listed in a ground truth file for performance evaluation. Some example

14http://vision.cs.aston.ac.uk/data sets/UCID/, last visited on March 01, 2010.



20

images are shown in Figure 1.5. The ground truth for the UCID shows that the

Figure 1.5: Example images from the UCID data set.

retrievals require information at the object level.

IAPR TC-12 The image collection of the IAPR TC-12 data set 15 consists of 20,000

still natural images which are taken from locations around the world. This data set

includes pictures of different sports and actions, photographs of people, animals, cities,

landscapes and many other aspects of contemporary life. Some example images are

shown in Figure 1.6.

Figure 1.6: Example images from the IAPR data set.

The images have full-text annotations. This data set has been used as a benchmark

data set for ImageCLEF (The CLEF Cross Language Image Retrieval Track) photo

retrieval tasks [33] in 2006, 2007 and 2008. The ImageCLEF retrieval tasks provide a

group of retrieval topics, and the corresponding ground truth data for the evaluation.

15http://www.imageclef.org/photodata, last visited on March 01, 2010.
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IRMA The IRMA data set16 consists of 12000 radiograph images in 119 categories.

All images are fully annotated, and separated into a training set with 10000 images,

an extended training set with 1000 images, and a testing set with 1000 images.

The IRMA is used for testing image classification applications. For retrieval appli-

cations, a similar method is adopted as to the Corel1K data set. Images are relevant

if they belong to the same category, and irrelevant otherwise.

We list all data sets in Table 1.1. The size, ground truth information and distinc-

tive characteristics for each data set are listed. We list one of the OUTEX data sets

as an example.

Table 1.1: Summary of the image data sets
data set images queries characteristics
OUTEX TC 13 1,360 1,360 texture images
Corel1K 1,000 1,000 images in 10 categories
UCID 1,338 262 natural scene images with ground truth data
UW 1,109 1,109 natural scene images in different categories
IAPR TC-12 20,000 60 mixture of different images

with 60 queries and results
IRMA 12,000 1000 medical images in 119 categories

In our thesis, we evaluate our proposed methods on the OUTEX, the Corel1K,

the UCID, and the IAPR TC-12 image data sets. These popular data sets are used

in our experiments because many related methods have been tested on them. Thus,

we are able to compare our methods to the related work with their reported results

on the same data sets.

The OUTEX data sets are images with textures. Benchmark results on these

data sets are also reported. Thus these data sets are suitable for evaluating texture

features. Our LTP features provide spatial relationship between neighboring pixels,

which partially describe texture in images. Thus, the performance of the LTP features

is tested on the OUTEX data sets.

Our methods are also tested by the performance of image retrievals on the Corel1K,

the UCID, and the IAPR TC-12 data sets. From Table 1.1, we can see that the

Corel1K, UCID, and UW data sets are of similar size, and images are in similar cat-

egories. Among them, more experimental results are reported on the Corel1K and

16http://ganymed.imib.rwth-aachen.de/irma/datasets en.php, last visited on March 01, 2010.
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UCID. Thus we will evaluate our proposed methods on these two data sets to make

comparison with other work.

From 2006 to 2008, image retrieval tracks have been organized and performed

using the IAPR data sets. We will also report the experimental results by using our

methods for the IAPR TC-12 data set to compare with the reported results in the

ImageCLEF retrieval tracks. The IRMA data set consists of medical images which

require special techniques and features. Thus, we do not show results on this data

set.

1.4.2 Performance Metric

In order to evaluate the retrieval results from the data sets, measurements are nec-

essary to rate the performance. The basic measures are based on Precision (P) and

Recall (R), which are defined in Equations (1.11) and (1.12):

P =
Number of relevant images retrieved

Total number of images retrieved
(1.11)

R =
Number of relevant images retrieved

Total number of relevant images in the dataset
(1.12)

The P and R values are usually shown as a P-R graph. Fβ-score is a measure that

combines precision and recall into one number.

Fβ = (1 + β2)
P ×R

β2P +R
(1.13)

Fβ-score is a balanced measure for P and R. β changes the importance of precision

and recall. β is often chosen as 1 or 2.

The average precision is defined as the mean precision after each relevant image

is retrieved. The mean average precision (MAP) is the mean of the precision for each

relevant image is retrieved. The MAP is defined in equation (1.14):

Mean Average Precision =

∑N
r=1(pre(r)× rel(r))

number of relevant documents
(1.14)

where r is the rank of the retrieved image, N is the total number of all retrieved

images, rel(·) is a binary function indicating whether the retrieved image at the given

rank r is relevant to the query image, and pre(·) is the precision at the given rank r.

This measure favors the features that can retrieve relevant images earlier.
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1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. First we introduce the new image

feature, i.e., Local Triplet Pattern (LTP), in Chapter 2. We discuss how to design

the LTP features, and compare to the related image features that also include spatial

information. Experimental results demonstrate that the proposed LTP histograms

achieve higher retrieval precision performance on both the texture image data sets

(OUTEX) and the generic image data set (Corel1K) than these related features.

In Chapter 3, we discuss how to effectively utilize and represent the multi-dimensional

data, i.e., color information, for retrieval. The Gaussian Mixture Models (GMMs)

are used to represent the multi-dimensional data. The EMass algorithm is applied

to estimate GMMs from data. The local maxima problem in the EM algorithm is

avoided by applying the deterministic annealing method. By comparing the GMMs

estimated by the EM algorithm, the EMass algorithm, and the related DAEM algo-

rithm using simulation experiments, we can see that the EMass algorithm is the most

stable among these three algorithms. Retrieval results on the Corel1K data set show

that the GMMs by the EMass algorithms achieve higher precision than the related

work.

In Chapter 4, we continue to work on utilizing high-dimensional data in images.

Motivated by image compression algorithms, we work on the YCbCr color space

instead of the RGB color space, and use the DCT coefficients by partially decoding

JPEG images. The DCT2KL scheme is derived directly by formulating the image

retrieval process as a hypothesis testing problem. We show that the KL divergence is

an optimal distance measure for the DCT coefficient features. Experimental results on

both the COREL1K and UCID data sets show that our DCT2KL scheme consistently

outperforms related work often by a wide margin.

We work on combining our proposed features and methods to improve the retrieval

performance in Chapter 5. The performance of our combined retrieval methods are

compared to the state-of-the-art work on the Corel1K and the UCID data sets. Several

retrieval cases are shown to give examples of how our features positively affect the

retrievals. Our methods are then applied to image retrieval tasks for the IAPR TC-12

data set. We compare the retrieval results with the reported results in the ImageCLEF

2007.
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In Chapter 6, we summarize our contributions, and discuss the future work.



Chapter 2

Local Triplet Pattern Histograms

Histogram-based features commonly used in image matching range from the color

histograms to more complicated histograms of local features. Histograms can be

easily and quickly extracted. They are invariant to rotation, and robust to occlusion

and changes of view. For these reasons, histograms are the most popular features

used for image matching.

In this chapter, we propose a new histogram-based image feature: Local Triplet

Pattern (LTP) [37] for image matching. The proposed LTP feature of an image is a

one-dimensional histogram which describes the spatial relationships of the color levels

in pixel blocks in the image. Before presenting the LTP histograms, we first introduce

several well-known histogram-based features, which are the color histograms, the

correlograms [40], the autocorrelograms [40], and the Local Binary Pattern (LBP) [65]

histograms. After reviewing and discussing these features, we observe that the color

histogram features can be improved by containing more detailed spatial information

among neighboring pixels. The LTP feature is then proposed as a histogram of

LTP levels which contain spatial relationships of the neighboring pixel color levels

in a 3 × 3 pixel block. The performance of the LTP histograms is evaluated and

compared to the related histogram features on both the texture and generic image

data sets. Experimental results show that the LTP histograms provide consistently

better performance than the related features.

2.1 Background

2.1.1 Color Histograms

Color histograms are widely used in image indexing [25, 63, 69, 75, 87, 91, 93]. A

color histogram of an image describes the frequency of each color level in the image

in pixel domain. To extract a histogram, an image is quantized into n sets of colors

25
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C = {c1, . . . , cn} if necessary. A histogram H is a vector H = (h1, . . . , hn), with

each bin hi(1 ≤ i ≤ n) as the frequency in color ci. An example in Figure 2.1 shows

an image, the corresponding grey-level histogram, and one-dimensional histograms in

the R, G, B channels.
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Figure 2.1: An image, its grey level histogram, and the histograms in R, G, and B

The low dimensional color histograms are simple, fast, and have been applied

to many applications [63], for example IBM QBIC [25]. Advantages in the color

histograms also include rotation invariance, robustness against occlusion and changes

of view [70].

However, the color histograms have limitations, and one of the limitations is that

no spatial relationship between two colors is included [40, 69, 87, 91]. The correlo-

grams [40] address this problem by incorporating spatial relationships among color

levels of neighboring pixels into histograms.

2.1.2 Correlograms and Autocorrelograms

A correlogram [40] of an image describes the joint distribution of two color levels, when

the two color levels are spatially at a defined distance [40] in the image. The distance
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between two color levels is defined as follows. Consider an image as a two-dimensional

matrix with a size as H × W . If one color level ci is at position {x1, y1}, 1 ≤ x1 ≤
H, 1 ≤ y1 ≤ W , and the other color level cj is at position {x2, y2}, 1 ≤ x2 ≤ H, 1 ≤
y2 ≤ W , the distance between the two color levels ci and cj is: Distance(ci, cj) =

max{|x1 − x2|, |y1 − y2|}. To extract a correlogram, an image is quantized into n sets

of colors C = {c1, . . . , cn}. A correlogram CH at a distance d is a two-dimensional

matrix

CH =

⎛
⎜⎜⎜⎜⎜⎝

ch(1, 1) ch(1, 2) · · · ch(1, n)

ch(2, 1) ch(2, 2) · · · ch(2, n)
...

...
. . .

...

ch(n, 1) ch(n, 2) · · · ch(n, n)

⎞
⎟⎟⎟⎟⎟⎠ (2.1)

with each bin ch(i, j) as the frequency of the existence of the two colors ci and cj at

the distance d. Thus, a correlogram is indexed in three dimensions: the two color

levels, and the distance between the two color levels. The elements in the correlogram

are the frequency of the color pairs at a given distance.

The size of a correlogram for an 8-bit grey-level image without any quantization is

256×256. This size is considerably too large to provide efficient image retrieval. The

autocorrelograms [40], which only count the frequency of two identical color levels at a

given distance, are presented. The autocorrelograms are indexed by two dimensions:

a color level, and the distance between the identical two color levels. The elements in

the autocorrelograms are the frequencies of the occurrence of the two identical color

levels at a given distance.

The discriminating capabilities of the correlograms and autocorrelograms are bet-

ter than the histogram in many cases, such as an example in Figure 2.2. The example

shows two different images have same histograms, but different correlograms and au-

tocorrelograms.

Both the correlograms and the autocorrelograms consider the color levels at the

same distance but at different orientations to be the same, according to the definition

of the distance function between two color levels. The size of the correlograms and

the autocorrelograms would be multiplied if the color pairs at different orientations

are considered separately. This simplification minimizes the feature size, but also

limits the discrimination capability of the correlograms and autocorrelograms.
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Figure 2.2: Two images a and b with only two color levels 0 and 1. The histograms,
the correlograms, and the autocorrelograms are shown from the column 2 to column
4. Both the correlograms and autocorrelograms only show the frequencies of two
colors at distance 1.
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2.1.3 Local Binary Pattern Histograms

Local Binary Pattern (LBP) [65] is a simple method to amalgamate several orienta-

tions while maintaining a small feature size. An LBP level is a number ranging from

0 to 255 which represents the spatial relationships among the 9 color levels in a 3× 3

pixel block. The color level of the center pixel is compared with the color levels of

its 8 neighboring pixels in the block. The comparison results are transformed into a

sequence of binary codes (0,1). When the color level of the neighboring pixel is larger

than or equal to the color level of the center pixel, the code is 1. Otherwise, the code

is 0. The binary sequence is then converted into an LBP level. A 3 × 3 block with

a center pixel and its neighboring pixels is shown in Figure 2.3(a). The binary code

sequence for this block is shown in the Figure 2.3(b).

Figure 2.3: A 3× 3 pixel block and the corresponding binary sequence in the LBP

Starting from the left top binary code, we consider the eight code sequence in

clockwise order as a binary format for an integer. Then the sequence is calculated

and transformed to an LBP level as in Equation (2.2).

LBP level = (10100101)2 = 165 (2.2)

Without loss of generality, we assume that the LBP levels are extracted from a

grey level image I with the color levels ranging from 0 to 255. Denote the pixel in

a 3× 3 block as: c, c0, . . . , c7 as shown in Figure 2.4 where c is the color level of the

center pixel. c0 to c7 are the color levels of the eight neighboring pixels. The LBP
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Figure 2.4: Color level notations in a 3× 3 pixel block

level of the block is defined as:

lbp =
7∑

i=0

f(ci − c)2i (2.3)

where the comparison function f is:

f(z) =

{
1, z ≥ 0;

0, z < 0.
(2.4)

Note that the LBP levels are in the range of {0, . . . , 255}. Finally the LBP his-

togram is extracted as L = {l0, . . . , l255}, with each li, 0 ≤ i ≤ 255 as the frequency

of an LBP level i extracted from all pixels in the image.

2.2 Local Triplet Pattern

2.2.1 Motivations

The LBP maps a 3× 3 8-bit two-dimensional integer array from an alphabet of size

2569 into a single 8-bit integer for an alphabet of size 256. This mapping represents

a very high ratio quantization. One of our concerns is whether the quantization

alphabet size 256 is the appropriate alphabet size for the quantization.

Moreover, the LBP fails to make distinctions of the patterns generated from two

types of blocks. The one type is that the neighboring pixels are with the same color

level of the center pixel. The other type is that the neighboring pixels are with larger

color levels than the center pixel. These two cases are shown in Figure 2.5. Two
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Figure 2.5: Two different 3× 3 pixel blocks with a same LBP level

different pixel blocks have a same LBP level although the color levels of the pixels in

the blocks are totally different. The comparison function f in Equation (2.4), returns

0 when z = ci − c is less than 0, and returns 1 when z is larger than or equal to 0. In

other words, the resulting binary code for comparing two color levels ci and c is set

as 1 if ci ≥ c, and 0 if ci < c. When the binary code “1” is returned, we cannot tell

whether ci is larger than c or equal to c.

Images, especially natural images, have a strong tendency of color continuity, i.e.,

color levels in a pixel block all have similar colors. This fact indicates that the “equal”

condition is not a trivial existence in the color level comparison results. We should

consider separating the “equal” condition from the “larger” condition.

These two reasons motivate us to propose a new image feature: Local Triplet

Pattern (LTP). The function f is redefined to return three results (smaller, equal, and

larger) when comparing two color levels. Each pixel block thus generates a sequence

of triplet codes, and the sequence is converted into a finer-grained pattern than the

LBP. In addition to the neighboring color changes detected by the LBP, the LTP also

detects the continuous color blocks, which brings more discriminating information to

image features. In this way, the LTP not only maintains the discriminating capability

of the LBP feature, but also is able to distinguish more patterns than the LBP does.
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2.2.2 Definition of the LTP

The LTP represents the relationship between two color levels by using three scales,

either one is smaller than, equal to, or larger than the other, which can be represented

by three numbers (0, 1, 2). The relationships between a color level of a pixel and

its eight neighboring color levels are transformed into a sequence of codes, which is

converted to an LTP level. A function f ′ is defined in Equation (2.5) to replace the

function f in Equation (2.4) in the LBP.

f ′(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

2, a > b;

1, a = b;

0, a < b.

(2.5)

As an example shown in Figure 2.6, the newly defined f ′ function can recognize

more different patterns. The three different pixel blocks, which are converted to the

same LBP as in Figure 2.5, are converted into different LTPs.

Figure 2.6: Three 3× 3 pixel blocks with a same LBP but different LTP

Similar to the LBP encoding, we denote the color level of the pixel in the center

as c, and the color levels of the eight surrounding pixels as c0, . . . , c7. We assign a

factor 3i to each value of f ′(ci, c), i = 0, . . . , 7, and a 3× 3 pixel block is transformed
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into a unique pattern level. The LTP is defined in Equation (2.6).

ltp =
7∑

i=0

f ′(ci, c)× 3i (2.6)

After all the LTPs are calculated from each 3 × 3 pixel block in an image, an

LTP histogram is extracted as the image feature. The LTP histogram is a vector

T = {t0, . . . , t6560}, where ti is the frequency of the blocks with the LTP that are

equal to i in the image.

2.2.3 Scaling and Neighboring Parameters

In order to apply the proposed LTP histograms to image retrieval applications, there

are two implementation concerns need to be addressed. The function f ′ in Equa-

tion (2.5) has two effects on the LTP histograms. The first is that the LTP histograms

are very sparse. The function f ′ results in 1 if and only if two color levels are the

same. Images usually contain color blocks with very similar but not exactly the same

color levels. Patterns with 1 (equal) in the triplet codes are always far less frequent

than patterns with 0 (less) and 2 (larger). The second consequence is that the LTP

feature size (6561) is much larger than the LBP feature size (256).

In order to address these two problems, we introduce a scaling parameter and a

neighboring parameter to the feature. An image is scaled from all original color levels

into a quantized color space with fewer color levels, which implies all color levels are

clustered into several groups. The number of the groups is the scaling parameter S.

After the scaling operation, f ′(a, b) returns 0 if the color levels a and b belong to the

same group, which is very close to how humans perceive the same situation.

The neighboring parameter N is the number of the neighboring pixels which are

included to generate an LTP for the block. N is an integer between 1 and 8. In order

to cover all the possible combinations between pixel pairs, we suggest that N is at

least 4. The size of an LTP histogram with a neighboring parameter N is 3N . N is

a tradeoff between the feature capacity and efficiency. We suggest applying a large

neighboring parameter N to provide the best discriminating capability from the LTP

features.

Although we only take N neighboring color levels, LTP still captures most joint

information of a color level with the other neighboring color levels. For example when
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N is 4, the LTP level is calculated from the center pixel c and neighboring pixels c0

to c3 as shown in Figure 2.7. The pixels c4 to c7 are not included. However, when the

c4 is the center pixel, the previous center pixel c is the neighboring c0 in this block.

Thus, N ≥ 4 neighboring color levels capture major patterns in an image.

Figure 2.7: Neighboring parameter in the LTP

In summary, by using the scaling parameter, the original color space is quantized

to a smaller-sized color space. By using the neighboring parameter, the LTP levels

are calculated from a sequence of the triplet codes selected from the 8 neighboring

pixels. As a consequence, the LTP histogram becomes much more compact and can

be extracted at a flexible length according to the application requirements.

2.2.4 Related Work

Soft LBP Histograms

The soft LBP histograms [1] are an extension from the LBP histograms. In order

to make the original LBP more robust to noise, the soft LBP histograms adopt two

fuzzy functions to transform the relationship into two numbers, instead of using a

binary code to represent the relationship between two color levels of two neighboring

pixels. The comparison function f in the LBP is replaced by the two fuzzy functions

in Equation (2.7) and (2.8).

f1,d(z) =

⎧⎪⎪⎨
⎪⎪⎩

0, z < −d;

0.5 + 0.5 z
d
, −d ≤ z ≤ d;

1, z > d.

(2.7)

f0,d(z) = 1− f1,d(z) (2.8)
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where the parameter d is the control of the fuzziness in the histograms.

The functions f1,d, f0,d from a pixel block in Figure 2.4 contribute a fuzzy weight

ranging from 0 to 1 to the bins of the LBP soft histogram. The contribution depends

on the binary code of each histogram bin, and the threshold d. Denote the binary

code for a soft LBP level s as {b0(s) . . . b7(s)}, where b0 is the most significant bit.

The contribution of the block at position (i, j) to the bin s is then defined as:

SLBPi,j(s) =
7∏

k=0

[bk(s)f1,d(ck − c) + (1− bk(s))f0,d(ck − c)], s = 0, . . . , 255 (2.9)

The final LBP soft histograms are the summation of the SLBP for each block in the

image.

The fuzzy threshold d in the soft LBP histograms has the similar functionality as

the scaling parameter in the LTP histograms. The resulting soft histograms are more

robust to noise.

Although the soft LBP histograms have the same alphabet size as of the LBP,

they are not as efficient as the LBP. The LBP converts the color level in each 3x3

pixel block into one LBP level. The calculation is simple and fast. The soft LBP

histograms link each block in the image with each bin in the pattern histograms.

Thus the calculation for the soft LBP histograms increases to the size of the image

times the size of the histograms.

Local Ternary Pattern

The Local Ternary Pattern [96] is an image feature very close to our proposed work.

For each 3×3 block, the comparison of two color levels also returns three results similar

to our proposed LTP histograms. The color levels c of the center pixel is compared

with the color levels ci, 0 ≤ i ≤ 7 of its eight neighboring pixels. The comparison of

two color levels returns three results: “smaller” as -1, “equal” as 0, and “larger” as 1.

The 3-valued coding includes a threshold t around zero to improve resistance to noise.

The comparison is based on three ranges, [0, c−t], (c−t, c+t), [c+t, 255]. The “equal”

means that the neighboring color level ci is in the range c − t < ci < c + t. Instead

of assigning a 3n factor to each code, they separate the results into two groups, and

calculate two patterns: the upper and the lower patterns. An example of the upper

and lower patterns is shown in Figure 2.8. Starting from the upper top binary code
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Figure 2.8: Upper and lower patterns in the Local Ternary Pattern
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in the clockwise order, the upper ternary codes for this block are 00100010, and the

lower ternary codes are 01011000.

Instead of extracting histograms of the patterns, they use a different feature rep-

resentation and a corresponding distance measure. The distance is given by the

following steps. First, the ternary patterns are calculated for each block in the im-

age. Then a binary image bk is generated for each ternary pattern k, with each value

bk(i, j) in the bk at position (i, j) is set as 1, if the pattern at position (i, j) is equal to

k. Otherwise bk(i, j) is set as 0. The transform distance matrix dk is then calculated

from the bk, where the value dk(i, j) at position (i, j) is the closest distance to the

nearby pixels with the same pattern as k. After generating the dk for both the query

X and target Y images, the distance between the two images is defined as:

D(X, Y ) =
∑
i∈Y

∑
j∈Y

ω(dXkY (i,j)(i, j), τ) (2.10)

where dXkY (i,j) is the distance matrix from image X, and kY (i, j) is the pattern value

in the image Y at position (i, j). The function ω is a penalty function which gives

penalty based on the value of the closet distance. τ is set as 6 pixels in the reference.

The Ternary pattern features have been applied to face image recognition [96, 21].

The main contribution in the Ternary pattern is the introduction of the transform

based distance measure for comparing the face images. The measure is more stable

as they capture the same patterns in a close distance area. However, the distance

measure also involves much more significant time than the normal measures used for

histogram-based features.

The cases of the “larger” and “equal” which are overlapped in the LBP are lightly

separated in the Ternary patterns. The Ternary pattern assigns the overlapping cases

into two groups, one with the “larger” as in the lower patterns and one with “smaller”

as in the upper patterns. However, in each group, the overlapping still exists. Thus,

the Ternary patterns make a compromise between the number of the distinguished

patterns with the size of the features.

2.3 Experiments

In this section, the performance of the LTP histograms are compared with the related

histogram-based features, including the grey-level histograms, the correlograms, the
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autocorrelograms, the LBP histograms, soft LBP histograms, and the Local Ternary

Pattern histograms. To distinguish our proposed Local Triplet Pattern from the

Local Ternary Patterns, LTP is used for our feature, and Ternary is used for the

Local Ternary Patterns. Images are first converted into grey level, and all these

features are extracted. We use the KL divergence to measure the distance for our

LTP histograms. The KL divergence is defined in Equation (1.9) in Section 1.3.3.

Their performances are evaluated on the four image data sets, with three from the

OUTEX data sets, and the fourth as the Corel1K data set.

2.3.1 Classification of Texture Images

The LBP histograms have been evaluated by their performance of classifying texture

images on the following three texture image data sets, Contrib TC 00006 (TC06),

Outex TC 00013 (TC13) and Outex TC 00014 (TC14) [73].

The Contrib TC 00006 data set has 864 texture images in 54 categories, with 432

training images and 432 testing images (8 images per category).

The Outex TC 00013 data set has 1360 texture images in 68 categories, with 680

training and 680 testing images (10 images per category). The images in these two

image data sets are taken under the same illumination condition.

The Outex TC 00014 data set has 4080 texture images in 68 categories, but with

three different illumination sources. The change of the illumination sources puts

different shadows on the texture images. This data set shows how the illumination

changes affect the performance of the features. 680 images are selected as the training

set (10 images per category), and 1360 images are selected as the testing set (20 images

per category).

In order to make fair comparisons to the LBP, we apply the LTP histograms to

classify images using the same training and testing data. The classifier is the k-

NN(k=3) classifier as the same one used by the LBP. For each image in the testing

set, the top 3 closest images in the training set are extracted. The class id of the

three nearest neighbor training images is assigned to the testing image. The distance

between two LBP histograms is measured by the KL divergence in Equation (1.9)

in Section 1.3.3. Zeros in the LBP histograms are normalized by a very small value,

e.g., 10−8 [73].
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In Table 2.1, we compare the classification results with the grey level histograms,

correlogram, autocorrelogram, LBP histograms, soft LBP histograms, and LTP his-

tograms. The distance measure for the grey level histograms is the KL divergence.

The correlogram and autocorrelogram are configured as suggested in [40, 48]. The

correlogram features are generated from quantized images with 32 color levels [48].

The autocorrelogram is calculated from quantized images with 64 color levels [40].

The distance measure for the correlograms and autocorrelograms is the L1 distance

measure as suggested in [48].

The threshold d for the soft LBP histograms is selected from 1 to 10, and the

best results are list as d = 2 for the first two data sets, and d = 1 for the third data

set. For the Ternary patterns, we extract two histograms, with one from the upper

ternary patterns and the other one from the lower Ternary patterns. The threshold

t is selected from 1 to 10, and the best results are reported as t = 2 for the first two

data sets, and t = 1 for the second data set. The distance measure for the soft LBP

histograms and the Ternary histograms is the KL divergence.

In the LTP histograms, S is the scaling parameter, and N is the neighboring

parameter. We show the results from two groups of the LTP histograms with the

scaling parameter as 256 and 64, and the neighboring parameter as 8. The features

are denoted as LTP S256N8 and LTP S64N8 respectively. The distance measure for

The LTP histograms are normalized by 1, and are compared with the KL divergence.

The comparison results show that our LTP histograms outperform the other fea-

tures on these three texture data sets. The spatial information between the neigh-

boring pixels are included by several features, including the correlograms, the au-

tocorrelograms, the LBP, the soft LBP, the Local Ternary Pattern, and the LTP

histograms. The spatial information enables the features to gain better classification

results than the grey level histograms. The pattern histograms outperform the correl-

ograms and autocorrelograms because the pattern features recognize the distinction

of the neighboring pixels at different orientations. The Ternary histograms achieve

better precision than the LBP histograms because they distinguish the pattern more

details than the LBP does. Finally, the defined finer-grained patterns in the LTP

histograms gain better performance than the other features, as they include the most
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Table 2.1: Classification results for the grey level histograms, the correlograms, the
autocorrelograms, the LBP histograms, the soft LBP histograms, the Ternary his-
tograms, and the LTP histograms on the TC06, TC13, and TC14 data sets

feature size TC06 TC13 TC14
grey level histogram 256 81.0 73.1 37.7

correlogram 1024 93.1 81.0 49.9
autocorrelogram 64 83.3 75.2 42.4

LBP 256 97.7 81.0 60.0
soft LBP (d = 2) 256 96.1 84.4 59.6
soft LBP (d = 1) 256 96.1 83.7 61.3
Ternary(t = 2) 512 96.8 84.4 59.9
Ternary(t = 1) 512 94.4 82.8 60.8
LTP S64N8 6561 98.6 85.0 57.1
LTP S256N8 6561 97.5 81.8 64.0

detailed spatial information into the features.

Because of the illumination changes, the classification error rate of each feature

increases on the TC14 data set, especially for the features including the grey level

histograms, the correlograms, and the autocorrelograms. The pattern histograms,

including the LBP, the soft LBP, the Ternary, and the LTP histograms, are less

affected on the TC14 data set. Note that the color levels of pixels in an image will

be affected by the illumination condition. Two images with the same content but

different illumination conditions have very different grey-level color histograms and

correlograms. However, the comparison results of the color levels of neighboring pixels

are kept in some areas, because the illumination affects the neighboring pixels in the

same manner. Thus, the pattern features which are extracted from the comparison

results among color levels are less sensitive to the illumination changes than features

that are extracted directly from the color levels.

In Table 2.2, we show the classification results using the LTP histograms with

different scaling and neighboring parameters. We mark the numbers in bold when

the LTP histograms outperform all the other related features.

From the results in Table 2.2, we observe that the scaling and neighboring pa-

rameters affect the LTP histograms in the following aspects. The scaling parameter

is the number of the group after the quantization. The images are quantized into

continuous color blocks, which provide more occurrences of the neighboring pixel pair
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Table 2.2: Classification results for the LTP histograms with different scaling and
neighboring parameters

N size S TC06 TC13 TC14

3 27

256 89.4 77.4 48.9
128 91.7 79.1 47.0
64 91.7 81.5 45.7
32 93.8 81.0 42.1
16 94.7 75.6 40.1
8 93.1 64.0 31.5

5 243

256 96.3 81.9 54.8
128 96.3 82.8 54.5
64 97.5 84.7 52.4
32 97.5 82.6 49.6
16 97.5 80.7 45.9
8 95.4 71.2 36.5

8 6561

256 97.5 81.8 64.0

128 98.1 82.9 60.0
64 98.6 85.0 57.1
32 98.6 85.0 53.3
16 98.4 82.1 49.5
8 97.2 72.2 35.9

Note: We mark the numbers in bold when the LTP histograms outperform all the other
related features.
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with a same color level. A proper quantization smoothes the image into clustered

color blocks, and addresses the sparseness problem in the LTP histograms. However,

over-quantization loses too much image detail information, and as a result it becomes

difficult to distinguish two different texture images. Thus, the scaling parameter is

set as a large number for texture images. The experimental results in Table 2.2 show

that the highest precision is achieved when the scaling parameter is 64 for the TC06

and TC13 data sets, and 256 for the TC14 data set.

The neighboring parameter is the number of neighboring pixels that are included

in the LTP. Results show that the larger the neighboring parameter, the higher is the

retrieval precision. Including more neighboring pixels into the LTP features identifies

more patterns, which gives the LTP more discriminate power. Meanwhile, the feature

size is increasing from 27 for N = 3 to 6561 for N = 8. Thus, the neighboring

parameter provides a tradeoff between the features’ efficiency and effectiveness. When

N = 5, our LTP histograms gain comparable performance on the TC06 and TC14

data sets, and better performance on the TC13 data set with a smaller size compared

to the LBP histograms. When N = 8, the LTP histograms outperform the LBP

histograms on all these three data sets. For the applications that require fast running

speed, N = 5 is a good choice for the LTP histograms. Otherwise N is set as 8 to

provide the LTP’s best capability.

2.3.2 Retrieval on Generic Images

The Corel1K image data set [52] contains 1000 generic JPEG images in 10 classes,

with 100 images in each class. To extract features in grey level, all images are first

converted into 256 grey level images. Each image serves as a query image. The

retrievals are independent of each other. The performance of each feature is measured

by the Mean Average Precision (MAP) in Equation (1.14) in Section 1.4.2. The MAP

is the average of the precision at which each relevant document is retrieved. Two

images are relevant when they are in the same class, and are irrelevant otherwise.

In Table 2.3, we compare the MAP results of the retrievals with the grey level

histograms, the correlograms, the autocorrelograms, the LBP histograms, the soft

LBP histograms, the Ternary histograms, and the LTP histograms. The setting for

the correlograms and autocorrelograms is the same as the features in the Table 2.1.



43

The threshold values for the LBP soft histograms, and the local Ternary pattern his-

tograms are selected as the best performance one from 1 to 10. The scaling parameter

for LTP is 32, and the neighboring parameter is 8. We denote the LTP histograms

as LTP S32N8.

Table 2.3: MAP comparison for the grey level histograms, the correlograms, the auto-
correlograms, the LBP histograms, the soft LBP histograms, the Ternary histograms,
and the LTP histograms

feature size MAP
grey level histogram 256 0.305

correlogram 1024 0.371
autocorrelogram 64 0.304

LBP 256 0.437
soft LBP (d = 4) 256 0.445
Ternary (t = 1) 512 0.434
LTP S32N8 6561 0.498

The same results are shown by the MAP comparison as in the classification re-

sults in Table 2.1. All the features with spatial information outperform the grey level

histograms because that the spatial information improves the discriminating capa-

bilities of the features. The LBP and LTP histograms gain higher MAPs than the

correlograms and autocorrelograms because of the different orientation discrepancy

in the LBP and LTP. The LTP histograms outperform the LBP histograms and the

Ternary histograms because the LTP recognizes more fine-grained patterns.

Table 2.4 shows the MAP results that are achieved by the LTP histograms with

different scaling and neighboring parameters. The MAP is marked in bold when the

LTP histograms outperform all the other features.

We observe that both the scaling and neighboring parameters have similar effects

on the performance of the LTP histograms on both the texture data sets and the

generic image data set. The scaling parameter is the number of the quantization

color groups before extracting the LTP levels. A proper scaling operation smoothes

the image into clustering color blocks, and addresses the sparseness problem in the

LTP features. However, if the scaling parameter is too small, the original color space

is overly quantized, and images lose too much detail information. As the detail

information is less sensitive in the natural images than in the texture images, the
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Table 2.4: MAP comparison for the LTP histograms with different scaling and neigh-
boring parameters

N size S MAP N size S MAP N size S MAP

3 27

256 0.378

5 243

256 0.409

8 6561

256 0.444
128 0.376 128 0.415 128 0.450

64 0.373 64 0.425 64 0.460

32 0.404 32 0.449 32 0.498

16 0.391 16 0.441 16 0.483

8 0.359 8 0.425 8 0.464

scaling parameter is set comparably larger for natural images than for the texture

images. A suggested parameter is 16 or 32, for the LTP histograms that are applied on

natural images. The neighboring parameter has the same effects as in the experiments

on the texture data sets. When N = 5, our LTP histograms is smaller sized, but gains

higher MAPs than the LBP histograms. In this sense, LTP N5 is a good feature for the

applications which have strict requirements on running speed. Without compromising

the efficiency, N = 8 is suggested to maintain the best discriminating capability from

the LTP histograms.

The results on all four data sets show that the LBP and LTP features significantly

outperform the other histogram-based features. The performance of the LTP features

varies according to different neighboring and scaling parameters. However, the LTP

histograms are able to achieve better performance than the LBP histograms when

the LTP histograms are with a similar size as of the LBP histograms. When the size

of the LTP histograms is larger, the LTP histograms achieve better performance than

the LBP histograms with almost every setting of the parameters.

2.4 Summary

In this chapter, we have proposed a new image feature, the Local Triplet Pattern,

for image classification and retrieval applications. The LTP is inspired by the LBP

feature. An LTP level is generated from a 3 × 3 pixel block. The color level of the

pixel in the center is compared with the color levels of its neighboring pixels. The

comparison function in the LBP compares two color levels (a and b) and returns a

binary code (0, 1) to indicate two conditions, either a < b or a ≥ b. The function fails
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to distinct the conditions of a = b and a > b. We define the comparison function in the

LTP to return a triplet code (0, 1, 2) to represent these three conditions and extract

a finer-grained pattern. The sequence of triplet codes by comparing with the eight

neighboring pixels is converted to an LTP level. Moreover, we include two parameters,

a scaling parameter and a neighboring parameter to control the LTP’s discriminating

capability and efficiency. The scaling parameter addresses the sparseness situation

existing in the LTP histograms. The neighboring parameter enables the LTP feature

size to be a flexible length according to the specific application requirements. As the

LTPs provide spatial relations among the neighboring pixels in a fine-grained level,

the LTP histograms achieve better retrieval performance on both the texture image

data sets and generic image data set than the related histogram-based features.

Histograms extracted from an image can be either one-dimensional or multi-

dimensional. As the example in Figure 2.1, ci in the one dimensional histograms

is either the color levels in each color channel, e.g., the R, G, or B channel, or the

grey levels. ci in the multi-dimensional histograms is a vector with color levels in

different channels, such as the vector [R,G,B] in the RGB color space. All image

features that we have discussed in this chapter are extracted from grey-level images.

The features are small-sized and suitable for fast image retrieval.

Images, however, are usually color images, e.g., in RGB color space. How to

effectively utilize the color information in the images is the main problem in Chapter 3.

The high-dimensional histograms are very sparse. For example, the three dimensional

histogram of a RGB color image is of size 2563. Suppose the size of the image is

256 × 256. Lots of bins in the histogram will be zeros or close to zeros. Thus, how

to effectively use high-dimensional data is a persisting problem. Quantization on the

original color space or model-based solutions are often applied in literature to address

the sparsity problem. We will show that the Gaussian Mixture Models (GMMs) are

compact and effective representation of the distribution of the high-dimensional data

in the images.



Chapter 3

Gaussian Mixture Model-based Image Features

In Chapter 2, we discuss several grey-level histogram-based features, including the

grey level histograms, the correlograms, the autocorrelograms, the LBP histograms,

the soft LBP histograms, the Ternary histograms, and the proposed LTP histograms.

These histogram-based features are extracted from grey-level images and perform

highly efficient retrievals. However, the grey level information is usually not sufficient

for color image retrieval. Colors, e.g., the RGB colors, can be more important and

discriminative than the grey levels. One major difficulty of using the color information

lies in that the size of the color features are much larger than the grey-level features.

In this chapter, we discuss how to efficiently use the high-dimensional data such as

the RGB color information for image retrieval.

One simple way of utilizing the color information in an image is to use multi-

dimensional histograms to represent the distributions of the high-dimensional data.

However, such high-dimensional histograms are usually of a very large size and inef-

ficient for image matching. For example, the size of a three-dimensional RGB color

histogram is 2563. The Gaussian Mixture Model (GMM) [28, 43, 98, 99] is a very

good alternative to the histograms. The GMM is a mixture model with several Gaus-

sian components, which is used to model the empirical distribution of the data. For

instance, a GMM can be extracted from the RGB color of all pixels in an image to

represent the corresponding RGB color distribution in the image.

How to estimate a GMM from a set of observed data is the main problem we

investigate in this chapter. We first review the dominant GMM learning algorithm,

the Expectation-Maximization (EM) [15] algorithm. The local maxima problem for

the EM algorithm is discussed. When the initial parameters are not selected to be

close to the true distribution, the EM algorithm would converge to a local maximum.

In order to reduce the dependency on the initial parameter setting and avoid the local

46
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maxima, we then propose the Extended Mass-constraint (EMass) algorithm [38] for

estimating the GMMs. The proposed EMass algorithm removes the dependency on

the initial parameters, and thus avoids the local maxima. The related determinis-

tic annealing EM (DAEM) algorithm [97] also employs the deterministic annealing

method to avoid the local maxima. However, we observe that the DAEM algorithm

still has strong dependency on the initial parameters. We test our EMass algorithm

and compare it to the EM algorithm and the DAEM algorithm on both simulated

data and image data. The results from the simulated experiments show that the

EMass algorithm is much more stable than the EM and DAEM algorithm. The

EMass always converge to GMMs with high log-likelihood values, while the EM and

DAEM algorithms converge to GMMs depending on the initial parameters. From the

experiments on the image retrievals, it is shown that the GMMs estimated by the

EMass algorithm achieve higher precision than those GMMs learned by the EM and

DAEM algorithms.

3.1 Introduction to GMMs

GMMs are compact representations to approximate the data distributions. A GMM

is a mixture of several Gaussian components and is determined by a parameter set

including: components’ weights, means and covariance matrix, which is shown in

Equation (3.1),

g(y|Φ) =
K∑
k

wkgk(y|μk,Σk) (3.1)

where y is the observed data. gk is the kth Gaussian component with gk ∼ N(μk,Σk),

and wk is the weight of the kth component. To find the GMM for an image is to

determine the parameter set Φ = {wk, μk,Σk}, for k = 1, . . . , K.

The general formula for a one-dimensional Gaussian distribution N(μ, σ2) is:

N(μ, σ2) ∼ 1√
2πσ

exp− (y−μ)2

2σ2 (3.2)

where y is one-dimensional data, μ is the mean value, and σ2 is the variance. The mean

μ determines the center position of the distribution, and the variance σ2 determines

the shape of the distribution, as an example shown in Figure 3.1.
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Figure 3.1: One-dimensional Gaussian distribution example

A multi-dimensional Gaussian distribution N(μ,Σ) is defined by

N(μ,Σ) ∼ 1

(2π)
d
2 |Σ| 12

exp

(
−(y − μ)TΣ−1(y − μ)

2

)
(3.3)

where y is a d-dimensional data vector, μ is a d × 1 mean vector, and Σ is a d × d

covariance matrix. An example of a two-dimensional Gaussian function (with d = 2)

is shown in Figure 3.2.
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Figure 3.2: Two-Dimensional Gaussian distribution example

We now provide an example to show how GMMs can represent the data distribu-

tions in images. Figure 3.3 is an image. Figure 3.4 shows its grey level histogram,

and the GMM with 4 components estimated from the grey level data. Figure 3.5

shows its two-dimensional histograms for the B and R colors, and the GMM with
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8 components estimated from the color data. The example clearly shows that the

GMMs are able to accurately approximate the data distributions.

Figure 3.3: An image of size 256× 384
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Figure 3.4: One-dimensional histogram (grey level) of the image in Figure 3.3, and
its GMM estimation with 4 components

3.2 Estimating GMMs via the EM Algorithm

Without loss of generality, assume that we are looking for a statistical model to

represent a group of one-dimensional image data, such as the grey levels. Let Y

denote the observed data sequence Y = {y1, . . . , yn}, where n is the sample size.

Given a set of models F on Rd, we are looking for a model g(y) ∈ F , which best
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Figure 3.5: Two-dimensional histogram (color levels in BG channels) of the image in
Figure 3.3, and its GMM estimation with 8 components
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represents the distribution of the given data. If g(y) depends on a set of parameters Φ,

g(y) is denoted as g(y|Φ). One of the popular solutions is to estimate the parameter

set to maximize the log-likelihood function. The log-likelihood function L(Φ) given

the observed data Y is defined as

L(Φ) = log g(y|Φ) = log
n∏

i=1

g(yi|Φ) =
n∑

i=1

log g(yi|Φ) (3.4)

where g(y|Φ) is the model density function that describes the distribution of the ob-

served grey level data Y in the image, and Φ is the parameter set. As we assume that

the g(y|Φ) is a Gaussian distribution, the parameter set Φ consists of two parameters:

the mean μ and the variance σ2. We know that the sample mean and sample variance

are the set of parameters which maximizes the log-likelihood function. We can easily

calculate the sample statistics, i.e., sample mean, sample variance by Equations (3.5)

and (3.6).

μ = E[Y ] =

∑n
i=1 yi

n
(3.5)

σ2 = E[(Y − μ)2] =

∑n
i=1 (yi − μ)2

n
(3.6)

where μ is the mean, σ2 is the variance, and E[.] is the expectation function.

However, if we examine the grey level histogram, such as the example shown in

Figure 3.4, we may notice that the histogram is usually not a distribution that can be

modeled by only one Gaussian component, but might be modeled by several Gaussian

components mixed together. For example, an image with two colors may have two

peaks in the histogram, which is modeled better by a GMM with two Gaussian

components.

Using GMMs as feature representations has been widely conducted for differ-

ent applications in many research areas. The Expectation-Maximization (EM) algo-

rithm [15] is the dominant algorithm for estimating GMMs. The EM algorithm esti-

mates a GMM with the highest log-likelihood by two steps: E step and M step. The

E step calculates the conditional expectation of the log-likelihood given the observed

data. The M step updates the GMM parameters by maximizing the expectation of

the log-likelihood.

The log-likelihood function is defined in Equation (3.4). Assume that the g(y|Φ)
is a GMM. A random variable Z is introduced to indicate from which Gaussian
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component that an observation yi of Y is generated. The data is then noted as

X = {Y, Z} = {y1, z1, . . . , yn, zn}, where zi, i = 1, . . . , n is a vector of length K, and

K is the total number of components in the GMM. zi(k), k = 1, . . . , K is a value

between 0 and 1, indicating that yi is generated by the kth component with a weight

zi(k). Note that the summation of the zi(k), k = 1, . . . , K for one observation yi is 1,

i.e.,
∑K

k=1 zi(k) = 1. The complete log-likelihood is defined as:

Lc(Φ) = log f(y, z|Φ) =
n∑

i=1

log f(yi, zi|Φ) (3.7)

where f(y, z|Φ) is related to the g(y|Φ) via marginalization g(y|Φ) = ∫
f(y, z|Φ)dz.

As we have no information of the hidden variable Z, the log-likelihood L(Φ)

cannot be maximized directly. The EM algorithm obtains a set of parameters Φ

that maximizes L(Φ) by making use of the complete log-likelihood Lc(Φ) [22]. The

parameter set Φ is iteratively updated by maximizing the expectation of the complete

log-likelihood Q(Φ′|Φ)
Q(Φ′|Φ) = E[log f(y, z|Φ′)|y; Φ] =

∑
y∈Y

∫
z∈Z

k(z|y; Φ) log f(y, z|Φ′)dz (3.8)

where Φ is the current parameters, Φ′ is the parameters to be estimated. k(z|y; Φ)
is the conditional probability function of the hidden variable z given the observed y,

and denoted as

k(z|y; Φ) = f(y, z|Φ)∫
z∈Z f(y, z|Φ)dz (3.9)

The E step and M step of the EM algorithm are:

E step:

Q(Φ|Φ(t)) = E[log f(y, z|Φ)|y; Φ(t)] (3.10)

M step:

Φ(t+1) = argΦ maxQ(Φ|Φ(t)) (3.11)

where t is the iteration index.

Dempster et al.[15] indicate that the log-likelihood is non-decreasing in each itera-

tion of the EM algorithm, i.e., each iteration of the EM algorithm is a monotonically

increasing process. If the expected complete log-likelihood Lc(Φ) has several maxima,

the EM algorithm converges to either a global or a local maximum depending on the

choice of initial value.
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3.3 Proposed GMM Estimation Algorithm: Extended Mass-constraint

Algorithm

The EM algorithm is an iterative process which updates GMM parameters by main-

taining a non-decreasing log-likelihood in each iteration. The EM algorithm does not

guarantee to obtain the global maximum, because usually the likelihood function is

not strictly concave. Under such cases, the non-decreasing EM algorithm will result

in a local maximum or a global maximum depending on the initial parameters. In

order to estimate a better maximum, the deterministic annealing algorithm [76, 97]

is applied to estimate the GMMs from data.

The deterministic annealing method is first included for data clustering and vector

quantization [76]. In this section, we apply the deterministic annealing method to

avoid the local maxima problem in the EM algorithm. Our algorithm is motivated by

an annealing algorithm for data clustering and vector quantization, which uses the

deterministic annealing method and is denoted as the mass-constraint algorithm [76].

The mass-constraint algorithm estimates a group of representative data vectors for

clustering data, or a codebook for vector quantization. We extend the mass-constraint

algorithm to solve the GMM estimation, which will find the parameter set (weights,

mean vectors, and covariance matrix) of a GMM that minimizes the distortion of

using the GMM to represent the distribution of the data.

3.3.1 Algorithm Description

We redefine the GMM estimation problem from a group of observed data as minimiz-

ing an expected distortion or cost function. The Extended Mass-constraint (EMass)

algorithm for GMM estimation is derived as follows. Let Y = {y1, . . . , yn} denote

observed data vectors, and gk, 1 ≤ k ≤ K denote the Gaussian components to be

estimated. K is the number of components. The expected distortion of the GMM

given the observed data is defined as in Equation (3.12).

D(g|y) =
n∑

i=1

K∑
k=1

p(yi, gk)dL(yi, gk) =
n∑

i=1

p(yi)
K∑
k=1

p(gk|yi)dL(yi, gk) (3.12)

where g is the GMM to be estimated. p(yi, gk) is the joint probability of an observed

data vector yi and a Gaussian component gk. The conditional probability p(gk|yi) is
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the association probability of a component gk given an observed data yi. dL(yi, gk) is

the distance from a data vector yi to a Gaussian component gk.

dL(yi, gk) =
1

2
(d log(2π) + log |Σk|+ (yi − μk)

′Σ−1
k (yi − μk)) (3.13)

where d is the dimensionality of the data vector yi. μk and Σk are the parameters

for the k-th Gaussian component gk. Note that the distance dL is the negative log-

likelihood function. Thus to minimize the distortion function D is equal to maximize

the log-likelihood in the EM algorithm.

Unlike the EM algorithm which maximizes the log-likelihood without any con-

straints, we apply constraints on the minimization. To find the unknown joint prob-

ability p(yi, gk), we choose the one with the maximum entropy. The entropy of the

p(yi, gk) is

H = −
n∑

i=1

K∑
k=1

p(yi, gk) log p(yi, gk) (3.14)

Minimizing the distortion D and maximizing the entropy H under the constraint

that
∑K

k=1 p(gk) = 1 lead to minimize a Lagrangian

F = D − TH (3.15)

where T is named as the temperature parameter [76].

Minimize the Distortion

The minimization is performed by two steps. First, we fix the Gaussian components

and minimize the Lagrangian F with respect to the association probability p(gk|yi).
According to the derivation in [76], this step calculates the probability p(gk|yi) as

p(gk|yi) =
p(gk) exp

(
−dL(yi,gk)

T

)
Zyi

(3.16)

where Zyi is partition function as:

Zyi =
K∑
k=1

p(gk) exp

(
−dL(yi, gk)

T

)
(3.17)
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Putting Equation (3.16) into Equation (3.15), we have the minimized Lagrangian

F ∗ with respect to the probability p(gk|yi) as:

F ∗ = min(F )

= −T

n∑
i=1

p(yi) log
K∑
k=1

p(gk) exp

(
−dL(yi, gk)

T

)
(3.18)

Then we fix the association probability p(gk|yi) and minimize the Lagrangian F ∗

with respect to the GMM, which gives

1

n

n∑
i=1

p(gk|yi) d

dgk
dL(yi, gk) = 0 (3.19)

where p(gk|yi) is the association probability in Equation (3.16).

In the mass-constraint algorithm, K. Rose [76] updates the representative vector

(μ) for each cluster iteratively. We need to update both the mean and the covariance

matrix for all components in GMMs in each iteration. To update the mean μk for

each component gk, we put the distance Equation (3.13) into Equation (3.19). The

parameters μk, Σk that minimize F ∗ satisfy:

n∑
i=1

p(yi, gk)
∂

∂μk

(
d log(2π) + log |Σk|+ (yi − μk)

′Σ−1
k (yi − μk)

)
= 0

n∑
i=1

p(yi, gk)
∂

∂Σk

(
d log(2π) + log |Σk|+ (yi − μk)

′Σ−1
k (yi − μk)

)
= 0

Thus the mean μk and covariance matrix Σk are updated as

μk =

∑n
i=1 yip(yi)p(gk|yi)

p(gk)
(3.20)

Σk =

∑n
i=1(yi − μk)(yi − μk)

Tp(yi)p(gk|yi)
p(gk)

(3.21)

where

p(gk|yi) =
p(gk) exp

(−dL(yi,gk)/T )∑K
i=1 p(gi) exp

(−dL(yi,gi)/T )
(3.22)

p(gk) =
n∑

i=1

p(yi)p(gk|yi) (3.23)

In summary, the EMass algorithm starts from a parameter T defined in Equa-

tion (3.15), and updates GMMs iteratively by two steps.
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Step 1. fix the component parameters, and update the association probabilities

by Equation (3.16).

Step 2. fix the association probabilities, and optimize the component parameters

by Equations (3.20) and (3.21).

The GMMs are updated by these two steps at a given parameter T until the

change of the distortion is smaller than a predefined threshold. We consider the

updating process at the T is converged. The parameter T is then decreased to a

smaller number, and the GMMs are updated by the two steps again. The iteration

keeps updating until the T reaches 0, when the Lagrangian F is equal to D. Thus,

the distortion D is minimized in the end.

Phase Transition and the Parameter T

The parameter T starts at a high number, and iteratively lowered at each round until

reaching 0. When T is a large number, the association probability of the data and

each Gaussian component is uniform. At the early stage, the uniform association

probability makes the mixture components evenly cover all the data vectors. The

objective function F is minimized mainly by maximizing the entropy. The local

maxima due to improper initial data are then avoided. When T is lowered, the

association probabilities of a data to different components start to vary according

to the distance from the data to the Gaussian components. The objective function

F is then minimized by the combination of the distortion and entropy. When the

parameter T reaches 0, the distortion is minimized.

The EMass algorithm starts from one Gaussian component at a given T , and

increases the number of components at a determined T which is decided by the

component covariance matrix. The step to find the critical point to increase the

number of Gaussian components is called phase transition check. According to the

transition condition in [76], a Gaussian component gk is split in two components

when T is lower than a critical point Tc. The critical point is twice of the largest

eigenvalue of the component covariance matrix Σk. At the initial stage, we only have

one component. The initial parameter T is provided by the initial covariance matrix

Σ1, and set as a value larger than 2λmax(Σ1).
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The Algorithm

The detailed steps of the EMass algorithm for estimating GMMs are given in Algo-

rithm 1. The mean and covariance matrix for the k-th component gk are updated as

Algorithm 1 Extended Mass-constraint algorithm

Input: data Y = {y1, . . . , yn}, where n is the number of all data vectors,

number of mixture components Kmax,

minimum temperature Tmin.

Output: Gaussian components weight p(gk), mean μk, and covariance matrix Σk,

k = 1 to Kmax.

{Estimate Gaussian mixture model that best describes data Y = {y1, . . . , yn}}
1: Initialize: K = 1, μ1 =

∑n
i=1 ynp(yi), Σ1 = cov(y), p(g1) = 1, and initial T =

2λmax(Σ1);

2: repeat

3: repeat

4: for every k = 1, . . . , K do

5: update mean μk

6: update covariance matrix Σk

7: end for

8: perform singularity check on each component

9: until converged

10: Cooling step: T = αT, 0 < α < 1.

11: if k < Kmax then

12: PhaseTransitionCheck

13: end if

14: until T ≤ Tmin

in Equations (3.20) and (3.21).

The phase transition check is listed in Algorithm 2. In the splitting step on line

4, the original component to be split is separated in two components. The weight is

split in half for each component. The mean of the new Gaussian component is shifted

from the mean of the original component by adding a random offset. The covariance

matrix is the same as the matrix of the original component.
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Algorithm 2 Phase Transition Check

Input: A GMM with k components gi, . . . , gk;

current temperature T ;

Output: An updated GMM.

{Check whether components should be separated into two components to be

updated}
1: for every i = 1, . . . , k do

2: Calculate critical temperature Tc for component gi

3: if T ≤ Tc then

4: split the component gi into two components;

5: k = k + 1;

6: end if

7: end for

The singular check on line 8 in Algorithm 1 is to eliminate singular components.

Unlike clustering or vector quantization [76], which returns a representative or mean

vector for each group, the GMM estimation returns parameters with both the mean

vectors, and covariance matrix. In some cases, the covariance matrix encounters

singular problems, at which point the algorithm will fail to find the correct GMMs.

The singular matrix happens when all elements in a component are too similar to each

other, which makes the component narrow in a small gap, and more like a constant.

We propose to avoid this problem by singular check in each iteration, maintaining

a list with all singular matrix components, removing all singular component related

data, and updating the GMM components parameters with the remaining data. All

parameters are reset to initial values, and the algorithm goes back to the beginning

to train a model based on the remaining data.

3.3.2 Related Work

The deterministic annealing method has been applied to the EM algorithm to avoid lo-

cal maxima in other works, e.g., the Deterministic Annealing EM algorithm (DAEM).

The DAEM algorithm reformats the maximum likelihood estimation into optimizing

the expected complete log-likelihood with certain constraints. Let Y denote observed
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data vectors, and Z denote the missing data as defined in the EM algorithm. The

objective is to maximize the log-likelihood function,

Q(Φ′|Φ) = E[log f(y, z; Φ′)|y; Φ] =
∑
y∈Y

∫
z∈Z

k(z|y; Φ) log f(y, z; Φ)dz (3.24)

and also maximize the entropy

H = −
∑
y∈Y

∫
z∈Z

k(z|y; Φ) log k(z|y; Φ)dz (3.25)

under the constraint: ∫
z∈Z

g(z|y; Φ)dz = 1 (3.26)

The optimization is to maximize the lagrangian

F = Q+
1

β
H + λ(

∫
k(z|y; Φ)dz − 1) (3.27)

where β and λ are Lagrange multipliers.

By maximizing the lagrangian with respect to the density function k(z|y; Φ), we
have

k(z|y; Φ) =
1

Z

∑
z

f(y, z|Φ)β (3.28)

where Z is the partition function that satisfies

Z =

∫
z∈Z

f(y, z|Φ)βdz

The DAEM algorithm is summarized as performing the following E and M steps

iteratively at different β, which starts from a small number close to 0, and increases

to 1 progressively by multiplying a constant larger than 1, e.g., 1.1.

E step:

U(Φ|Φ(t)) = E[− log f(y, z|Φ)|y; Φ(t)] +
1

β
E[− log k(z|y; Φ)|y; Φ)] (3.29)

M step:

Φ(t+1) = argmax
Φ

U(Φ|Φ(t)) (3.30)

where t is the iteration index.
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From Equation (3.28), we can see that two special cases of β are 0 and 1. If β = 0,

the posterior probability is a uniform distribution. If β = 1, the posterior probability

is the same as the EM algorithm. When β changes from 0 to 1, the effect of original

posterior density on the parameter estimation is increasing as well. The posterior

density k(z|y; Φ) is not reliable at the early training stage, but is getting stable while

we are approaching the final solution. Thus the initial β is set as a small number,

and increased progressively. The change of β makes the algorithm more stable.

The objective function in Equation (3.27) is the same as the objective function

in Equation (3.15) in the EMass algorithm. To minimize the distortion by using

the distance function dL in Equation (3.13) actually maximizes the log-likelihood.

Meanwhile, maximizing the joint entropy in Equation (3.14) is also the same to max-

imize the conditional entropy in Equation (3.25), as the source entropy H(Y ) =

−∑n
i=1 p(yi) log p(yi) in the joint entropy is a constant given the data and can be

dropped. The constraint that the component weights must sum to 1 is the same for

both algorithms.

The difference between these two algorithms is in the following two aspects: the

varying range of the parameter T and β, and the phase transition in the EMass

algorithm. In the DAEM algorithm, the parameter β updates from a small number

close to 0 and stops at 1. When β is 1, we can see that the final objective function

F in the DAEM algorithm is equal to maximize the summation of the log-likelihood

and the conditional entropy. In the EMass algorithm, the parameter T starts from an

initial large number and decreases to 0 finally. Thus the final objective is to minimize

the distortion, which is equal to maximize the log-likelihood only.

Second, the EMass algorithm applies the phase transition to find the best Tc to

split a component into two components. Starting from one Gaussian component, the

initial parameter T is decided by the component covariance matrix. The number of

components is increased at the proper time which also depends on the T and the

component covariance matrix. Thus the dependency on the initial data is removed.

This is quite important to ensure that two components will not be overlapped because

of a too large parameter T . In the DAEM algorithm, no similar scheme is included.

How to choose good initial parameter β is not discussed. How to decide the initial β

is not a trivial problem, as we will demonstrate in the experiments in Section 3.4.1.
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Improper initial β will either return GMMs with all components overlapped to each

other, or fail in GMMs with local maxima.

As a summary, the suggested initial parameters for the DAEM algorithm include:

the number of Gaussian components K, K groups of Gaussian component parameters

(weight, mean, covariance matrix), and the initial β. To estimate the best GMM from

the data, the DAEM needs to take several runs starting with a different initial β. The

total runs are the number of Gaussian components from 1 to K times the number

of the possible choices of the initial β. Compared to this, the EMass algorithm only

requires one initial parameter K. Starting from one component, the parameter T

is decided by the component covariance matrix. The EMass algorithm updates the

number of Gaussian components depending on the Gaussian component’s covariance

matrix, and stops when the T reaches the minimal value. As the EMass algorithm

always starts from the definite parameters, the algorithm always converges to the

same results. Thus, the EMass algorithm is more stable and efficient than the DAEM

algorithm.

3.3.3 Three Algorithms

The three algorithms, the EM, the DAEM, and the EMass algorithms are introduced

for estimating GMMs from a group of data. Their differences lie in that these three

algorithms have different initial and final objective functions. The EM algorithm

maximizes the expected complete likelihood function to obtain the resulting model

parameters. The DAEM algorithm starts from maximizing the conditional entropy,

and finalizes by maximizing the summation of the expected log-likelihood function

and the entropy. The EMass algorithm starts from maximizing the joint entropy, and

finalizes by minimizing the expected distortion function. These differences are listed

in Table 3.1.

Table 3.1: Difference among the EM, the DAEM, and the EMass algorithms
algorithm initial objective final objective

EM maximize log-likelihood maximize log-likelihood
DAEM maximize conditional entropy maximize log-likelihood +

maximize entropy
EMass maximize joint entropy minimize distortion
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From this Table we can clearly see that the objective of the EM algorithm is

the maximization the expected objective function, while the DAEM and EMass al-

gorithms starts from maximizing entropy and stops at different objectives to avoid

local maxima problems. We will compare their performance by the experiments in

the following section.

3.4 Experiments

We provide two groups of experimental results in this section. The first group of

experiments is to estimate a four component GMM from a set of simulated data. The

EM, DAEM, and EMass algorithms are applied to train GMMs from the data, and

the log-likelihoods are compared.

The second group of experiments is conducted for the Corel1K image data set [52].

The experiments are configured as in Section 2.3.2. These three algorithms are then

applied to train GMMs from RGB color data in images. We compare the MAP results

of the retrievals by using the GMMs estimated by these three algorithms.

3.4.1 Experiments on Simulated Data

We compare the performance of the EM, DAEM, and EMass algorithms on a

simulation data set. The simulation test data are 1600 two-dimensional data gener-

ated by 4 Gaussian components. The parameters of the 4 Gaussian distributions are

shown in Table 3.2, where the αk, k = 1, . . . , 4 are the weights, the μk, k = 1, . . . , 4

are mean, and the Σk, k = 1, . . . , 4 are covariance matrix. The log-likelihood value

of all simulated data with the given 4 Gaussian components is -6063. The initial

parameters for the EM, and the DAEM algorithms are also listed in Table 3.2. Four

means are chosen first. The weight and covariance matrix are calculated based on

the mean values.

The parameters of the GMMs with 4 components estimated by the EM, DAEM,

and EMass algorithms are listed in Table 3.3. Figure 3.6 to 3.8 show the corresponding

GMMs estimated from the simulation data by these three algorithms respectively.

The data are shown as red dots in each Figure. The Gaussian components of GMMs
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Table 3.2: True and initial parameter sets in simulation experiments
Para. True values Initial Para. True values Initial
α1 0.1875 0.05

Σ1

(
0.5 0
0 1

) (
0.1 −0.03

−0.03 1.94

)
α2 0.3125 0.10
α3 0.25 0.55

Σ2

(
0.5 0
0 1

) (
0.08 −0.06
−0.06 1.61

)
α4 0.25 0.30
μ1 (0 0)’ (-1 0)’

Σ3

(
0.5 0
0 1

) (
1.6 0.93
0.93 1.78

)
μ2 (0 5)’ (0 0)’
μ3 (2 7)’ (2 6)’

Σ4

(
0.5 0
0 1

) (
1.8 0
0 1.03

)
μ4 (4 0)’ (1 0)’

are represented by ellipses, with the center as the component mean, and the shape

and size set by the component covariance matrix.
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Likelihood by EM = −6360.569

Figure 3.6: Simulation experimental results by the EM algorithm

Figure 3.6 shows the GMM trained by the EM algorithm. Two components of the

four components are in the first group of data (group 1), and the other two components

cover the remaining three groups of data. Such results are caused by the improper

initial data with two starting components with mean vectors as (−1, 0)′, (0, 0)′. These

two components are both closer to the first group of data, and thus the GMM by

the EM algorithm limits two components in group 1, and finally converges to the

local maximum. This local maxima problem is what we need to solve by applying
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Table 3.3: Parameters estimated by the EM, the DAEM, and the EMass algorithms
in simulation experiments

Parameters EM DAEM1 EMass
α1 0.033 0.188 0.189
α2 0.082 0.306 0.307
α3 0.548 0.256 0.254
α4 0.337 0.250 0.250
μ1 (-0.847, 0.309)’ (0.013 -0.008)’ (0.014 0.008)’
μ2 (-0.012 0.585)’ (-0.093 5.023)’ (-0.105 5.037)’
μ3 (0.880 6.00)’ (1.986 7.030)’ (2.019 7.051)’
μ4 (3.071 -0.066)’ (4.025 -0.050)’ (4.026 -0.050)’

Σ1

(
0.091 0.030
0.030 1.818

) (
0.488 −0.029
−0.029 0.977

) (
0.487 0.026
0.025 1.001

)

Σ2

(
0.113 −0.113
−0.113 2.511

) (
0.496 −0.045
−0.045 0.924

) (
0.464 −0.062
−0.062 0.874

)

Σ3

(
1.579 1.007
1.007 1.849

) (
0.502 0.061
0.061 0.995

) (
0.447 0.017
0.017 0.957

)

Σ4

(
3.127 0.071
0.071 1.000

) (
0.488 0.016
0.016 1.054

) (
0.484 0.015
0.015 1.052

)
Log-likelihood -6360.6 -6055.8 -6056.7

1: This group of results is the best results with initial parameter β = 0.6. Note that the
initial β starts from a number between 0.1 and 0.9 with an interval 0.1.
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Figure 3.7: Simulation experimental results by the DAEM algorithm
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Figure 3.8: Simulation experimental results by the EMass algorithm

the deterministic annealing method. Both the DAEM and the EMass algorithms

converge to the GMMs with higher log-likelihoods, which are shown in Figure 3.7

and 3.8. The local maximum caused by the initial data is avoided. The resulting

GMMs show four components with each component covering one group of data.

The results in Table 3.3 show that the DAEM algorithm achieves the highest log-

likelihood among these three algorithms. However, we also notice that the DAEM

algorithm is very sensitive to the choice of the initial parameter β. Figure 3.9 and 3.10

provide two examples that the DAEM algorithm fails to find the correct 4 components

with an improper initial parameter β, 0.3 and 0.8. When the β starts from a low

value (0.3), the 4 components are overlapped into one component. When the β starts

from a high value (0.8), the local maxima cannot be solved by the annealing method.

The results indicate that the DAEM has strong dependency on the initial parameter

β, which is the main problem we need to solve by applying the annealing method.

As no prior information is available to decide the initial value of β, we have to run

the DAEM starting from different β and choose the final GMM with the highest

log-likelihood. This solution is not efficient.

Figure 3.11 shows the log-likelihood results of 50 runs of each algorithm. The

training data is the same 1600 data vectors generated by the parameters in Table 3.2.



66

−3 −2 −1 0 1 2 3 4 5 6 7
−4

−2

0

2

4

6

8

10

1st dimension

2nd
 d

im
en

si
on

group 1

group 2

group 3

group 4

(a)Likelihood by DAEM = −7313.552, beta=0.3

Figure 3.9: Simulation experimental results by the DAEM algorithm. (a): β starts
from 0.3.
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(b)Likelihood by DAEM = −6166.445, beta=0.8

Figure 3.10: Simulation experimental results by the DAEM algorithm. (b): β starts
from 0.8.
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GMMs are trained by these three algorithms, and the results are shown in 3 bars

with each indicating the log-likelihoods of the GMMs estimated by each algorithm

for 50 times. The height and value of the bar show the range of the log-likelihoods,

and the cross in the bar center is the average log-likelihood of the 50 runs. The initial

parameters, e.g., weight, mean and covariance matrix, are randomly generated. The

parameter β for the DAEM algorithm is chosen as 0.6 as suggested by the results

in Table 3.3. The EM algorithm show strong dependency on the initial parameters.

The log-likelihoods of the GMMs fall into a wide range with different values. The

results are dependent on the initial parameters. The DAEM algorithm obtains average

higher log-likelihoods than the EM algorithm. The average log-likelihood is much

closer to the highest log-likelihood. However, in some cases, the DAEM algorithm

converges to the GMMs with lower log-likelihoods. These results indicate that the

choice of the β and the initial Gaussian components affects the DAEM results. Despite

the dependency on the parameter β, the dependency on the initial parameters, e.g.,

weight, means and covariance matrix, is reduced but not eliminated by applying the

annealing method in the DAEM algorithm. Clearly, the EMass algorithm is the most

stable algorithm. For all the 50 runs, the EMass converges to the GMMs with the

same log-likelihood, which is very close to the true value.

EM DAEM EMass
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−6200
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Figure 3.11: The log-likelihood of the GMMs estimated by using the EM, the DAEM,
and the EMass algorithms for 50 runs
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3.4.2 Retrieval on Generic Images

We evaluate the performance of the image retrieval by using the GMMs estimated

from the RGB data in images. The GMMs are estimated by the EM, the DAEM,

and the EMass algorithm for the Corel1K image data set [52], which contains 1000

generic JPEG images in 10 classes, with 100 images in each class.

For each image, the RGB color data is represented by a GMM which is estimated

by using the EM, DAEM and EMass algorithms. The EM algorithm estimates the

GMMs with different number of components from 1 to 16, and selects the GMMs

with the highest log-likelihoods. The DAEM algorithm also estimates the GMMs

with different number of the components ranging from 1 to 16. In addition, for each

number, we run the DAEM with an initial parameter β starting from 0.1 to 0.9 with

an interval 0.1. The final GMMs are the ones with the highest log-likelihoods. The

EMass algorithm estimates the GMMs with maximum 16 components.

The distance between two GMMs are measured by the unscented transformed

(UT) based approximation distance measure [28]. Given two Gaussian Mixture Mod-

els f =
∑i

i=1 αiN(μ1,i,Σ1,i), and g =
∑m

i=1 βiN(μ2,i,Σ2,i). The UT distance measure

between f and g is defined as:

UT (f, g) � 1

2d

i∑
i=1

αi

2d∑
k=1

log g(xi,k) (3.31)

xi,k = μ1,i + (
√
dΣ1,i)k, k = 1, . . . , d (3.32)

xi,d+k = μ1,i − (
√
dΣ1,i)k, k = 1, . . . , d (3.33)

where d is the feature dimensionality, and d = 3 for the RGB color space.

The performance is compared to the RGB histograms and the RGB 3D histograms.

The RGB histograms are three 256-bin histograms extracted from the R, G, and

B channel respectively. The RGB 3D histograms are three-dimensional histograms

generated from RGB channels together. The color levels in each channel are uniformly

quantized into 8 groups, and the 3D histograms are of the size of 83 = 512. Similarities

between two histograms are calculated by the KL divergence in Equation (1.9) in

Section 1.3.3. The MAP comparison results are shown in Table 3.4.

From the comparison results in Table 3.4, we observe that the GMMs estimated

by the EMass algorithm gain higher retrieval precision than the RGB histograms.
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Table 3.4: MAP comparison results with retrievals using different features
Features MAP

Histogram-based RGB histogram 0.398
RGB 3D 0.447

GMM model-based EM 0.420
DAEM 0.433
EMass 0.481

The RGB histograms are three separate histograms in each R,G,B channel. Thus

the joint information of the three channels is missing. The RGB 3D histograms lose

some information because of the quantization. The quantization is necessary though,

because the original histogram size is 2563. The histogram representation is not

suitable for such a large size, while the GMMs can represent the 3D RGB data in its

original space.

The GMMs trained by the EMass algorithm achieve higher MAP results than the

GMMs trained by the EM and DAEM algorithms. These results are consistent with

the results from the simulation experiments. The EMass algorithm is more stable and

always achieves GMMs with high log-likelihoods, while the EM and DAEM algorithms

converge to the global or local maxima depending on how well the initial parameters

are.

3.5 Summary

In this chapter, we present the Extended Mass-constraint (EMass) algorithm to es-

timate GMMs from data. The EMass algorithm converges to a maximum which has

no dependence on the initial parameters. The local maxima problem in the EM al-

gorithm is addressed by the deterministic annealing method in the EMass algorithm.

Thus the GMMs estimated by the EMass algorithm are more stable than the EM

algorithm. Through the specific choice of the parameter and the phase transition,

the EMass algorithm is more stable and efficient than the related DAEM algorithm.

We also show that the estimated GMMs are a good and compact representation

for high-dimensional data for image retrieval. We test the performance of the GMMs

trained from RGB three-dimensional data. The experimental results show that the

GMMs trained by the EMass algorithm achieve much higher precision than the GMMs
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trained by the EM algorithm and the DAEM algorithm.

We show that the GMMs are effective representations for high-dimensional data

when the histograms are not available. However, the performance of the GMMs

depends on how accurate the GMMs can represent the true data distributions. Thus,

two problems are intrinsic and difficult to solve. First, the accuracy of how the GMMs

can represent the distribution of the data is dependent on the size of data. The GMM

estimation algorithm cannot converge to a good result on small sized images. The

data in an image with size of 384×256 as in our experiments is still not enough for the

2563 feature space. Second, we make a strong assumption that the distribution of the

multi-dimensional data is a mixture of Gaussian. The method would fail if the data

do not have the GMM properties. How to test and evaluate the multi-dimensional

data is a GMM distribution is a very difficult problem.

Still working on how to utilize high-dimensional feature data in images, we propose

an efficient retrieval method in the next chapter. Motivated by image compression

algorithms, we present a retrieval method in the DCT domain based on the hypothesis

testing. The method is derived by solid theoretical reasoning, and shows very good

performance on image matching.



Chapter 4

JPEG Image Retrieval

In Chapter 3, we show that using the GMMs to model the RGB color information

in the images achieves promising performance for image matching. In this chapter,

we continue discussing how to effectively utilize the color information in the images.

Although the RGB color space is one of the most popular color spaces, more and more

images are in different color spaces and in compressed formats, such as the JPEG and

JIFF [42], etc. Taking the JPEG standard as an example, the YCbCr color space

is adopted instead of the RGB color space. More importantly, as images are in

compressed formats, we should consider whether and how to extract image features

directly from the compressed domain or partially decompressed data for efficiency.

Following this idea, we first show related work for image matching in the com-

pressed domain. From the review, we notice an important problem in these matching

methods in literature. The choices of the features and the distance measurement to

compare the features are usually two separate decisions. The design involves a fair

amount of heuristic decisions, especially for feature comparison.

In order to reduce the heuristics matter of image matching, we propose an image

retrieval scheme (DCT2KL) [39] based on the hypothesis testing. The feature extrac-

tion and distance measure are chosen as one whole decision. The DCT2KL algorithm

uses the Discrete Cosine Transform (DCT) coefficients restored by partially decod-

ing JPEG images, and derives distance measure accordingly. Given a query image,

we form a hypothesis for each target image that its DCT coefficient sequences are

emitted from the same sources as the corresponding sequences in the query image.

Testing these hypotheses by measuring the log-likelihoods eventually yields a simple

yet efficient scheme that ranks each target image according to the Kullback-Leibler

(KL) divergence between the empirical distributions of the DCT coefficient sequences

in the query image and those in the target image. The detailed steps and derivations

are introduced. The performance of the proposed scheme shows that our scheme

71
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achieves consistently better retrieval results than the related methods in literature.

4.1 JPEG Image Standard

Image matching in CBIR consists of indexing and retrieving images based on their

content information. A typical image retrieval system first extracts various features,

such as color, texture, and shape, from images. The similarity between two images

is measured by comparing these features. A persisting challenge in designing these

feature-based CBIR systems is to identify and extract effective features for retrieval.

Further complicating the design task are the following two facts: first, the number of

images to be retrieved is ever rapidly growing, and second, most of these images are

stored in compressed format like the popular JPEG. It is thus important to consider

image matching by using features extracted directly from compressed or partially

decoded images, in particular, the JPEG images.

JPEG(Joint Photographic Expert Group) standard [42] is one of the most popular

image formats currently. Most images, whether in an image database or online, are

JPEG images because the JPEG standard provides both high compression rate, and

good image quality. For example, a 384×256 Bitmap image without compression and

its corresponding JPEG file are shown in Figure 4.1. We could hardly tell the visually

difference between the two images. However, the Bitmap image is approximately with

size 384× 256× 3 = 294.912k bytes, and its JPEG file is about 34.7k bytes.

The JPEG standard is a DCT-based coding scheme, which encompasses two com-

ponents, encoder and decoder. The encoder compresses an uncompressed image into

JPEG format, and the decoder does the opposite work.

4.1.1 JPEG Encoder

The JPEG encoder diagram is shown in Figure 4.2. The encoder usually consists of

four steps as follows.

Step 1: YCbCr Space and Level Shifting

Uncompressed images are in the RGB color space with the R, G, B channel, with each

indicates the color Red, Green, and Blue in the image. The first step to convert RGB
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Bitmap, size: 294.9k JPEG, size: 34.7k

Figure 4.1: An image in Bitmap and JPEG

Figure 4.2: JPEG encoder diagram [42]
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images to JPEG images is to convert from the RGB space into the YCbCr space.

The conversion from the RGB space to the YCbCr space is:

Y = 0.299R + 0.587G+ 0.114B (4.1)

Cb = −0.1687R− 0.3313G+ 0.5B + 128 (4.2)

Cr = 0.5R− 0.4187G− 0.0813B + 128 (4.3)

The value Y is called the luminance, which represents the intensity of a color

perceived by the human eyes. We observe from the Equation (4.1) that Y actually

is a weighted summation of the R, G, and B components. The weights are assigned

based on the facts that, human eyes are more sensitive to the Green component,

followed by the Red component, and the Blue component at last.

The values Cb and Cr are called the chrominance values and measure the satu-

ration of the color. Cb and Cr indicate how much blue and red exist in the color,

respectively.

In the RGB space, we could not tell which channel is more important than the

other. However, in the YCbCr space, the Y channel is usually more important than

the Cb and Cr channels, as the luminance carries more sensitive data than the blue

and red colors. The conversion from the RGB to YCbCr provides a better separation

among the three color channels, which allows for different quantization and compres-

sion rate for each channel. In this way, JPEG could achieve a higher compression

ratio with less quality loss.

In each channel, color levels range from [0, 2P−1], where P indicates the maximum

bits per pixel is needed in the image. P is 8 for most images. To prepare the data as

an input to the next DCT step, which requires the input values to be centered around

0, color levels in YCbCr channels are shifted from the unsigned integers [0, 2P − 1] to

signed integers as: [−2P−1, 2P−1 − 1], e.g., [0, 255] to [-128, 127].

step 2: 8x8 FDCT

The image data in the YCbCr is grouped into several non-overlapped 8x8 blocks. Each

block is processed by the Forward DCT to obtain 64 DCT coefficients. All blocks are

processed from left to right and from top to bottom. The 64 DCT coefficients include

1 DC coefficient and 63 AC coefficients as shown in Table 4.1. The coefficient at the
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left and top corner is the DC coefficient, and the 63 AC coefficients are arranged in

a zigzag order (AC1- AC63).

Table 4.1: DCT coefficients in ZigZag order
DC AC1 AC5 AC6 AC14 AC15 AC27 AC28
AC2 AC4 AC7 AC13 AC16 AC26 AC29 AC42
AC3 AC8 AC12 AC17 AC25 AC30 AC41 AC43
AC9 AC11 AC18 AC24 AC31 AC40 AC44 AC53
AC10 AC19 AC23 AC32 AC39 AC45 AC52 AC54
AC20 AC22 AC33 AC38 AC46 AC51 AC55 AC60
AC21 AC34 AC37 AC47 AC50 AC56 AC59 AC61
AC35 AC36 AC48 AC49 AC57 AC58 AC62 AC63

Given the 8x8 source data as f(x, y), 0 ≤ x ≤ 7, 0 ≤ y ≤ 7. The DCT coefficients

F (u, v), 0 ≤ u ≤ 7, 0 ≤ v ≤ 7 are mathematically defined as:

F (u, v) =
1

4
C(u)C(v)

7∑
x=0

7∑
y=0

f(x, y) (4.4)

× cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16

where function C(·) is defined as:

C(u) =

{
1√
2
, if u = 0;

1, otherwise.
(4.5)

For example, an 8x8 block in the Y channel of an image are given in Table 4.2

After the DCT step by using Equation (4.4), the resulting DCT data are in Table 4.3,

Step 3: Quantizer

In the quantization step, each 8x8 DCT block is quantized by an 8x8 quantization

table. Each element in the DCT block is divided by the corresponding value in the

quantization table, and rounded to the nearest integer. The quantization table is set

either empirically or set by user preference. A typical quantization table is shown in

Table 4.4.

The DCT data in Table 4.3 are quantized using Table 4.4, and the resulting

quantized DCT data are shown in Table 4.5.
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Table 4.2: JPEG encoder example: image data
8 9 10 16 24 40 51 61
67 89 23 11 27 45 22 1
22 38 10 28 38 87 11 12
33 88 29 109 129 11 38 19
3 78 11 28 27 188 17 27
99 23 33 78 12 11 23 11
53 44 123 54 33 231 223 11
14 64 33 53 113 34 66 33
213 11 34 64 22 66 64 22

Table 4.3: JPEG encoder example: DCT data
416.75 23.343 -35.113 118.1 -50.25 31.696 -1.1504 -44.035
-88.654 19.516 -28.426 -29.453 0.25311 -99.395 -25.259 -37.814
-20.404 51.271 55.582 16.167 49.468 8.761 -8.6339 41.63
20.689 -36.748 12.808 -1.1505 -101.71 41.845 14.124 19.465
-54.25 75.377 80.583 25.299 43.75 18.273 52.13 -42.244
9.8952 -35.832 -42.138 -12.549 -37.161 -92.806 -42.42 -5.6387
101 5.7832 6.8661 21.962 -39.974 69.613 -5.5824 22.284

-53.048 87.291 -6.7583 -80.214 141.15 -12.586 -90.133 56.94

Table 4.4: Quantization table example
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
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Table 4.5: JPEG encoder example: quantized DCT data
26 2 -4 7 -2 1 0 -1
-7 2 -2 -2 0 -2 0 -1
-1 4 3 1 1 0 0 1
1 -2 1 0 -2 0 0 0
-3 3 2 0 1 0 1 -1
0 -1 -1 0 0 -1 0 0
2 0 0 0 0 1 0 0
-1 1 0 -1 1 0 -1 1

Table 4.5 shows an example in the Y channel. As an image has the Y, Cb, and Cr

channels, two quantization tables are usually employed with one for Y channel, and

one for the Cb and Cr channels. Both quantization tables are saved together with

the image data in the JPEG file. During the decoding, these tables are extracted to

dequantize the data in order to restore the image data.

Notice that after the quantization, the DCT coefficients in the high index positions

are equal or close to zeros. This is an advantage to gain better compression rate in

the next step, the entropy encoder.

Step 4: Entropy Encoder

The data after quantization are encoded by the entropy encoder in this step. The

JPEG standard suggests two entropy decoders, the Huffman encoder, and the arith-

metic encoder. The arithmetic encoded JPEG files are typically 5% smaller than

the files encoded by the Huffman encoder. However, the arithmetic coding is not

popularly used because of the following two reasons. The arithmetic coders are usu-

ally owned by different groups or companies in patent, and they run slower than the

Huffman coding. Thus, the Huffman encoder is used in most JPEG images.

The entropy encoding is also processed block by block from left to right and from

top to bottom. The 64 DCT coefficients, one DC coefficient and 63 AC coefficients,

in an 8x8 block are encoded by different methods.

The DC coefficients are not encoded directly. If we consider all the blocks in

an image as a sequence, each block (except the first one) has a previous block. We

can calculate the difference of the DC coefficient in the current block and the DC
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coefficient in the previous block as Diff = DCi −DCi−1, where i is the index of the

current DCT block. For the first DCT block (i = 1), the previous DC coefficient is

considered as 0. The value Diff is encoded instead of the DC coefficient itself.

The AC coefficients in each block are encoded by the Zero-Run-Length (ZRL)

coding. The ZRL coding represents each value except 0 by two numbers: the numbers

of zeros preceding the value, and the value.

For example, to encode the quantized DCT block in Table 4.5, we first assume

the DC coefficient in the previous block is 20. The block will be represented as: 6,

(0,2),(0,-7), (0,-1), (0,2), (0,-4), (0,7), (0,-2), (0,4), (0,1), (0,-3), (0,-2), (0,3), (0,-2),

(0,-2), (0,1), (1,1), (0,1), (0,1), (0,3), (1,2), (0, -1), (0,2), (1,1), (0,-2), (1,-1), (2,-2),

(1,-1), (1,-1) (0,1), (2,1), (2,-1), (0,1), (5,-1), (1,-1), (0,1), (1,-1), (1,1), (0,1), (4,-1),

(0,1), EOB(End-Of-Block). Most AC coefficients at high index positions are zeros

and the Run-length encoding succinctly represents all the data in the block.

Normally, four Huffman tables are included for DC or AC coefficients, with two

for the DC coefficients, and two for the AC coefficients. In each group of these two

tables, one is for the coefficients in the Y channel, and the other for the coefficients in

the Cb and Cr channels. All the Huffman tables are also stored in JPEG file header

as the quantization tables as well. The output from this step is the compressed image

data.

4.1.2 JPEG Decoder

The JPEG decoder diagram is shown in Figure 4.3. Decoding is a reverse process of

the encoding.

The compressed image data are input into entropy decoder, dequantizer, and in-

verse DCT to reconstruct the source image. Before the decoding process, the Huffman

tables are extracted from the JPEG file header for entropy decoder, and the quanti-

zation tables are extracted for the dequantizer. Then the inverse DCT is applied to

the DCT coefficients to restore the RGB colors. The (IDCT) is defined as

f(x, y) =
1

4

7∑
u=0

7∑
v=0

C(u)C(v)F (u, v) (4.6)

× cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16
, 0 ≤ x, u ≤ 7, 0 ≤ y, v ≤ 7
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Figure 4.3: JPEG decoder diagram [42]

where c(·) is defined in Equation (4.5).

Given the JPEG image in Figure 4.1, we show how to decode the image to obtain

the DCT coefficients step by step. The first step is to retrieve information from the

JPEG header, which contains the parameters and tables to decode the image. The

tables are the Huffman tables and the quantization tables. The extracted parameters

include the image height and width, the index indicating which table should be applied

during the decoding. Several important parameters extracted are listed in Table 4.6.

Table 4.6: Decoded image parameters

parameters value description

X 384 image height
Y 256 image width
Nf 3 number of the components
Tq [1,2,2] quantization table index for each component
Td [1,2,2] Huffman table index for the DC coefficients in each component
Ta [1,2,2] Huffman table index for the AC coefficients in each component

The quantization tables and Huffman tables are extracted from the JPEG header

as well. The header indicates that we have two quantization tables, which are shown

in Table 4.7. According to the parameter Nf, we know that the JPEG file has three

components, which are usually Y, Cb, and Cr. The parameter Tq = [1,2,2] indicates

that the first quantization table is applied to the Y component, and the second

quantization table is applied to the Cb, and Cr components.
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Table 4.7: Decoded quantization tables
3 2 2 3 5 8 10 12
2 2 3 4 5 12 12 11
3 3 3 5 8 11 14 11
3 3 4 6 10 17 16 12
4 4 7 11 14 22 21 15
5 7 11 13 16 21 23 18
10 13 16 17 21 24 24 20
14 18 19 20 22 20 21 20

3 4 5 9 20 20 20 20
4 4 5 13 20 20 20 20
5 5 11 20 20 20 20 20
9 13 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20

The extracted Huffman tables for the DC coefficients are shown in Table 4.8.

The parameter Td = [1,2,2] indicates that the first Huffman table is applied to the

Table 4.8: Decoded Huffman tables for DC coefficients
Category Code length Codeword

0 2 00
1 3 010
2 3 011
3 3 100
4 3 101
5 3 110
6 4 1110
7 5 11110
8 6 111110
9 7 1111110
10 8 1111110
11 9 11111110

Category Code length Codeword
0 2 00
1 2 01
2 2 10
3 3 110
4 4 1110
5 5 11110
6 6 111110
7 7 1111110
8 8 11111110
9 9 111111110
10 10 1111111110
11 11 11111111110

DC coefficients in the Y component, and the second Huffman table is applied to

the DC coefficients in the Cb and Cr components. The parameter Ta indicates that

this JPEG image has two Huffman tables for the AC coefficients. The value Ta =

[1,2,2] indicates that the first Huffman table is applied to the AC coefficients in the

Y component, and the second Huffman table is applied to the AC coefficients in the

Cb, and Cr components.

With all the information extracted from the header, the second step is entropy
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decoding, from which we obtain the quantized DCT coefficients from the JPEG en-

coded data. The DCT blocks are sequentially restored using the corresponding Huff-

man tables. The quantization tables are applied to dequantize the coefficients to their

original value. We can see that the whole process is the reverse of the encoding.

We have introduced the basic steps in the JPEG encoding and decoding processes

for JPEG images. Obviously, the original image is not able to be fully reconstructed,

because DCT coefficients cannot be fully restored by the dequantization. Thus, the

JPEG standard is a lossy compression standard. More details are available in the

JPEG standard [42].

In summary, the JPEG standard is a DCT-based image compression scheme. To

encode an uncompressed RGB image into a JPEG image, the following four steps are

applied: 1) color space conversion from RGB to YCbCr; 2) 8×8 DCT; 3) quantization;

and 4) entropy encoding. In order to decode a JPEG image, the above four steps are

performed in the reverse order. To obtain the DCT coefficients of a JPEG image,

however, we only need to perform two-step partial decoding, without employing the

complete decoding process. The images in our data sets, as well as most images that

are obtained from online retrieval, are in the JPEG format, so we could extract their

DCT coefficients very quickly and easily.

4.2 DCT Domain Image Retrieval by Hypothesis Testing

4.2.1 Motivations and Assumptions

For image retrieval applications, the design of the features and more importantly the

associated distance measures for image matching, are often two completely separate

decisions. Thus, the design involves a fair amount of heuristic decisions. In an attempt

to reduce the dependence on heuristics, in this section, we formulate an image retrieval

process as a hypothesis testing problem. Given a query image, we form a hypothesis

for each target image that its DCT coefficient sequences are emitted from the same

sources as the corresponding sequences in the query image. Testing these hypotheses

by measuring the log-likelihoods eventually yields a simple yet efficient scheme that

ranks each target image according to the Kullback-Leibler (KL) divergence between

the empirical distributions of the DCT coefficient sequences in the query image and
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that in the target image.

Our proposed image retrieval scheme works directly on the DCT coefficient se-

quences restored from JPEG images by performing the first two steps of decoding. In

order to further reduce the correlations among DC coefficients in neighboring blocks,

we extract all the DC coefficients to construct a sub-image. A 2 × 2 DCT is then

performed on the sub-image. After this process, we scan the blocks in raster order to

obtain 67 × 3 DCT coefficient sequences which consist of 4 sequences from the DC

coefficients and 63 AC coefficient sequences in each Y, Cb, Cr channel. These DCT

coefficient sequences are indexed in zigzag order [42] except for the first 4 sequences

from DC. The process is shown in Figure 4.4.

Figure 4.4: Extracting the DCT coefficient sequences from a JPEG image

According to the DCT coefficient decorrelation property, we make assumptions

that each sequence is emitted from a memoryless source, and all these sources are

independent of each other. The significance of this assumption lies in the following

result: it follows from Birkhoff’s ergodic theorem [31] that the empirical distribution

of an observed sequence is close to the true distribution of the underlying source if

the image is large enough. More specifically, we make the following assumptions.

• Each AC sequence is assumed to be emitted from a memoryless source;
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• For the DC coefficients, we apply a 2×2 DCT to the sub-image constructed from

them, and assume that each of the resulting 4 coefficient sequences is emitted

from a memoryless source;

• Due to the well known decorrelation property of DCT, all these sources are

assumed to be independent of each other.

4.2.2 Formulation of Image Retrieval as a Hypothesis Testing Problem

Given a query image and N target images, the image retrieval task is to rank the

N target images according to their relevance to the query image. For each target

image, we form a hypothesis that the DCT coefficient sequences of the query image

are emitted from the same sources as the corresponding sequences in the query image.

Finding the most relevant target image is thus converted to a hypothesis testing prob-

lem. Denote the query image as Q, and the hypothesis corresponding to target image

Ti as Hi, i = 1, . . . , N . The probability of the query image Q given the hypothesis Hi

is derived as follows.

The DCT coefficients for each channel are processed separately in the same man-

ner. Let us take the luma Y channel as an example. For the DCT coefficients at

position k = 1, . . . , K, let Qk = {x1, . . . , xnk
} denote the observed kth DCT coeffi-

cient sequence for the query image, where nk is the sequence length, and K is the

number of coefficients used. K = 67 if all the DCT coefficients are used. The proba-

bility mass function (pmf) for the kth DCT coefficient in query image Q is estimated

from the empirical distribution of Qk, denoted as fk = (p1, . . . , pMk
), where Mk is the

corresponding alphabet size. Similarly, we have the pmf for the DCT coefficients at

position k in target image Ti is gik = (qi1, . . . , qiMk
). Due to the assumed indepen-

dence among the DCT coefficients at different positions, the probability of the query

Q given the hypothesis Hi is calculated as follows.

Pr{Q|Hi} =
K∏
k=1

Mk∏
j=1

q
nkpj
ij ,

We also assume that all the hypotheses have the same a priori probability. The

retrieval task is then converted to find the most probable hypothesis Hi∗ among all
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the candidates, where i∗ is shown as follows

i∗ = argmax
1≤i≤N

[Pr{Q|Hi}]
= argmax

1≤i≤N
[logPr{Q|Hi}]

= argmax
1≤i≤N

log
K∏
k=1

Mk∏
j=1

q
nkpj
ij

= argmax
1≤i≤N

K∑
k=1

Mk∑
j=1

nkpj log qij

= argmin
1≤i≤N

(
K∑
k=1

nk

Mk∑
j=1

pj log pj −
K∑
k=1

nk

Mk∑
j=1

pj log qij

)

= argmin
1≤i≤N

K∑
k=1

nk

Mk∑
j=1

pj log
pj

qij

= argmin
1≤i≤N

K∑
k=1

nkD(fk||gik) (4.7)

where D(·||·) denotes the KL divergence which is defined in Equation (1.9) in Sec-

tion 1.3.3. The part
∑K

k=1 nk

∑Mk

j=1 pj log pj can be inserted because it is a constant

given a query Q.

Equation (4.7) suggests that the most relevant target image is the one with the

least KL divergence to the query image. So we define the distance measure for our

proposed retrieval algorithm as the KL divergence between the empirical distributions

of DCT coefficients of two images. This solution can be easily extended to retrieve

multiple relevant images by ranking all the target images by their KL divergence to

the query image.

4.2.3 DCT2KL Algorithm

Our proposed retrieval scheme is summarized in Algorithm 3. It is well known that

the DCT coefficients have energy compaction property, which indicates that most

energy is compactly saved in the coefficients in the low index positions in zigzag order.

Especially the DCT coefficients restored from JPEG images, the DCT coefficients at

high positions are zeros because of the quantization step, the information in these

coefficients contain less important information for image comparison. In many cases,
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Algorithm 3 DCT2KL Image Retrieval Algorithm
Input: A query image Q, target images T1,..., TN

Output: A sorted list of all target images

1: Extract K DCT coefficient sequences from Q. Estimate the pmf fk for each

coefficient sequence.

2: for each target image Ti do

3: Extract K DCT coefficient sequences from each target image Ti. Estimate the

pmf gik for each sequence.

4: Calculate S(Q, Ti) =
∑K

k=1 D(fk||gik)
5: end for

6: Rank all the target images according to S(Q, Ti).

these high indexed DCT coefficients provide no discriminative information among

different images. An example in Figure 4.5 is 64 histograms of DCT coefficients

restored from the JPEG image in Figure 4.1. These coefficient histograms clearly

show the compaction property. Most coefficient histograms at high positions are

peaked at zero indicating that coefficients are all zeros. Thus, we suggest a small

number of K between 8 and 15 to be used in the DCT2KL algorithm.

Note that the above retrieval scheme can be readily extended to process all types

of image formats, by employing additional steps to obtain the DCT coefficients.

4.2.4 Related Work

Feature extraction from JPEG images, or more specifically, their DCT coefficients,

for image matching has recently attracted significant interest (see [23, 49, 57, 107,

108] and the references therein). DCT or wavelet coefficients are first reconstructed

from compressed images. Features are extracted from these coefficients by different

methods.

Some works focus on constructing advanced color, texture or pattern features from

DCT coefficients. Various metrics have been applied to measure the distance between

two images features. Lay et al. [49] use the energy histograms of the low frequency

DCT coefficients as image features. The DCT coefficients are selected from 6 blocks.

As the low frequency DCT coefficients carry the most of the energy in DCT blocks,
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Figure 4.5: DCT coefficient histograms from the JPEG image in Figure 4.1
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the 6 blocks contain different combinations of the DCT coefficients in low-frequency

are selected. Six DCT coefficient histograms extracted from these blocks are the

image features. A normalized Minkovski (L1) form distance.

Lc(H1, H2) =
1

L

L∑
i=1

||H1(i)−H2(i)||c
M

(4.8)

where H1, H2 are two histograms of the same size of L. M is the largest possible

magnitude of the shifted coefficients. The coefficients in the histograms are shifted

to make the minimum energy level to be 0. The reason to choose the distance metric

is not introduced in the paper.

Lu et al. [56] extract a vector quantization index histogram from the DCT coef-

ficients. The 64 DCT coefficients in each 8× 8 block are divided into four groups as

shown in Figure 4.6. For each color channel (Y, Cb, Cr), 4 codebooks are trained

Figure 4.6: Partition of DCT coefficients in the vector quantization index histogram

from a randomly selected training image set. After obtaining the above 12 codebooks,

images in the data set are processed in the same method as the training images. The

DCT sequences are divided into 12 groups, and encoded by the corresponding code-

books. The indexes of the DCT coefficients from each codebook are jointly put

together as the quantization index histograms.

Lu et al. [57] approximate the color and texture feature in the pixel domain directly

from the DCT coefficients. The color features of the image are calculated directly

from the DCT coefficients by partial decoding the JPEG image. Each 8 × 8 DCT

block is divided into 4 sub-blocks as shown in Figure 4.7. The average color values

of each block is denoted as M11,M12,M21,M22. The value of M11,M12,M21,M22
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Figure 4.7: 4 sub-blocks for each DCT block

are approximated through the four upper left coefficients in the 8 × 8 DCT block.

The texture information is a vector extracted from selective DCT coefficients from 6

groups. Group 1 is the DC coefficient. Group 2 and 3 are the frequency information.

Group 4, 5 and 6 are the vertical, horizontal and diagonal direction information. The

mean and the standard deviation of all coefficients in each group are extracted as the

texture features.

The Euclidean distance is used in [56, 57]. The Euclidean distance is also known

as L2 measure, and is defined as in Equation (1.1) in Section 1.3.3. Note that no

reason is given for choosing the distance measure for the proposed features.

Feng et al. [23] extract a set of moments directly from DCT coefficients without

full decompression or the inverse DCT step. They show that the mean μ1 and variance

σ2
1 for each N×N DCT block can be calculated directly by Equation (4.9) and (4.10).

μ1 =
1

N
C(0, 0) (4.9)

σ2
1 =

1

N2

N−1∑
u=0

N−1∑
v=0

C2(u, v), (u, v) 	= (0, 0) (4.10)

where C(u, v) is the DCT coefficient at position (u, v), 0 ≤ u, v ≤ 7. N is 8 for JPEG

images. The equations show that the mean is derived from DC coefficients, and the

variance is derived from AC coefficients. The joint space of mean and variance is

quantized into a space of size 4×7, where the mean is divided into 4 sections, and the

variance into 7 sections. Then the image feature is extracted as an index histogram

with each bin indicating the frequency of the joint mean-variance in the images. The
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distance measure is based on a weight distance transform (WDT) technique. Each

item in the histogram is projected into a distance image. The distance between the

elements in two histograms is calculated by the common area between the two distance

images. As the operations of the multiplication in the L2 measure are avoided, this

distance measure is more efficient. However, the choice of the distance measure is to

improve the efficiency. Whether the measure is suitable for the defined features is not

discussed in the work.

To make effective use of features extracted from DCT coefficients, some other

works focus on designing more intuitive distance metrics for DCT features. For in-

stance, H. Yu [107] introduces a Q-metric for the DCT coefficients to measure the

image similarity. A sub-image including all DCT coefficients at each position in a 8×8

block is generated and the wavelet transformation is applied. While calculating the

distance between a query and a target image, the Q-metric counts the total number

of the coefficients which are higher than a predefined threshold in the corresponding

sub-images from both the query and target images. The overall distance is a weighted

summation of the counts from all sub-images. The Q-metric gives a measurement on

how many significant coefficients in two images are in common. However, how to

decide a coefficient is significant depends on the heuristic thresholds.

Observe that in the works reviewed above, the design of the features, and more

importantly the associated distance measures for image matching, are often two com-

pletely separate decisions. Thus, the design involves a fair amount of heuristic deci-

sions. In our work, we define the features as the DCT coefficients first. By formulating

the retrieval process as a hypothesis testing problem, we derive the theoretical sound

distance metric for retrieval using the DCT features. The DCT2KL algorithm re-

duces the dependence on heuristics by treating image retrieval as a hypothesis testing

problem. The choice of the features and the distance measure are decided as one

decision.

4.3 Experiments

We evaluate our proposed DCT2KL method on two image data sets: the Corel1K

data set [11, 102] and the UCID data set [81]. The Corel1K data set consists of

1000 images in 10 classes. We run 1000 queries with each image serving as a query
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image. Two images in this set are considered relevant when they are in the same

class, and irrelevant otherwise. The UCID data set consists of 1338 color images. It

has a ground truth file with 262 queries that can be used to evaluate retrieval results.

4.3.1 Comparison to Other Features

We compare our proposed retrieval scheme with the one using other features such

as the RGB histograms [93], the RGB GMMs [38], and the low frequency DCT

histograms [49]. The RGB histograms are three 256-bin histograms extracted from

R, G, and B channel respectively. Similarities between two histograms are calculated

by the KL divergence. The similarities from three channels are summed together

as the total similarity between the RGB histograms of two images. RGB GMMs

feature is a multi-dimensional color feature, which provides a compact representation

of RGB three-dimensional data. The RGB GMM feature of an image is a GMM

trained from the RGB three-dimensional data. The EMass algorithm [38] is applied

for training GMMs. Similarities between two GMMs are measured by the unscented

transformed (UT) based approximation distance measure [28] in Equation (3.32).

The low frequency histograms are extracted as in [49]. The distance between low

frequency histograms are measured by Equation (4.8).

As suggested in Section 4.2.3, the DCT2KL algorithm in Table 4.9 uses K = 13,

which includes the 4 sequences from DC and the first 9 AC sequences. The same K

is used in all these experiments.

Table 4.9 shows the MAP results of the retrievals by using different features and

methods. The MAP is define in Equation (1.14) in Section 1.4.2.

Table 4.9: MAP comparison of the RGB hist, the RGB GMMs, the low frequency
DCT histograms, and the DCT2KL algorithm

Method Corel1K UCID
RGB Hist 0.398 0.505
RGB GMM 0.481 0.535
Low freq. DCT 0.538 0.617
DCT2KL 0.657 0.690

Table 4.9 shows that our DCT2KL algorithm significantly outperforms the other

two color features on both data sets. The DCT coefficients obviously present much
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better discriminating capability than the RGB features. Conversion from RGB to

YCbCr provides a good separation among the luma and chroma channels. The DCT

brings further decorrelation among the coefficients. As the DCT2KL retrieval scheme

is derived based on the decorrelation property, this performance gain is consistent

with our assumptions.

The DCT2KL method also achieves higher precision than the low frequency DCT

histograms. Unlike the low frequency histograms which extract features from groups

of DCT coefficients, DCT2KL extracts a histogram from each coefficient separately.

According to the DCT coefficients properties, each DCT coefficient can be processed

independently without losing information after the decorrelation. Moreover, our dis-

tance measure in DCT2KL is derived directly based on the features. Thus, the

DCT2KL gains better performance than the low frequency histograms.

4.3.2 Comparison to Other Systems

In order to make comparisons to other retrieval systems which have been evaluated on

these two data sets, we also evaluate our scheme by using the same measures adopted

for evaluating these corresponding systems.

The left table in Table 4.10 shows the average precisions of top 100 retrieved results

using SIMPLIcity [102], CLUE [11], and our DCT2KL scheme for the Corel1K data

set. The SIMPLIcity is a region-based image retrieval system using wavelet-based

features. The CLUE system combines the same region-based features with a clustering

algorithm to boost the retrieval precision. The region-based systems involve image

segmentation and region-based matching, which both are computational intensive.

Our DCT2KL algorithm is not only much simpler and more efficient, but also retrieves

with higher precision than these two systems.

CVPIC is an image feature which is based on block color co-occurrence matrix

and pattern histogram, and it achieves state-of-the-art performance on the UCID

data set [81]. The right table in Table 4.10 compares our retrieval approach to the

CVPIC [80] feature on the UCID data set. The performance is measured by AMP

as in [80]. The retrieval performance of DCT2KL is slightly better than the CVPIC

feature in this experiment.

It is difficult to make direct empirical comparison with other related works in
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Table 4.10: Comparison to other systems
Method Top100
SIMPLIcity 0.477
CLUE 0.538
DCT2KL 0.604

Method AMP
CVPIC 94.23
DCT2KL 95.76

DCT domain largely due to the inaccessibility of most image data sets used in these

works. In an exception, Lu et al. [57] report the retrieval results by a joint color-

texture DCT feature for the Corel1K data set in a Precision-Recall (P-R) figure,

which is the average of 5 query images randomly picked from each class. We conduct

the experiment in the same way as in [57]. Figure 4.8 clearly shows the superior

performance by DCT2KL compared to their DCT-based feature.
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Figure 4.8: Retrieval precision-recall Figure for the Corel1K data set.

4.3.3 The Number K

In view of the energy compaction property of DCT, we investigate the sensitivity of

our DCT2KL algorithm toK, that is, the number of DCT coefficients used. Figure 4.9

shows the retrieval MAPs on the two data sets using different K. Note that K ≥ 4

implying that the four sequences from the DC coefficients are always included, and

the AC coefficients are incrementally included according to the zigzag order defined in
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the JPEG standard. Since the curves in Figure 4.9 peak around K = 13, we see that

good performance can be achieved by using DC together with 6 to 10 AC coefficients.

This result confirms that the information relevant to image retrieval is concentrated

in DC and low frequency AC coefficients.
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Figure 4.9: MAP by using different numbers of DCT coefficient sequences.

Because of the DCT coefficients have energy compaction property, most energy is

in the low index DCT coefficients. Especially for the DCT coefficients restored from

JPEG images, the high indexed DCT coefficients are mostly zeros. Images cannot be

separated by the information in these coefficients. Thus the performance drops after

including more high-indexed DCT coefficients.

4.4 Summary

In this chapter, we have considered a hypothesis testing approach (DCT2KL algo-

rithm) for image matching in the DCT domain. The DCT2KL method uses the DCT

coefficients in the YCbCr space restored by partially decoding JPEG images. Assume

that these DCT coefficient sequences are emitted from memoryless sources that are

independent of each other. For each target image, we form a hypothesis that the

DCT coefficient sequences of the query image are emitted from the same sources as
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the target image. The DCT2KL algorithm is then derived to identify the most prob-

able hypothesis, which in turn gives the most relevant target image, by minimizing

the KL divergence between the query image and the target images. Experimental

results on both the Corel1K and UCID data sets show that our DCT2KL algorithm

consistently outperforms related systems, often by a wide margin.

In our work, the DCT2KL algorithm is derived directly from the hypothesis testing

formulation. The KL divergence is an optimal distance measure for the DCT coef-

ficient features. Although our retrieval experiments are conducted on a small image

data set, the algorithm is theoretically ensured to have the same good performance

on larger data sets.

In order to further improve the retrieval performance, the DCT2KL scheme can

be extended to combine with other kinds of features. The design of such combination

scheme and the corresponding features to be included is investigated in the next

chapter.



Chapter 5

Feature Combination

In this chapter, we show that the performance of image matching can be improved by

combining different features. We provide a scheme to combine different features and

methods. The performance of our proposed methods is compared before and after the

combination on the two image data sets, Corel1K and UCID data sets. In addition,

we also compare our results with the benchmark results by Deselaers et al. [16, 19].

They provide quantitative retrieval results of different features on these two data sets.

We then show several image retrieval cases for the Corel1K data set to demonstrate

that how our methods and the combination scheme affect the retrieval results.

In order to show the performance of our methods on large-scale image data sets,

we provide initial experimental results of our methods on the IAPR TC-12 image data

set, which contains 20,000 generic images. The retrieval results of the topics in the

ImageCLEF 2007 photographic retrieval task [33] by using our methods are compared

with related results on these topics on the same data set. To further improve the

retrievals, we combine our methods with three MPEG-7 image descriptors. Several

retrieval cases on the IAPR TC-12 data set are provided as well.

5.1 Combining Scheme

The LTP histograms, the RGB GMMs, and the DCT2KL method can be combined

to provide more effective retrieval results. The LTP histograms represent the spatial

relationships among the color levels of neighboring pixels. These spatial relationships

provide one type of the texture information in images. The RGB GMMs are features

with color information. Retrievals by the RGB GMMs only return images similar

in RGB colors. The DCT2KL method contains both the color information (DC

coefficients) and the texture information (AC coefficients) in the YCbCr color space.

Thus these three methods contain the different information in different color spaces.

The combinations of the LTP histograms, the RGB GMMs, and the DCT2KL are

95
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able to retrieve images that are similar to the query image in terms of both the color

and the texture.

The combination is made in two steps. First, the distance between the query

image and all target images are calculated by each method separately. Then the

distance by each method is normalized to a value between 0 and 1 by the maximum

distance, and summed together as the combined distance. The joint distance measure

is thus defined as:

Dc(Q, Ti) =
k∑

j=1

(
Dj(fj, gij)

maxj Dj(fj, gij)

)
, i = 1, . . . , n (5.1)

where Q is query image, and Ti is the i-th target image. Each query is performed

by using k types of methods. The corresponding features for the j-th method are

fj, j = 1, . . . , k from image Q, and gij, j = 1, . . . , k from image Ti. Dc is the combined

distance measure. Dj is the distance measure for the j-th feature. After calculating

the distance Dc(Q, Ti), i = 1, . . . , n for each target images Ti, they are sorted by the

distance to provide the final retrieval list.

5.2 Experimental Results for the Corel1K and the UCID Data Sets

5.2.1 Results using Different Features from the Literature

The Corel1K and the UCID data sets are two widely used image data sets for CBIR.

Deselaers et al. [16, 19] provide extensive experimental results of image retrieval using

different features on these two data sets. Their work is initially started with the

organization of the ImageCLEF from 2005 to 2008. The performance of retrievals by

using a large collection of different features are provided and discussed extensively.

By comparing to their results, we are able to confidently judge the effectiveness of

different methods.

The features that have been experimented on these two data sets are: color his-

tograms, LF SIFT global search, LF patches histogram, invariant feature histogram,

MPEG-7: scalable color, LF patches signature, Gabor histogram, 32 × 32 image,

MPEG-7: color layout, Xx32 image, Tamura texture histogram, LF SIFT signature,

gray value histogram, LF patches global, MPEG-7: edge histogram, invariant feature

histogram (relational), Gabor vector, and global texture feature. To see the feature
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details refer to reference [19].

The performance of each feature is compared by two metrics, Error Rate (ER) and

MAP. The ER metric is defined as 1−P (1), where P (1) stands for the precision when

the first relevant image, is retrieved. The ER shows that how quick the first relevant

image can be found. The MAP is defined in Equation (1.14), which is the mean of the

precision at each relevant image is retrieved. The MAP metric measures the average

performance of multiple retrieved images. To evaluate the retrievals only requiring a

single relevant image, the ER metric is more suitable. To evaluate multiple retrieval

queries, the MAP metric is more suitable. The retrieval ER and MAP results by

using these features in [19] are shown in Table 5.1.

Table 5.1: ER and MAP [%] for each of the features for the Corel1K and the UCID
data sets [19]

features
Corel1K UCID

(ER) (MAP) (ER) (MAP)
color histogram 16.9 50.5 51.5 43.3

LF SIFT global search 37.2 38.3 31.7 62.5
LF patches histogram 17.9 48.3 58.0 37.5
LF SIFT histogram 25.6 48.2 50.4 44.7

inv. feature histogram(monomial) 19.2 47.6 53.8 41.6
MPEG-7: scalable color 25.1 46.7 60.7 37.9
LF patches signature 24.3 40.4 68.7 27.6
Gabor histogram 30.5 41.3 74.1 22.3
32x32 image 47.2 37.6 82.8 14

MPEG-7: color layout 35.4 41.8 75.2 21.7
Xx32 image 55.9 24.3 83.2 13.9

Tamura texture histogram 28.4 38.2 63.4 33.2
LF SIFT signature 35.1 36.7 58.4 34.1
gray value histogram 45.3 31.7 86.6 11.8
LF patches global 42.9 30.5 63.4 30.3

MPEG-7: edge histogram 32.8 40.8 69.9 25.2
inv. feature histogram(relational) 38.2 34.9 83.2 14.4

Gabor vector 65.5 23.7 95.8 4.7
global texture feature 51.4 26.3 95.4 6.7

From these results, we observe that the best performance for the Corel1K data

set is achieved by the color histogram with ER (16.9%) and MAP (50.5%). The

best performance for the UCID is using the LF SIFT global search with ER(31.7%)
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and MAP(62.5%). Deselaers et al. [19] also show the retrieval MAP results for the

Corel1K data set by combining different features. The selective features and the cor-

responding retrieval MAPs are listed in Table 5.2. The best performance is improved

to ER(11.6%) and MAP(55.7%).

Table 5.2: ER and MAP [%] by combining features for the Corel1K data set [19]
features ER(%) MAP(%)
color histograms 16.9 50.5
+ global texture 15.7 49.5
+ Tamura histograms 13.7 51.2
+ thumbnails 13.7 53.9
+ patch histograms 11.6 55.7

5.2.2 Results using Our Methods

In order to compare to the reported results in Table 5.1 and 5.2, we list the ER and

MAP results by using our proposed methods in Table 5.3. Note that the results in

this table use the same leave-one-out configuration that the query image is removed

from the target sequence as in the Table 5.1 and 5.2.

Table 5.3: ER and MAP [%] for each of our proposed method for the Corel1K and
the UCID data sets

features
Corel1K UCID

(ER) (MAP) (ER) (MAP)
LTP histograms 12.0 48.8 65.2 26.7
RGB GMMs 14.3 47.8 41.8 49.6
DCT2KL 7.8 62.7 38.2 52.6

Our DCT2KL algorithm significantly outperforms the reported state-of-the-art

results in Table 5.1 for the Corel1K data set. Compared to the results in Table 5.2,

which combines 5 features, the DCT2KL method still outperforms their results by

both the ER and MAP. For the UCID data set, our performance is above all of the

features, except the LF SIFT global search. The ground truth for the UCID shows

that the retrievals require information at the object level. The SIFT features used

in the LF SIFT global search provide such information. Thus their performance is

better.
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The ER and MAP of retrievals by using the combination of different features and

methods are shown in Table 5.4.

Table 5.4: ER and MAP [%] for combining the proposed features and methods for
the Corel1K and UCID data sets

features
Corel1K UCID

(ER) (MAP) (ER) (MAP)
LTP+RGB GMMs 7.75 58.2 47.8 51.1
LTP+DCT2KL 5.45 65.3 37.1 54.3

LTP+DCT2KL+GMMs 5.18 67.90 35.7 56.1

The performance on these two data sets, especially the Corel1K is improved again

after the combination. The LTP histograms describe the relationships between a pixel

and its eight neighboring pixels, which provide the texture information. The RGB

GMMs provide the color information in the RGB color space. The DCT2KL method

provides color and texture information in the DCT domain in the YCbCr color space.

These combinations take the advantages of both the texture and color information in

different color spaces, thus achieve better performance than the performance of each

feature by itself. The improvement for the UCID data set is not as significant as the

retrievals for the Corel1K, because the retrievals for the UCID data set require more

object-level information.

5.2.3 Retrieval Examples

We provide three groups of examples to show the performance of the LTP histograms,

the GMMs trained by the EMass algorithms, the DCT2KL methods, and the combi-

nation of them for the Corel1K data set. For each query image in the Corel1K data

set, there are 100 relevant images to be retrieved. By showing a long list of retrieved

images, we are able to compare and observe how each of method affects the retrieval

performance.

The different query images in each group of the examples are: one in the “Flower”

category, one in the “Africa” category, and one in the “Mountain” category. The top

32 retrieved images that are similar to the given query image are listed in these

examples.
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The query image of the first group of examples in Figures 5.1, 5.2, 5.3, and 5.4 is

in the flower category. Figure 5.1 shows the query image and the retrieved images

ranking from 1 to 8. The query image is the one in the first column. The second

column is the retrieved images by using the LTP histograms. The third column is the

retrieval images by using the RGB GMMs. The fourth column is the retrieved images

by using the DCT2KL method. The fifth column is the retrieved images by using the

combination of all three methods. The positive retrieved images are marked by red

rectangles, and the negative retrieved images are marked by blue dotted rectangles.

Figures 5.2, 5.3, and 5.4 list the retrieved images ranking from 8 to 16, 17 to 24, and

25 to 32 for each method and their combination respectively in the same manner as

in Figure 5.1.

The retrieval by using the LTP histograms returns 24 positive images. The LTP

histograms retrieve images with similar spatial relationships in neighbor pixels with-

out the color information. Thus, we cannot observe the color similarity in the retrieved

target images, e.g., the white flower image at rank 6. The similarity is in a way that

two main types of spatial relationships, with one part as non-smooth area, and the

other as smooth background. The retrieval by using the RGB GMMs returns 16 posi-

tive images and 8 negative images. The RGB GMMs find images similar to the query

image in colors. The query image is a flower in orange color with a dark background.

The retrieved images are thus all contain both the orange and the dark colors. The

DCT2KL method finds images similar to the query image both in color and texture,

as we can see from the results in the column 3. Flower images with different colors

are returned by the DCT2KL method. The results show that the DCT2KL method

is able to find images similar to the query image very effectively.

The combination results show that using different methods together is a re-ranking

process of the retrieved target images. The images with top ranks by all methods are

returned first in the combined retrievals. These examples provide an initial impression

on how each of our presented methods performs on image matching, and how the

combination scheme we apply affect the results.

Another two groups of examples with different query images are shown in Fig-

ures 5.5 to 5.12. The retrieved images are shown in the same manner as in the

previous examples. These two groups of results show similar retrieval patterns as
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Figure 5.1: Retrieved images ranking from 1 to 8 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in the Flower category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Figure 5.2: Retrieved images ranking from 9 to 16 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in the Flower category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Figure 5.3: Retrieved images ranking from 17 to 24 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in the Flower category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Figure 5.4: Retrieved images ranking from 25 to 32 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in the Flower category. (Red rectangle:
positive; blue dotted rectangle: negative)
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in the previous group of examples in Figures 5.1 to 5.4. Retrievals using the LTP

histograms find images with similar texture to the query image. Retrievals using

the RGB GMMs find images with similar colors. The DCT2KL method is able to

find images that are similar to the query images by both the color and texture. By

combining these methods, the retrieved target images are more precise. These three

groups of experimental results initially demonstrate how our proposed methods and

their combination positively affect retrievals.

5.3 Experimental Results on the IAPR TC-12 Data Set

In this section, we discuss how our methods perform on large scale image data sets.

The image collection of the IAPR TC-12 benchmark consists of 20,000 images col-

lected from different sources. These images are all natural still images, including

different sports and actions, photographs of people, animals, cities, landscapes and

many other aspects of contemporary life [33, 34]. Some example images are shown in

Figure 1.6 in Section 1.4.1.

5.3.1 ImageCLEF Photographic Retrieval Task and Results

The ImageCLEF 2007 Photographic Retrieval Task [33] provides 60 queries which

are shown in Table 5.5. Three sample images are listed for each topic. For image

matching by visual content, these sample images are used as query images. It is easy

to notice that these query topics are very difficult as the topics are described in very

specific details. For example, for the topic 2 “church with more than two towers”,

images contain churches with one tower is a negative match for the topic.

The retrievals are evaluated using the MAP, precision at rank 20 (P20), the geo-

metric MAP (GMAP) to test system robustness, and the binary preference (bpref)

measure which is an indicator for the completeness of relevance judgments [33]. The

GMAP is defined by TREC 2004, which provides a geometric mean of per-topic

average precision in Equation (5.2).

GMAP = n

√∏
n

APn (5.2)

where AP is average precision. n is typically as 50 for TREC tasks.
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Figure 5.5: Retrieved images ranking from 1 to 8 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in the Africa category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Figure 5.6: Retrieved images ranking from 9 to 16 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in the Africa category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Figure 5.7: Retrieved images ranking from 17 to 24 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in the Africa category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Figure 5.8: Retrieved images ranking from 25 to 32 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in the Africa category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Figure 5.9: Retrieved images ranking from 1 to 8 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and
their combination (column4) with a query image in the Mountain category. (Red
rectangle: positive; blue dotted rectangle: negative)
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Figure 5.10: Retrieved images ranking from 9 to 16 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and
their combination (column4) with a query image in the Mountain category. (Red
rectangle: positive; blue dotted rectangle: negative)
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Figure 5.11: Retrieved images ranking from 17 to 24 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in theMountain category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Figure 5.12: Retrieved images ranking from 25 to 32 by using the LTP histograms
(column1), the GMMs of RGB (column2), the DCT2KL method (column3), and their
combination (column4) with a query image in theMountain category. (Red rectangle:
positive; blue dotted rectangle: negative)
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Table 5.5: ImageCLEF photo 2007 query topics

ID Topic Title ID Topic Title

1 accommodation with swimming pool 31 volcanoes around Quito
2 church with more than two towers 32 photos of female guide
3 religious statue in the foreground 33 people on surfboards
4 group standing in front of mountain 34 group pictures on a beach

landscape in Patagonia 35 bird flying
5 animal swimming 36 photos with Machu Picchu in
6 straight road in the USA the background
7 group standing in salt pan 37 sights along the Inca-Trail
8 host families posing for a photo 38 Machu Picchu and Huayna Picchu
9 tourist accommodation near in bad weather

Lake Titicaca 39 people in bad weather
10 destinations in Venezuela 40 tourist destinations in bad weather
11 black and white photos of Russia 41 winter landscape in South America
12 people observing football match 42 pictures take on Ayers Rock
13 exterior view of school building 43 sunset over water
14 scenes of footballers in action 44 mountains on mainland Australia
15 night shorts of cathedrals 45 South American meat dishes
16 people in San Francisco 46 Asian women and/or girls
17 lighthouses at the sea 47 photos of heavy traffic in Asia
18 sport stadium outside Australia 48 vehicle in South Korea
19 exterior view of sport stadia 49 images of typical Australian animals
20 close-up photograph of an animal 50 indoor photos of churches or cathedrals
21 accommodation provided by host families 51 photos of goddaughters from Brazil
22 tennis player during rally 52 sports people with prizes
23 sport photos from California 53 views of walls with asymmetric stones
24 snowcapped buildings in Europe 54 famous television (and
25 people with a flag telecommunication) towers
26 godson with baseball cap 55 drawing in Peruvian deserts
27 motorcyclists racing at the 56 photos of oxidized vehicles

Australian Motorcycle Grand Prix 57 photos of radio telescopes
28 cathedrals in Ecuador 58 seals near water
29 views of Sydney’s world-famous landmarks 59 creative group pictures in Uyuni
30 room with more than two beds 60 salt heaps in salt pan
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The bpref provides a measure of whether positive images are retrieved ahead of

irrelevant images. The measure is given as in Equation (5.3).

bpref =
1

R

∑
r

(
1− |n ranked higher than r|

min(R,N)

)
(5.3)

where R is the number of positive images, N is the number of negative images, r is

a positive retrieved image, n is one negative image in the first R retrieved negative

images. |n ranked higher than r| gives the number of negative images in the first R

retrieved negative images that are ranked before the positive image r.

The retrieval results by using only visual features reported by different groups are

shown in Table 5.6. For groups with multiple submissions, we only keep their best

results by MAP.

Table 5.6: Results by different groups for the ImageCLEF 2007 Photographic Re-
trieval Task

RK Group QE RF MAP P20 BPREF GMAP REL RETR

1 XRCE NOFB 0.1890 0.3517 0.2009 0.1016 1708
2 DCU NOFB 0.1340 0.2658 0.1438 0.0515 1339
3 IPAL NOFB 0.1204 0.2525 0.1316 0.0483 1330
4 INAOE QE 0.1200 0.1908 0.1196 0.0401 2000
8 RWTH NOFB 0.1122 0.2383 0.1222 0.0427 1301
11 MIRACLE NOFB 0.1079 0.2400 0.1206 0.0319 801
34 HongKong NOFB 0.0511 0.1442 0.0703 0.0172 883
36 RUG NOFB 0.0337 0.1050 0.0478 0.0078 724
40 CLAC NOFB 0.0298 0.1000 0.0584 0.0058 368
45 ImpColl NOFB 0.0280 0.0917 0.0388 0.0061 511
50 Geneva NOFB 0.0222 0.0717 0.0336 0.0045 719
52 Budapest NOFB 0.0138 0.0433 0.0240 0.0019 631

average 0.068 0.157 0.080 0.022

The XRCE group uses two image features: grey-level SIFT-like features and color

features. First, images are divided into non-overlapped 4×4 blocks. SIFT-like feature

and RGB sample mean and deviation color features are extracted from each block.

Dimensionality of both features is reduced by PCAmethod. Gaussian Mixture Models

are trained from the reduced dimensionality features as visual vocabularies. For each

image, Fisher Kernel based normalized gradient vectors [72] are extracted as image

features.
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The DCU group uses the Flexible Image Retrieval Engine (FIRE) [17] retrieval

system, together with six MPEG-7 features, which are Color Layout, Color Struc-

ture, Color Moments, Scalable Color, Edge Histogram and Homogenous Texture for

retrieval. These features are all defined in MPEG-7 standard. CLAC group also uses

MPEG-7 descriptors as scalable Color, color Layout, and edge Histogram.

The IPAL group uses correlograms, HSV histograms, Canny edge operators, Ga-

bor features, and SIFT features as image features. 12 runs of retrievals are performed

by different features using different similarity measure methods, which include tf-idf,

SVD, Bag-of-visterm, Integrated Statistic Model (ISM), Hidden Maximum Entropy,

Word-SVD, and Word-ISM. The final results combine 12 runs using empirically tuned

weights.

The RWTH group uses 9 different image features, which are sparse patch his-

tograms, clustered patch histograms, local and global color descriptors from GIFT1,

global texture features, monomial invariant feature histograms, relational invariant

feature histograms, Tamura texture histograms, image thumbnails of 32x32 pixels,

and RGB color histograms with 512 bins. Their best result in Table 5.6 is tuned from

the retrieval results by IAPR 2006 tasks. Without tuning, their best MAP is 0.0834.

The MIRACLE group uses two publicly available CBIR systems GIFT and FIRE.

Their best results are achieved by the combination of the retrieval results from two

systems. Similarly, Geneva group uses GIFT alone.

For information of the other systems, please refer to the ImageCLEF 2007 sum-

mary [33].

5.3.2 Experimental Results using Our Methods

We perform our experiments in the following way. For each topic, the retrieval tasks

provide three query images. We first perform three rounds of retrievals by each query

image separately. The distance from every target image to the query topic is decided

by the minimal distance among the three queries. Results by our methods are shown

in Table 5.7.

From the results in Table 5.6 and Table 5.7, it is easy to see that the image

matching on this data set by visual content is a very difficult problem. Compared to

1http://www.gnu.org/software/gift/, last visited on March 5, 2010.
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Table 5.7: Results by using our methods for the ImageCLEF 2007 Photographic
Retrieval Task

method MAP P20 BPREF GMAP REL RETR

LTPN8S32 0.048 0.1283 0.095 0.0173 898
RGB GMM 0.0724 0.1692 0.0963 0.0171 812
DCT2KL 0.0846 0.198 0.1163 0.0285 1113

DCT2KL+LTP+RGB 0.1074 0.2317 0.1293 0.0374 1137

the results in Table 5.6, our methods are simple yet achieve the MAP much higher

than the average score. However, we also notice that our methods can be improved

by including more features. As the features in our methods contain the global color

and local neighboring spatial relation information, we consider including the features

with localized color information and edge information in different color spaces which

are complementary to our methods.

We provide some initial experimental results by combining our methods with three

MPEG-7 descriptors [60]: edge histogram descriptor (EHD), scalable color descriptor

(SCD), and color structure descriptor (CSD). These three descriptors include different

types of local information, which is complementary to our features and methods. The

EHD captures the distributions of edges in an image. The edges are summed into

five different types by their orientations. Images are divided into 16 non-overlapped

blocks. Edges in each block are counted and joint together as the descriptor. The SCD

is a color histogram in the HSV color space encoded by the Haar wavelet transform.

The CSD describes the color distribution and local structure of colors of an image in

the HMMD (Hue, Max, Min, Diff) color space [79]. A 8 × 8 block is moved inside

the images, and the number of pixels with each color is summarized as the CSD. The

step of moving the block is decided by the size of the images. The distance measure

for the EHD, SCD, and CSD is the L1 measure as suggested in MPEG-7 [79]. To

extract the MPEG-7 descriptors, we use the MPEG-7 library developed by Bastan

et al. [5]. The retrieval results by each of the MPEG-7 descriptor and by combining

with our methods are shown in Table 5.8.

The highest MAP in Table 5.5 is 0.1890 by group XRCE. However, their features

are extracted based on the PCA process, which requires making use of the features

from all the images in the data set. The next best retrieval result by the MAP is
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Table 5.8: Results by using three MPEG-7 descriptors (EHD, SCD, and CSD), and by
combining with our three methods for the ImageCLEF 2007 Photographic Retrieval
Task

method MAP P20 BPREF GMAP REL RETR

EHD 0.0328 0.0983 0.0821 0.0097 840
SCD 0.0616 0.1567 0.0953 0.0158 884
CSD 0.0788 0.1958 0.1179 0.0275 1011

DCT2KL+LTP+RGB 0.136 0.2767 0.1569 0.0556 1394
+EHD+ SCD+CSD

0.1340 by the DCU group, which uses six MPEG-7 features together with the FIRE

system. Without the FIRE system, the MAP achieved by the six MPEG descriptors

is 0.1000.

Our MAP result is 0.1360 which is the second best in all these results. We simply

combine six matching methods, and the weights for different features and methods are

equal. The retrieval results on these tasks also indicate a fact that retrievals should

be a combination of different information, including color, texture, edge, structure,

global, and local features etc.

5.3.3 Retrieval Examples

In this section, we show three groups of retrieval results on the TC-12 data set in

Figures 5.13, 5.14, and 5.15. The retrieval topics for these three groups of examples

are: church with more than two towers, people on surf boards, and sunset over water.

The query images in each topic are shown as the first three images in each Figure. The

retrieved target images ranking from 1 to 32 are shown in the same corresponding

Figure as the query images. The positive target images given by the ImageCLEF

are marked by red rectangles, and the negative retrieved images are marked by blue

dotted rectangles.

In Figure 5.13, the query images are churches with more than two towers. The

retrieved target images contain buildings which are similar to the query images. How-

ever, as the topic specifically requires the buildings as churches and with more than

two towers, the target images with other types of buildings or with churches but only

one tower are considered as negative matches. Similarly, in Figure 5.14, the topic re-

quires the images with people on surf boards. All retrieved target images are similar
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Figure 5.13: Retrieved images for the topic church with more than two towers for the
IAPR TC-12 data set. (Red rectangle: positive; blue dotted rectangle: negative)
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Figure 5.14: Retrieved images for the topic people on surf boards for the IAPR TC-12
data set. (Red rectangle: positive; blue dotted rectangle: negative)
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Figure 5.15: Retrieved images for the topic sunset over water for the IAPR TC-12
data set. (Red rectangle: positive; blue dotted rectangle: negative)
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to the query images with the sea, but not always having people on surf boards. Those

images without people and surf boards are negative. In Figure 5.15, the retrieved im-

ages are all with the sun inside. But the topic requires images of sunset over water.

Thus the images with sun, but not over water, or not with sunset are negative.

From these three examples, we can see that the retrieved target images by our

methods show highly resemblance to the query images, but not always match the

topic description. As a result, the precision results in Table 5.7 and 5.8 only provide

the best MAP as 0.136. This result is partly caused by the semantic meaning in

the topic, while the given query images only partially convey the semantics. The

other reason is that the methods we apply to retrievals do not convey object level

information or semantical meanings. The mismatching between the topic and image

descriptors is known as the semantic gap [85]. Including methods that are able to

describe objects in images can improve the retrieval performance to some extent, i.e.,

the SIFT features used by the XRCE group.

We also notice that the ground truth data given by the ImageCLEF may miss

some positive images. For example, the target image ranking at 1 in Figure 5.13

is almost the same content as the second query image. But the ground truth data

considers it as a negative match.

5.4 Summary

In this chapter, we compare the performance of our work in the thesis with the

reported results by Deselaers et al. [19] for the Corel1K and UCID data sets. The

performance is compared by two measures: the ER and the MAP. The comparison

results show that our LTP histograms and RGB GMMs gain comparable results on

both the data sets. The DCT2KL method outperforms other features for the Corel1K

data set by a wide range, and gain the second best performance for the UCID dataset

except the SIFT features. We further show the results by using our proposed features

and methods, the LTP histograms, the RGB GMMs, and the DCT2KL method. The

results show that the combination methods achieve better performance than using

each of the methods separately. These features and methods represent one kind of

color and texture joint distributions in different color spaces and domains, and thus

the retrieval results are improved by combining them. We also show several retrieval
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examples with different query images to provide visual impressions on how these

features and methods affect the retrievals.

The methods are then applied to a large-scale image data set, i.e., IAPR TC-

12 data set. This data set has 20,000 natural images, and has been used as the

test set for the photographic retrieval tasks from 2006 to 2008. We show how our

methods perform on the data set, and compared to those reported results also using

visual features. From the results, we notice that to further improve the retrieval

performance, local features should be included together to boost the performance

by different information. Three MPEG-7 image descriptors are then added to our

methods, and results show that the retrieval performance is improved to the second

best of all reported results. Several retrieval examples on the data set show that our

methods are able to find target images which are highly similar to the query images.



Chapter 6

Conclusion

6.1 Summary of Contributions

In this thesis, we present three methods for image matching in Content-Based Image

Retrieval (CBIR). These three methods include: a method based on the LTP his-

tograms; the second method based on the GMMs estimated by the EMass algorithm;

and the third is called the DCT2KL method.

The LTP contains spatial information among neighboring pixels in an image. The

spatial information provides more discriminative capability than the color levels. The

LTP transforms the relationships of 9 neighboring pixels into a code, and the distri-

bution of LTPs (histogram) in an image is used as the feature. Similarity between

the LTP histograms is measured by the KL divergence. Compared to the related

image features which also contain spatial information, the proposed LTP histograms

achieve good discrimination capability and higher retrieval precision. We also suggest

extracting the LTP histograms from a quantized color space and at different pattern

length according to the application needs.

GMMs are alternate representation methods to histograms, when histograms are

not suitable for describing the distribution of data, such as for high-dimensional

data. GMMs give a compact and efficient representation to the high-dimensional

data in images. The GMMs estimated by the EM algorithm usually suffer the local

maxima problem. We present the EMass algorithm to estimate GMMs and avoid the

local maxima by using the deterministic annealing method. The EMass algorithm

estimates GMMs with high log-likelihoods more stable than the EM algorithm and

the related DAEM algorithm. By applying the GMMs to represent the RGB color

distributions in images, the GMMs estimated by the EMass algorithm also achieve

higher precision than the other two algorithms.

The DCT2KL method addresses the representation of high-dimensional data through

different methods. Motivated by image compression algorithms, we make use of image

124
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processing techniques in different color spaces. More specifically, the DCT coefficients

in the YCbCr color space are used instead of the color levels in the RGB color space.

The DCT coefficients are restored by partially decoding JPEG images. Assume that

each DCT coefficient sequence is emitted from a memoryless source, and all these

sources are independent of each other. For each target image in the data set we form

a hypothesis that its DCT coefficient sequences are emitted from the same sources as

the corresponding sequences in the query image. Testing these hypotheses by mea-

suring the log-likelihoods leads to a simple yet efficient scheme that ranks each target

image according to the KL divergence between the empirical distribution of the DCT

coefficient sequences in the query image and that in the target image. The DCT2KL

scheme thus encompasses the image indexing and comparison together in a solid way.

Finally, we present a scheme to combine different features and methods to boost

the performance of image matching. Detailed experimental results for each method on

different image datasets, which include the Corel1K, the UCID, and the IAPR TC-12

image data sets, are provided. The performances of our methods are compared to the

related works, and we give extensive discussion on their advantages and disadvantages.

Examples showing retrieved images for different query images on different data sets

are also provided to demonstrate the effectiveness of our methods and the combination

scheme.

As a summary, the proposed work in our thesis is mainly focused on color and

texture information. The LTP histograms provide local texture information from

the spatial relations among neighboring pixels. The RGB GMMs provide the color

distributions in the RGB color space. The DCT2KL method includes both the color

information in the YCbCr color space by the DC coefficients, and the texture infor-

mation by the AC coefficients. With the proposed methods, images are matched by

using the color and texture information.

6.2 Future Work

Our work in the thesis shows that the global image features provide good retrieval

results. However, especially on large-scale image datasets, different image features

and methods should be combined to provide better retrieval results. This combina-

tion idea consists of two important directions for our future work. Firstly, what and
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how to get more discriminating features for image matching. The retrieval results for

the IAPR TC-12 dataset indicate that global features should be combined with other

information to provide better retrieval results. The image local features, such as the

SIFT features, are able to provide local object level information in images. We show

initial experimental results by combining with localized MPEG-7 descriptors. The

combination improves the retrieval precision. Thus, to further improve the retrieval

performance, we plan to include more local features. As many local features are de-

signed for object recognition purposes, these features are not able to apply to image

matching for general image retrieval directly. Some efforts have been proposed, includ-

ing Bag-of-Visual-Word [104], Model-based representation, clustering-based methods.

However, each of these methods requires large quantity of training sets, as well as

more work to improve the efficiency before combining with global features. Secondly,

how to combine different features and methods in a more effective way? In this thesis,

we present a combining scheme to equally sum the normalized similarities by different

methods. We will work on tuning the weighting scheme, and the normalization for

different features and methods.

We also notice another problem from the retrieval results for the IAPR TC-12

dataset. The features fail to represent images semantically, which is also known as

the semantic gap. The semantic gap is defined in the survey by Smeulders et al. [85]

as:

“the lack of coincidence between the information that one can extract from the

visual data and the interpretation that the same data have for a user in a given

situation.”

How to bridge the semantic gap in image retrieval is very important for high level

image retrieval. Despite current methods including relevance feedback techniques and

building association between visual features and annotations, the bridging remains a

major challenge for CBIR. We will work on how to bring semantics into our methods.
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