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Abstract

A new method is developed to schedule jobs on parallel machines with availability

constraints. The objective of the problem is to minimize the makespan of the total

production schedule. Without the availability constraints the scheduling of machines

is a Pm || Cmax problem. The scheduling of this problem was the topic of many earlier

papers.

The main contribution of this research is that the schedule of the jobs on parallel

machines with availability constraints is determined within a single implicit enumer-

ation algorithm. Within the general enumeration scheme, the loads of each machine

are enumerated in a lexicographic order. An exact integer linear programming model

is provided, too. The difficulty of the problem depends on the properties of the pro-

cessing times, the number of machines, and the number of availability constraints

on the machines. In some subclasses, problems with very large number of jobs are

solved. The largest problems solved within one hour limit have 1, 000, 000 jobs.

keywords: parallel machines; availability contraints; makespan; scheduling;

x
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Chapter 1

Introduction

In this chapter, we introduce basic concepts of scheduling along with an outline of

the remainder of the thesis. Section 1.1 gives a basic introduction to scheduling. In

Section 1.2 the objectives and the motivations of the thesis are discussed. Section 1.3

gives a brief introduction to machine scheduling.

1.1 Introduction to Scheduling

Scheduling is a very common activity in both industry and non-industry settings.

Everyday, meetings are scheduled, deadlines are set for projects, vacation and work

periods are set, maintenance and upgrade operations are planned, operation rooms

are booked and sports games are scheduled and arenas booked, etc.

Proper scheduling allows various activities, jobs or tasks to be executed in an

organized manner, while preventing resource conflicts. Example of activities are:

the different stages of a research project, the tasks a nurse has to perform during a

work day, the manufacturing operations in a semi-conductor company, etc. Objec-

tives maybe to minimize the time to complete all activities, minimize the lateness of

activities that cannot be completed on time, the completion of the most important

activities on time, maximizing the number of customers or patients served, etc.

In general, intelligent scheduling methods are needed to assign activities to proces-

sors (machines) when faced with limited execution time and scarce resources. Many

researchers have and are working on the topic, specially in the area of machine schedul-

ing. However, most assume that the processors or machines are always available over

the course of the production horizon, which is not always realistic.

1
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1.2 Motivation and Research Goal

Classical machine scheduling problems assume that machines are continuously avail-

able over the scheduling horizon. This assumption might be justified in some cases

but it is not satisfied in many practical situations. The operation of a machine can be

interrupted for a certain period of time due to accidental breakdown, preventive main-

tenance, periodic repair or other reasons, which render the machine nonproductive

for a certain period of time.

In industry, occurrences like the ones describe above are not uncommon. It is

therefore necessary to find ways of scheduling jobs or tasks in the presence of non-

availability periods. As the next example will show, scheduling jobs without specifi-

cally considering the non-availability constraints can lead to very poor results.

In this example, two jobs with processing times of 1 and 2 units of time are to be

scheduled on 2 parallel machines M1 and M2. Machine M1 is unavailable from instant

1 to instant n. Machine M2 is available during the whole scheduling horizon. Figure

1.1 shows the schedule on these two machines obtained by the Longest Processing

Time (LPT) algorithm, which assign jobs on the machines by the non-increasing

order of their processing times. This algorithm is the most common heuristic in the

literature for parallel machines scheduling.

According to the LPT algorithm, the first job to be scheduled is the one with

duration 2. On machine 1, the non-availability period is reached before the job is

completed. Therefore the processing will only resume after instant n and complete

at n+1.
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Figure 1.1: Scheduling without Considering the Availability Constraints

The second job with duration of 1 is scheduled on machine 2. The makespan of this

example is n+1. The solution of this method can be very large if the unavailability

period of length (n-1) is long.

Another motivation to study machine scheduling with availability constraints is

the presence of special tasks. A special task is a task that should be processed within

a specific time interval. Examples of special jobs include tasks with higher priority

or tasks previously booked for processing. Those special jobs can be represented

by the non-availability periods on the different machines. There are many of other

examples where the investigation of machine scheduling with availability constraint

is of great importance. Hence this topic has recently attracted attention. However,

this consideration adds complexity to any scheduling problem, even in the case of two

machines with a single unavailability period.

The goals of this research are to:

i) Conduct an extensive literature review on parallel machine scheduling with

availability constraints.

ii) Provide a mathematical model for the problem: Since the only exact method

in the literature can apply to only the two machine problem [31], it was

necessary to develop new model.

iii) Develop an exact algorithm: The main result of this study is a new algo-

rithm for the parallel machine scheduling with availability constraints. The
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aim is to compare the computing time and the size of the solved problems

if the exact algorithm is applied or a general problem solver is applied to

the model.

1.3 Preliminaries

In the following, we introduce the notation of Graham et al. [15], extended to include

availability constraint. This notation consist of three fields α | β | γ.

The first field α represents the machine environment. In the literature, three

types of environment for machines are defined [36]. However, an environment may be

divided into the several other environments as listed below:

• Single Machine: there is only one machine to process the tasks or jobs.

• Parallel Machines: more than one machine is performing the same function.

The machines can be:

– Identical. all machines have the same speed factors, and they can process

all the jobs.

– Uniform. parallel machine system with different speed factor, and each job

has a single operation.

– Unrelated. there is no relation between machines.

• Dedicated Machines: Machine are specialized for the execution of certain oper-

ations.

– Flow shop: The number of operations for each job is the same as the

number of machines. The first operation starts on machine 1, the sec-

ond requires processing on machine 2, and so on. All jobs visit the same

machines in the same sequence.

– Job shop: The jobs are passed through machines in a different order. In

other words, each job has a given sequence of operations on the machines.
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– Open shop: Machines have different speed factors, and jobs should be

processed on every single machine.

The second field β denotes the job characteristics these include presence of preemp-

tion or not, how jobs are resumed, existence of non-availability periods. If preemption

is permitted then the processing of a job can be interrupted in order to let another

job such as a rush order with high priority be processed on the machine. The job

taken off the machine is said to be preempted.

In our case (presence of non-availability period), the processing of a job may be

interrupted when some of its processing time extends into an unavailability interval.

After the unavailability period the interrupted job can be completed based on the

type of preemption. There are several forms of preemption. One form classifies

preemption as operation preemption or arbitrary preemption. Under the operation

preemption, the preempted job is to be processed on the same machine it started

on. Thus the preempted job, must remain on that machine until it can resume.

Under arbitrary preemption, a job may be preempted and sent to another machine,

or continued later. A schedule is called non-preemptive, if a job can continue its

processing without interruption [36].

When a job is interrupted by a non-availability period, it resumes processing at

the end of the non-availability. The duration of the interrupted job, after the non-

availability period, depends on the resumability or non-resumability of jobs. A job is

considered resumable when its remaining processing time can be executed after the

unavailability period without any time penalty. A non-resumable job is a job that

must be restarted from the beginning after the unavailability period, rather than

continuing its processing [25]. Finally, Lee [26] defines a semi-resumable job as a job

that must be partially restarted for the portion that has been processed.

For example consider a job with a processing time of 2 units of time, being pro-

cessed on a machine with an availability constraint. The machine is not available

from 1 to 2. The figure below shows how the type of this job can affect its processing

time.
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Figure 1.2: Different Job Types

The third field γ, describes the performance measure being considered or the

optimality criteria. Minimizing makespan, maximum lateness, number of tardy jobs

and sum of completion times are examples of performance measures.

Many different types of problem can be generated by varying each of three fields

in Graham’s notation. The approach that is selected to solve each of these problems

is depended on the degree of information that is available for that problem. In some

problems, there might be no information on the duration of the unavailability period

or no clear knowledge of the start the unavailability period. A typical example is an

unexpected machine breakdown. We cannot predict the accidental machine break-

down, and the scheduling should be done regardless of the data or information about

the unavailability period. In some other problems, there is a partial knowledge of the

availability constraints on the machines. For example, the duration of the unavail-

ability period is known, but there is no information about the start of unavailability.

For some other problems, we might have all the information on the problem, before

we decide anything about the scheduling. Systematic preventive maintenance on the

machines falls in the latter category. In the systematic preventive maintenance, the

time and duration of the maintenance is known in advance. Schmid [42] defines three

types of algorithms, based on the type of the information that one might have about

a problem:

1. On-Line Algorithm: It proceeds sequentially and it only needs to know at each
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instant t, the number of jobs ready at t, the number of machines available at t,

the remaining processing time and their deadlines or due dates.

2. Nearly On-Line Algorithm: It needs in addition at time t the time of the next

event, that is either number of unavailable machines change or a new job be-

comes ready for processing ([40], extended from [22]).

3. Off-Line Algorithm: It needs all the problem data in advance. All the infor-

mation concerning machine availabilities, and job characteristics is determined

before the start of the algorithm.

Problems can also be classified according to the pattern of the non-availability peri-

ods on the parallel machines. Schmid [41] and Liu and Sanlaville [35] define 6 different

patterns in the scheduling of parallel machines: constant, zigzag, increasing (decreas-

ing), increasing (decreasing) zigzag, staircase and arbitrary. Schmid [42] lists some

algorithms developed to address the makespan problem with specific non-availability

patterns. In the literature, there is no effective pattern-independent algorithm.

In this research, we consider the following scheduling problem: Pm | r−ai,q | Cmax.
The symbol Pm in the α field denotes the parallel machine problem, r in the β field

represents resumable jobs, and ai,q shows the number of machines with availability

constraints, where q represents the maximum number of availability constraints on

a machine. In the case of single machine and one availability constraint ai,q is equal

to a. The type of preemption is assumed to be operation preemption. Cmax in the

γ field shows the optimality criterion, which is minimizing makespan, or maximum

completion time. Makespan, is the time interval between the start of the first job on

the machines and the completion time of the last job. This study assumes that all

the information is known in advance. That is, the type of the algorithm is off-line, or

deterministic.

The next chapter presents a basic introduction to the parallel machines scheduling

with availability constraints. Later, it reviews earlier studies and researches done on

the topic.
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The rest of this study is organized as follow: In Chapter 3, the problem is defined

and is modelled mathematically. The exact algorithm to be studied is presented in

Chapter 4. Chapter 5 presents a computational analysis to evaluate the performance

of the exact algorithm under a variety of experimental conditions. Lastly, chapter 6

presents the conclusions along with some suggestions and areas for future study.



Chapter 2

Literature Review

In this chapter, the first section gives an introduction to machine scheduling, and

provides a brief overview of basic scheduling concepts. The second section describes

the availability constraints in machine scheduling. Finally, the third section reviews

the main studies and research conducted on this topic.

2.1 Parallel Machine Scheduling

Schedules are generally evaluated by a performance measure or an objective function.

A popular performance measure is the minimization of the makespan. Makespan, or

maximum completion time is the time interval between starting the first job on a

machine and the completion of the last job. In the literature makespan is denoted by

Cmax.

When there is only one machine and jobs are sequence-independent, the solution

of the makespan problem is trivial: any scheduling sequence results in the optimal

solution. However, the same statement is not true, when the number of machines is

greater than one.

Classical parallel machine scheduling considers series of identical machines with a

number of jobs and different processing times. It assumes that the jobs are ready at

time zero, and machines are continuously available during the whole scheduling hori-

zon. The simplest makespan problem arises in classical parallel machine scheduling,

when jobs are sequence-independent and preemption is allowed. When preemption is

permitted, the processing of a job can be interrupted and the remaining processing

can be completed later, perhaps on a different machine. When preemption of the jobs

9
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is allowed on all machines, the minimum makespan is obtained by:

M∗ =

[
N∑
j=1

pj/m

]
(2.1)

where N is the number of jobs, pj is the processing time of task j, and m is the

number of machines. In the case of integer processing times, the solution of (2.1) is

optimal, when the result is integer. The integer result shows that the total processing

time is evenly allocated among all machines. If the result is not integer then the

optimal solution is equal to dM∗e or greater.

By prohibiting preemption, makespan minimization becomes a Non-deterministic

Polynomial-time hard (NP-hard) problem. Leung [30] defines NP as a class of decision

problems which have “succinct” certificates (certificates whose size is bounded by

a polynomial function of the size of the input) that can be verified in polynomial

time. According to him problem Z is NP-hard if all problems in the NP-class are

reducible to Z. According to Brucker [6]not all NP-hard problems are equally hard

from practical aspect. For example there are some NP-hard problems that can be

solved pseudopolynomially using dynamic programming.

It is shown that parallel machine makespan-minimization problem is NP-hard

even for the two-machine problem [29]. However the two-machine problem can be

solved by the pseudopolynomial algorithm [3]. But solving problems with more than

two machines is very challenging. Solving these problems need a general-purpose

method such as dynamic programming or branch and bound algorithm. In the case

of dynamic programming, the algorithm can only be applied to relatively small sized

problems. This is due to the high computation and memory requirements of this

method. In the case of branch and bound, it is very difficult to obtain tight lower

bounds [3].

Although, it is not easy to find the optimal makespan, a local optimal solution

can always be found by heuristics. A well-known heuristic in the literature is List

Scheduling (LS). In this method, jobs are sorted according to a predefined order. For

example, jobs can be sorted according to the non-decreasing order of their processing
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time. Then, whenever a machine becomes available, a job with the lowest index among

the unscheduled jobs is assigned to that machine space. The procedure continues until

all jobs are assigned to the machines.

The solution of makespan in LS depends on how the jobs are ordered. Unfor-

tunately there is no easy way to find an optimal list. The only method to find the

optimal list is to check every possible order. If there are N jobs then N ! permu-

tations should be checked to find the optimal solution. Graham [13] proves that

applying LS to a classical parallel machine problem yields a performance guarantee

of CLS/C
∗ ≤ 2 − 1/m. Baker and Trietsch [3] defined performance guarantee as

follow:

performance guarantee is a bound on the performance of a particular so-

lution method. In the case of makespan problems, it is an upper bound on

the suboptimality of the makespan produced by a give heuristic procedure.

In the above performance guarantee found for the LS algorithm, the right hand

side of the inequality is an error bound, which represents the ratio of the heuristic

solution to the optimal solution as a function of the number of machines.

The most prominent heuristic for makespan problem is the so-called Longest Pro-

cessing Time (LPT). This heuristic is a LS algorithm with the list of the jobs sorted in

the non-increasing order of their processing times. Graham [14] proves that the LPT

algorithm has a performance guarantee of CLPT/C
∗ ≤ 4/3− 1/(3m), which provides

a better error bound than the LS algorithm.

Many other heuristics have been proposed in the literature to address the classical

parallel machine scheduling problem (e.g. MULTIFIT algorithm [10], and Repetitive

Modified Greedy algorithm [23]).

2.2 Parallel Machine Scheduling with Availability Constraints

It is always possible that a job cannot complete its processing before the start of an

unavailability period on the machine. The processing of the job is therefore inter-

rupted until the unavailability period elapses. In general, this type of interruption is
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caused by a machine breakdown, preventive maintenance, or the arrival of a special

job. For machine breakdowns and special jobs with random arrivals, the unavail-

ability periods are stochastic: the unavailability periods are decision variables and

occur randomly. On-line algorithms are needed to solve this type of problems. For

preventive maintenance activity or special jobs with predetermined arrival and du-

ration, there is complete information on the duration of the unavailabilities and the

problem can be solved by off-line algorithms. It is also possible that a machine is not

available at the beginning of a scheduling horizon because of a job whose processing

is overflowing from the previous scheduling period to the current period. Such a case

can also be solved by an off-line algorithm.

2.3 Results for the Makespan problem with Machine Non-Availability

In the past decades, machine scheduling problems have received much attention by

researchers. There are many papers in the literature dealing with parallel machine

scheduling. But the number of papers addressing machine scheduling with an avail-

ability constraint is very limited. This section first reviews the papers dealing with an

availability constraint on a single machine. Then, the result for parallel machines with

different machine release times is shown (machines may not be available at time zero).

And finally, the last section reviews the literature for parallel machine scheduling with

availability constraints within the planning horizon.

When there is a single machine (1|r − a|Cmax), any arbitrary sequence will yield

the optimal makespan [25]. However the same result does not hold when other factors

are included. Wu and Lee [45] studied this problem with an availability constraint

and with deteriorating jobs. Deterioration of a job means that the processing time

for a job is a function of its starting time. They solved this problem using binary

integer programming technique. Later they showed that the same problem can be

solved optimally by the Shortest Processing Time (SPT) rule [46]. The SPT rule

is very similar to LPT algorithm, with the exception that jobs are assigned to the

machine in the non-decreasing order of their processing time.

Lee [24] studied parallel machine scheduling with availability constraint, where
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one of the machines is always available and each machine has at most one availability

constraint (Pm|r − am−1,1|Cmax). He assumed that the durations of the unavailability

periods may be different, but they all start at time zero. This problem can also be

defined as a classical parallel machines scheduling with machines release times. Based

on this assumption, he introduced two algorithms to solve this problem.

In the first algorithm, he assumed that unavailability periods are jobs that are

already scheduled on the machines. Then he applies the classical LPT algorithm to

assign jobs on the machines; e.g. the first job will be assigned to the machine which

is released first. He proves that the makespan of this algorithm is always less than

or equal to
(

3
2
− 1/(2m)

)
C∗. Later, Lee [25] showed by an example that the relative

error of this algorithm can be arbitrarily large even for the two-machine problem.

He showed that this algorithm performs poorly whenever the start of unavailability

period is greater than zero or when there is an availability constraint on all machines.

In some cases a machine might have an unavailability period, which force it to be

inactive during the whole scheduling horizon because the duration of unavailability is

larger than the current makespan. Lee [27] showed under this circumstance that the

LPT bound is not valid anymore. He proved that this bound can be tightened if the

number of active umachines (m′) is smaller than the total number of machines (m).

The performance of the algorithm is then CLPT ≤
(

3
2
− 1/ (2m′)

)
C∗.

The second method that he applied in the mentioned paper is a modified version

of his first algorithm, which he called Modified Longest Processing Time (MLPT).

In this method, the non-availability periods are treated as special jobs and they are

sorted along with the other jobs in the non-increasing order of their duration. The

jobs and unavailabilities are scheduled by the LPT algorithm with the condition that

each machine can have at most one special job. So, whenever a machine is assigned

more than one special job, the extra special jobs is redirected to the machine with

the smallest scheduled processing time and with no special job; then the smallest

processing time of that machine is removed and is replaced by the special job. The

removed job is then moved to the first of the list of unassigned jobs. He proves that

the makespan of this algorithm is bounded by CLPT ≤ 4
3
C∗.
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Later, Lin et al. [33] improved Lee’s bound of CLPT ≤ 4
3
C∗ reached by MLPT to

CLPT ≤ 5
4
C∗. Kellerer [20] developed a dual approximation algorithm using a bin

packing approach leading to the same bound.

The papers mentioned above investigate parallel machines scheduling with ma-

chine release time, where the unavailability periods may start only at the beginning

of the scheduling horizon. This problem is easier than the problem with availability

constraint not necessary only at the beginning of the scheduling horizon. This is true

because of possibility of having job preemption, when there is availability constraint

in the middle of scheduling horizon, which makes the problem more difficult. Lee [25]

introduced a new method for Pm|r − am−1,1|Cmax, named LPT2. This algorithm is

very similar to the LPT algorithm. In LPT2, jobs are sorted as in the LPT algo-

rithm but they are assigned to a machine such that the completion time of the job is

minimized. Under the assumption that one of the machines is always available, the

algorithm yields a performance guarantee of CLPT2 ≤ C∗ (1− 1/m) /2 + C∗.

Liao et al. [31] found the optimal makespan for P2|r−a1,1|Cmax. They solved this

problem by partitioning it into four sub-problems, each of which is solved optimally

by an algorithm. But this algorithm works on a very limited model. In their algo-

rithm, there are only 2 machines, and the availability constraint is only on one of the

machines. Their algorithm can solve problems up to 100 jobs.

Liao and Sheen [32] considered a problem where the machines may have different

job capabilities Pm|r −Mj − am,1|Cmax. They solved this problem by using a binary

search algorithm. The Mj in the beta field denotes the specific subset of machines

that can process job j. The algorithm either verifies the infeasibility of the problem or

determines the optimal schedule within a predefined planning horizon. Their model

is very large and the paper does not report any computational result.

B lażwicz et al. [4] investigated machine scheduling with limited availability and

two objective functions of makespan and maximum lateness. They showed that, if the

tasks are from chains and are processed by identical processors, then the problem can

be solved by low order polynomial time for Cmax criterion, and a linear programming

approach is required for Lmax criterion. A chain “is a special precedence structure in
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which each job has at most one direct predecessor and one direct successor” [3].

When it comes to online algorithm and non-resumable jobs, Tan and He [44]

found the optimal solution for P2|nr − am,1|Cmax. They scheduled jobs on two iden-

tical machines where the unavailability periods of two machines are not overlapping.

They showed that the competitive ratio of LS is 3, and the optimal algorithm has

a competitive ratio of 5/2. Sleator et al. [43] defined the competitive analysis as a

worst case analysis where the performance of an online algorithm is compared to the

performance of the optimal offline algorithm [44].

As explained earlier, the solution of makespan problem for one machine is trivial.

However this is not true when the jobs are non-resumable. It is shown that, when the

jobs are non-resumable, the problem is NP-hard, even for one machine problem with a

single availability constraint [25]. When there is more than one availability constraint,

the problem is NP-hard in the strong sense. Lee [25] proposed an algorithm for solving

the one machine problem with a single availability constraint (1|nr − a|Cmax). He

proves that this algorithm has a performance guarantee of CLPT ≤ 4C∗/3, when the

jobs are sorted in the LPT order, and they assigned as many jobs as possible before

the start of unavailability period and the rest after the unavailability period.

When there are more than one machine, the problem Pm|nr − am,1|Cmax is NP-

hard. Lee [25] analyzed the application of LS and LPT algorithm to this problem.

He proves that they have a performance guarantee of CLS ≤ C∗m and CLPT ≤
C∗(m+ 1)/2 respectively.

When the performance measure is the summation of the jobs completion times

(1||
∑
Ci), the SPT yields the optimal solution. Adiri et al. [1] show that when

there is an availability constraint on the machine and the jobs are non-resumable

(1|nr − a|
∑
Ci), the problem will change to NP-hard. They prove that the SPT rule

has a relative error bound of less than equal 1/4. Later, Lee and Liman [28] improved

this error bound to 2/7.

Cassady and Kutanoglu [7] studied single machine scheduling with the objec-

tive function of minimizing job tardiness. However in their model they do not just

schedule jobs. In their study, they assumed that preventive maintenance was not
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deterministic, and machine breakdown could happen anytime during the scheduling

horizon. Therefore they integrated preventive maintenance planning and production

scheduling. They used total enumeration for solving this problem optimally. Their

algorithm can not be applied to the problems to more than eight jobs, because the

computational time becomes unbearable. Later they studied the same model but

with different objective function [8]. They assumed that the objective function is to

minimize weighted completion time, and they used the same algorithm to solve the

problem. In their paper, a heuristic is also introduced for scheduling large number of

jobs. Their heuristic can solve problems up to 20 jobs.

A summary of papers discussed in this chapter can be found in the table 2.1 on

the next page.

For more information on machine scheduling with deterministic availability con-

straints, the reader is referred to the paper by Ma et al. [36].

In the next chapter, we explain the problem and assumptions of the problem.

Two Integer Linear Programming (ILP) models are provided to optimally solve the

problem with single and multiple availability constraints.
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Chapter 3

Definition and Modelling of the Problem

This chapter describes the problem and the assumptions made in its mathematical

modeling. After describing the problem and assumptions, the problem is formulated

into mathematical formulae. Two integer linear programming models are proposed

to model the makespan minimization for parallel machines with unavailability con-

straints. The first model assumes that each machine can have at most one availability

constraint, while the second model is a generalization of the first model, and each ma-

chine can have multiple non-availability periods.

3.1 Model Description

We consider the problem of scheduling N independent jobs (tasks) on m identical

machines (processors) with availability constraints. The availability constraint means

that some or all machines are not available for a certain period of time and therefore

cannot be used to process jobs. The objective is to minimize the maximum completion

time (makespan).

In the modeling of this problem, the following assumptions are used:

1) All machines are identical and are able to perform all operations (all

eligible).

2) Each machine can process only one task at any time.

3) Each part has only one, maybe complex, operation.

4) Preemption of a job on another machine is not allowed. Operation

preemption is allowed (e.g. machines are not all in the same location).

19
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5) All jobs are available at time zero, however some machines may not be

available at that time.

6) Setup times are independent of job sequence and are included in the

processing times.

7) The unavailability periods are known in advance and their duration

are also known and constant. Therefore an off-line algorithm is used

to solve the problem.

After the unavailability period the interrupted job can be completed immediately

on the same machine. The duration of the interrupted job after the non-availability

period depends on the type of the job, e.g. resumable or non-resumable. In this work,

we assumed that jobs are resumable.

Since the classical machine scheduling problem Pm||Cmax is NP-hard [29], it is

clear that the generalization problem with machine availability constraints will be

also NP-hard.

3.2 Notations

The following notations will be used in the models and the exact algorithm.

m the number of machines

n the number of different processing times

Ri the number of unavailability period(s) on machine i

q, k the index of unavailability periods

i, α the index of machines

j, τ, µ indices of jobs (tasks) and/or processing times

pj the jth processing time when all n processing times are sorted in

non-increasing order

uj the total number of jobs having processing time pj

N the total number of jobs N =
∑n

j=1 uj
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vj the number of jobs which have processing time pj and are not

loaded on any machine

zj the number of jobs with processing time pj in the load of the

current machine.

Li the load for machine i.

Ci the completion time of the last job on machine i

siq the starting time of the qth unavailability period on machine i. siq

is equal si, when Ri is equal to 1.

eiq the ending time of the qth unavailability period on machine i. eiq

is equal ei, when Ri is equal to 1.

Diq the duration of the qth unavailability period on machine i

(Diq = eiq − siq). Diq is equal Di, when Ri is equal to 1.

UB upper bound of the loads of machines.

LB lower bound of the load of the machines.

UBi upper bound of the load of machine i.

M an appropriately large positive number.

Under our method, jobs are sorted in the non-increasing order of their processing

time. So if we have 7 jobs (N = 7) with processing times 2, 5, 2, 6, 5, 8, 5 then we

can write p1 = 8, p2 = 6, p3 = 5 and p4 = 2. There are 4 job types (n = 4) and

u1 = 1, u2 = 1, u3 = 3 and u4 = 2. At any given time, the load of a machine is the

set of jobs scheduled or loaded on it. Referring to the list of jobs presented above, if

the last three jobs are loaded on machine 1, then the load on machine 1 will be (0(8)

0(6) 1(5) 2(2)). There is 0 job of type 1 (or with processing time 8), 0 job of type

2, 1 job of type 3 (with processing time 5) and 2 jobs of type 4. So z1 = 0, z2 = 0,

z3 = 1 and z4 = 2.

The total load of machine 1 is then 0× p1 + 0× p2 + 1× p3 + 2× p4 = 0× 8 + 0×
0 + 1× 5 + 2× 2 = 9.

The load of a machine is then always given by:
∑n

j=1 pjzj and denoted by

(z1, z2, . . . , zn).



22

3.3 A New Integer Linear Programming Model

A new Integer Linear Programming (ILP) model is developed to optimally schedule

N jobs on m machines with up to one non-availability period per machine while min-

imizing the makespan.

The parameters for the proposed ILP are shown below.

N number of jobs j = 1, . . . , N

m number of machines i = 1, . . . ,m

pj processing time for job j j = 1, . . . , N

si start of unavailability period on machine i i = 1, . . . ,m

ei end of unavailability period on machine i i = 1, . . . ,m

In this mathematical model three sets of variables are used:

xij =

{
1 if job j is assigned to machine i

0 otherwise

yi =

{
1 if all jobs on machine i are completed before si

0 otherwise

h = the makespan.
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This ILP is as follow:

Model 1:

min h (3.1)

s.t:

N∑
j=1

pjxij ≤ siyi +M(1− yi) i = 1 . . .m (3.2)

N∑
j=1

pjxij + (ei − si)(1− yi) ≤ h i = 1 . . .m (3.3)

m∑
i=1

xij = 1 j = 1 . . . N (3.4)

xij ∈ { 0, 1 } i = 1 . . .m, j = 1 . . . N (3.5)

yi ∈ { 0, 1 } i = 1 . . .m (3.6)

h ≥ 0 (3.7)

The unavailability should not be included in the makespan of machine i, when

the jobs are completed before the start of the unavailability on that machine. This is

guaranteed by constraint (3.2).

Constraint (3.3) assures that the objective function variable is at least as large as

the makespan, which should be minimized.

Each task must be assigned to exactly one machine. This is shown by constraint

(3.4).
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Finally, constraints (3.5)-(3.7) describe the types of the decision variables.

This model has m(N+1)+1 decision variables, and 2m+N functional constraints.

Model 1 developed above applies to Pm|r−am,1|Cmax problems where each machine

can have at most one non-availability constraint. Model 1 is a significant contribution

to the current state of literature and is optimally solvable by ILP solvers for moder-

ately sized problems as will be shown in Chapter 5. In industrial settings, it is not

uncommon to have several non-availability periods per machine over the scheduling

horizon. In order to address this more general problem, model 1 is to be extended to

include multiple non-availability periods per machine.

3.4 An ILP for Multiple non-availability Periods (Model 2)

It is common to encounter several non-availability periods on a machine as a result of

recurring periodic preventive maintenance actions, several special jobs being booked

and/or a combination of both. Adding more non-availability periods adds to the com-

plexity and difficulty of the model. In this section a new ILP is proposed to model

the makespan minimization problem on parallel machines with multiple availabil-

ity constraints per machine. Using Graham’s taxonomy this problem is denoted by

Pm|r−am,q|Cmax. First, a small problem with one machine and three non-availability

periods is used to illustrate the mathematical model. Then, the generalized model is

provided.

Assume we want to solve by the ILP the following problem:

Figure 3.1: A Problem with Multiple Availability Constrains
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As can be seen from the above figure, the problem is the problem of scheduling

jobs on a machine with three unavailability periods denoted by D1, D2, D3. Let Ri

denote the number of non-availability periods on machine i. A binary variable yiq is

introduced in the model.

yiq =

{
1 if jobs on machine i are completed before siq

0 otherwise

The ILP for this problem is as follows:

min h (3.8)

s.t:
N∑
j=1

pjx1j + (e11 − s11) y11 + (e11 − s11 + e12 − s12) y12 ≤

s11y11 + s12y12 + s13y13 +M (1− (y11 + y12 + y13))

(3.9)

N∑
j=1

pjx1j + (e11 − s11) y12 + (e11 − s11 + e12 − s12) y13+

(e11 − s11 + e12 − s12 + e13 − s13) (1− (y11 + y12 + y13)) ≤ h

(3.10)

x1j = 1 j = 1 . . . N (3.11)

y11 + y12 + y13 ≤ 1 j = 1 . . . N (3.12)

x1j ∈ { 0, 1 } j = 1 . . . N (3.13)

y1Ri
∈ { 0, 1 } i = 1 . . .m, ∀Ri (3.14)

h ≥ 0 (3.15)
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Let us define Dik = eik − sik for all i and k, then the general model is given by

Model 2:

min h (3.16)

s.t:

N∑
j=1

pjxij +

Ri−1∑
q=1

(
q∑

k=1

Dik

)
yiq ≤

Ri∑
q=1

siqyiq +M

(
1−

(
Ri∑
q=1

yiq

))
i = 1 . . .m

(3.17)

N∑
j=1

pjxij +

Ri−1∑
q=1

(
q∑

k=1

Dik

)
yiq+1+(

Ri∑
q=1

Diq

)(
1−

(
Ri∑
q=1

yiq

))
≤ h

i = 1 . . .m

(3.18)

m∑
i=1

xij = 1 j = 1 . . . N (3.19)

Ri∑
q=1

yiq ≤ 1 i = 1 . . .m (3.20)

xij ∈ { 0, 1 } i = 1 . . .m, j = 1 . . . N (3.21)

yiq ∈ { 0, 1 } i = 1 . . .m, q ∈ Ri (3.22)

h ≥ 0 (3.23)
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Constraint (3.20) guarantees that no more than one yiq is equal one. The rest of

the constraints can be interpreted as in model 1.

The above ILP has
∑m

i=1Ri+mN+1 decision variables, and (3m+N) functional

constraints.

Note that model 2 can be converted to model 1, when the number of unavailabil-

ities on each machine is at most one (Ri ≤ 1 : ∀i).

The next chapter explains the proposed algorithm, which is developed to find

optimal solution for parallel machine scheduling with availability constraints. The

performance of the algorithm is evaluated by extensive numerical studies, and the

results show the efficiency of the algorithm for solving these problems with superior

Central Processing Unit time (CPUt).



Chapter 4

Model Development

The ILP models introduced in the previous chapter can be optimally solved by the

ILP solvers for small size problems. For model 1, CPLEX can solve problems with

up to 50 machines and 101 jobs. An exact algorithm has been developed for large

and more complicated problems. The proposed algorithm, solves the scheduling of

parallel machines with multiple availability constrains Pm|r − ai,q|Cmax optimally.

In this chapter, the first section introduce the notations along with the basic tools

needed to develop the main algorithm. The second section describes the method em-

ployed to solve the problem. Section three describes how an initial upper bound is

developed for the algorithm. The proposed exact algorithm is introduced in section

4.4. With some modifications, we can apply the algorithm to the problem with mul-

tiple availability constraints. This is explained in section 4.5. Lemmas are defined to

limit the search space and decrease the computational requirements of the algorithm.

These lemmas are defined in section 4.6. Finally to give a better understating of the

algorithm to the reader, a numerical example is constructed and shown in the section

4.7.

4.1 Preliminary Presentation of the Tools Used in the Algorithm

This section goes over the preliminary tools require for building the main algorithm.

The objective function value of any feasible solution, i.e. the current Cmax, is the

load of the machine that finishes last. Thus

Cmax = max {Ci : i = 1 . . .m} (4.1)

where Ci is the completion time of the last job on machine i

28
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Assume that the makespan of the current known feasible solution is Cbest. If

the optimal solution has not been explored yet then its value is not greater than(
Cbest − 1

)
in the case of integer processing times. Thus

UB = Cbest − 1 (4.2)

is an upper bound for the load of all machines in the feasible solutions still to be

investigated. Hence

LB = max

{
0,

N∑
j=1

pj − (m− 1)UB

}
(4.3)

is a lower bound for all the other loads in the same feasible solution. Equation (4.3)

implies that if all machines but one have a total load equal to the upper bound, then

the remaining load is the lower bound. In this formula, N is the number of jobs, pj

is the processing time of job j and m is the number of machines. After finding a new

and better feasible solution both bounds tighten up.

Equation (4.2) is a global upper bound on the current makespan of all machines.

However, the unavailability periods on a machine can affect this upper bound. For

example, we may not be able to load the same number of jobs on two machines, when

they have different availability constraints. Therefore another upper bound is defined

to measure the maximum load on each machine that takes into account the duration

of the non-availability period. Thus

UBi =

{
UB UB ≤ si

UB −min{UB, ei}+ si UB ≥ si
(4.4)

The global upper bound and the machine upper bound are equal when the unavail-

ability period is before the upper bound. When the unavailability period is within

or before the upper bound, the upper bound for the machine is equal to the global

upper bound minus the duration of the non-availability period.

It is possible that an availability constraint on a machine does not impact or affect

the load on the machine. For example, when the jobs are completed before the start
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of the first unavailability period on the machine. Thus, the effective duration of the

unavailability period on machine i can be calculated by:

Di =

{
UB − si if si ≤ UB ≤ ei

ei − si if UB > ei
(4.5)

That is the duration of the unavailability on each machine is only equal to the period

of time during which the machine is not available within the global upper bound.

4.2 Lexicographic Order of the Machine Loads

In order to find an optimal solution, the exact algorithm should have two important

properties. First, the method should not be computationally complex. This will

enable the algorithm to solve large-scale or industrial problems. Second, the method

should enumerate in an implicit or explicit way all possible loads, when assigning jobs

to the machines. This ensures that the algorithm evaluates all feasible solutions.

As explained before, the main algorithm is an implicit enumeration. It is very

important to ensure that the enumeration does not skip any potential feasible solution.

The load of the machines are determined in sequence, one after another. Thus, the

potential load of machine i with 1 < i ≤ m depends on the loads of the previous

machines.

Any load on a machine must satisfy two constraints:

(i) it cannot contain more jobs than the number of remaining jobs,

(ii) the total load, i.e. the sum of the processing times, must be between the

lower and upper bounds.

These two conditions can be described by the following system of inequalities:

0 ≤ zj ≤ vj j = 1, . . . , n (4.6)

LB ≤
n∑
j=1

pjzj ≤ UB (4.7)

zj is integer j = 1, . . . , n. (4.8)
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where zj is the number of jobs with processing time pj in the load of the current

machine, n is the number of different processing times, vj is the number of tasks with

processing time pj that are still not loaded on any machine. For example in the case

of the first machine vj = uj for all j (uj is the number of unscheduled jobs), but the

same statement is not true for the other machines as some vj are strictly less than

the corresponding uj according to the load of the first machine.

There are many feasible solutions to the system (4.6)-(4.8). For an implicit enu-

meration procedure, they must be ordered somehow and enumerated in this order.

One easy way to perform this task is to order them lexicographically. Lexicographical

order, also known as the dictionary order or the alphabetic order, can be defined as

the cartesian product of any two ordered sets of X and Y . In other words:

if (x0, y0), (x, y) ∈ X×Y then (x0, y0) < (x, y) iff either

(i) x0 < x, or

(ii) x0 = x and y0 < y

(4.9)

For example the lexicographical order of 1, 1, 2 is:

#1: 1 1 2 #7: 0 1 2

#2: 1 1 1 #8: 0 1 1

#3: 1 1 0 #9: 0 1 0

#4: 1 0 2 #10: 0 0 2

#5: 1 0 1 #11: 0 0 1

#6: 1 0 0 #12: 0 0 0

Lexicographical search has been widely used in the literature in different ways.

Ho and Wong [19] used a lexicographic search, to optimally solve the scheduling

of jobs on two machines (P2||Cmax). Later, their method was used by Liao et al.

[31] to optimally schedule jobs on two machines, where one of the machines has an

availability constraint (P2|a− r1,1|Cmax). Hashemian and Vizvári [18] scheduled both
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production and vehicles on a special flexible manufacturing system, where jobs are

scheduled according to the lexicographical order.

The largest solution in the lexicographical order for n job types is given by (4.10)-

(4.11). The load is determined by a greedy algorithm:

z1 = min

{⌊
UB

p1

⌋
, v1

}
(4.10)

zj = min

{⌊
UB −

∑j−1
β=1 pβzβ

pj

⌋
, vj

}
j = 2, . . . , n. (4.11)

In the lexicographic order, the next load is needed in the enumeration whenever

an infeasible branch is explored. It can be determined by the greedy method in the

following way, where the current load is zj, and the lexicographic next is z̄j

γ = max { j | zj > 0 } (4.12)

z̄j = zj j = 1, . . . , γ − 1 (4.13)

z̄γ = zγ − 1 (4.14)

z̄j = min

{⌊
UB −

∑j−1
β=1 pβzβ

pj

⌋
, vj

}
j = γ + 1, . . . , n. (4.15)

There is no further feasible load of the machine if

∀ j : zj > 0 implies that

j−1∑
β=1

pβzβ + pj(zj − 1) +
n∑

β=j+1

pβvβ < LB. (4.16)

The greedy algorithm goes through multiple iterations. An interval of minimum

and maximum load of a machine is constructed for the initial iteration, and whenever

a feasible schedule of machines is obtained in an iteration, the algorithm will move

to the next iteration. After moving to the new iteration, the global upper bound and

lower bound are updated immediately. At each iteration, the lower bound and upper

bound will tighten up, until the algorithm eventually finds the optimal solution for

the makespan.
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4.3 Initial Solution

According to the equation (4.2), the global upper bound at each iteration is equal

to the makespan of the previous iteration (solution) minus one. However, there is

no feasible solution at the very first iteration that can be used to create the upper

bound. For this purpose, an upper bound for the first iteration is obtained by an

existing heuristic. Among the heuristics available in the literature, LPT2 [25] results

in relatively good performance guarantee compared to other heuristics. Therefore,

LPT2 is employed for constructing the initial solution. This algorithm always assigns

the next job to the machine which can minimize its completion time. Assume that

Li is the load on machine i, then the next job j will be scheduled on machine i∗ such

that:

i∗ = argmin {Li + pj : i = 1, 2, . . . ,m} (4.17)

Summary of LPT2 algorithm is given below:

Algorithm 1:

step 1. Sort the N jobs according to the non-increasing order of their

processing time.

step 2. Set j = 1.

step 3. Assign job j to machine i according to equation (4.17).

step 4. If j = N (i.e. all jobs are allocated) then go to the next step,

otherwise set j = j + 1 and go to step 3.

step 5. Calculate CLPT2
max by using equation (4.1).

4.4 The Main Algorithm

The main algorithm is an enumeration, which consists of two types of operations:

construction, and backtrack.
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4.4.1 Construction

In the construction phase the algorithm determines the load of the machines one by

one. This is done by either equations (4.10)-(4.11) if the machine has no previous

load or by the formulae (4.12)-(4.15) if it had a load. Whenever a potential load is

determined for machine i, the feasibility of the load is checked by verifying that the

total processing time is at least as high as the lower bound and less or equal to the

upper bound. If the feasibility condition is violated, then again the next possible

load is determined by formulae (4.12)-(4.15). If the construction is successful i.e. all

machines are loaded and all conditions are satisfied, then the lower bound, global

upper bound and upper bounds of the machines are updated. The enumeration is

continued on the machine, which has maximal load and smallest index.

Its lexicographically largest load is determined for the new upper bound according

to formulae (4.10)-(4.11).

4.4.2 Backtracking

The algorithm is always looking for the optimal solution. Therefore, it is really

important not to miss any possible solution. For this purpose, backtracking is applied

in the scheduling algorithm to allow the updating of the scheduling decisions.

In this algorithm, the backtracking is applied whenever any of the following two

situations are accounted:

1. When the load of a machine is not feasible, e.g. the load cannot satisfy equation

(4.7). At this point, based on the stage of the scheduling, the backtracking will

be done either on machine i or machine i− 1.

2. When a new feasible solution has been found for all machines, e.g. updating

makespan. At this point the backtracking will be done on the machine with

maximum load. Thus

i∗∗ = argmax
{
Ci : i = 1, 2, . . . ,m

}
(4.18)
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where
i∗∗ is the number or index of machine to which the backtracking is

applied

Ci is the completion time of the last job on machine i.

A Tie is broken by selecting the machine with the smallest index.

If the machine has no further feasible load then a backtrack must be made at

machine i − 1, where i is not equal to 1. If i is equal to 1, then there is no feasible

solution for the current upper bound and the optimal makespan is equal to the current

global upper bound plus one.

4.4.3 The Exact Algorithm

The exact algorithm is described below, where l is the index of the iterations.

step 1. Set i = 1 and l = 1.

step 2. Use Algorithm 1 (LPT2) to find the initial upper bound.

step 3. Calculate the upper bounds and duration of unavailability periods

for unloaded machines by equation (4.4) and (4.5) respectively.

step 4. Load machine i according to the formulae (4.10)-(4.11).

step 5. If machine i does not satisfy inequality (4.7) go to step 9.

step 6. If i 6= m then go to step 8 (not all machines are loaded).

step 7. Set UB = Cmax − 1 and l = l+ 1. Find i∗∗ by using equation (4.18).

If i∗∗ = m then set i = i∗∗ − 1; otherwise set i∗∗ = i. Go to step 3.

step 8. Set i = i + 1. If i = m then allocate the remaining load on machine

i and go to step 5; otherwise go to step 4.

step 9. If
∑n

j=1 zj = 0 then set m = m− 1 and go to step 11;

step 10. Load machine i according to the formulae (4.12)-(4.15), and go to

step 5.
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step 11. If m > 0 then go to step 10.

step 12. Set C∗max = UB + 1.

It should be noticed that at the end of the algorithm, the number of generated

feasible solution(s) is l−1. Each one of them is better than the previous one. If l = 1

then, the initial solution is obtained by algorithm 1 (LPT2) is optimal.

The figure on the next page shows the flowchart of this algorithm.
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Figure 4.1: The Flowchart for the Exact Algorithm
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4.5 Multiple Availability Constraint

The algorithm is built in a way that with some modifications it can also be applied

to the problem with multiple availability constraints on each machine. These modi-

fications are shown below.

Since the number of availability constraints on a machine can be greater than one,

equation (4.4) should be changed to

q∗ = max {q : si,q < UB} (4.19)

UBi =

{
UB q∗i = ∅
UB −min{UB, eiq∗} −

∑q∗−1
q=1 eiq +

∑q∗

q=1 siq otherwise
(4.20)

As in the first model, the total duration of unavailabilities on each machine can

be calculated by:

q∗ = max {q : UB > ei,q} (4.21)

Di =


UB − si1 q∗ = ∅
UB −min {UB, si,q∗+1}+

∑q∗

q=1 (eiq − siq) q∗ < Ri∑q∗

q=1 (eiq − siq) q∗ = Ri

(4.22)

The rest of the algorithm remains the same as in the model for the single avail-

ability constraint.

4.6 Methods to Accelerate the Algorithm

For the effectiveness of the method it is crucial to find feasible solutions as soon as

possible. For this reason the following lemmas are defined to limit the search space.

Except for lemma 4.6.2 which reduces the number of infeasible solutions, the rest of

the lemmas are used to find an infeasible load for a machine, which might be feasible

for now, but will affect the feasibility of the load of another machine. When the load

of a machine is strictly less than the current upper bound then there is a loss in the
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total capacity. These losses can accumulate and result in an infeasibility as shown by

the next lemma.

Lemma 4.6.1. Assume that the loads of the first α machines (1 ≤ α < m) are de-

termined and the loads are Li (i = 1, 2, . . . , α). If

∑N
j=1 pj −

∑α
i=1 Li +

∑m
i=α+1Di

m− α
> UB (4.23)

then at least one of the unloaded machines must have an infeasible load.

Proof. The left-handed side of the inequality is the average load of the machines

remaining to be loaded. When this quantity is higher than the allowed upper bound,

at least one machine must have a load greater than the upper bound.

If the inequality of the lemma is satisfied then a backtrack step must immediately

be executed in the algorithm.

When (4.23) is satisfied, then the schedule is infeasible and this is because the

total processing time on the currently loaded machines is not large enough. This

observation leads to two important results explained in the following lemmas.

Lemma 4.6.2. Let α < m be the index of the machine currently loaded. Assume

that there are n jobs types, where n is a job type with the smallest processing time.

Assume further that the jobs are scheduled in LPT order and the load on machine α

satisfies inequality (4.23), then equation (4.12) will be changed to

γ = max { j | zj > 0 and j 6= n } (4.24)

Proof. If we don’t change the first n − 1 job types then the load on machine α is

always decreasing. Therefore there is no way to find a feasible load (larger than the

current infeasible load) for machine α, without changing any of the first n − 1 job

types.
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Lemma 4.6.3. If∑N
j=1 pj −

∑α−1
i=1 Li + UBα +

∑m
i=α+1Di

m− α
> UB (4.25)

then there is no feasible load for machine α and backtrack step should be applied.

Proof. The left-hand side of the inequality is the average load of the machine(s) which

are still not loaded, when the load on machine α is equal to the UBα. If this quantity

is higher than the allowed upper bound, then there is no feasible load for machine

α.

Lemma 4.6.3 does not take into consideration how large the violation of the upper

bound is. If the violation is large enough, then there will be no feasible load for the

current upper bound. The next lemma shows how large this violation must be to

cause infeasibility on the current load.

Lemma 4.6.4. If ∑N
j=1 pj −

∑α
i=1 UBi +

∑m
i=α+1Di

m− α
> UB (4.26)

then there is no feasible solution for the given UB, and C∗max is equal to UB + 1.

Proof. The left-hand side of the inequality is the average load of the machines which

are still not loaded, when the scheduled machine(s) are loaded to their maximum.

If this quantity is higher than the allowed upper bound, then there is no feasible

schedule for the current upper bound.

Lemma 4.6.5. Let α be the index of the currently loaded machine and bj be the

number of jobs with processing time pj on the load of machine α− 1. Assume that its

load is not feasible and a backtrack to machine α− 1 has to be carried out, then if

0 = max {j|bj > 0 and pj(zj + vj + 1) ≤ UB} j = 1, 2, . . . , n (4.27)

then the load on machine α may become feasible iff the new load on machine α− 1 is

greater than its current load, or the result of (4.27) is nonempty.
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Proof. Assume that the load on machine α is infeasible and we need to backtrack to

machine α− 1. According to the logic of the algorithm, the smallest job on machine

α − 1 should be removed, and should be scheduled on machine α. Therefore we

can only check the effect of this new load on machine α, which is done by equation

(4.27).

Lemma 4.6.6. Assume the result of (4.27) is equal to n and the new load on machine

α− 1 is not greater than its previous load. Then a feasible load on machine α might

be found only when job type n is fixed and is equal to all the unscheduled jobs of this

type.

Proof. All the loads on machine α have been checked, except for the zn = vn. There-

fore, we can only search for a feasible solution in the defined by zn = vn.

4.7 A Numerical Example

To show how the algorithm works, an example is illustrated and solved. Ten jobs

have to be scheduled on 3 machines each having one non-availability period. The 10

jobs have 4 different processing times: two jobs have processing time 18, two other

jobs have processing time 17, two jobs have processing times 16 and and the four last

jobs have processing time 10.

The non-availability periods start at instant 0, 6, 15, last 5, 6, and 4 unit of time

on machine 1, 2, and 3 respectively.

m = 3 N = 10 n = 4 R1 = 1 R2 = 1 R3 = 1

p1 = 18 p2 = 17 p3 = 16 p4 = 10

u1 = 2 u2 = 2 u3 = 2 u4 = 4

s1 = 0 s2 = 6 s3 = 15

e1 = 5 e2 = 12 e3 = 19

The first step in solving this problem is the construction of the initial solution by

LPT2.
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The following Gantt chart shows the schedule obtained with LPT2. The solution

obtained by this algorithm is 59
(
CLPT2
max = 59

)
.

Figure 4.2: Schedule Obtained by the LPT2

The upper bound for each machine can be calculated, with using formula (4.4). Thus

UB1 = 59−min {59, 5}+ 0 = 54

UB2 = 59−min {59, 12}+ 6 = 53

UB3 = 59−min {59, 19}+ 15 = 55

Formula (4.5) is used to calculate the duration of the unavailability on each machine.

D1 = 5− 0 = 5 D2 = 12− 6 = 6 D3 = 19− 15 = 4

Once the upper bound and the duration the unavailability period are known for

each machine, the load on the first machine can be determined by formulae (4.10)-

(4.11). The load for machine 1 is shown below.

M1: 2(18) 1(17) 0(16) 0(10) L1 = 53 C1 = 58
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The feasibility of load on machine 1 can be checked by using formula 4.6.1.

142− 53 + 10

3− 1
= 49.5 < 59 Therefore the load on machine 1 is feasible and we

proceed to the next machine.

The load on machine 2 is:

M2: 0(18) 1(17) 2(16) 0(10) L2 = 49 C1 = 55

142− 102 + 4

3− 2
= 44 < 59 Therefore the load on machine 2 is feasible and we

proceed to the next machine.

Since machine 3 is the last machine, all remaining jobs should be scheduled on that

machine.

M3: 0(18) 0(17) 0(16) 4(10) L3 = 40 C3 = 44

The current Cmax = max {C1;C2;C3} = 58. Therefore we update the global upper

bound using formula (4.2).

UB = 58− 1 = 57

After updating the global upper bound, the upper bound and duration of unavail-

ability for each machine are determined. The same formulae used in the previous

iteration are used here again.

UB1 = 57−min {57, 5}+ 0 = 52

UB2 = 57−min {57, 12}+ 6 = 51

UB3 = 57−min {57, 19}+ 15 = 53

D1 = 5− 0 = 5 D2 = 12− 6 = 6 D3 = 15− 19 = 4
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Whenever the upper bound is updated, backtracking is applied. From equation (4.18),

we can see that the backtracking should be started on the machine with the largest

makespan and minimum index. Therefore in this iteration backtracking should be

started on machine 1.

The load on machine 1 is determined by formulae (4.10)-(4.11)

M1: 2(18) 0(17) 0(16) 0(10) L1 = 36 C1 = 36 + 5 = 41

142− 41 + 10

3− 1
= 55.5 < 57 The load is feasible and we proceed to the next

machine.

M2: 0(18) 2(17) 1(16) 0(10) L2 = 50 C2 = 50 + 6 = 56

142− 86 + 4

3− 2
= 60 > 57 The load is infeasible and we need to proceed to lemma

4.6.4

142− 103 + 4

3− 2
= 43 > 57 The lemma shows that there might still be a feasible

load for the current upper bound.

After checking the optimality of the makespan, we need to check the feasibility of

other possible loads on machine 2. If lemma 4.6.3 is satisfied, then there is no feasible

load for machine 2.

142− (36 + 51) + 4

3− 2
= 59 > 57 Therefore there is no feasible load for machine 2,

and backtracking is applied on machine 1.

The load on machine 1 can be modified by using formulae (4.12)-(4.15).

M1: 1(18) 2(17) 0(16) 0(10) L1 = 52 C1 = 52 + 5 = 57

142− 52 + 10

3− 1
= 50 < 57 The load is feasible and we proceed to the next

machine.
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M2: 1(18) 0(17) 2(16) 0(10) L1 = 50 C1 = 50 + 6 = 56

142− (52 + 50) + 4

3− 2
= 44 < 57 The load is feasible and we proceed to the last

machine.

M3: 0(18) 0(17) 0(16) 4(10) L3 = 40 C3 = 40 + 4 = 44

The data are updated as follow:

UB = 57− 1 = 56

UB1 = 56−min {56, 5}+ 0 = 51

UB2 = 56−min {56, 12}+ 6 = 50

UB3 = 56−min {56, 19}+ 15 = 52

D1 = 5− 0 = 5 D2 = 12− 6 = 6 D3 = 15− 19 = 4

According to the formula 4.18 the scheduling should be started from the machine 1.

M1: 2(18) 0(17) 0(16) 0(10) L1 = 36 C3 = 36 + 5 = 41

142− (36) + 10

3− 1
= 58 > 56 The load is infeasible and we proceed to the lemma

4.6.4.

142− (51 + 50 + 52) + 10

3− 1
= 1.33 < 56 The lemma shows that there might still

be a feasible load for the current upper

bound.

142− 51 + 10

3− 1
= 50.5 > 56 Therefore the backtracking step is carried back to

machine 1.



46

M1: 1(18) 1(17) 1(16) 0(10) L1 = 51 C1 = 51 + 5 = 56

142− 51 + 10

3− 1
= 50.5 < 56 The load is feasible and we proceed to the machine

2.

M2: 1(18) 1(17) 0(16) 1(10) L2 = 45 C2 = 45 + 6 = 51

142− (51 + 45) + 4

3− 2
= 50 < 56 The load is feasible and we proceed to the

machine 3.

M3: 0(18) 0(17) 1(16) 3(10) L3 = 46 C3 = 46 + 4 = 50

As with the previous iteration the data are updated as follow:

UB = 56− 1 = 55

UB1 = 55−min {55, 5}+ 0 = 50

UB2 = 55−min {55, 12}+ 6 = 49

UB3 = 55−min {55, 19}+ 15 = 51

D1 = 5− 0 = 5 D2 = 12− 6 = 6 D3 = 15− 19 = 4

According to formula 4.18 the scheduling should be started from the machine 1.

M1: 2(18) 0(17) 0(16) 1(10) L1 = 46 C1 = 46 + 5 = 51

142− 46 + 10

3− 1
= 53 < 55 The load is feasible and we proceed to machine 2.

M2: 0(18) 2(17) 0(16) 1(10) L2 = 44 C2 = 44 + 6 = 50

142− (46 + 44) + 4

3− 2
= 56 > 55 The load is infeasible and we proceed to lemma

4.6.4.
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142− (50 + 49) + 4

3− 2
= 47 < 56 The lemma shows that, there might still be

a feasible load for the current upper bound.

142− (46 + 49) + 4

3− 2
= 51 < 56 Therefore there might still be feasible load for

machine 2.

Since machine 2, is already loaded and has an infeasible load, we need to reload

this machine, with respect to lemma 4.6.2 and formulae 4.12-4.15.

M2: 0(18) 1(17) 2(16) 0(10) L2 = 49 C2 = 49 + 6 = 55

142− (46 + 49) + 4

3− 2
= 51 < 55 The load is feasible and we proceed to the next

machine.

M3: 0(18) 1(17) 0(16) 3(10) L3 = 47 C3 = 47 + 4 = 51

With respect to the new upper bound, the data are updated.

UB = 55− 1 = 54

UB1 = 54−min {54, 5}+ 0 = 49

UB2 = 54−min {54, 12}+ 6 = 48

UB3 = 54−min {54, 19}+ 15 = 50

D1 = 5− 0 = 5 D2 = 12− 6 = 6 D3 = 15− 19 = 4

In the previous iteration, machine 2 had the maximum load, therefore the back-

tracking should be started from that machine.

M2: 0(18) 2(17) 0(16) 1(10) L2 = 44 C2 = 44 + 6 = 50
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142− (46 + 44) + 4

3− 2
= 56 > 54 The load is infeasible and we proceed to the

lemma 4.6.4.

142− (49 + 48) + 4

3− 2
= 49 < 54 Therefore the optimality of the solution has not

been proved yet, and we need to proceed to the

next lemma.

142− (46 + 48) + 4

3− 2
= 52 < 54 Therefore the other solution for machine 2 should

be explored.

M2: 0(18) 1(17) 1(16) 1(10) L2 = 43 C2 = 44 + 6 = 50

Without checking the lemma, we can conclude that the load is not feasible. Since the

current load on machine 2 is smaller than the its infeasible previous load. Therefore,

we need to reload machine 2.

M2: 0(18) 1(17) 0(16) 3(10) L2 = 47 C2 = 47 + 6 = 53

142− (46 + 47) + 4

3− 2
= 53 < 54 The load is feasible and we schedule the rest of the jobs

on the last machine.

M3: 0(18) 1(17) 2(16) 0(10) L3 = 49 C4 = 49 + 4 = 53

With respect to the new upper bound, the data are updated.

UB = 53− 1 = 52

UB1 = 52−min {52, 5}+ 0 = 47

UB2 = 52−min {52, 12}+ 6 = 46

UB3 = 52−min {52, 19}+ 15 = 48

D1 = 5− 0 = 5 D2 = 12− 6 = 6 D3 = 15− 19 = 4
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In the previous iteration, machine 2 had the maximum load, therefore the back-

tracking should be started from that machine.

M2: 0(18) 2(17) 0(16) 1(10) L2 = 44 C2 = 44 + 6 = 50

142− (46 + 44) + 4

3− 2
= 56 > 52 The load is infeasible, and we should proceed to

lemma 4.6.4.

142− (47 + 46) + 4

3− 2
= 53 > 52 The lemma is satisfied, and it is proved that

there is no other solution for the problem.

Therefore the optimal solution for this problem is

C∗max = UB + 1 = 52 + 1 = 53

The Gantt chart for the optimal solution is shown below.

Figure 4.3: Schedule Obtained by the Exact Algorithm



Chapter 5

Experimental Results and Discussion

Three series of computational experiments have been carried out to evaluate the per-

formance of the enumeration algorithm developed in the previous chapter. Different

sets of problem instances are used in each experiment to demonstrate the effectiveness

of the proposed algorithm.

In order to apply different settings, any variable that is likely to significantly

impact the performance of the algorithm is included in the list of parameters to be

varied. The number of jobs (N) to be scheduled is an important factor since it directly

affects the load of the system. The number of machines (m) is another important

factor because it affects the distribution of jobs on the machines. The third factor

is the number of job types (n) or the number of different processing times. The

problem becomes more challenging when the number of different processing times is

small. Whenever the load on a machine is infeasible, it is always easier to find a new

feasible load from a large variety of job types rather than from small one.

The experiments are designed with different levels of difficulties, therefore the

classification of problems in the experiments are not equal. The difficulty of the

experiments is described by the number of iterations required by the algorithm to find

the optimal solution. To prevent excessive computational time, whenever a problem

is not solved within a predetermined time limit, the computation is interrupted.

Another reason for stopping the computations is memory overflow. In all experiments,

the difficulty of the problem is increased until one of the two stopping situations is

encountered.

All experiments are carried out on a personal computer (Pentium D, 2.99 GHz,

3.22 GB of RAM) in the Industrial Engineering Department at Dalhousie University.

This chapter includes the codes of the various models developed and describes the

50
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experiments conducted. Numerical results are then presented and the efficiency of

the proposed exact algorithm is shown.

5.1 Coding Method

The algorithm has been coded in C language Microsoft Visual Studio [37]. The C

input model is supplied in Appendix A. A time limit of 3600 s (1h), is considered for

solving the problems. The best feasible solution is provided whenever the algorithm

is unable to solve the problem within this time limit.

To test the effectiveness of the new algorithm the ILP model was solved by one

of the best commercial solvers available: CPLEX . For this purpose the ILP models

are written into the ILOG Language and runs in ILOG CPLEX 11.2.0 [17]. CPLEX

implements optimizers based on the simplex algorithms, which used primal simplex,

dual simplex, barrier algorithms and sifting algorithm, when the problem contains

extractable network substructure[16].

In order to prevent excessive computational time, whenever a problem is not solved

by the CPLEX within the time limit of 7200s (2h), computation is stopped for the

problem. At this point ILOG reports the best feasible solution, which has been found

within the time limit. The ILOG codes for model 1 and 2 are supplied in Appendix

B.

Except for the Graham’s experiment, the parameters used in the rest of experi-

ments are randomly generated. The random parameters are obtained by the Mersenne

Twister Random Number Generator [38]. Mersenne Twister is a common random

number generators, and experts consider it an excellent generator. The code of the

random generator is provided in Appendix C.

5.2 Experiments

In this section, different experiments have been conducted to show the performance

measure of the ILPs and the exact algorithm. In all experiments, the Central Pro-

cessing Unit time (CPUt) represents the time in seconds required to find the best
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feasible solution.

5.2.1 Graham’s Example

The first experiment is based on the famous example given by Graham [14] for the

list scheduling of Pm || Cmax. He proved that the performance ratio of this problem

is at most

4

3
− 1

3m

and gave an example achieving this value. Later Dósa [12] proved that this example

is the only one having this performance ratio and list scheduling gives better solution

on any other problem instances.

As parallel machine scheduling with availability constraint problem is very closely

related to the Pm || Cmax problem, it is natural to test the new algorithm and the

ILP models on that class of problems. In this experiment, different instances of the

problem are generated for this problem type.

In the original example by Graham, the number of jobs is 2m + 1 in the case of

m machines. The processing times are in non-increasing order:

2m− 1, 2m− 1, 2m− 2, 2m− 2, . . . , m+ 1, m+ 1, m, m, m.

The optimal value of the appropriate Pm || Cmax problem is 3m and traditionally

the optimal solution is written is the form:

Machine 1: 2m− 1, m+ 1

Machine 2: 2m− 1, m+ 1

Machine 3: 2m− 2, m+ 2 (5.1)

· · ·

Machine m: m, m, m

Note that this solution is true, when there is no availability constraint on the

machines.
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Series 1. Single Unavailability

In this experiment, the number of availability constraint on each machine is limited

to one. The other data for this experiment are shown in the table below. In the orig-

inal Graham’s experiment non-availability periods were not considered. Therefore, a

modified version of Graham’s experiment is used.

Table 5.1: Parameters for the Graham Experiment

Number of Jobs 2m+ 1
Number of Machines m
Processing Time of Jobs 2m− 1, 2m− 1, 2m− 2, 2m− 2, . . . ,m+ 1

,m+ 1,m,m,m
Number of Unavailabilities m
Duration of Unavailabilities 15

The non-availability periods start at instant 0 for machines with odd index and at

instant 15 for machines with even index.

Table 5.2 displays the result of the modified Graham’s experiment for the exact

algorithm.

Table 5.2: Results for the Modified Graham’s Example Series 1

m N CLPT2 CAlg Optimal Solution? CPUt

100 201 414 315 Yes 6
200 401 814 615 Yes 11
300 601 1214 915 Yes 46
400 801 1614 1215 Yes 144
500 1001 2014 1515 Yes 348
600 1201 2414 1815 Yes 720
700 1401 2814 2115 Yes 1327
800 1601 3214 2415 Yes 1327
900 1801 3614 2715 Yes 3621

The same experiment is applied to the ILP model 1. The value of M has to be

defined and selected appropriately to solve the ILP. This value should be large enough

to allow the model to find feasible solutions, but be moderate to avoid excessive
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computations analysis. For that reason the value of M is set to the optimal solution

which is found by the exact algorithm for the problem.

Table 5.3 depicts the result of this experiment. For each instance (m,N) of the

problem, table 5.3 gives the solution obtained by LPT2, the solution reached by the

exact algorithm, the CPUt of the exact algorithm and shows if the solution by the

algorithm is optimal or not. The reason of termination for the problems without the

optimal solution is memory overflow.
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According to the results in table 5.3, the exact algorithm outperforms the ILP in

the current version of CPLEX. The ILP can optimally solve problems with up to 50

machines and 101 jobs. After that, the ILP has found optimal solution for two more

problems, and for the rest of problems a quasi-optimal solution has been reported

within the time limit. As can be seen from the table, the CPUt for the ILP has never

reached the time limit, meaning that the program exceeds the memory before it can

reach the time limit or find the optimal solution.

Series 1. Multiple Availability

The second series of this experiment investigates problems with two availability con-

straints on the machines. The non-availability periods are defined as follows with

duration 15:

Assume i is an odd number then

si,1 = 0 si,2 = 30

si+1,1 = 15 si+1,2 = 45

The rest of parameters can be found from table 5.1. Table 5.4 shows the results of

this experiment.

Table 5.4: Computation Experiments with Graham’s Example Series 2

m n CLPT2 CAlg Optimal Solution? CLPT2/CAlg CPUt (sec)

100 201 429 330 Yes 1.30 0
200 401 829 630 Yes 1.32 9
300 601 1229 930 Yes 1.32 48
400 801 1629 1230 Yes 1.32 146
500 1001 2029 1530 Yes 1.33 356
600 1201 2429 1830 Yes 1.33 734
700 1401 2829 2130 Yes 1.33 1352
800 1601 3598 2430 Yes 1.48 3193

The exact algorithm can schedule 1601 jobs on 800 machines within the time limit.

If the number of jobs exceeds 1601 then the CPUt exceeds 3600 seconds.
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The same experiment is run for the ILP. Table 5.5 shows the results of this ex-

periment for both ILP and exact algorithm. The exact algorithm has solved all the

problems optimally in less than a second (< 1).
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5.2.2 Problems with Random Uniform Processing Times Between 1 and

99

In this experiment processing times are random positive integer numbers drawn from

the uniform distribution U(1, 99). Although many experiments have been carried

out, only the results of the largest problems are reported here. For each problem size,

10 different problems are generated. The minimum, maximum and average CPUt

of these 10 instances are reported. The same is true for the series of experiments

discussed in the next subsection.

Series No. 1

In this series the number of machines is fixed to m = 3, and the number of jobs

are increased until either the program is out of the memory, or CPUt exceeds the

time-limit. The input data for this experiment are shown in table below.

Table 5.6: Parameters for U(1, 99) for Series No. 1

Number of Machines 3
Number of Jobs N
Processing Time of Jobs U(1, 99)
Number of Availability constraintt on each Machine 1
Duration of Unavailabilities 15
Start of Unavailability Period on ith Machine 15(i− 1)

The table in the next page represents the results for this experiment. As can

be seen from the table 5.7 the makespan of LPT2 algorithm and exact algorithm are

equal. The reason is that, list scheduling results has a high performance, when number

of jobs is large and are picked uniformly between large interval of time. However, the

same statement is not true when the jobs are distributed non-uniformly, as it is shown

in Graham’s experiment.

Our program was able to solve problems up to 1,000,000 jobs. Above this limit

the program does not have enough memory to solve the problem. The short CPUt
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can be explained by the fact that the depth of the enumeration, i.e. the depth of the

stack, is never more than 3.
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Series No. 2

In this series, the ratio of the number of machines over the number of jobs is fixed

(N = m2). Table 5.8 summarizes the parameters used for this experiment.

Table 5.8: Parameters for U(1, 99) for Series No. 2

Number of Machines m
Number of Jobs m2

Processing Time of Jobs U(1, 99)
Number of Availability Constraint on Each Machine 1
Duration of Unavailabilities 15
Start of Unavailability period on ith Machine 15(i− 1)

Here the depth of the enumeration is much greater than in the previous case. But

still the exact algorithm was able to solve problems with 250, 000 jobs. After that

the program does not have sufficient memory to solve the problem. The result of this

experiment is shown on the following page.
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5.2.3 Problems with Random Uniform Processing Times Between 5 and

15

In this experiment, the processing times are random positive integer numbers drawn

from the uniform distribution U(5, 15). Two similar series of experiences have been

carried out. This experiment is slightly more difficult than the problem with U(1, 99)

bcause of the variety of processing times. It is always faster to find a feasible load for

an infeasible machine, when there is the choice of picking a job from a batch of 100

different processing times than in a batch of 10.

Here problems with very large number of jobs have been solved. On the other

hand this is the only case when not all of the problems having a large size were solved

until optimally within the time limit of 3600 seconds. However for those problems,

the exact algorithm has provided the quasi-optimal solution.

Series No. 1

In three cases, the algorithm was unable to find the optimal solution or perhaps prove

the optimality of the feasible solution within the time limit. In all of the three cases,

the objective function value of the best known feasible solution was greater than the

lower bound by 1, which shows the high possibly of the optimality of the feasible

solution.

The following table shows the results of this experiment. Problems with up to

1,000,000 jobs are solved optimally. For larger problems, memory overflows. CPUt is

reported for the instances that are optimally solved.
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series No. 2

In this series, the ratio of the number of machines over the number of jobs is fixed as

in the previous case (N = m2). The processing times are drawn uniformly between 5

and 15. The other parameters are the same as in table 5.8.

Table 5.11 gives the result of this experiment. Although the exact algorithm was

unable to find the optimal solution for some problems, in most cases the initial solution

that provided by LPT2 is improved. For N = 90000, nine out of 10 problems were

solved immediately, i.e. 10 seconds CPUt was observed. For the other problem the

initial solution provided by LPT2 is improved by one by the exact algorithm. For the

case of N = 160000, eight out of 10 problems were solved. The quasi-optimal solution

of further two problems is greater than the lower bound by 1. For N = 250000, six

out of 10 problems were solved optimally.
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A summary of the results of the experiments generated by the random numbers

can be found in the table below.

Table 5.12: Summary of the Results

CPUt
m N n Processing Time min max Average CPUt

3 800,000 16 U(5, 15) < 1 < 1 < 1
3 800,000 99 U(1, 99) 2 2 2
3 900,000 16 U(5, 15) < 1 < 1 < 1
3 900,000 99 U(1, 99) 2 2 2
3 1,000,000 16 U(5, 15) < 1 < 1 < 1
3 1,000,000 99 U(1, 99) 2 2 2
300 90,000 16 U(5, 15) 10 11 10
300 90,000 99 U(1, 99) 31 32 31
400 160,000 16 U(5, 15) 23 31 25
400 160,000 99 U(1, 99) 73 73 73
500 250,000 16 U(5, 15) 46 54 47
500 250,000 99 U(1, 99) 142 142 142



Chapter 6

Conclusion and Future Studies

In the literature, most scheduling problems have been solved by assuming that all

machines are continuously available, which obviously is not always the case in practice.

In this study we have considered the problem of parallel machine scheduling with

multiple planned unavailability periods in the resumable case. We have studied the

minimization of the makespan (Pm | r − am,q | Cmax).

The problem has been formulated as a mathematical programming problem. An ef-

fective algorithm has been developed to solve large-scale and practical problems. The

algorithm loads machines according to the lexicographical order within a construction

and backtracking approach. LPT2 algorithm [25] is employed to generate an initial

upper bound for the exact algorithm.

A large set of numerical experiments was carried out. The results demonstrate that

the exact algorithm is able to solve large-scale problems which are not solvable by

any other method including the current best ILP solver. Based on the results of

the experiments for the ILP, we demonstrated that the proposed ILP can be used to

effectively solve the small-size problems. The performance of the proposed algorithm

is independent of the pattern of non-availability periods.

In the literature there is a limited number of algorithms which can solve optimally this

type of problem. As it was mentioned before these algorithms can only solve problems

with two machines and single availability constraint, or very small size problems. In

general, these algorithms cannot schedule more than 100 jobs. The other algorithms

in the literature either result in non-optimal solution, cannot apply to large-scale

problems, or if they can, they do not find a solution in a reasonable time.

This study can, in the future, be extended in multiple directions. Further research

69



70

could be directed to the development of new methods for scheduling jobs with non-

resumable or semi-resumable jobs. Another interesting line of research is the joint

scheduling of both unavailability periods and jobs on the machines. The study can

also be extended to more difficult scheduling problems such as flow shop or flexible

manufacturing systems. Different performance measures such as due-date related

objective function or weighted completion time as well as problems with stochastic

processing times and machine breakdowns, activity modifying-rate maintenance and

machine eligibility constraints can be studied.

All the codes used in this thesis, as well as the sets of experiments are available

upon request from the author.
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[5] B lażwicz, J., Breit, J., Formanowicz, P., Kubiak, W. & Schmidt, G., 2001,
Heuristic Algorithms for the Two-Machine Flowshop with Limited Machine
Availability, Omega, Vol 29, pp.559-608.

[6] Brucker, P., 2007, Scheduling Algorithms, Springer, Verlag Berlin Heidelberg .

[7] Cassady.R.C. & Kutanoglu, E, 2003, Minimizing job tardiness using integrated
preventive maintenance planning and production scheduling, IEEE Transactions
on Reliability, Vol. 35, pp.503-513.

[8] Cassady.R.C. & Kutanoglu, E, 2005, Integrating Preventive Maintenance Plan-
ning and Production Scheduling for a Single Machine, IEEE Transactions on
Reliability, Vol. 54, pp.304-309.

[9] Coffman, E.G., 1976, Introduction to Deterministic Scheduling Theory: In E.G.
Coffman, ed. Computer and Job-Shop Scheduling Theory. John Wiley & Sons,
Inc. Ch. 1.

[10] Coffman, E.G., Garey, M.R. & Johnson, D.S., 1978, An Application of Bin-
Packing to Multiprocedure Scheduling, SIAM Journal of Computing, Vol 7, pp.1-
17.

[11] Deitel, H.M., & Deitel, P.J., 2001. How to Program C. 3rd ed. New Jersey:
Prentice Hall.

71



72
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Appendix A

C Input Model for Exact Algorithm

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Exact Algor i thm Model ( Moharejeh )

∗ Author : Navid Hashemian

∗ Creat ion Date : Ju l y 8 , 2009

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <time . h>

#include <s t d i o . h>

#include <s t d l i b . h>

#include <conio . h>

#include ”randomc . h”

#include ”mersenne . cpp”

#define Mlimit 910

// Limit f o r Number o f Machines

#define JobTypeLimit 9000

// Limit f o r Number o f JobTypes

#define Alimit 500

// Limit f o r A v a i l a b i l i t y Cons t r a in t

#define minimum 100000000

//A Constant

void I n i t i a l A v a i l a b i l i t y (void ) ;

//LPT2 1

void Lemma 1 (void ) ;

// Ca l c u l a t i n g Upper Bound o f t h e Machines

void Lemma 2 (void ) ;

// Ca l c u l a t i n g Durat ion o f U n a v a i l a b i l i t y Per iods f o r t h e Machines

void LPT (void ) ;

//LPT2 2

void LPT2 (void ) ;

//LPT2 3

void LoadingB (void ) ;

//To Schedu l e t h e Next L e x i c o g r a p h i c a l Load on Machine i

void Maximum (void ) ;

//For Ca l c u l a t i n g t h e Maximum Load on the Machines

void MinimumLoad (void ) ;

//For Ca l c u l a t i n g t h e Minimum Load on the Machines

void Print (void ) ;

//To Pr in t t h e S o l u t i o n

void ProcessSwap (void ) ;

//Lemma 4 . 6 . 6 .

void Restore (void ) ;

//Determined th e Number o f Unschedu led Jobs

void Restore P2 (void ) ;

//Determined th e Number o f Unschedu led Jobs

void Theorem 1 (void ) ;

// Lemma 4 . 6 . 1 .

void Theorem 2 (void ) ;

//Lemma 4 . 6 . 3 .

void Theorem 4 (void ) ;

//Lemma 4 . 6 . 4 .
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void Theorem 5 (void ) ;

//Lemma 4.6.5 .−Lemma 4 . 6 . 6 Part 1

void Theorem 5 P2 (void ) ;

//Lemma 4.6.5 .−Lemma 4 . 6 . 6 Part 2

void Theorem 5 P3 (void ) ;

//Lemma 4.6.5 .−Lemma 4 . 6 . 6 Part 3

c l o c k t c0 , c1 ;

double cputime ;

f loat TH 1 , TH 2 , TH 4 ;

int AVlowerLimit , AVupperLimit , cond i t i on 1 ,

c ond i t i o n Ava i l a b i l i t y ,

ENA[ Mlimit ] [ Al imit ] ,

//End o f non−a v a i l a b i l i t y Per iod q o f Machine i

Flag 1 , Flag 2 , Flag 3 , Flag Av [ Al imit ] [ Mlimit ] ,

Flag LPT , Flag LPT2 , f r [ JobTypeLimit ] , Flag q ,

Flag Th5 ,

Flag Th5 2 ,

/∗ I f i t i s e qua l 1 then a l l t h e l oad o f machine m i s

i n f e a s i b l e and b a c k t r a c k s t e p shou l d be a p p l i e d on

machine m−2∗/
Flag Th5 3 ,

i , // index f o r machine

InputCondition ,

/∗ I f i t i s z e ro then the inpu t data are g ene ra t ed

randomly ; i f i t i s e qua l 1 , then the program reads

t h e inpu t data from the f i l e . ∗/
j /∗ i ndex f o r j o b ∗/ , Job Th5 , Job Th5 Back ,

JobType/∗Number o f Job Type∗/ , k , LB/∗Lower−Bound∗/ ,

Lmachine [ Mlimit ] /∗Load f o r machine m∗/ ,

m/∗ i ndex f o r machine∗/ , Load Th5 , Machine Th5 ,

Machine Th5 Back ,

max ,

//The Index f o r t h e Machine w i th t h e Maximum Load

min ,

//The Index f o r t h e Machine w i th t h e Minimum Load

NumA[ Mlimit ] ,

//Number o f A v a i l a b i l i t y Cons t r a in t f o r Machine i

N[ Mlimit ] ,

// Durat ion o f U n a v a i l a b i l i t y Per iods on Machine i

Nmach /∗Number o f Machines∗/ , Nmach Ava ,

Nmach Back , NumOfJobs ,

Process [ JobTypeLimit ]

// Proce s s ing Time o f Job Type j

ProcessLowerLimit ,

//Lower Limit f o r Genera t ing Random Proce s s ing Time

, ProcessUpperLimit

//Upper Limit f o r Genera t ing Random Proce s s ing Time

, q , qStar , r , s , Q,

Sjob

// Sma l l e s t Schedu l ed Job on Machine i

,SNA[ Mlimit ] [ Al imit ]

// S t a r t o f U n a v a i l a b i l i t y Per iod k on Machine i

, SNAupperLimit , Sjob Back ,

Sum A

// The Load f o r Machine i

,Sum AV

//The Makespan f o r Machine i

,Sum B

//The Load f o r Machine i



78

,Sum LB , Sum N , sum S ,

sum T

//Summation o f a l l P roce s s ing Times

,Sum UBback , sum v , UB/∗Upper−Bound∗/ , UB 2 , UB AV,

UB Back [ Mlimit ] ,

UB Fsolution

//To Record th e Makespan f o r t h e F e a s i b l e S o l u t i o n

,UB LPT

//The Upper Bound f o r LPT2

v [ JobTypeLimit ] /∗Org ina l Unschedu le Jobs ∗/ ,

/∗Tota l Number o f Schedu l ed and Unschedu led o f Job

Type j ∗/
, y [ Mlimit ] [ JobTypeLimit ]

//Number o f Schedu l e j o b from Job t ype i ∗/ ,

, z [ JobTypeLimit ] [ Mlimit ]

To Record the So lut i on o f the Fea s ib l e So lu t i on ;

long int i r ;

FILE ∗ c fPt r ;

FILE∗ c fPtr2 ;

int main ( )

{
long int seed = time ( 0 ) ;

TRandomMersenne rg ( seed ) ;

InputCondit ion = 1 ;

/∗∗∗∗∗∗∗∗∗Generat ing Random Numbers∗∗∗∗∗∗∗∗∗/
i f ( InputCondit ion == 0 ){

i f ( ( c fPt r = fopen ( ” input . txt ” , ” r ” ) ) == NULL)

p r i n t f ( ” F i l e couldnot be opened\n” ) ;

else{
f s c a n f ( c fPtr , ”%d” , &Nmach ) ;

f s c a n f ( c fPtr , ”%d” , &NumOfJobs ) ;

f s c a n f ( c fPtr , ”%d” , &ProcessLowerLimit ) ;

f s c a n f ( c fPtr , ”%d” , &ProcessUpperLimit ) ;

for ( i=ProcessLowerLimit ; i<=ProcessUpperLimit ; i++ )

f r [ i ]=0;

for ( i =1; i<=NumOfJobs ; i++) {
i r = rg . IRandom( ProcessLowerLimit , ProcessUpperLimit ) ;

// p r i n t f (”%6 l i ” , i r ) ;

f r [ i r ] = f r [ i r ] + 1 ;

}
j =0;

for ( i=ProcessUpperLimit ; i>=ProcessLowerLimit ; i−− ){
i f ( f r [ i ] != 0){

j = j + 1 ;

y [ 0 ] [ j ] = f r [ i ] ;

Process [ j ] = i ;

}
}
for ( i = 1 ; i<=Nmach ; i++)

f s c a n f ( c fPtr , ”%d” , &NumA[ i ] ) ;

for ( i =1; i<=Nmach ; i++ ){
for ( j =1; j<=NumA[ i ] ; j++){

f s c a n f ( c fPtr , ”%d” , &SNA[ i ] [ j ] ) ;

f s c a n f ( c fPtr , ”%d” , &ENA[ i ] [ j ] ) ;

}
}

JobType = j ;

}
}
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/∗∗∗∗∗∗∗∗∗Reading Data from the F i l e s ∗∗∗∗∗∗∗∗∗/
i f ( InputCondit ion == 1 ){

i f ( ( c fPt r = fopen ( ”Secondinput . txt ” , ” r ” ) ) == NULL)

p r i n t f ( ” F i l e couldnot be opened\n” ) ;

else {
f s c a n f ( c fPtr , ”%d” , &Nmach ) ;

f s c a n f ( c fPtr , ”%d” , &JobType ) ;

for ( i =1; i<=JobType ; i++ )

f s c a n f ( c fPtr , ”%d”,&y [ 0 ] [ i ] ) ;

for ( i =1; i<=JobType ; i++)

f s c a n f ( c fPtr , ”%d”,&Process [ i ] ) ;

for ( i = 1 ; i<=Nmach ; i++)

f s c a n f ( c fPtr , ”%d” , &NumA[ i ] ) ;

for ( i =1; i<=Nmach ; i++ ){
for ( j =1; j<=NumA[ i ] ; j++){

f s c a n f ( c fPtr , ”%d” , &SNA[ i ] [ j ] ) ;

f s c a n f ( c fPtr , ”%d” , &ENA[ i ] [ j ] ) ;

}
}

}
}
i f ( ( c fPtr2 = fopen ( ”Secondinput . txt ” , ”w” ) ) == NULL )

p r i n t f ( ” F i l e couldnot be open\n” ) ;

else {
f p r i n t f ( c fPtr2 , ”%d\n” , Nmach ) ;

f p r i n t f ( c fPtr2 , ”%d\n” , JobType ) ;

for ( i =1; i<=JobType ; i++)

f p r i n t f ( c fPtr2 , ”%d\n” , y [ 0 ] [ i ] ) ;

for ( i =1; i<=JobType ; i++)

f p r i n t f ( c fPtr2 , ”%d\n” , Process [ i ] ) ;

for ( i = 1 ; i<=Nmach ; i++)

f p r i n t f ( c fPtr2 , ”%d\n” , NumA[ i ] ) ;

for ( i =1; i<=Nmach ; i++ ){
for ( q=1; q<=NumA[ i ] ; q++ ){

f p r i n t f ( c fPtr2 , ”%d\n” , SNA[ i ] [ q ] ) ;

f p r i n t f ( c fPtr2 , ”%d\n” , ENA[ i ] [ q ] ) ;

}
}

}
f c l o s e ( c fPtr2 ) ;

c0=c lock ( ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗LPT2∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

for ( j = 1 ; j<=JobType ; j++ )

v [ j ] = y [ 0 ] [ j ] ;

sum v=0;

for ( j =1; j<=JobType ; j++ )

sum v=sum v+y [ 0 ] [ j ] ;

s=1;

C:

LPT ( ) ;

Flag LPT = 1 ;

y [m] [ s ] = y [m] [ s ] + 1 ;

y [ 0 ] [ s ] = y [ 0 ] [ s ] − 1 ;

LPT ( ) ;

i f ( y [ 0 ] [ s ] > 0 )

goto C;

else

s=s+1;

i f ( s<=JobType )

goto C;
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else{
for ( i =1; i<=Nmach ; i++ ) {

Lmachine [ i ]=0;

for ( j =1; j<=JobType ; j++ )

Lmachine [ i ] = Lmachine [ i ] + Process [ j ] ∗ y [ i ] [ j ] ;

for ( q=1; q<=NumA[ i ] ; q++){
i f ( Flag Av [ i ] [ q ] == 1 )

Lmachine [ i ] = Lmachine [ i ] + ENA[ i ] [ q ] − SNA[ i ] [ q ] ;

}
}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Exact Algor i thm ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
Maximum () ;

UB LPT = max ;

UB = max ;

for ( j =1; j<=JobType ; j++ )

y [ 0 ] [ j ] = v [ j ] ;

sum v = 0 ;

for ( j =1; j<=JobType ; j++ )

sum v = sum v + ( Process [ j ]∗ y [ 0 ] [ j ] ) ;

LB= sum v − ( Nmach−1 ) ∗ UB;

m=1;

for ( j =1; j<=JobType ; j++)

sum T = sum T + Process [ j ]∗ y [ 0 ] [ j ] ;

UB AV = UB ;

Nmach Back = Nmach ;

Lemma 2 ( ) ;

Flag Th5 = 0 ;

Sjob = 0 ;

Flag Th5 2 = 0 ;

Machine Th5 Back = 0 ;

B:

i f (m != Nmach)

Lemma 1 ( ) ;

UB 2 = UB ;

Sum A=0;

Sum LB = 0 ;

i f (m==Nmach){
for ( j =1; j<=JobType ; j++ )

y [m] [ j ] = y [ 0 ] [ j ] ;

for ( j =1; j<=JobType ; j++ )

Sum A = Sum A + (y [m] [ j ] ∗ Process [ j ] ) ;

Sum LB = Sum A ;

for ( q=1; q<=NumA[m] ; q++ ){
i f ( Sum A > SNA[m] [ q ] )

Lmachine [m] = Lmachine [m] + ENA[m] [ q ] − SNA[m] [ q ] ;

}
}

else {
i f ( Machine Th5 Back == m )

ProcessSwap ( ) ;

for ( j =1; j<=JobType ; j++){
k = UB 2 / Process [ j ] ;

i f ( k<=y [ 0 ] [ j ] ){
y [m] [ j ] = k ;

UB 2 = UB 2 − k∗Process [ j ] ;

Sum A = Sum A + ( y [m] [ j ] ∗ Process [ j ] ) ;
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Sum LB = Sum A ;

}
else {

y [m] [ j ]=y [ 0 ] [ j ] ;

UB 2 = UB 2 − y [ 0 ] [ j ] ∗ Process [ j ] ;

Sum A = Sum A + ( y [m] [ j ] ∗ Process [ j ] ) ;

Sum LB = Sum A ;

}
}

}

i f ( m!=Nmach )

Restore ( ) ;

i f ( UB != UB AV )

Sum A = Sum A + N[m] ;

c ond i t i on 1 = 0 ;

i f ( ( Sum A > UB ) && ( m==Nmach ) ){
for ( j =1; j<=JobType ; j++ )

y [ 0 ] [ j ] = y [m] [ j ] ;

m = m − 1 ;

UB = UB AV ;

Lemma 1 ( ) ;

LoadingB ( ) ;

c ond i t i on 1 = 1 ;

goto E;

}

i f ( m != Nmach ){
Theorem 1 ( ) ;

i f ( (TH 1 > UB AV) ){
Theorem 4 ( ) ;

i f ( TH 4 > UB AV )

goto A ;

Theorem 2 ( ) ;

i f ( TH 2 > UB AV ){
i f (m==1)

goto A ;

else{
Theorem 5 P3 ( ) ;

i f ( m == 0)

goto A;

else {
cond i t i on 1 = 1 ;

goto E ;

}
}

}
else {

Theorem 5 ( ) ; //Theorem 5

y [ 0 ] [ JobType ] = y [ 0 ] [ JobType ] + y [m] [ JobType ] ;

y [m] [ JobType ] = 0 ;

LoadingB ( ) ;

c ond i t i on 1 =1;

goto E;

}
}

}

E:

i f ( c ond i t i on 1 == 1 ){
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i f ( Process [1] < Process [ 2 ] ) { //Theorem 5

Theorem 5 P2 ( ) ;

i f ( m==0 )

goto A ;

else

i f ( Flag Th5 3 == 1 )

goto E ;

}

i f ( m ==0 )

goto A;

else

i f ( (m>1) && (Sum B<=0) ) {
i f ( Flag Th5 2 == 1 ){

Flag Th5 2 = 0 ;

Machine Th5 Back = 0 ;

Flag Th5 = 0 ;

Sjob Back = 0 ;

m = m − 2 ;

i f ( m==0 )

goto A ;

Restore P2 ( ) ;

goto E ;

}

i f ( Flag Th5==1 ){
Flag Th5 = 0 ;

Sjob Back = Sjob ;

Job Th5 Back = Job Th5 ;

Machine Th5 Back = Machine Th5 ;

}

else{
Sjob Back = 0 ;

Job Th5 Back = 0 ;

Machine Th5 Back = 0 ;

}

m = m − 1 ;

Restore P2 ( ) ;

goto E;

}

else

i f ( (m == 1) && ( Sum B<=0 ) )

goto A ;

i f ( m != Nmach )

Theorem 1 ( ) ;

i f ( ( m != Nmach ) && ( TH 1 > UB AV ) && (Sum B > 0) ) {
y [ 0 ] [ JobType ] = y [ 0 ] [ JobType ] + y [m] [ JobType ] ;

y [m] [ JobType ] = 0 ; //Theorem 3

LoadingB ( ) ;

goto E ;

}
}

i f ( Flag 2 == 1 )

goto A;

else

i f ( m == Nmach ){

cond i t i on 1 = 0 ;

for ( i =1; i<=Nmach ; i++ )
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for ( j =1; j<=JobType ; j++ )

z [ i ] [ j ]=y [ i ] [ j ] ;

for ( i =1; i<=Nmach ; i++ ){
Lmachine [ i ] = 0 ;

for ( j =1; j<=JobType ; j++ )

Lmachine [ i ] = Lmachine [ i ] + ( Process [ j ] ∗ y [ i ] [ j ] ) ;

i f ( UB AV != UB Back [ i ] ){
for ( q=1; q<=NumA[ i ] ; q++ ){

i f ( Lmachine [ i ] > SNA[ i ] [ q ] )

Lmachine [ i ] = Lmachine [ i ] + ENA[ i ] [ q ] −
SNA[ i ] [ q ] ;

}
}

}

max=0;

for ( i =1; i<=Nmach ; i++ ){
i f ( Lmachine [ i ] > max ) {

max = Lmachine [ i ] ;

m = i ;

}
}

UB Fsolution = max ;

UB = max − 1 ;

UB AV = UB ;

LB = sum T − (Nmach − 1)∗UB ;

i f ( UB < LB )

goto A;

r = Nmach ; // par t1

for ( i =1; i<=Nmach ; i++ ){
i f ( (SNA[ i ] [1 ]==0) && (ENA[ i ][1] >= UB) ) {

i f ( i != Nmach ){
for ( q=1; q<=NumA[ i ] ; q++ ){

SNA[ i ] [ q ] = SNA[Nmach ] [ q ] ;

ENA[ i ] [ q ] = ENA[Nmach ] [ q ] ;

}
Lmachine [ i ] = Lmachine [Nmach ] ;

for ( j =1; j<=JobType ; j++ )

y [ i ] [ j ] = y [Nmach ] [ j ] ;

for ( j =1; j<=JobType ; j++ )

z [Nmach ] [ j ] = 0 ;

Nmach = Nmach − 1 ;

}
else

Nmach = Nmach − 1 ;

}
}

i f (Nmach != r ){
max=0;

for ( i =1; i<=Nmach ; i++ ){
i f ( Lmachine [ i ] > max ){

max = Lmachine [ i ] ;

m = i ;

}
}

}

Lemma 2 ( ) ;

i f ( m == Nmach )
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m = m − 1 ;

else

m = m ;

m = m − 1 ;

Restore ( ) ;

m = m + 1 ;

Flag Th5 2 = 0 ;

goto B;

}
else{

Restore ( ) ;

UB = UB AV ;

i f ( m==Machine Th5 Back ){
Machine Th5 Back = 0 ;

Job Th5 Back = 0 ;

i f ( Process [ 1 ] < Process [ 2 ] ){
m = m + 1;

ProcessSwap ( ) ;

m = m − 1 ;

}
}
i f ( Machine Th5 Back == (m+1) ){

for ( i =1; i<=JobType ; i++ )

Lmachine [m] = Lmachine [m] + Process [ i ]∗ y [m] [ i ] ;

i f ( Lmachine [m] > Load Th5 ){
Machine Th5 Back = 0 ;

Job Th5 Back = 0 ;

}
}
Flag Th5 2 = 0 ;

Flag Th5 = 0 ;

m = m + 1 ;

goto B ;

}

A:

c1=c lock ( ) ;

cputime=(c1−c0 ) /∗ (CLOCKS PER SEC) ∗/ ;

i f ( ( c fPt r = fopen ( ” . . . . . . . . . . . . . . . txt ” , ”w” ) ) == NULL )

p r i n t f ( ” F i l e couldnot be open\n” ) ;

else {
f p r i n t f ( c fPtr , ”\ tElapsed CPU time t e s t : %f m i l l i s e c \n” , cputime ) ;

f p r i n t f ( c fPtr , ”\n” ) ;

f p r i n t f ( c fPtr , ” I n i t i a l So lu t i on Makespan i s = %d\n ” , UB LPT) ;

f p r i n t f ( c fPtr , ”\n” ) ;

f p r i n t f ( c fPtr , ”Optimal So lu t i on Makespan = %d\n” , UB Fsolution ) ;

f p r i n t f ( c fPtr , ” Process Times : ” ) ;

for ( j =1; j<=JobType ; j++ )

f p r i n t f ( c fPtr , ”%d ” , Process [ j ] ) ;

for ( m=1; m<=Nmach Back ; m++ )

Print ( ) ;

f p r i n t f ( c fPtr , ”\n” ) ;

sum v = 0 ;

for ( j =1; j<=JobType ; j++)

sum v = sum v + v [ j ] ;

f p r i n t f ( c fPtr , ”m = %d ;\n” ,Nmach ) ;

f p r i n t f ( c fPtr , ”N = %d ;\n” , sum v ) ;

f p r i n t f ( c fPtr , ”NA = %d ;\n” , NumA[ 1 ] ) ;

f p r i n t f ( c fPtr , ”p=[” ) ;

for ( j =1; j<=JobType ; j++ ){
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while ( v [ j ] > 0 ){
v [ j ] = v [ j ] − 1 ;

f p r i n t f ( c fPtr , ”%d ” , Process [ j ] ) ;

}
}
f p r i n t f ( c fPtr , ” ] ; ” ) ;

f p r i n t f ( c fPtr , ”\n” ) ;

f p r i n t f ( c fPtr , ” s=[” ) ;

for ( i =1; i<=Nmach ; i++ ){
f p r i n t f ( c fPtr , ” [ ” ) ;

for ( q=1; q<=NumA[ i ] ; q++ )

f p r i n t f ( c fPtr , ”%d ” , SNA[ i ] [ q ] ) ;

f p r i n t f ( c fPtr , ” ] ” ) ;

}
f p r i n t f ( c fPtr , ” ] ; ” ) ;

f p r i n t f ( c fPtr , ”\n” ) ;

f p r i n t f ( c fPtr , ”e=[” ) ;

for ( i =1; i<=Nmach ; i++ ){
f p r i n t f ( c fPtr , ” [ ” ) ;

for ( q=1; q<=NumA[ i ] ; q++ )

f p r i n t f ( c fPtr , ”%d ” , ENA[ i ] [ q ] ) ;

f p r i n t f ( c fPtr , ” ] ” ) ;

}
f p r i n t f ( c fPtr , ” ] ; ” ) ;

f p r i n t f ( c fPtr , ”\n” ) ;

j=1 ;

for ( i =1; i<=m; i++){
i f (NumA[ i ] > j )

j = NumA[ i ] ;

}
f p r i n t f ( c fPtr , ”M = %d ;\n” , UB Fsolution ) ;

}
f c l o s e ( c fPt r ) ;

system ( ”pause” ) ;

return 0 ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗LPT∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void LPT (void )

{
for ( i =1; i<=Nmach ; i++){

Lmachine [ i ]=0;

for ( j =1; j<=JobType ; j++ )

Lmachine [ i ]= Lmachine [ i ] + ( Process [ j ] ∗ y [ i ] [ j ] ) ;

for ( q =1 ; q<=NumA[ i ] ; q++ ){
i f ( Flag Av [ i ] [ q ] == 1 )

Lmachine [ i ] = Lmachine [ i ] + ENA[ i ] [ q ] − SNA[ i ] [ q ] ;

}
}
Flag q = 1 ;

q = 1 ;

while ( (q<=NumA[m] ) && ( Flag q == 1) ){
i f ( Flag Av [m] [ q ] == 0 ){

Flag q = 0 ;

I n i t i a l A v a i l a b i l i t y ( ) ;

}
q = q+1 ;

}
Flag LPT2 = 1 ;

MinimumLoad ( ) ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ S t a r t Maximum∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Maximum ( void )

{
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max=0;

for ( i =1; i<=Nmach ; i++)

i f ( Lmachine [ i ]>max)

max=Lmachine [ i ] ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗LoadingB ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void LoadingB ( void )

{
Flag 1 = 0 ;

for ( j=JobType ; j >=1; j−− ){
i f ( ( y [m] [ j ] > 0) && ( Flag 1==0 ) ){

y [m] [ j ] = y [m] [ j ] − 1 ;

for ( s = j − 1 ; s>=1; s−− )

y [m] [ s ] = y [m] [ s ] ;

UB 2 = UB;

for ( s=1; s<=j ; s++ )

UB 2 = UB 2 − Process [ s ]∗ y [m] [ s ] ;

for ( s = j +1; s<=JobType ; s++ ) {
k = UB 2 / Process [ s ] ;

i f ( k<=y [ 0 ] [ s ] ) {
y [m] [ s ] = k ;

UB 2 = UB 2 − k∗Process [ s ] ;

}
else {

y [m] [ s ] = y [ 0 ] [ s ] ;

UB 2 = UB 2 − y [ 0 ] [ s ]∗ Process [ s ] ;

}
}
Flag 1 = 1 ;

}
}
Sum B = 0 ;

for ( j =1; j<=JobType ; j++ )

Sum B = Sum B + y [m] [ j ] ∗ Process [ j ] ;

Sum LB = Sum B ;

Restore ( ) ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Res tore ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Restore ( void )

{
for ( j =1; j<=JobType ; j++)

y [ 0 ] [ j ] = v [ j ] ;

for ( i =1; i<=m; i++ )

for ( j =1; j<=JobType ; j++ )

y [ 0 ] [ j ] = y [ 0 ] [ j ] − y [ i ] [ j ] ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Theorem 1∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Theorem 1 ( void )

{
TH 1 = 0 ;

for ( i =1; i<=m; i++) {
Lmachine [ i ] = 0 ;

for ( j =1; j<=JobType ; j++ )

Lmachine [ i ] = Lmachine [ i ] + Process [ j ]∗ y [ i ] [ j ] ;

}

sum S=0;

for ( i =1; i<=m; i++ )

sum S = sum S + Lmachine [ i ] ;

Sum N = 0 ;

for ( i= m + 1 ; i <= Nmach ; i++ )

Sum N = Sum N + N[ i ] ;

TH 1 = ( f loat ) ( sum T − sum S + Sum N) / ( Nmach − m ) ;
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}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Theorem 2∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Theorem 2 ( void )

{
TH 2 = 0 ;

sum S = sum S − Lmachine [m] + UB Back [m] ;

TH 2 = ( f loat ) ( sum T − sum S + Sum N) / ( Nmach − m ) ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Pr in t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Print (void )

{
f p r i n t f ( c fPtr , ”\n ” ) ;

f p r i n t f ( c fPtr , ”\n ” ) ;

f p r i n t f ( c fPtr , ”Load Al l o ca t i on f o r Machine [%d ] ” , m ) ;

for ( j =1; j<=JobType ; j++ )

f p r i n t f ( c fPtr , ” %d ” , z [m] [ j ] ) ;

f p r i n t f ( c fPtr , ”\n ” ) ;

f p r i n t f ( c fPtr , ”\n ” ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ S t a r t LPT2∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void LPT2( void )

{
for ( i =1; i<=Nmach ; i++ ){

y [ i ] [ s ] = y [ i ] [ s ] + 1 ;

Lmachine [ i ] = 0 ;

for ( j =1; j<=JobType ; j++ )

Lmachine [ i ]= Lmachine [ i ] + ( Process [ j ] ∗ y [ i ] [ j ] ) ;

y [ i ] [ s ] = y [ i ] [ s ] − 1 ;

for ( q=1; q<=NumA[ i ] ; q++){
i f ( Flag Av [ i ] [ q ] == 0 ){

i f ( ( Lmachine [ i ] > SNA[ i ] [ q ] ) )

Lmachine [ i ] = Lmachine [ i ] + ENA[ i ] [ q ] − SNA[ i ] [ q ] ;

}
else

Lmachine [ i ] = Lmachine [ i ] + ENA[ i ] [ q ] − SNA[ i ] [ q ] ;

}
}

min = minimum ;

for ( i =1; i<=Nmach ; i++ ){
i f ( Lmachine [ i ] < min ){

min=Lmachine [ i ] ;

m = i ;

}
}
y [m] [ s ] = y [m] [ s ] + 1 ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n t i a l A v a i l a b i l i t y ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void I n i t i a l A v a i l a b i l i t y (void )

{
i f ( Flag LPT ==1 ){

i f ( Flag LPT2 == 1){
y [m] [ s ] = y [m] [ s ] − 1 ;

Flag LPT2 = 0 ;

LPT2 ( ) ;

LPT ( ) ;

}
}
for ( q=1; q<=NumA[m] ; q++){

i f ( ( Lmachine [m] > SNA[m] [ q ] ) ){
Flag Av [m] [ q ] = 1 ;
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Lmachine [m] = Lmachine [m] + ENA[m] [ q ] − SNA[m] [ q ] ;

}
}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Minimum∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void MinimumLoad (void )

{
min = minimum ;

for ( i =1; i<=Nmach ; i++ )

i f ( Lmachine [ i ] < min ){
min=Lmachine [ i ] ;

m=i ;

}
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Lemma 1∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Lemma 1 (void )

{
qStar = 0 ;

for ( q=1; q<=NumA[m] ; q++){
i f ( (SNA[m] [ q]<=UB) )

qStar = q ;

}

i f ( qStar > 0 ){

i f ( UB>=ENA[m] [ qStar ] )

UB = UB − ENA[m] [ qStar ] ;

else

UB = UB − UB ;

i f ( ( qStar−1) != 0 ){
for ( q=1 ; q<=qStar −1; q++ )

UB = UB − ENA[m] [ q ] ;

}
for ( q=1; q<=qStar ; q++ )

UB = UB + SNA[m] [ q ] ;

}

UB Back [m] = UB ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Lemma 2∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Lemma 2 (void )

{
for ( i = 1 ; i<=Nmach ; i++)

N[ i ] = 0 ;

qStar = 0 ;

for ( i =1; i<=Nmach ; i++){

i f ( UB AV<=SNA[ i ] [ 1 ] )

N[ i ] = 0 ;

else{
for ( q=1; q<=NumA[ i ] ; q++){

i f ( UB AV > ENA[ i ] [ q ] )

qStar = q ;

}

i f ( qStar == 0 )

N[ i ] = UB AV − SNA[ i ] [ 1 ] ;

else

i f ( qStar == NumA[ i ] ){
for ( q=1 ; q<=NumA[ i ] ; q++ )

N[ i ] = N[ i ] + ENA[ i ] [ q ] − SNA[ i ] [ q ] ;

}
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else

i f ( UB AV < SNA[ i ] [ qStar+1] ){
for ( q=1; q<=qStar ; q++ )

N[ i ] = N[ i ] + ENA[ i ] [ q ] − SNA[ i ] [ q ] ;

}
else {

N[ i ] = UB AV − SNA[ i ] [ qStar+1] ;

for ( q=1; q<=qStar ; q++ )

N[ i ] = N[ i ] + ENA[ i ] [ q ] − SNA[ i ] [ q ] ;

}
}

}
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Theorem 4∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Theorem 4 (void )

{
TH 4 = 0 ;

Sum UBback = 0 ;

for ( i=1 ; i<=m ; i++ )

Sum UBback = Sum UBback + UB Back [ i ] ;

TH 4 = ( f loat ) ( sum T − Sum UBback + Sum N) / ( Nmach − m ) ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Theorem 5∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Theorem 5 (void )

{
Flag 3 = 1 ;

Flag Th5 3 = 0 ;

Flag Th5 = 0 ;

i f ( Process [ 1 ] < Process [ 2 ] )

Flag Th5 3 = 1 ;

i f ( Flag Th5 3 == 1 ){
m = m + 1 ;

ProcessSwap ( ) ;

m = m − 1 ;

}

m = m − 1 ;

j = JobType + 1 ;

while ( ( Flag 3 == 1) && ( j != 1 ) ){
j = j − 1 ;

i f ( y [m] [ j ]> 0){
Sjob = j ;

i = ( 1 + y [ 0 ] [ Sjob ] + y [m+1] [ Sjob ] )∗ Process [ j ] ;

i f ( i <= UB AV )

Flag 3 = 0 ;

}
}

i f ( j==1){
Lmachine [m] = 0 ;

for ( i =1; i<=JobType ; i++ )

Load Th5 = Load Th5 + Process [ i ]∗ y [m] [ i ] ;

i f ( UB Back [m]==Lmachine [m] )

Flag Th5 2 = 1 ;

m = m + 1 ;

}
else{

m = m + 1 ;

Job Th5 = y [ 0 ] [ Sjob ] + y [m] [ Sjob ] + 1 ;

Machine Th5 = m ;

Flag Th5 = 1 ;

}
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i f ( Flag Th5 3 == 1 ){
m = m + 1 ;

ProcessSwap ( ) ;

m = m − 1 ;

}
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ProcessSwap ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void ProcessSwap (void )

{
i = Process [ 1 ] ;

Process [ 1 ] = Process [ Sjob Back ] ;

Process [ Sjob Back ] = i ;

i = v [ 1 ] ;

v [ 1 ] = v [ Sjob Back ] ;

v [ Sjob Back ] = i ;

for ( i =0; i<=m−1; i++){
Q = y [ i ] [ 1 ] ;

y [ i ] [ 1 ] = y [ i ] [ Sjob Back ] ;

y [ i ] [ Sjob Back ] = Q ;

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Theorem 5 P2∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Theorem 5 P2 (void )

{
Flag Th5 3 = 0 ;

i f ( y [m] [ 1 ] < Job Th5 Back )

Flag Th5 3 = 1 ;

i f ( Flag Th5 3 == 1 ){

ProcessSwap ( ) ;

i f ( Flag Th5 2==1 ){
Flag Th5 2 = 0 ;

Machine Th5 Back = 0 ;

Sjob Back = 0 ;

Flag Th5 = 0 ;

m = m − 2 ;

}
else{

m = m − 1 ;

Sjob Back = Sjob ;

Job Th5 Back = Job Th5 ;

Machine Th5 Back = Machine Th5 ;

Flag Th5 = 0 ;

}

Restore P2 ( ) ;

}
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Restore P2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Restore P2 (void )

{
UB = UB AV ;

Lemma 1 ( ) ;

Restore ( ) ;

LoadingB ( ) ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Theorem 5 P3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void Theorem 5 P3 (void )

{
Flag Th5 3 = 0 ;
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Flag 3 = 1 ;

Flag Th5 = 0 ;

i f ( Process [ 1 ] < Process [ 2 ] )

Flag Th5 3 = 1 ;

i f ( Flag Th5 3 == 1 ){
m = m + 1 ;

ProcessSwap ( ) ;

m = m − 1 ;

}

m = m − 1 ;

j = JobType + 1 ;

while ( ( Flag 3 == 1) && ( j != 1 ) ){
j = j − 1 ;

i f ( y [m] [ j ]> 0){
Sjob Back = j ;

i = ( 1 + y [ 0 ] [ Sjob Back ] + y [m+1] [ Sjob Back ] )∗ Process [ j ] ;

i f ( i <= UB AV )

Flag 3 = 0 ;

}
}

i f ( j==1){
Lmachine [m] = 0 ;

for ( i =1; i<=JobType ; i++ )

Lmachine [m] = Lmachine [m] + Process [ i ]∗ y [m] [ i ] ;

i f ( UB Back [m]==Lmachine [m] )

m = m − 1 ;

}
else{

Job Th5 Back = y [ 0 ] [ Sjob Back ] + y [m+1] [ Sjob Back ] + 1 ;

Machine Th5 Back = m + 1 ;

}
Restore P2 ( ) ;

}



Appendix B

ILOG Input Model

B.1 Model 1

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ILP I

∗ Author : Navid Hashemian

∗ Creat ion Date : Sep 8 , 2009 a t 2 : 1 4 : 4 4 PM

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int N= . . . ;

int m= . . . ;

range Process = 1 . .N;

range Machine = 1 . .m;

int p [ Process ] = . . . ;

int s [ Machine ] = . . . ;

int e [ Machine ] = . . . ;

int M = . . . ;

dvar boolean x [ Machine ] [ Process ] ;

dvar boolean Y[ Machine ] ;

dvar int+ h ;

minimize

h ;

sub j e c t to{
f o r a l l ( i in Machine ) ct1 :

sum ( j in Process ) p [ j ]∗ x [ i ] [ j ]<= s [ i ]∗Y[ i ]+M∗(1−Y[ i ] ) ;

f o r a l l ( i in Machine )

ct2 :

sum ( j in Process )p [ j ]∗ x [ i ] [ j ] + ( e [ i ]− s [ i ])∗(1−Y[ i ] ) <= h ;

f o r a l l ( j in Process )

ct3 :

sum ( i in Machine ) x [ i ] [ j ] == 1 ;

}
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B.2 Model 2

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ILP I I

∗ Author : Navid Hashemian

∗ Creat ion Date : Jan 7 , 2010 a t 2 : 1 4 : 4 4 PM

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int N= . . . ;

int m= . . . ;

int NA = . . . ;

range Process = 1 . .N;

range Machine = 1 . .m;

range Ava i l a b i l i t y = 1 . .NA ;

range Ava i l a b i l i t y 2 = 1 . .NA−1 ;

int p [ Process ] = . . . ;

int s [ Machine ] [ Av a i l a b i l i t y ] = . . . ;

int e [ Machine ] [ Av a i l a b i l i t y ] = . . . ;

int M = . . . ;

dvar boolean x [ Machine ] [ Process ] ;

dvar boolean y [ Machine ] [ Av a i l a b i l i t y ] ;

dvar int+ h ;

minimize

h ;

sub j e c t to{
f o r a l l ( i in Machine )

ct1 :

sum ( j in Process ) p [ j ]∗ x [ i ] [ j ] +

sum(q in Ava i l a b i l i t y 2 ) ( sum(k in 1 . . q ) ( e [ i ] [ k]− s [ i ] [ k ] )∗ y [ i ] [ q])<=

sum(q in Ava i l a b i l i t y ) ( s [ i ] [ q ]∗ y [ i ] [ q ])+

M∗(1−(sum(q in Ava i l a b i l i t y )y [ i ] [ q ] ) ) ;

f o r a l l ( i in Machine )

ct2 :

sum ( j in Process )p [ j ]∗ x [ i ] [ j ] +

sum(q in Ava i l a b i l i t y 2 ) ( sum(k in 1 . . q ) ( e [ i ] [ k]− s [ i ] [ k ] )∗ y [ i ] [ q+1])+

sum(q in Ava i l a b i l i t y ) ( e [ i ] [ q]− s [ i ] [ q ] )∗
(1−(sum(q in Ava i l a b i l i t y )y [ i ] [ q]))<= h ;

f o r a l l ( j in Process )

ct3 :

sum ( i in Machine ) x [ i ] [ j ] == 1 ;

f o r a l l ( i in Machine )

ct4 :

sum(q in Ava i l a b i l i t y )y [ i ] [ q ] <= 1 ;

}



Appendix C

Mersenne Twister

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MERSENNE.CPP ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ AgF 2001−10−18 ∗
∗ Random Number g ene ra t o r ’ Mersenne Twis t e r ’ ∗
∗ ∗
∗ This random number g ene ra t o r i s d e s c r i b e d in t h e a r t i c l e by ∗
∗ M. Matsumoto & T. Nishimura , in : ∗
∗ ACM Transac t i ons on Model ing and Computer S imula t ion , ∗
∗ v o l . 8 , no . 1 , 1998 , pp . 3−30. ∗
∗ ∗
∗ Exper t s c on s i d e r t h i s an e x c e l l e n t random number g ene ra t o r . ∗
∗ ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include ”randomc . h”

void TRandomMersenne : : RandomInit ( long int seed ) {
// re−seed g ene ra t o r

unsigned long s = (unsigned long ) seed ;

for ( mti=0; mti<N; mti++) {
s = s ∗ 29943829 − 1 ;

mt [ mti ] = s ;}}

unsigned long TRandomMersenne : : BRandom() {
// g ene ra t e 32 random b i t s

unsigned long y ;

i f ( mti >= N) {
// g ene ra t e N words a t one t ime

const unsigned long LOWERMASK = (1u << R) − 1 ; // lower R b i t s

const unsigned long UPPER MASK = −1 << R; // upper 32−R b i t s

int kk , km;

for ( kk=0, km=M; kk < N−1; kk++) {
y = (mt [ kk ] & UPPER MASK) | (mt [ kk+1] & LOWERMASK) ;

mt [ kk ] = mt [km] ˆ (y >> 1) ˆ (−(signed long ) ( y & 1) & MATRIX A) ;

i f (++km >= N) km = 0;}

y = (mt [N−1] & UPPER MASK) | (mt [ 0 ] & LOWERMASK) ;

mt [N−1] = mt [M−1] ˆ (y >> 1) ˆ (−(signed long ) ( y & 1) & MATRIX A) ;

mti = 0;}

y = mt [ mti++];

// Tempering (May be omi t t ed ) :

y ˆ= y >> TEMU;

y ˆ= (y << TEMS) & TEMB;

y ˆ= (y << TEMT) & TEMC;

y ˆ= y >> TEML;

return y ;}

94



95

// ou tpu t random f l o a t number in t h e i n t e r v a l 0 <= x < 1

union {
double f ;

unsigned long i [ 2 ] ; }
convert ;

// g e t 32 random b i t s and conve r t t o f l o a t

unsigned long r = BRandom ( ) ;

convert . i [ 0 ] = r << 20 ;

convert . i [ 1 ] = ( r >> 12) | 0x3FF00000 ;

return convert . f − 1 . 0 ;}

long TRandomMersenne : : IRandom( long min , long max) {
// ou tpu t random i n t e g e r in t h e i n t e r v a l min <= x <= max

long r ;

r = long ( (max − min + 1) ∗ Random( ) ) + min ; // mu l t i p l y i n t e r v a l w i t h random and t r un ca t e

i f ( r > max) r = max ;

i f (max < min) return 0x80000000 ;

return r ;}
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